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Abstract. The paper examines the quality of satellite-basedwas consistent with the above-mentioned findings. The best
precipitation estimates for the lower Mahanadi River basinfit between observed and simulated stream flow was obtained
(eastern India). The considered data sets known as 3B42 arifirain gauge data were used as model input (Nash—Sutcliffe
3B42-RT (version 7/7A) are routinely produced by the trop- index of 0.76—0.88 at gauges not affected by reservoir opera-
ical rainfall measuring mission (TRMM) from passive mi- tion). This compares to the values of 0.71-0.78 for the gauge-
crowave and infrared recordings. While the 3B42-RT dataadjusted TRMM 3B42 data and 0.65-0.77 for the 3B42-RT
are disseminated in real time, the gauge-adjusted 3B42 dataal-time data. Whether the 3B42-RT data are useful in the
set is published with a delay of some months. The qualitycontext of operational runoff prediction in spite of the iden-
of the two products was assessed in a two-step procedurgified problems remains a question for further research.

First, the correspondence between the remotely sensed pre-
cCipitation rates and rain gauge data was evaluated at the sub-

basin scale. Second, the quality of the rainfall estimates was

assessed by analysing their performance in the context of Introduction

rainfall-runoff simulation.

At sub-basin level (4000 to 16 000 Kixthe satellite-based Precipitation estimates constitute the essential forcing of
areal precipitation estimates were found to be moderateljnydrological catchment models. Reliable data on rain and
correlated with the gauge-based counterpaks ¢f 0.64—  snowfall are indispensable for model calibration, simulation,
0.74 for 3B42 and 0.59-0.72 for 3B42-RT). Significant dis- and forecasting. In many regions of the world, rain gauge
crepancies between TRMM data and ground observationglata are difficult to access for technical and/or administrative
were identified at high-intensity levels. The rainfall depth reasons. This is particularly true for real-time data needed for
derived from rain gauge data is often not reflected by theoperational hydrological forecasting. In many catchments,
TRMM estimates (hit rate: 0.6 for ground-based intensi- precipitation estimates are also subject to considerable un-
ties> 80 mmdayl). At the same time, the remotely sensed certainty due to the small number of rain gauges and/or non-
rainfall rates frequently exceed the gauge-based equivalentepresentative observation sites. Finally, recording devices,
(false alarm ratios of 0.2-0.6). In addition, the real-time human operators, and data transmission are susceptible to er-
product 3B42-RT was found to suffer from a spatially con- rors and outages for various reasons. Therefore, traditional
sistent negative bias. precipitation records are rarely complete.

Since the regionalisation of rain gauge data is potentially In view of these difficulties, the use of remotely sensed
associated with a number of errors, the above results are sutprecipitation estimates becomes attractive. In large river
ject to uncertainty. Hence, a validation against independenbasins, satellite-based estimates are of particular interest. For
information, such as stream flow, was essential. In this caséatitudes< 50°, such data are made available at no charge

study, the outcome of rainfall-runoff simulation experiments by the TRMM mission, jointly conducted by the US and
Japanese space agencies. The TRMM product with identifier
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3B42 is particularly suitable for hydrological modelling due S a0 .

to its high resolution in space @5° x 0.25°) and time (3 h). §|34°

In addition to ground-adjusted data for research purposes

(Huffman et al, 2007, a near real-time variant known as

3B42-RT is availablequffman and Bolvin 2013. 100 km
TRMM-based precipitation estimates were compared to

rain gauge measurements in a number of case studies from

all over the world (see, e.dke et al, 2009 Javanmard

etal, 201Q Liu et al,, 2012 Ouma et al.2012 Gao and Liy

2013 Pefa-Arancibia et 3l2013. A preliminary evaluation

over India was carried out blgahman and Sengup{a007)

at daily scale using a spatial resolution 6f>.1°. TRMM

data were also tried as inputs for hydrological modelling by

a number of groupJollischonn et al.2008 Li et al., 2012).

Regarding India, the suitability of TRMM-based precipita-

tion data for hydrological modelling is yet to be studied for _

most river basins. 8;# °
This paper analyses the latest TRMM 3B42 (version 7)

and 3B42-RT (version 7, revision 2) data for a hydrologi-

cally sensitive part of India. The spatial focus is on the Ma- Figure 1. Mah_anadi River basin with the analysed gauges (trian_-

hanadi River basin downstream of the Hirakud reservoir. Tod!€s) and their catchments. Gauge names are abbreviated: Hir—

our knowledge, no case study on the quality of TRMM dataH_|rakud, Kes—Kesmga,_ Sal-Salebhata, Kan—Kantamal, Tik—

. . ) o . . . Tikarpara, Mun—Mundali.

is available for this specific area. The evaluation is carried

out in two steps. First, the satellite-based precipitation esti-

mates are compared to ground observations after spatial arEi)ite of its significant retention capacity, the lower reaches

temporal aggregation. Second, TRMM and rain gauge dat%f the Mahanadi River still experience severe floods associ-

are processed through a hydrological model and the COrret0d with significant losse®OWR, 2009. The latest major

sponding errors in simulated stream flow are analysed. events occurred in 1980, 1982, 2008, and 2011 with peak
discharges of up to 44000%s~1 entering the delta down-
stream of Mundali (easternmost gauge in Hig.Peak travel

2 Study area times from Hirakud to Mundali (310 km) range from 36 to

The Mahanadi River basin covers an area of aboutSOhGDOWR' 2019.

140000 kn in the eastern part of India. The Mahanadi and
its tributaries drain a considerable part of the states Chhatti
garh and Orissa towards the Bay of Bengal. In the delta re-
gion, the river is split across a number of branches, includingz 1 precipitation data sets
man-made canals. According to the global land-cover data
set JRC 2003, 55 % of the basin is covered by agricultural 3.1.1 TRMM rainfall estimates
land of which almost 90 % is subject to irrigation. Forests
and shrubs cover 35 and 7 %, respectively. Built-up areas ar&dwo high-resolution rainfall data sets provided by the
of minor importance. TRMM mission were analysed. The official identifiers are
The basin’s climate is characterised by the Monsoon3B42 for the gauge-adjusted research version and 3B42-
with dry winters and wet summers. Rainfall amounts to ca.RT for the real-time variant. Basic specifications of the two
1500 mmyear!. The annual peak is typically observed in data sets are collected in Table A description of the
July with ca. 400 mmmonttt. In the dry season extend- remote-sensing approach and technical specifications can
ing from November to March, rainfall is usually less than be found inHuffman et al.(2007 for the 3B42 data and
20 mm monthl. The annual maximum of air temperature Huffman and Bolvin (2013 for the 3B42-RT data. The
occurs in May with average values well above’80 two data sets can be downloaded from the NASA servers
The flow regime in the lower reaches of the Mahanadidisc2.nascom.nasa.gov/s4pa/TRMM_L3/TRMM_3Bdi2d
River is largely controlled by the Hirakud Dam operated trmmopen.gsfc.nasa.gov/pub/merged/3B42i@Spectively.
since 1957 (Figl). The Hirakud reservoir serves multiple  The spatial coverage of the Mahanadi Basin by the TRMM
purposes such as flood protection of the delta region, irri-grid is illustrated in Fig2. In this region, the dimensions of
gation, and power production. With a storage capacity ofan individual 025° x 0.25° grid cell is about 26 knx 28km
over 5kn¥, Hirakud is one of India’s largest reservoirs. In (=~ 730 knf). The number of missing values in the TRMM

Hirakud
Reservoir

Data and methods
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Table 1.Basic specifications of the evaluated TRMM data sets.  for two sub-sets of the 11-year time series. The factor de-
termined on the first half of the time series was applied to

Data set 3B42 3B42-RT the second half and vice versa. Note that this correction does

Temporal resolution 3h same as left not make explicit use of recent rain gauge data since the ad-

Spatial resolution @5° x0.25° same as left justment factor is derived from historic satellite data alone.

gp?tial ?gyerage ’ ;?0\1—5:: S 60’3':—60" S Hence, the real-time character of the 3B42-RT product, that
elay or dissemination montns H H H H HA H

Adju;’tmem o gauge data  Monthly sums  none is, its operational applicability, is fully preserved.

Used version 7 7, revision 2

File format (unzipped) HDF Custom binary format ~~ 3.1.2  Rain gauge data

Daily rainfall data were provided by the India Meteorologi-
23.75° cal Department for 74 rain gauges located inside and nearby
' the lower Mahanadi Basin (Fi@). Implausible values and
periods with zero-only data during the monsoon season were
marked as “missing”. Furthermore, the data at all rain gauges
were validated by double mass analysis using the spatial me-
dian as the reference. Based on this, the data of some rain
gauges and/or years were also set to “missing”. To facilitate
further analysis and the use of the data as a model input, all
“missing” values were finally substituted with estimates ob-
tained by spatial interpolation (inverse-distance method).

86°

80.25°

3.1.3 Disaggregated gauge data

A derived, gauge-based precipitation estimate was obtained
by imprinting the 3-hourly pattern of the TRMM 3B42 data

on the 24 h sums observed at the rain gauges. The approach
of disaggregation is described by E#).(In this equation, G3

is the 3-hourly estimate for a gauge, G24 is the original daily
Figure 2. Grid of the TRMM 3B42/3B42RT product covering the observation, and SRFRand SRR, denote the corresponding
Mahanadi River basin. Individual cells are26° x 0.25° wide. 3-hourly and daily sums according to the real-time TRMM

Points represent rain-gauges in sub-catchments downstream of thgata for the nearest grid cell (cf. Tat2p
Hirakud Dam, stream gauges are marked by triangles (cf1fig.

G24-SRR3/SRRys if SRRz4>0

. M)
G24-3/24 if SRR4=0

times series is surprisingly low. In over 12 years, the real-G3 =
time data set is incomplete only on 28 days. On all but two
days the spatial coverage is at least 50 %.

The data were downloaded using the software tool “wget” Equation () assumes that, in terms of cumulated rainfall,
after collecting a list of all required file paths. Appropriate ground observations are more reliable than remotely sensed
R scripts were used for the purpose of further processinggestimates. That is why the satellite information is used as
including decompression, conversion to ASCII, spatial sub-a dimensionless weight only (first case). In the second case
setting, time conversions, and formatting. The actual binary-of Eg. (1), the satellite-based estimate is simply ignored and
to-ASCII conversion was performed using “hdp” (for HDF the gauge-recorded rainfall is distributed uniformely over the
files) and customised C code (for the 3B42-RT file format). day.

The correctness of the processing was verified by plotting

the results for selected dates. Spatial patterns and the scali§j1.4 Short data set identifiers

were then compared to corresponding outputs of the NASAs

online visualisation system “TOVAS”. For clarity, abbreviations are introduced to identify the var-

The real-time product (3B42-RT) showed a moderate neg-{ous precipitation estimates introduced in the previous sec-
ative bias when compared with the gauge-adjusted 3B42ions. Gauge-based estimates are generally identified by the
product. We corrected for this deficit by multiplying the for- initial letter “G”, whereas an initial “S” is used for the
mer product with an adjustment factor reflecting the devia-satellite-based estimates. A summary of all abbreviations
tion between the two satellite data sets. In order not to in-used throughout the remainder of the paper is given in
troduce artificial skill, factors were derived independently Table2.

www.hydrol-earth-syst-sci.net/18/2493/2014/ Hydrol. Earth Syst. Sci., 18, 249502 2014
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Table 2. Short identifiers for the different precipitation estimates.

Abbreviation

G24

Description

Original 24 h rain gauge data.

G3 3-hourly rain gauge data produced by disaggregation.
SG Gauge-adjusted satellite data (TRMM 3B42).

SRR Raw real-time satellite data (TRMM 3B42-RT).

SRC SRR after bias correction.

D. Kneis et al.: Evaluation of TRMM rainfall estimates

was done with and without (re-)calibration of the hydrologi-
cal model to the individual rainfall data sets.

MSE(p. 0)

NS=1-— VAR @) (4)
pBias= % -100% 5)

The evaluation was carried out on the period March 2000

Table 3.Contingency table to measure the correspondence betweetd December 2010 owing to the limited access to hydrologi-
rain gauge data (column headers) and remotely sensed estimateal and rain gauge data. For the same reason, the spatial focus

(row headers) with respect to a threshold intengitymm day 1).

was put on the lower Mahanadi Basin downstream of the Hi-

A value of 1 is added to the appropriate field for every analysedrakud dam.

event.

Ground observations

> X <X

False alarm
Correct negative

Remote sens- X Hit
Remote senss X  Miss

3.2 Evaluation procedure

3.3 Hydrological modelling
3.3.1 Model engine

The hydrological model used in this study is called HYPSO-
RR. This is a time-continuous, semi-distributed, conceptual
model developed on the basis of the ECHSE modelling
framework. Both the model and the underlying modelling
framework are available #ittp://echse.bitbucket.oligclud-

ing source code and documentation.

First, the correspondence between the satellite-based precip- The basidypes ofobjects (formally callectlasse} sim-

itation estimates and rain gauge data was examined. For th
purpose, the data were aggregated in space (areal rainfall fi

ated by HYPSO-RR are (1) sub-basins, (2) river reaches,

Ynd (3) river junctions. Additional classes are available for

sub-basins) and time (24h sums). The spatial aggregatiog, simyiation of lakes and reservoirs. HYPSO-RR was origi-

aims at compensating for the coarse resolution of the TRMM
grid (Fig.2) compared with the rain gauge domain. The tem-

nally designed for time-consuming applications in hydrolog-
ical forecasting (ensemble simulation, operational data as-

poral aggregation was necessary since high-resolution raig;yjjation). Therefore, computational efficiency was given
gauge data were unavailable. The association of the data Seﬁ?iority over a very detailed, strictly physically based de-

was expressed in terms Bf and the percentage bias (Ex).

The probability of detection (POD), the false alarm ratio
(FAR), and the equitable threat score (ETS) were evaluate@

scription of real-world processes. A brief summary of the
major hydrological processes and the associated model con-
epts is presented in Tablle A detailed documentation, in-

to assess the ability of the remote-sensing approach to proQ:'luding all equations, can be found Kneis (20128. The

erly detect high rainfall intensities. For a contingency table

such as Tabl8, these first two scores are defined by E@}. (
and @). SeelJolliffe and Stephensaf2003 for the definition
of ETS.

Hits
POD= — > ?)
Hits + Misses
False Alarms
FAR 3)

- Hits + False Alarms

current version of HYPSO-RR distinguishes three classes of
land cover only: vegetated soil, water, and impervious sur-
faces.

3.3.2 Spatial set-up and data

Drainage network and watershed boundaries were derived
from the ASTER digital elevation model using software de-
scribed inKneis (20128. The median sub-basin size was
about 150 krA. Information on land use was taken from the

Second, rain gauge data and satellite-based estimates wegdobal land cover mapJRC 2003. Basic soil properties
processed through a conceptual hydrological model. This alwere extracted from the global WISE data base provided
lowed for a comparison of the rainfall estimates with respectby the International Soil Reference and Information Centre
to the error of simulated runoff. The error was quantified by (www.isric.org.
the Nash—Sutcliffe index, NS, and the percentage bias, pBias Survey cross-section data were available for 40 sites along

(Egs.4 and5; o: observationsp: model predictions, MSE:
mean squared error, VAR: variance operatokength of vec-

the main Mahanadi River between Hirakud and Mundali. For
about 200 additional sites, cross sections were extracted from

torso and p). Since systematic errors in rainfall input may the elevation model. Based on this information, hydraulic pa-
partly be compensated by the choice of the model’'s paramerameters were assigned to all simulated reaches using the re-

ters (see, e.gdeistermann and Knei011), the evaluation

Hydrol. Earth Syst. Sci., 18, 24932502 2014
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Table 4.Concepts used by HYPSO-RR to simulate major hydrological processes at the level of sub-basins, river reaches, or lakes.

Processes Concepts

Runoff generation — Simulation of the water balance of a single-layer soil column
— Estimation of saturated areas with the Xinanjiang approabbhd et al. 1980
— Calculation of direct runoff using the analytical solutioriTofini (1996
— Calculation of interflow and groundwater recharge as in LARSIM{vig and Bremicker2006

Runoff concentration  — Transformation of individual runoff components through linear reservoirs
— Storage constants derived from DEM to account for spatial variability in concentration times

Evapotranspiration — Estimation of potential evapotranspiration (PET) using the Makkink rdedgxiuin 1987
— Actual ET is derived from PET by multiplying with a soil moisture term and a crop factor
— Leaf-area index is used as a proxy to capture the crop factor's seasonality

Snow storage/melt — Energy balance model similar to the one preserfartbimton and Luc€1996

Channel routing — Approximation of a uniform reach as a non-linear reservoir
— Local linearisation of the governing differential equation for analytical solvability
— Parameters derived from cross-section data using Manning’s equation

Lake storage — Numerical solution of the water balance equation

3.3.3 Meteorological inputs Table 5. Analysed stream gauges in the central parts of the Ma-
hanadi Basin (see Fig).

The rainfall data sets introduced in Se@4..1to 3.1.3form

the essential input of the hydrological model. Both the gauge Gauge River Catchment (K

and satellite datg were interpolated to the ;ub-basins’ cen- Salebhata Ong R. 4500
tres of mass using inverse-distance weighting (IDW) with Kesinga  TelR. 12200
a power of 2 and sector search enabled (selection of a sin- Kantamal TelR. 20900
gle neighbour from each of four sectors). With respect to Tikarpara Mahanadi 127000
the satellite data, these settings guarantee that, for each tar- Mundali  Mahanadi 134000

get location, weighted information from the four nearest grid

cells is used, with strong preference for the nearest cell. Suit-

ability of the IDW parameters for interpolation of the rain reservoir was available as 24 h averages. Knowledge of the

gauge data was tested experimentally by means of leave-onetischarge at Hirakud is essential for simulating stream flow

out cross-validation (verification at point scale) as well as byin the downstream reaches of the Mahanadi River, including

analyzing the error in simulated runoff (verification at basin the gauging sites Tikarpara and Mundali.

scale) for different configurations. The optimum parameters

suggested by cross-validation (power of 1, eight neighbours.3.5 Calibration strategy

did not compare favourable to the above-mentioned settings o )

(power of 2, four neighbours) in terms of simulated runoff. The calibration of the hydrological model was performed
In addition to rainfall data, HYPSO-RR requires time se- se_ml-automat|cally using a sequence of Monte Carlo simu-

ries of air temperature, short-wave radiation, and air preslations (SMCS). This approach was tested in a number of

sure, at least. The available temperature data (five stationgainfall-runoff modelling studies (e.¢tneis et al, 2012. It

daily records) were regionalised by residual interpolation us-S briefly described by the following algorithm:

ing the sub-basins’ elevation as external predictor. Radiation 1 pefine initial sampling ranges for all parameters based

data were accessible for a single station only (monthly aver- on physical limits, literature, data analysis, or experi-
ages). Air pressure was generally estimated from elevation. ence from earlier studies.

3.3.4 Observed stream flow 2. Generate: random parameter sets by the Latin Hyper-
cube method with uniform distribution.

Stream flow data were provided by India’s Central Wa-
ter Commission for the gauges listed in TalBleMost of

the hydrographs consist of instantaneous values recorded at
08:00IST (Indian standard time). Hourly data existed for 4. Plotthe objective function’s value against the individual
Mundali only. Information on the release from the Hirakud parameter values.

3. Run the model for all parameter sets and compute the
objective function, i.e. the simulation error.

www.hydrol-earth-syst-sci.net/18/2493/2014/ Hydrol. Earth Syst. Sci., 18, 249502 2014
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5. Visually inspect the plots and narrow (or shift) the sam- Table 6. Performance of the hydrological model in terms of the
pling ranges where an optimum (or trend) can be iden-Nash—Sutcliffe index (Eg4). Calibration results are indicated by
tified with sufficient certainty. bold numbers in the diagonal. Forcing: rain gauge data of the period

2002-2010.

6. Continue with step 2 until all sampling ranges have col-
lapsed to zero width. Calibrated for Parameters applied to

With respect to the HYPSO-RR model engine, initial es- Salebhata Kesinga Kantamal

timates for many parameters can be deduced from basic Salgbhata 0.82 0.71 0.72
soil properties or hydrograph analysis as describegniais Kesinga 0.79 0.77 0.83
(20123. To facilitate the identification of physically rea- Kantamal 0.73 072 0.86

sonable, near-optimum parameter values, multiple objective
functions may be evaluated simultaneously. In this study,
both the Nash—Sutcliffe index and the percentage bias werdable 7. Like Table 6 but numbers represent the percentage bias
used (Eqgs4 and5). In addition, the two objective functions (EQ.5).

were analysed for subsets of observations (low flow, high
flows, full range). The analysis of the model error during pe- Calibrated for Parameters applied to
riods of low flow was essential for identifying the parameters Salebhata Kesinga Kantamal
that control groundwater recharge and drainage.

The described methodology may be regarded as a stochas- Salgbhata L 14 0

. - . . . Kesinga 15 0 16
tic algorithm with regular human intervention. The SMCS

Kantamal -1 -13 0

approach is believed to be a reasonable generic alternative to
other strategies. Compared to manual calibration, for exam-
ple, the SMCS reduces the manual effort dramatically and

it leaves less room for subjectivity. Compared to fully auto- jntensity of the Monsoon in the selected years (recall the de-
matic optimisation, the SMCS is robust as it bypasses typicahominator in Eq4). We circumvented this problem by adopt-
numerical obstacles. In this case study, a total of 800-100Gnq an alternative strategy of model validation where the cal-
model runs was needed to calibrate the model for a singlgprated parameter sets are exchanged between neighbouring

gauged sub-basin. catchments. This strategy analyses the parameter’s transfer-
The model was calibrated on observed stream flow datgyjjity in space rather than time.

from 1 January 2002 to 31 December 2009. Model runs were  The validation experiments were carried out using the rain

initialised about 1.75years in advance (1 March 2000) bUtgauge data (SecB.1.2 as precipitation forcing. The results
the outputs for this “warm-up” period were discarded. The gre summarised in Tablésand?7. The original performance
estimated initial state for 1 March 2000 was generated in & the calibrated model is represented by the bold numbers;
long-term simulation using recycled meteorological data ofthe other numbers off the diagonals indicate the performance
the years 2001-2010 as forcings. when the calibrated parameters from a particular catchment
We abstained from calibrating the model for the catch-(specified in the the row header) are applied to a different
ments of Tikarpara and Mundali since stream flow at theseatchment (column header).
two gauges is largely controlled by operation of the Hirakud  According to the statistics presented in Tatemd7, the
Dam. The parameters for the two catchments were set to thg,gdel concept is capable of capturing the catchment's fun-
average of the respective calibrated values for Kesinga, Kangamental hydrological behaviour. Hence, the model was also
tamal, and Salebhata. used to analyse the impact of different precipitation inputs
(Sect.3.2

4 Results . o .
4.2 Daily areal precipitation estimates

4.1 Validation of the hydrological model

The correspondence between TRMM precipitation estimates
Typically, only some part of an observed hydrograph is usedand ground data was analysed for five major sub-catchments
for model calibration while the other part is reserved for vali- (cf. Fig. 1). Assuming the rain gauge-based estimates to be
dation. In this case study, however, the split-sample approachkeliable, the TRMM data reflect about 60—70 % of the ob-
was found to be very sensitive to the choice of the time peri-served variance in daily areal rainfall (Tal@le Compared to
ods used for calibration and validation, respectively. In par-the post-processed product, the real-time data perform worse.
ticular, the problem occurred if each of the two sub-sampledn particular, the real-time data which did not undergo bias
consisted of a different sub-set of years. In such a case, theorrection exhibit a consistent underestimation (rightmost
value of the Nash—Sutcliffe index is largely controlled by the column of TableB).

Hydrol. Earth Syst. Sci., 18, 24932502 2014 www.hydrol-earth-syst-sci.net/18/2493/2014/
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Table 8. Quality of daily areal precipitation estimates gained from Table 9.Nash—Sutcliffe index of simulated stream flow for different
gauge-adjusted TRMM data (SG) and raw real-time TRMM data precipitation estimates (labels according to TaBleNumbers in
(SRR). Reference: regionalised rain gauge data. parenthesis were obtained with the SG and SRC input, respectively,
but using model parameters optimised for G3.

Catchment R? pBias (%)
sG SRR SG SRR Catchment Precipitation estimate
G24 G3 SG SRC
Salebhata  0.64 0.60 10 -6
Kesinga 0.71 0.68 -8 —-26 Salebhata 0.82 0.86 0.71(0.69) 0.67 (0.66)
Kantamal 0.73 0.72 -5 -23 Kesinga 0.77 0.76 0.70(0.70) 0.65 (0.58)
Tikarpara 0.74 0.71 5 —14 Kantamal 0.87 0.88 0.78(0.75) 0.77 (0.69)
Mundali 0.65 0.59 2 -16 Tikarpara 0.88 0.89 0.88(0.90) 0.90 (0.89)
Mundali 0.94 093 0.88(0.87) 0.86(0.83)
. Salebhata _ Kesinga ~ Kantamal _ Tikarpara . Mundali
© - i - i 4.3 Simulated runoff for different rainfall estimates
S <1 ™. T~ Z\\ Z\
s+ 41 44 41 31 .\. . The quality of stream flow simulations with different precip-
- 20 80 o 20 80 20 80 itation estimates is summarised in TalfleExcept for the
@ ] ] ] ] ] numbers in parenthesis, all results were obtained with model
g < e Nl ] 1. 1 parameters optimised for the respective rainfall forcing. It
o = | = | T | has to be noted that the flow rates at Tikarpara and Mundali
o TrTTTTT TrTTTTT FrTTTTT rTT1TTTT TTTTTT H H H
%0 80 50 80 0 80 o 80 o 8 are heavily mfluencgd by the rfalease from the Hirakud dam..
& ] ] . ] T o Consequently, the simulated discharge at these two gauges is
o 2 . . s N naturally less sensitive to the model’s rainfall input.
w ; o 0= L — - === - . .
: _\— i == _&\f- i = According to Table9, the match between simulated and
S S L B L I observed stream flow is generally higher for the rain gauge
20 80 20 80 20 80 20 80 20 80

data (G24, G3) as compared to the TRMM estimates (SG,
SRC). For the two gauge-based data sets, the difference in
Figure 3. Probability of detection (POD), false alarm ratio (FAR) Performance was found to be weak. Only for the smallest
and equitable threat score (ETS) of satellite-based estimates of dailgub-catchment (cf. TabB), the disaggregated 3-hourly data
areal precipitation for selected thresholdsafis). Data set labels (G3) clearly seem to outperform the daily data (G24). At all
according to Table2. Columns correspond to the sub-catchments but one gauge, the gauge-adjusted TRMM data (SG) allowed
shown in Fig.1. for a slightly better fit of the hydrological model than the
bias-corrected real-time TRMM data (SRC).
A closer look at Tablé® reveals that the mentioned dif-
ferences in model performance are reproduced, even if the
The representation of high rainfall intensities by the model is not re-calibrated to the individual precipitation es-
TRMM data is examined in Fig3. In all investigated sub- timates (numbers in parenthesis). Nevertheless, it becomes
catchments, the POD shows a steep decline towards higherbvious that re-calibration is necessary to achieve the best
rainfall intensities. While scores of 0.6—0.8 were found for possible fit.
low intensities, typical POD values range from 0.2 to 0.5 A graphical representation of Talgwithout numbers in
for events exceeding the threshold of 100 mmdayn gen- parenthesis) is provided as Fig. In addition to the over-
eral, higher scores were obtained for the gauge-adjustedll Nash—Sutcliffe indices (bars), the figure also illustrates
TRMM product (SG) as compared to the raw real-time prod-the inter-annual variability of the goodness-of-fit. The very
uct (SRR). low Nash—Sutcliffe indices obtained in some years for SG
False alarm ratios fall in the range of 0.2—0.6. As opposedand SRC input (gauges Kesinga and Salebhata) are largely
to the POD statistics, the FAR is not strongly correlated withdue to occasions of severe rainfall overestimation by the two
the threshold intensity. There is also no clear ranking withsatellite-based products.
respect to the compared TRMM products. Note again that the high Nash—Sutcliffe indices obtained
According to the equitable threat score (ETS), the twoat Tikarpara and Mundali foall precipitation estimates are
compared TRMM products perform more or less similarly. mainly due to the insertion of known reservoir release rates
The declining graphs in the bottom row of Figunderpin  in the model (cf. SecB.3.4.
the general deterioration of the precipitation estimates if the The bias corresponding to the Nash—Sutcliffe indices re-
focus of interest is shifted towards more extreme events.  ported in Table9 is usually small. In all cases where the

mm/d
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j ‘ j | j | | ‘ j 111 j o approach to disaggregation might not always be accurate
enough.

As already expected from the analysis of areal precipita-
tion estimates, the satellite-based data generally performed
worse than the rain gauge data. Furthermore, a consistent dif-

Figure 4. Nash-Sutcliffe indices of simulated runoff. Bars represent ference in the quality of simulated discharge was observed
the values from Tabl@ related to the entire evaluation period 2002— for the gauge-adjusted TRMM data and the real-time data.
2010. Thin vertical lines indicate the range of the Nash—Sutcliffe The |atter performed worse at all but one gauge. Apparently,
indices obtained for individual years @xis cut off at zero). the monthly gauge-adjustment and/or the more advanced cal-
ibration of the microwave sensors applied to the 3B42 prod-
model was calibrated to the respective rainfall input, theUCt ('.*‘.J“”.‘a” anq BOIV".’] 2013 cp_ntnbute to the quality of
percentage bias was almost negligible 3%, except for prec'lpltatlon estimates in aSnglflcant way.
Mundali). However, significant negative biases of up to It is well known that the ch_0|ce of parameter valu?s can
—25 % were obtained for the cases where the model was feg_ar_tly compensate for errors in a hy(_JIroIoglcaI model's pre-
with TRMM data but its parameters were optimised for rain cipitation input Helsterm_ann and Kne@OlJ)..Hence, there.
gauge input (G3). IS no guarantee that a dn‘fgrence in the quality of two precip-
Apart from a quantitative assessment of the goodness-of'—tatlon estimates can be inferred from a comparison of the
fit (Table9, Fig. 4), it is quite informative to visually inspect errors in simulated runoff._ Fortunately, the stud_led_ case ap-
model outputs for selected events and sites. Here, simulR&ars to be vv_eII k_Jehaved in the sense that the findings (.)f hy-
tion results are presented for the annual maximum floods at rolog|c|a| \_/alldfatt;]on (S_efctﬁ.z) ?re Iln goo%:gzeer;ert]rt] with
Kantamal (Fig5). While the hydrographs produced with rain gr:nigsrlzn?(in ifr?r:g arecia i::la:oonngsﬁimate)é acl:gored:;] 0
gauge data (G24, G3) seem to outperform the satellite-base@e e,rror in simu?ated rugoff v?/as reproducible for differegnt
coun_terparts (SG_, SRC) in years like 2007 and 2008, the pic- odel parameterisations (Tatsle P
ture is less clear in other years (e.g. 2003, 2005, and ZOOGP Although the results of the hydrological simulations seem
plausible and consistent, a number of deficits in both the hy-
5 Discussion drological model and data is known. For example, the var-
ious effects of irrigation (withdrawal of river water, evapo-
According to the results presented in Set®, the TRMM transpiration from impounded rice fields) are not currently
precipitation estimates are only moderately correlated withsimulated due to missing quantitative information. In addi-
ground observations (Tab®. This is so, even though the tion, calibration and validation of the hydrological model are
analysis was carried out on the daily scale and for spatiallynegatively affected by the low temporal resolution or sam-
aggregated data. The evaluation of the POD and FAR scoregling frequencies of hydro-meteorological data. Last but not
(Fig. 3) suggests that the TRMM data suffer from a se- least, one has to expect significant errors in stream flow data
vere underestimation of higher rainfall intensities at the basindue to (very) wide gaging cross sections in non-consolidated
scale. At the same time, rainfall amounts are frequently over+iver beds.
estimated across the whole range of intensities.
One has to keep in mind that areal precipitation estimate$ Conclusions
derived from local observations were used as the reference
data set. Thiground truthitself may be subject to uncer- The quality of satellite-based, 3-hourly precipitation esti-
tainty owing to errors in recording and deficits of regionali- mates produced by the tropical rainfall measuring mission
sation, for example. Because of the rather dense network ofvas examined for a part of the Mahanadi River basin. The
rain gauges (cf. FigR), however, there is a good chance that direct comparison of the remote-sensing data with ground
ground truth is worthy of that name in the majority of cases. observations and the conducted hydrological simulation ex-
This assumption is finally supported by the results of the hy-periments yielded a consistent sight on data quality. Accord-
drological validation (Sect.3). ing to the analysed statistics, the satellite-based precipitation
In the hydrological simulation experiments, the closestestimates suffer from deficiencies in the registration of in-
agreement between observed and simulated discharges weense rainfall events. At the same time, the remote-sensing
obtained using the rain gauge data as model input (Téble data frequently overestimate rainfall amounts observed at the
Fig. 4). With the exception of the smallest sub-catchmentground. The latter fact is responsible for a relevant number of
(gauge Salebhata), the temporal resolution of the rainfalflaws in the hydrological simulations. In accordance with ex-
time series (3h vs. 24 h) was found to be of little influence. pectations, the real-time estimates (3B42-RT product) were
On the one hand, this might be explained by the smoothfound to be more uncertain than the gauge-adjusted 3B42 es-
ing effects of spatial averaging or retention becoming moretimates which are disseminated with a delay of a few months.
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Figure 5. Observed and simulated stream flow at Kantamal (seelfigable5) for the annual floods in 2001-2010. All axis labels
represent the day of the month. Allaxis with identical scaling.

For the study area, the real-time data took profit from a sim-base artificially. In any case, the TRMM data appear to be
ple bias correction. However, the remaining random errorsa reasonable source of information for “ungauged basins” in
still exceeded those of the retrospective 3B42 estimates.  terms of rainfall.

The conclusions drawn from the statistical analyses do not Due to dissemination in real time, the TRMM 3B42-RT
necessarily apply to individual events. Although the remotelydata set has the potential of being used in operational runoff
sensed precipitation estimates often perform worse compareprediction. This is especially interesting for regions where
to those inferred from rain gauges, the opposite was foundain gauge data are not (timely) available. An assessment
to be true in some cases. Further analyses are required tof the 3B42-RT data in the context of hydrological forecast-
explore those instances. ing was not part of this study. A realistic assessment would

The study was carried out in a catchment with a ratherrequire the implementation of a framework for stream flow
dense network of rain gauges. It is expected that the remotelgssimilation by the hydrological model and the evaluation
sensed precipitation estimates will be of higher “value” in re- of a long array of hindcasts. However, the POD and FAR
gions with a more sparse network of observation sites. Thisscores (Fig3) suggest that significant forecast errors must
hypothesis might be tested, for example, by repeating the hybe expected even if the hydrological model was perfectly ini-
drological validation after “thinning out” the rain gauge data tialised through continuous updating.
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