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Abstract. The 2012 drought was one of the most extensive
drought events in half a century, resulting in over USD 12
billion in economic loss in the United States and substan-
tial indirect impacts on global food security and commod-
ity prices. An important feature of the 2012 drought was
rapid development and intensification in late spring/early
summer, a critical time for crop development and invest-
ment planning. Drought prediction remains a major chal-
lenge because dynamical precipitation forecasts are highly
uncertain, and their prediction skill is low. Using a prob-
abilistic framework for drought forecasting based on the
persistence property of accumulated soil moisture, this pa-
per shows that the US drought of summer 2012 was pre-
dictable several months in advance. The presented drought
forecasting framework provides the probability occurrence
of drought based on climatology and near-past observations
of soil moisture. The results indicate that soil moisture ex-
hibits higher persistence than precipitation, and hence im-
proves drought predictability.

1 Introduction

According to United States Department of Agriculture
(USDA) estimates, about 80 percent of US agricultural land
experienced drought in 2012, which made the event more ex-
tensive than any since 1950 (USDA, 2012). A striking as-
pect of the 2012 drought was rapid increase in severity in
early July during a critical time of crop development (USDA,
2012). The quick onset of the drought in the central plains
during late spring led to a so-called “flash drought” (Ho-
erling et al., 2013, 2014). A drought early warning system

with seasonal predictions of drought onset, severity, persis-
tence, and spatial extent in a timely manner would provide
invaluable information to decision-makers and stakeholders.
There are a number of research and operational drought (or
hydrologic) prediction systems (Pozzi et al., 2013; Mishra
and Singh, 2010; AghaKouchak and Nakhjiri, 2012), includ-
ing the Climate Prediction Center Seasonal Drought Out-
look (Steinemann, 2006), the University of Washington’s
Surface Water Monitor (Wood and Lettenmaier, 2006; Wood,
2008), Princeton University’s drought forecast system (Luo
and Wood, 2007; Li et al., 2008; Sheffield et al., 2008), US–
Mexico Drought Prediction Tool (Lyon et al., 2012), and the
Global Integrated Drought Monitoring and Prediction Sys-
tem (GIDMaPS; Hao et al., 2014). Despite all these efforts,
a community white paper by the World Climate Research
Program identified sub-seasonal to seasonal drought predic-
tion as one of the major research gaps in hydroclimatology
(WCRP, 2010).

Drought forecasting is generally based on drought indi-
cators computed using dynamic or statistical model simula-
tions of drought-related variables (e.g., Mishra et al., 2009;
Madadgar, and Moradkhani, 2013). Droughts are classified
as agricultural (soil moisture deficit), meteorological (precip-
itation deficit), and hydrological (streamflow/groundwater
deficit), and various drought indicators based on soil mois-
ture, precipitation and runoff have been developed to de-
scribe different aspects of droughts (Heim, 2002; Wood et
al., 2002; Wood and Lettenmaier, 2006; Mo, 2008; Shukla
and Lettenmaier, 2011; Hao and AghaKouchak, 2013). Most
drought prediction studies are based on the standardized pre-
cipitation index (SPI; McKee et al., 1993) with the input pre-
cipitation derived from dynamical weather/climate models
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(Yoon et al., 2012; Mwangi et al., 2014; Dutra et al., 2013,
2014a, b). While dynamic models provide valuable informa-
tion, precipitation forecasts are subject to high uncertainty
and models exhibit very low skill in predicting precipita-
tion with a few months lead time (Goddard et al., 2003;
National Research Council, 2006; Livezey and Timofeyeva,
2008; Lavers et al., 2009). A baseline probability method is
proposed for meteorological drought forecasting based on
persistence of the SPI (Lyon et al., 2012), indicating that
a statistical persistence-based model could lead to a good
seasonal drought forecasting skill (Quan et al., 2012). Hao
et al. (2014) developed a multivariate method for statistical
drought prediction using a persistence-based approach.

Soil moisture is often used as an indicator of agricultural
drought monitoring, and has been used in different forms
(Samaniego et al., 2013) including the soil moisture per-
centile (Luo and Wood, 2007; Wood, 2008; Shukla et al.,
2011), normalized soil moisture (Dutra et al., 2008), and soil
moisture anomaly (Sheffield and Wood, 2007; Sheffield and
Wood, 2008). Typically, precipitation and temperature fore-
casts, either from dynamic models or climatology resampling
(i.e., ensemble streamflow prediction, ESP method; Mo et
al., 2012), are used to force land-surface/hydrologic models
for predicting soil moisture conditions and drought (e.g., Luo
and Wood, 2007; Luo and Wood, 2008; Trambauer et al.,
2013). The uncertainty of dynamic soil moisture forecasts
is even higher than the climate forcings (precipitation and
temperature) because, in addition to input uncertainty, model
errors and uncertainty also propagate into soil moisture sim-
ulations. For this reason, different statistical methods such
as conditional ESP resampling have been explored for soil
moisture prediction (Wood, 2008).

Persistence is a distinctive characteristic of the soil mois-
ture as it exhibits less variability relative to precipitation (Hao
and AghaKouchak, 2014). Mo et al. (2012) emphasized the
importance of the persistence of soil moisture in improving
drought forecasting skill. Great strides have been made to ex-
plore soil moisture persistence properties, and results reveal
that the persistence of soil moisture memory spans weeks to
a couple of months (Vinnikov and Yeserkepova, 1991; Entin
et al., 2000; Seneviratne et al., 2006; Koster et al., 2010).
Though the persistence property of soil moisture has been
well documented, the properties of accumulated soil mois-
ture and its potential use for drought forecasting have not
been investigated as thoroughly. In this study, a probabilis-
tic drought prediction framework is proposed using the stan-
dardized soil moisture index (SSI) as the drought indicator,
which allows for the description of soil moisture across dif-
ferent timescales (e.g., 3, 6, and 12 months). In other words,
soil moisture is treated in a similar fashion to precipitation
accumulation across different timescales relative to the corre-
sponding long-term climatology (McKee et al., 1993). Given
the temporal integration of data, SSI leads to even higher
persistence compared with the commonly used soil moisture
percentiles or soil moisture anomaly.

2 Data

The data sets used in this study include the monthly precipi-
tation and soil moisture from the NASA Modern-Era Retro-
spective analysis for Research and Applications (MERRA-
Land), available on a 2/3◦

× 1/2◦ grid from 1 January
1980 onwards (Reichle et al., 2011; Rienecker et al., 2011).
MERRA data sets have been used in numerous studies in dif-
ferent climatic regions (Bosilovich et al., 2011; Golian et al.,
2014; Wong et al., 2011). Uncertainties in MERRA data sets
have been evaluated against different observations (e.g., Yi
et al., 2011; Kennedy et al., 2011). The results show that
MERRA provides valuable information consistent with ob-
servations especially in the midlatitudes, while uncertainties
in high latitudes are often large (Yi et al., 2011; Reichle et
al., 2011).

3 Methodology

The standardized soil moisture index (SSI; Hao and AghaK-
ouchak, 2014) can be defined in a similar way to the com-
monly used standardized precipitation index (SPI; Mckee et
al., 1993) that has been used in a wide variety of studies (Du-
tra et al., 2013; Damberg and AghaKouchak, 2013). Here, the
SSI is estimated using a nonparametric approach in which
the empirical probability(p) of the historical soil moisture
data is derived using the empirical Gringorten plotting posi-
tion (Gringorten, 1963). In other words, instead of fitting a
distribution function to soil moisture data, the probabilities
(p) are obtained empirically using the empirical Gringorten
approach:(i −0.44)/(n+0.12), wheren denotes the sample
size andi refers to the rank of soil moisture data from the
smallest to the largest.

The empirical probabilities, derived from the Gringorten
plotting position, are then transformed into the standard nor-
mal distribution function: SSI= 8−1(p), where 8 is the
standard normal distribution function. In this approach, one
can avoid making a decision about the parametric distribution
function of accumulated soil moisture at different timescales.
Assume that soil moisture for the monthi is Si . Then the 6-
month accumulation of the soil moistureAi for the monthi
can be expressed as (Hao et al., 2014)

Ai = Si−5 + Si−4 + Si−3 + Si−2 + Si−1 + Si . (1)

In this study, the ensemble streamflow prediction (ESP)
method (Twedt et al., 1977; Day, 1985) is used for re-
sampling from historical records of soil moisture to obtain
monthly moisture at the target season with the 6-month SSI
as the drought indicator. Assume thel-month lead forecast-
ing is needed based on the monthly soil moisture observa-
tions with forecast initialization at monthi. Then thel month
(1 ≤ l ≤ 5) ahead forecasting of the accumulated soil mois-
tureAi+l can be expressed:

Ai+l = Si+l−5+Si+l−4+Si+l−3+Si+l−2+Si+l−1+Si+l . (2)
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Assume that 1-month lead forecasting (i.e.,l = 1) based on
the 6-month SSI is needed. The unknownSi+1 is predicted by
resampling the soil moisture from the historical record of the
target month (i.e.,i + 1). As a result, an ensemble ofm (i.e.,
the length of observation in the historical record) sequence of
the monthly soil moisture in the target season can be obtained
from the observed monthly soil moisture. In this manner,m

sequences of accumulated 6-month soil moisture for thel-
month lead time can be generated by blending the observed
and predicted monthly soil moisture. For example, forl = 1,
the blended sequences of accumulated 6-month soil moisture
can be expressed as (Hao et al., 2014)

A
(1)
i+1 = Si−4 + Si−3 + Si−2 + Si−1 + Si + S

(1)
i+1, (3)

A
(2)
i+1 = Si−4 + Si−3 + Si−2 + Si−1 + Si + S

(2)
i+1, (4)

. . . ,

A
(m)
i+1 = Si−4 + Si−3 + Si−2 + Si−1 + Si + S

(m)
i+1, (5)

whereSi−4, . . . ,Si are the observed soil moisture prior to the
target month in the 6-month window, whileS(1)

i+1, . . . ,S
(m)
i+1

are the sequences of sampled monthly soil moisture from
the observations in the historical record for the target month
(here,Si+1). For any timescale (sc) and lead time (l), Eq. (3)
can be generalized as

A
(1,...,m)
i+l =

sc−l−1∑
j=0

Si−j +

l∑
k=1

S
(1,...,m)
i+k . (6)

Note that the lead time (l) should be less than the timescale
(sc) – here, 6 months. Each sequence of the blended 6-month
soil moistureA(j), j = 1,2, . . . ,m in Eq. (3) can be com-
bined with the observed 6-month accumulated soil moisture
in the past years to derive the corresponding SSI(j). Here, the
probability of drought is defined as the probability that a fu-
ture drought condition (SSI) is lower than an alarm threshold
(e.g., SSI< −0.8 corresponding to∼ 20th percentile). The
empirical probability is estimated by dividing the number of
the forecasted values below the threshold (e.g.,−0.8) by the
number of the ensemble members.

4 Results

First it is shown that the accumulated soil moisture typically
exhibits much higher persistence compared to precipitation,
and hence can be used for drought forecasting with up to sev-
eral months lead time. Then, the 2012 summer drought con-
ditions are predicted using the SSI with different lead times.
The SSI is obtained using predicted soil moisture informa-
tion using the ESP concept based on long-term climatology
and near-past observations (see Sect. 3). The study focuses
on the drought prediction for May–August, which is an im-
portant period for agricultural decision-making.

Understanding the persistence property of soil moisture is
fundamental to drought forecasting. It is hypothesized that

using accumulated soil moisture would improve persistence-
based drought forecasting relative to using accumulated pre-
cipitation. First, the persistence property of accumulated soil
moisture is evaluated against the accumulated precipitation
that has been used for meteorological drought prediction
(Lyon et al., 2012; Quan et al., 2012; Hao et al., 2014; Yoon
et al., 2012). The monthly precipitation and soil moisture
data from MERRA-Land (Reichle et al., 2011; Rienecker et
al., 2011) in California and Texas are used to examine the
persistence of accumulated soil moisture relative to precipita-
tion. Both states are among the most important producers of
agricultural products, and have experienced severe/extreme
drought conditions in the past decade. The autocorrelations
of accumulated 6-month precipitation and soil moisture for
1–6-month time lags and four different initial conditions
(March, April, May and June) for summer drought prediction
are provided in Fig. 1. In the figure, the terminitial is defined
as similar to initial conditions in the Methodology section.
For example, March corresponds to precipitation and soil
moisture from October 2011 through March 2012. The box
plots present the median, 25th, 75th percentiles, and whiskers
of the autocorrelations. Lyon et al. (2012) showed that vari-
ance of the accumulated precipitation can enhance or dimin-
ish the persistence of the SPI at different start times, mainly
due to seasonality of precipitation. As shown, the autocorre-
lation of the accumulated soil moisture (or SSI) is generally
higher than that of accumulated precipitation (or SPI) for the
four different initial conditions. The figure shows that the au-
tocorrelations of the accumulated 6-month soil moisture de-
cay at a slower rate than the accumulated 6-month precipita-
tion in both California (Fig. 1a) and Texas (Fig. 1b). For ex-
ample, in California and for the initial condition in April, the
medians of the autocorrelation coefficients are higher than
0.6 even at a 5-month lag. However, the medians of the au-
tocorrelations of the 6-month SPI drop below 0.6 after a 4-
month lag. The higher persistence of the SSI relative to SPI
implies that a persistence-based model based on SSI would
lead to better predications as compared to a similar model
based on SPI (see also Changnon Jr., 1987).

The 6-month SSI is used as the drought indicator to mon-
itor and predict the 2012 (May–August) US drought. Figure
2a shows observed drought conditions from May to Au-
gust 2012. As shown, the drought develops and intensi-
fies quickly, affecting most of the continental US including
the Great Plains, the Midwest, and west and southeast. By
August, a large portion of the country experienced severe,
extreme, or exceptional drought conditions. In operational
drought early warning, the severe drought condition is of
critical concern. In this paper, the proposed methodology is
tested for predicting the moderate and severe drought condi-
tions in summer 2012. Following the US Drought Monitor
(USDM), D-scale, the moderate drought is defined as SSI
below−0.8 (corresponding to nonexceedance probability of
∼ 0.2), whereas the severe drought is defined as SSI below
−1.3 (or nonexceedance probability of∼ 0.1) (Svoboda et
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Figure 1. Box plots of autocorrelation coefficients (up to 6 months) of accumulated 6-month precipitation (blue) and soil moisture (red) from
MERRA-Land for different initial month for(a) California and(b) Texas. The box plots show the median (center), 25th (lower) and 75th
(upper) percentile edges.

Figure 2. (a) Observed 6-month SSI for May–August 2012;(b) observed 6-month SSI with severe drought condition (SSI< −1.3) for
May–August 2012.

al., 2002). The observed drought conditions below the severe
level (D2) for May–August are shown in Fig. 2b.

The 1- and 2-month lead drought (SSI< −0.8) forecasts
for May–August 2012 are presented in Fig. 3a and b, respec-
tively. The 1-month lead forecasted SSI maps for different
initializations resemble the observed SSI well in terms of the
spatial extent (compare Fig. 3a with Fig. 2a). As shown, the
regions with high probability of drought (e.g., above approx.
90 %) are in very good agreement with the observations. For
example, the outlined methodology predicts high probability
of drought over the western US and high plains in August,
which is consistent with observations. Furthermore, as the
2012 drought intensifies, the area with high probability of
drought (Fig. 3a) increases in a similar manner to the obser-
vations (Fig. 2a). A visual comparison of the 2-month lead
drought forecasts (Fig. 3b) and observations (Fig. 2a) reveals

that the predicted drought conditions are in very good agree-
ment with probabilities higher than 0.8 in most regions. The
1-month and 2-month lead severe drought (SSI< −1.3) fore-
casts for May–August 2012 are presented in Fig. 4a and b.
The 1-month lead forecasts of May–August severe drought
conditions are in very good agreement with observations. As
shown, the severe drought conditions from May–August in
northern Texas and the western US are captured in the pre-
dictions. Figure 4b highlights that, even at a 2-month lead,
the proposed model predicts the 2012 summer drought rea-
sonably well.

The predicted drought probability maps for July and Au-
gust 2012 for 3-month and 4-month lead time are presented
in Fig. 5a (SSI< −0.8) and b (SSI< −1.3). One can see
that the 3- and 4-month lead forecasts capture the observed
drought conditions with probabilities ranging from 0.1 to 0.8.
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Figure 3. (a)The 1-month and(b) 2-month lead drought probability predictions for May–August 2012 for SSI6< −0.8.

Figure 4. (a)The 1-month and(b) 2-month lead drought probability predictions for May–August 2012 for SSI6< −1.3.

The prediction skill of the model is higher in the western US
where drought conditions are predicted at higher probabili-
ties relative to the Midwest. A review of Figs. 3 and 4 in-
dicates that the predicted probabilities in longer leads (i.e.,
3 and 4 months) are typically lower than those of shorter (1
and 2 months) lead forecasts. Basically, in persistence-based
models, as the lead month increases, one expects the forecast
probabilities to decrease as well. This can be partly explained
from the autocorrelations of accumulated soil moisture pre-
sented in Fig. 1. As shown, in the western US, the 4-month
lead forecasted drought probabilities for July and August
2012 are relatively high and in fairly good agreement with
observations. In the Midwest and eastern US, the proposed
model indicates relatively low probabilities of drought for
3- and 4-month lead forecasts. While the forecasted drought
probabilities are lower at a 4-month lead, still they provide
valuable information by showing the drought signal. While
the 3- and 4-month lead forecasted probabilities of severe

droughts are substantially less compared to the 2-month lead
forecasts, the drought signal in the western US is still strong
(see Fig. 5b).

It should be noted that the seasonal climate predictions
based on weather/climate models initialized in April and
May 2012 revealed limited drought information for May–
July and June–August 2012 (Hoerling et al., 2013). This
highlights that improvements in just two 2-month lead
forecasts could be very important for risk assessment and
decision-making. The presented persistence-based model
with the SSI as the drought indicator provides the potential
capability to predict droughts that would be of great value to
agricultural planning.

The quality and the latency of predictions rely on the qual-
ity and availability of input data sets. Currently, limited ob-
servations of soil moisture are available across the globe, and
soil moisture estimation relies on model simulations. The
soil moisture ocean salinity (SMOS; Kerr et al., 2001) and
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Figure 5. The 3- and 4-month lead time predictions of drought probability for July–August 2012;(a) SSI6< −0.8; (b) SSI6< −1.3.

the upcoming soil moisture active and passive (SMAP; En-
tekhabi et al., 2010) mission may provide the opportunity to
integrate near real-time satellite data with long-term climate
data records such as MERRA to improve drought monitoring
and prediction.

5 Conclusions

Using the standardized soil moisture index (SSI) as the
drought indicator, a persistence-based drought prediction
method is presented and used for predicting the 2012 United
States drought. It is shown that because of high persistence
property of soil moisture, the SSI can be used for seasonal
drought forecasting. The presented statistical approach pre-
dicted the May–August drought conditions relatively well,
especially for 1- and 2-month lead forecasts. The 3- and 4-
month lead forecasts of the western US were in good agree-
ment with observations. However, the drought prediction sig-
nal in the eastern US was not as strong at 3- and 4-month lead
time. Given the persistence-based nature of the methodology,
uncertainties of predictions increase with lead time. Similar
behavior has been observed in persistence-based drought re-
covery assessment (Pan et al., 2013). However, even 1- and
2-month lead information is valuable to some end users in-
cluding farmers and commodity investors.

It is acknowledged that, similar to other methods, both the
presented modeling framework and input data sets are sub-
ject to uncertainties (e.g., see Quan et al., 2012). The pre-
sented model is based on near-past soil moisture conditions
and long-term climatology. Soil moisture responds to precip-
itation with some delay, and for this reason the methodol-
ogy may not capture rapid developments. Furthermore, this
methodology relies on historical observations; because of
limited samples of extreme conditions in historical records,
it should not be used for predicting extreme droughts.

It is stressed that the proposed approach is not meant to
replace the currently available dynamic drought forecasting
models. Rather, the persistence-based predictions should be
used as additional information that can potentially improve
drought predictability. Finally, it should be pointed out that
SSI is not suggested as an alternative to using SPI (or other
indicators) for seasonal drought prediction. The best choice
of index or the best set of indicators depends on the problem
at hand and the climate of the study area. It is our view that
drought monitoring and prediction should be based on mul-
tiple sources of information (data and indicator) as well as
models (e.g., dynamic, statistical).
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