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Abstract. Watershed-scale hydrological and biogeochemi-
cal models are usually discretized at resolutions coarser than
where significant heterogeneities in topography, abiotic fac-
tors (e.g., soil properties), and biotic (e.g., vegetation) fac-
tors exist. Here we report on a method to use fine-scale
(220 m grid cells) hydrological model predictions to build
reduced-order models of the statistical properties of near-
surface soil moisture at coarse resolution (25 times coarser,
∼ 7 km). We applied a watershed-scale hydrological model
(PAWS-CLM4) that has been previously tested in several
watersheds. Using these simulations, we developed simple,
relatively accurate (R2

∼ 0.7–0.8), reduced-order models for
the relationship between mean and higher-order moments of
near-surface soil moisture during the nonfrozen periods over
five years. When applied to transient predictions, soil mois-
ture variance and skewness were relatively accurately pre-
dicted (R2

∼ 0.7–0.8), while the kurtosis was less accurately
predicted (R2

∼ 0.5). We also tested 16 system attributes hy-
pothesized to explain the negative relationship between soil
moisture mean and variance toward the wetter end of the dis-
tribution and found that, in the model, 59 % of the variance
of this relationship can be explained by the elevation gradient
convolved with mean evapotranspiration. We did not find sig-
nificant relationships between the time rate of change of soil
moisture variance and covariances between mean moisture
and evapotranspiration, drainage, or soil properties, as has
been reported in other modeling studies. As seen in previous
observational studies, the predicted soil moisture skewness
was predominantly positive and negative in drier and wet-
ter regions, respectively. In individual coarse-resolution grid
cells, the transition between positive and negative skewness

occurred at a mean soil moisture of∼ 0.25–0.3. The type of
numerical modeling experiments presented here can improve
understanding of the causes of soil moisture heterogeneity
across scales, and inform the types of observations required
to more accurately represent what is often unresolved spatial
heterogeneity in regional and global hydrological models.

1 Introduction

Representation of the structure and dynamics of fine-scale
spatial structure in hydrological states and fluxes has been
shown to significantly influence coarse-scale surface en-
ergy budgets (e.g., evapotranspiration; Wood, 1997, 1998;
Vivoni et al., 2010), runoff and streamflow (Arrigo and
Salvucci, 2005; Vivoni et al., 2007; Barrios and Frances,
2012), regional-scale feedbacks with the atmosphere (Nyka-
nen and Foufoula-Georgiou, 2001), and biogeochemical re-
sponses (Dai et al., 2012; Zhang et al., 2012). It has been
argued that the relevant spatial scale for hydrological state
and flux heterogeneity is on the order of 100 m (Wood et
al., 2011), while for biogeochemical dynamics it may be as
small as 1 m (Burt and Pinay, 2005; Groffman et al., 2009;
Frei et al., 2012; McClain et al., 2003). The current suite
of land models representing coupled hydrological and bio-
geochemical cycles and used for analyses of water resources
and water quality (e.g., HydroGeoSphere (Li et al., 2008),
CATHY (Weill et al., 2011), PIHM (Qu and Duffy, 2007),
tRIBS (Ivanov et al., 2004), Noah-MP+ CATHY (Niu et
al., 2013), GSFlow (Markstrom et al., 2008), LEAF-Hydro-
Flood (Miguez-Macho and Fan, 2012), GEOtop (Rigon et
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al., 2006), MIKE-SHE (McMichael et al., 2006), WEP-L (Jia
et al., 2006), and PAWS (Shen, 2009; Shen and Phaniku-
mar, 2010)), as well as regional (e.g., Subin et al., 2011)
and global (e.g., Koven et al., 2013; Tang et al., 2013) cli-
mate prediction are typically applied at resolutions that are
orders of magnitude larger than these scales. Unfortunately,
there are few large-scale observational datasets with which to
test the impact of the discrepancies in scale between model
representation and known variability of coupled hydrological
and biogeochemical processes. This problem is particularly
acute for biogeochemical dynamics, which generally depend
strongly on the hydrological state.

Watershed-scale hydrological models are often tested
against, or calibrated to, stream flow observations. The im-
pact of these types of calibrations on the relative accuracy of
surface soil moisture heterogeneity is not well characterized.
For example, Nykanen and Foufoula-Georgiou (2001) used
observations from the 1997 Southern Great Plains (SGP) ex-
periment to investigate the impact of nonlinear soil moisture
dependencies of parameters on the scale dependency of those
parameters. They showed that failing to consider this scale
dependency could cause large biases in predicted surface
runoff. Gebremichael et al. (2009) compared scaling char-
acteristics of spatial soil moisture fields from the same 1997
SGP experiment with predicted values from a distributed hy-
drologic model. Inconsistencies between the observed and
predicted soil moisture mean and spatial scaling parameters
indicated that while the model accurately reproduced out-
let stream flow, the underlying mechanisms leading to runoff
might have been inaccurately simulated.

Quantifying relationships between the statistical proper-
ties of the soil moisture field and spatial scale may allow for
prediction of heterogeneity at scales finer than those resolved
by the model. Since the pioneering work of Rodriguez-
Iturbe (1995) and Wood (1998), who described the power
law decay of variance as a function of the observation scale,
many studies have quantified the variance-scale relationship.
Hu et al. (1997) showed that the variance (σ 2

θ ) of the soil
moisture (θ) field at different spatial averaging areas (A) can
be related to the ratio of those areas raised to a scaling expo-
nent (γ , i.e., “simple scaling”). They also showed thatγ is
related to the spatial correlation structure of the soil moisture
field and that it decreases as soils dry. Their scaling analysis
of higher-order moments indicated that soil moisture might
not always follow simple scaling. A number of investigators
have since demonstrated that the relationship betweenσ 2

θ and
spatial scale is not log–log linear across all spatial scales, and
that the relationship can depend on the mean soil moisture
(µθ ) field (e.g., Mascaro et al., 2010, 2011; Famiglietti et al.,
1999; Nykanen and Foufoula-Georgiou, 2001; Das and Mo-
hanty, 2008; Joshi and Mohanty, 2010).

It has been further observed that soil moisture mean
is often related to its variance and higher-order moments.
Most commonly, an upward convex relationship betweenµθ

and σ 2
θ has been reported when a sufficiently large range

of mean moistures is analyzed (e.g., Teuling and Troch,
2005; Lawrence and Hornberger, 2007; Teuling et al., 2007;
Famiglietti et al., 2008; Pan and Peters-Lidard, 2008; Brocca
et al., 2010, 2012; Tague et al., 2010; Rosenbaum et al., 2012;
Li and Rodell, 2013; Choi and Jacobs, 2011). Theoretical
analyses have indicated that an upward convex relationship
is consistent with current understanding of soil moisture dy-
namics (e.g., Vereecken et al., 2007).

Famiglietti et al. (2008) used over 36 000 soil moisture ob-
servations in four field campaigns to demonstrate that soil
moisture variability generally increased with extent scale and
followed fractal scaling. Their reported soil moisture stan-
dard deviation versus mean moisture content exhibited a
convex-upward relationship, with the peak of their best-fit
relationships occurring at∼ 0.15 mean soil moisture. Brocca
et al. (2012), using data from 46 sites over two years in two
adjacent∼ 200 km2 areas, observed a peak in the convex-
upward relationship around 0.2–0.25 mean soil moisture.
Choi and Jacobs (2011) studied observations from two years
of the Walnut Creek watershed, Iowa, Soil Moisture Exper-
iment (2002, 2005). They observed a convex-upward rela-
tionship during the 2002 observations, when the soil mois-
ture range extended down to∼ 0.1, but not in 2005, when
mean soil moisture did not drop below∼ 0.15. Rosenbaum
et al. (2012) concluded that the relationship between the 0–
5 cm soil moisture spatial standard deviation and mean also
had a convex-upward shape, but peaked at a higher mean soil
moisture level (0.35–0.40), although their range of mean soil
moisture extended substantially further (0.58) than the other
studies cited above.

Several studies have also investigated the relationships be-
tween observed soil moisture mean and higher-order mo-
ments (skewness (sθ ) and kurtosis (kθ )). For example,
Famiglietti et al. (1999) used observations from the SGP97
experiment to conclude that the distribution of surface soil
moisture content evolved from negatively skewed under very
wet conditions, to normal in the midrange of mean mois-
ture, to positively skewed under dry conditions. For the same
SGP97 data set, Ryu and Famiglietti (2005) discussed the
bimodality of the soil moisture distributions (which will be
reflected inkθ ), and concluded that it resulted primarily from
fractional precipitation within the observational footprint.

A fewer number of studies have combined observations of
soil moisture with distributed hydrological model predictions
to investigate spatial scaling properties. Li and Rodell (2013)
examined spatial statistics of in situ, satellite-retrieved, and
modeled soil moisture over three large climate regions. The
relationship betweenσ 2

θ andµθ had an upward convex shape
for the in situ measurements, but not for the modeled re-
lationship. Manfreda et al. (2007) examined the statistical
structure of soil moisture patterns using modeled soil mois-
ture obtained from the North American Land Data Assimi-
lation System (NLDAS). They concluded thatσ 2

θ followed a
power law relationship with averaging area, and the dynam-
ics of the relationship were controlled by mean soil water
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content. Maxwell (2010) performed transient simulations of
an arid mountain system and showed that the land-energy
fluxes were spatially correlated and that the soil saturation
vertical structure did not follow a simple scaling relation-
ship. Ivanov et al. (2010) studied the relationship between
soil moisture mean and its coefficient of variation using a
numerical model applied to a small hillslope, and demon-
strated hysteretic patterns during the wetting–drying cycle.
They concluded that the system response is not unique given
the same initial mean state, but that it depends on the magni-
tude of precipitation inputs.

The relationships between soil moisture mean and statis-
tical moments potentially depend on a wide range of factors
and on spatial extent. As reviewed in Brocca et al. (2007),
soil moisture statistical properties can be impacted by lateral
redistribution (Moore et al., 1988; Williams et al., 2003), ra-
diation (Moore et al., 1993; Western et al., 1999), soil char-
acteristics (Hu et al., 1997; Famiglietti et al., 1998; Seyfried,
1998), vegetation characteristics (Qiu et al., 2001; Hupet
and Vanclooster, 2002), elevation above the drainage chan-
nel (Crave and GascuelOdoux, 1997), downslope gradient
(Merot et al., 1995), bedrock topography (Chaplot and Wal-
ter, 2003), specific upslope area (Brocca et al., 2007), and
landscape unit (Park and van de Giesen, 2004; Wilson et al.,
2004). Famiglietti et al. (1998) argued that under wet con-
ditions, the best correlation of soil moisture variability was
with soil porosity and hydraulic conductivity, and under dry
conditions, with relative elevation, aspect, and clay content.
Western et al. (1999) found that during wet conditions the
best predictor of the soil moisture spatial pattern was the spe-
cific area (through lateral redistribution), while during dry
conditions the best predictor was the potential solar radiation
index (through aspect and evapotranspiration). Lawrence and
Hornberger (2007) argued that trends across climate zones
are related to the wilting point and porosity.

Albertson and Montaldo (2003) and Montaldo and Albert-
son (2003) presented a theoretical argument for the impact
of various factors on the relationship between soil moisture
mean and variance. They showed that covariances between
anomalies of soil moisture, infiltration, drainage, and ET
control the production and destruction of variance over time.
Teuling and Troch (2005) applied a similar approach to study
the impacts of vegetation, soil properties, and topography on
the controls of soil moisture variance.

Building on these previous studies, we begin with a down-
scaling hypothesis that consistent relationships between the
transient higher-order statistical moments and mean near-
surface soil moisture fields exist (i.e., a “downscaling” clo-
sure relationship). We leave the problem of upscaling these
relationships and their impact on the coarse-resolution tran-
sient solution for further work. In particular, we used a five-
year, high-resolution hydrological simulation of the Clinton
River watershed in Michigan to characterize relationships be-
tweenµθ andσ 2

θ , sθ , andkθ . Although we expected these
relationships to vary with depth, we only evaluated the depth

Figure 1. Topography and predicted 2004–2008 temporal average
soil moisture of the Clinton River watershed (the black line outlines
the watershed). The 3-D elevation and shading represent the digital
elevation model, which is enhanced by a 1 : 50 ratio, and the color
represents the average soil moisture.

interval 0–10 cm to make the analysis scope tractable; future
work will address this shortcoming. We also tested the ex-
tent to which using discrete bins across the mean moisture
range improved characterization of spatial soil moisture het-
erogeneity. We then applied these relationships to investigate
hypothesized controllers of soil moisture heterogeneity as a
function of soil properties, evapotranspiration, topography,
etc. The value of using a model for this analysis, compared to
observations alone, is that we have continuous and spatially
explicit estimates of states and fluxes, and since we know the
mechanisms included in the model, we can attribute patterns
to individual processes.

In the Methods section we describe the Clinton River
watershed, the numerical model we applied (PAWS-CLM),
model forcing and surface characterization applied, simu-
lations performed, and our approach to generating a surro-
gate, or reduced order (ROM), model of fine-scale soil mois-
ture heterogeneity. In the “Results and discussion” section
we discuss the surrogate model estimates, the value of using
a binned approach to characterizing soil moisture variabil-
ity, and predicted controls on the relationship between soil
moisture mean and variance. The last section provides a brief
summary and conclusions.

2 Methods

2.1 The Clinton River watershed

Our study domain is the Clinton River watershed (Fig. 1),
an 1837 km2, humid continental-climate basin draining into
Lake St. Clair that was described in detail by Shen et
al. (2013). Precipitation is relatively uniformly distributed
throughout the year but there is strong seasonal variation in
solar radiation and air temperature that affects ET demands.
This watershed is well suited for our study because of its
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varied topography and subsurface properties, heterogeneity
of surface and subsurface lateral exchanges, and heterogene-
ity in vegetation. The basin has rugged hills on the high-
lands of the west and flat, low-lying plains toward the east.
This contrast in topography, as shown later, impacts large-
scale groundwater flow and the differences between hilly
and flat terrain soil moisture dynamics. Urban areas of vary-
ing intensity span the southern portion of the watershed, the
northwest is largely forested, and the northeast is dominated
by agriculture. Glacial drifts and lacustrine deposits in the
southeast form the unconfined aquifer, underlain by shale
rock that bears little water. High-resolution elevation (30 m),
land use (30 m), soil (1 : 12 000 to 1 : 63 360 SSURGO), river
hydrography (1 : 24 000), well-log-based aquifer characteris-
tics (∼ 1000 m), land-based climate forcing data (12 stations;
precipitation, temperature, humidity, and wind speeds), and
simulated steady-state carbon and nitrogen states (220 m) are
used as inputs to the model (Shen et al., 2013).

2.2 PAWS-CLM4 model description and simulations
performed

We applied the PAWS+ CLM model to generate watershed-
scale predictions for the analyses presented here. PAWS
(Process-based Adaptive Watershed Simulator) (Shen et al.,
2013; Shen and Phanikumar, 2010) is a computationally
efficient, physically based hydrologic model that has re-
cently been coupled with CLM4.0 (Lawrence et al., 2011).
PAWS+ CLM explicitly solves the physically based govern-
ing partial differential equations for overland flow, channel
flow, subsurface flow, wetlands, and the dynamic two-way
interactions among these components. The model evaluates
the integrated hydrologic response of the surface–subsurface
system using a novel noniterative method that couples runoff
and groundwater flow to vadose zone processes approximat-
ing the three-dimensional (3-D) Richards equation. By re-
ducing the dimensionality of the fully 3-D subsurface prob-
lem, the model significantly reduces the computational de-
mand with little loss of physics representation. We run the
model with hourly time steps, but aggregate the results to a
diurnal time step for the analyses performed here.

The PAWS+ CLM model has been tested extensively with
analytical and 3D benchmarks and compares favorably with
other physically based models (Maxwell et al., 2014). It
has been applied in several US Midwest watersheds, includ-
ing the 1140 km2 Red Cedar River (Shen and Phanikumar,
2010), the 1837 km2 Clinton River (Shen et al., 2013), the
4527 km2 Upper Grand (Shen et al., 2014), the 5232 km2

Kalamazoo River, the 14 430 km2 Grand River, and the
22 260 km2 Saginaw River basins. More recently, physically
based reactive transport of nutrients and bacteria has been
integrated and the model has been applied to a desert envi-
ronment in southern California to evaluate groundwater sus-
tainability.

We applied PAWS+ CLM at 220 m× 220 m horizontal
resolution across the Clinton River watershed. Although this
resolution is coarser than the hyper-resolution called for in
Wood et al. (2011) and proof-of-concept work in Kollet et
al. (2010), it provides substantial resolution of topographic
and land use variation across a horizontal 256× 280 grid.
Twenty vertical layers were used to discretize the subsur-
face between the land surface and bedrock top. The verti-
cal spatial resolution therefore varies throughout the basin
depending on the depth to bedrock. As described in Shen
et al. (2014), to create a PAWS+ CLM model for the Clin-
ton River watershed, daily weather data were obtained from
the National Climatic Data Center (NCDC, 2010). We ob-
tained the 30 m resolution National Elevation Dataset (NED)
to generate average cell elevation and lowland storage bot-
tom elevation. The 30 m resolution IFMAP 2001 land use
and land cover data (MDNR, 2010) were aggregated to pro-
vide land use information. Three dominant land use types
(PFTs) were modeled in each horizontal cell. The soil color
data are extracted from a global data set (GSDT, 2000). We
obtained the spatial distribution of lateral conductivities of
the unconfined aquifer (glacial drift) as well as depths to
bedrock by interpolating well records from the WELLOGIC
database (GWIM, 2006; Simard, 2007) using kriging. The
bedrock has very low permeability as it is composed of shale
and some limestone. The model was calibrated against USGS
gaging station 04165500 (Clinton River at Mt. Clemens) us-
ing a parallel version of the differential evolution algorithm
(Chakraborty, 2008). The simulations were performed from
2001 to 2008 with the first three years used as model “spin-
up” and 2004–2008 included in our analysis. We used daily
averaged top 10 cm soil moisture (θ) fields for the analyses
presented here. To simplify our attempt at estimating quanti-
tative relationships between the spatial properties of the fine-
resolution moisture fields and the mean moisture fields, we
focused on the unfrozen periods during each year (days 130–
300). The 2004–2008 temporal average soil moisture pre-
dicted in the 220 m simulation is shown in Fig. 1. There is
a large-scale spatial pattern in the soil moisture field, being
generally higher on the eastern lowland plains than on the
western hills, due to basin-scale groundwater flow. However,
contrary to the coarser-resolution soil moisture map provided
previously (Fig. 10d in Shen et al., 2013), Fig. 1 shows fine-
scale features, e.g., high surface moisture near channels and
high moisture in clayey soils near the eastern boundary.

2.3 Developing surrogate models for surface soil
moisture moments

We developed two classes of simple surrogate models to rep-
resent soil moisture spatial heterogeneity as a function of
mean soil moisture in coarse-resolution grid cells. We chose
a factor of 25 in resolution to define the coarse-resolution
grid cells, resulting in thirty-four 7040 m coarse-resolution
grid cells across the watershed. The first class of surrogate

Hydrol. Earth Syst. Sci., 18, 2463–2483, 2014 www.hydrol-earth-syst-sci.net/18/2463/2014/



W. J. Riley and C. Shen: Characterizing coarse-resolution watershed soil moisture heterogeneity 2467

model consisted of separate polynomials describing the re-
lationships betweenµθ andσ 2

θ , sθ , andkθ for each coarse-
resolution grid cell. We tested the impact on the accuracy
of the relationship for best-fit first- second-, and third-order
polynomials. The second class of surrogate model repre-
sents the fraction of high-resolution grid cells in each coarse-
resolution grid cell that fall into a particular mean soil-
moisture bin. A disadvantage of this latter approach is that
it is not as easy to mathematically synthesize the patterns,
while a potential advantage is that it represents the prob-
ability distribution function (PDF) of the moisture even in
the case where the first few statistical moments do not fully
capture its properties.

2.4 Relationships between soil moisture heterogeneity
and system properties

We investigated the relationship between dailyσ 2
θ and µθ

over theµθ range whereσ 2
θ decreases with increasingµθ .

As shown below, most of theµθ predictions were above the
∼ 0.2 breakpoint (as often observed and predicted here) for
the peak of a convex-up relationship betweenσ 2

θ and µθ .
Therefore, many of the coarse-resolution grid cells were rela-
tively well characterized by a linear fit with a negative slope,
although about 20 % of the grid cells were predicted to have a
full convex-up relationship. For the latter grid cells, we eval-
uated the best-fit slope for the portion of the data to the wetter
side of the peak of the convex-up relationship.

We investigated 16 hypothesized controllers of this slope
(based on the literature cited in the Introduction), all of which
are represented explicitly or implicitly in PAWS+ CLM:
specific upslope area, gradient, variance of the gradient in
each coarse-resolution grid cell, aspect, soil characteristics
(porosity, clay content, conductivity), temporal mean evapo-
transpiration (E (W m−2)), temporal variance in̂E, bedrock
topography, temporal mean groundwater depth (Gw (m)),
temporal variance in groundwater depth (Ĝw (m)), elevation,
mean surface roughness, variance in roughness, and stream
drainage density. We used TopoToolbox (Schwanghart and
Kuhn, 2010) to evaluate the topographic indices used in the
analysis.

3 Results and discussion

3.1 Comparing model predictions to observations

PAWS+ CLM has been extensively tested and demonstrated
favorable comparisons with various observations from sev-
eral basins (Shen et al., 2013; Shen and Phanikumar, 2010;
Niu and Phanikumar, 2012). In the Clinton River water-
shed, the model has been shown to satisfactorily reproduce
streamflow observations both at the basin outlet and uncal-
ibrated inner gages (Nash–Sutcliffe model efficiency coeffi-
cient∼ 0.65), spatially distributed water table depths (R2

=

0.66), soil temperature, and MODIS satellite-based observa-
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Figure 2. Comparison between 220 m resolution predicted and
measured soil moisture for a site in Romeo, MI. The large differ-
ences in 9 December are caused by the model predicting freezing
in the top 10 cm of soil, while the observations suggest unfrozen
conditions.

tions of leaf area index (LAI) and ET (Shen et al., 2013).
In other basins, PAWS+ CLM was able to match observed
transient water table depths from a USGS monitoring well
and water storage anomalies measured by the GRACE satel-
lite.

In addition to the comparisons described above, we com-
pared simulated versus observed soil moisture at a site in
Romeo, MI, from an Enviro-weather automated weather sta-
tion network (Fig. 2). Since maintenance records indicated
problems with the soil moisture sensor installation in 2008,
we only show comparisons in 2009. The winter freeze-up
at the beginning of 2009, shown as a period of very low
soil moisture, was well captured by the model. The sub-
sequent large variations due to freeze and thaw were also
closely reproduced, with some overestimation near the end
of the freezing cycle (early April 2009). In May, soil mois-
ture was over estimated during the recession periods after
storms. In late spring, plants may preferentially increase root-
ing density near the surface when there is high moisture con-
tent, leading to a stronger recession of near-surface mois-
ture (Sivandran and Bras, 2013). However, the current static
rooting algorithm in CLM cannot reproduce this mechanism,
and therefore may be partly responsible for this bias. From
June to November the model accurately predicted the mean,
range of fluctuations (0.25∼ 0.34), and general trend. How-
ever, toward the end of the year, the predicted freeze-up
was not present in the observations. These mismatches may
be attributed to differences between grid average moisture
of a 220 m cell and the site-specific moisture measured by
the probe or local variation and uncertainty in subsurface
properties.
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3.2 Predicted mean moisture

The range and dynamics of predicted mean moisture at the
coarse resolution varied substantially across the watershed
(Figs. 1, 3). The western upland grid cells tended to be drier
overall with the mean moisture increasing toward the east
and south, which are lower-elevation grid cells receiving both
surface and subsurface water inputs. The low precipitation
inputs in 2006 had proportionally larger impacts in the wet-
ter, eastern grid cells, resulting in up to 25 % decreases in
mean saturation.

3.3 Relationships between soil moisture mean and
higher-order moments

Using the 0–10 cm soil moisture predictions from the 220 m
resolution simulation, we evaluatedµθ , σ 2

θ , sθ , and kθ

at every time point (daily) for each of the thirty-four
7040 m× 7040 m coarse-resolution grid cells (Fig. 4 shows
representative transient profiles for one subregion over 90
days of the simulation). We used these temporally resolved
values to build first-, second-, and third-order best-fit polyno-
mial relationships, with the third-order fits having generally
the best predictive power and therefore applied in the remain-
der of our analysis. Overall, these surrogate models accu-
rately captured the relationships betweenµθ andσ 2

θ , sθ , and
kθ , with meanR2 values of 0.73, 0.74, and 0.75, respectively.

Different types ofσ 2
θ ∼ µθ relationships were predicted

among the 34 coarse-resolution grid cells across the water-
shed. Some grid cells exhibited large, negative slopes with
little scattering, e.g., #10, #17, #40, and # 41, indicating that
soil moisture heterogeneity in these cells was strongly con-
trolled by mean moisture, and that the variability was small-
est on the wettest days. Some cells have much smaller slopes,
e.g., #6, #7, #22, and #23, suggesting that their variability
was less sensitive to mean moisture. These cells tended to
have very small spatial variability throughout the year. Most
grid cells with monotonicσ 2

θ ∼ µθ relationships did not ex-
perience mean moisture below∼ 0.25. However, for some
(e.g., grid cells #10, #17, and #24), this monotonic, approx-
imately linear relationship extended down toµθ ∼ 0.2. We
did not observe any grid cells with a purely upwardσ 2

θ ∼ µθ

slope. On the other hand, about 20 % of the grid cells had
convex-upwardσ 2

θ ∼ µθ relationships (e.g., grid cells #19,
#26, #32, and #3). These grid cells primarily reside in the
large topographic gradient in the middle of the watershed
that alternates between recharge and discharge across the
year (Salvucci and Entekhabi, 1995; Shen et al., 2013) and
correspond with relatively higher drainage densities (Fig. 6).
Higher drainage density corresponds to larger topographic
variation, and this region connects upland hills and lowland
plains and is characterized by a sharp change in elevation. As
a result it is also a transition zone over which the distance to
the water table decreases strongly. Therefore the 7040 m cells
in these regions all included large variations in soil moisture,

and they shifted from high to low water table regimes sea-
sonally. The differences in these relationships indicate that
at the 7040 m× 7040 m scale, theσ 2

θ ∼ µθ relationships are
determined locally, a finding consistent with that by Mascaro
et al. (2010), where coefficients in a predictive formula for
scaling exponents were related to local attributes.

For a particular coarse-resolution grid cell, the scattering
of the σ 2

θ ∼ µθ points around the polynomial fit, or depar-
ture from a deterministic function, can be attributed to dif-
ferent hydrologic processes that similarly affect the mean
but differently affect the spatial heterogeneity. For exam-
ple, homogeneous precipitation increases surface moisture
evenly across the domain, and therefore decreases the vari-
ance. This homogenizing effect acts as the major driver that
sets the negative slope in theσ 2

θ ∼ µθ curves. However, an
increase in regional groundwater flow would create spatial
heterogeneity that adds to the variance. This effect is clear
in the transition zones (e.g., grid cells #19 and #26). A flood
wave that inundates riparian zones (which are represented in
PAWS+ CLM) would increase the mean soil moisture and
spatial heterogeneity in the grid cell by increasing soil mois-
ture only in the riparian zones. Grid cells that are further to
the west have smallerσ 2

θ ranges for particular values ofµθ ,
and have soil moisture that are less impacted by exfiltration.

As mentioned above, Famiglietti et al. (2008) used data
from several ground-based measurement campaigns in the
Southern Great Plains and Iowa to characterize relationships
betweenµθ , σ 2

θ , and sθ . They found convex-upward rela-
tionships betweenσ 2

θ and µθ at 800 m and 50 km scales
with a mean moisture in the range [∼ 0.05, 0.4], and fit
an exponential function to the standard deviation:σθ =
k1µθexp(−k2µθ ). For the range of mean moisture we pre-
dicted in the Clinton Watershed [∼ 0.2, 0.45] (i.e., a smaller
range than used in the Famiglietti et al. (2008) study), the
overall monotonically declining trend inσ 2

θ with µθ qual-
itatively matched the trend they reported (lower left panel
of Fig. 5). There were, however, grid cells with higher vari-
ance that did not fit this pattern (i.e., #19, #26, and #33).
We calculatedk1 (1.3± 0.3) andk2 (7.1± 1.0) across the
7040 m coarse-resolution grid cells and found a meanR2 for
all the grid cells of 0.48. These predicted values ofk1 and
k2 matched well those reported by Famiglietti et al. (2008)
for their 1.6 km scale (1.2 and 7.1, respectively). We note
also that the third-order polynomial fit explained more of the
variance of the modeled relationships than did the exponen-
tial relationship, but we are not aware of a mechanistically
based rationale for a choice of this relationship.

The relationships betweenµθ andsθ also varied across the
watershed (Fig. 7). For the grid cells toward the west (in the
four western columns), which are typically drier than those
to the east,sθ was predominantly positive across the mean
moisture range, implying a consistently right-skewed PDF.
The transition between positive and negativesθ occurred in
several of these grid cells atµθ of about 0.3–0.35 (#4, #10,
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Figure 3. Fine-resolution (220 m) simulated 0–10 cm soil moisture mean (µθ ). The individual plots are distributed in the same pattern as the
coarse-resolution grid cell they represent in the watershed (see watershed boundary in Fig. 1).

and #17). For the wetter grid cells to the east (column 5–
7), theµθ distribution was predominantly left-skewed (i.e.,
sθ < 0), even though part of theµθ range was drier than the
transition values for the grid cells farther to the west. For the
sixth and seventh column (farthest east),µθ was predicted
to be above 0.3 for the entire simulation period, and most of
these grid cells (and those in the southern portion of column
5) showed a decreasingsθ with increasingµθ . This pattern
is consistent with the fact that there is a maximumµθ value
possible (corresponding to fully saturated), and as more of
the 220 m grid cells reach this level, the PDF becomes more
left skewed.

Comparing our predictions (lower left panel of Fig. 7)
to the 800 m and 50 kmsθ relationships withµθ reported
in Famiglietti et al. (2008) indicates good qualitative agree-
ment: a monotonic decrease from positivesθ values between
0 and 1 atµθ of ∼ 0.2 to asθ value of between about−1 and
−2 atµθ of ∼ 0.4. In our predictions, and somewhat visible

in the Famiglietti et al. (2008) observations, there is a diver-
gence ofsθ values toward the wetter end of theµθ range.
The best linear fit to these predictions had a slope of−13
and intercept of 4.2, which corresponded well to values in-
ferred from their observations at the 1.6 km scale. However,
the slope and intercepts inferred from their observations var-
ied substantially and inconsistently across scale, making this
comparison inconclusive.

The relationships between predictedkθ andµθ (Fig. A1
in the Appendix) can be divided into a few characteristic
shapes: (1) monotonically increasing (e.g., #11, #27, #34,
and #41), (2) relatively constant (e.g., #18 and #23), and (3)
convex down (e.g., #13, #14, and #20). To the extent thatkθ

represents an index of “peakedness” in the moisture distribu-
tion, an increase inkθ with increasing mean moisture is con-
sistent with the limit in the range occurring at full saturation,
and withsθ becoming more negative in this part of the range.
The more strongly convex down shapes occur in grid cells
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Figure 4. Example 90-day soil moisture mean (µθ , blue solid line),
variance (σ2

θ , green dashed line), skewness (sθ , red dashed-dotted
line), and kurtosis (kθ , black dotted line) for grid cell #26.

where the mean soil moisture range extends toward fully sat-
urated, so the relationships that are more constant withµθ

variations may simply be a result of that grid cell not experi-
encing periods with higherµθ .

Finally, we also tested our results against the theoretical
predictions of Montaldo and Albertson (2003), who con-
cluded that the time derivative of the root-zone soil mois-
ture variance (

∂σ2
θ

∂t
) would increase as the covariance between

soil moisture and infiltration increased, or decrease as the co-
variance between soil moisture and either drainage or tran-
spiration increased. We tested these potential dependencies

by comparing our predicted values of
∂σ2

θ

∂t
to θ

′
K

′ , θ
′
q

′

r , and

θ
′
E

′ , whereK is the soil hydraulic conductivity (which af-
fects infiltration),qr is the drainage flux,E is the evapotran-
spiration, the prime represents anomalies compared to the
spatial mean of that variable, and the overbar represents a
spatial average. We evaluated these relationships with daily,
weekly, and monthly averaging periods using the model pre-
dictions and found very weak relationships. These results in-
dicate that the creation and destruction of variance in a wa-
tershed model that represents a range of moisture redistribu-
tion mechanisms is more complex than can be represented by
these inferred dependencies.

3.4 Predicted soil moisture PDF as a function of mean
moisture

Becauseσ 2
θ , sθ , andkθ of the soil moisture field do not fully

characterize the PDF, we also examined the dependence of
the proportion of high-resolution grid cells in each coarse-
resolution grid cell occupyingµθ bins (e.g., seven bins are
shown in Fig. 8). The advantages of this binning approach
are that it more fully represents the heterogeneity inµθ and

allows for visualization of variation within coarse-resolution
grid cells.

An interesting observation from Fig. 8 is that the coarse-
resolution grid cells that have a clear convex-upward shape
for variance versus mean moisture have the peak of that dis-
tribution very close to where the third and fourth quartile
bands have equal representation (not shown). Thus, when
the coarse-resolution grid cell has more of its fine-scale soil
moisture mean values occupying the wettest quartile, the sys-
tem variance begins to decline as mean moisture increases. In
the grid cells that have a monotonically decreasing relation-
ship, the transition between third and fourth quartile mean
moisture bands occurs to the drier end of theµθ range.

It is also interesting to note the different behavior of the
wettest bin (the gray line). In many of the drier cells in the
upland area (e.g., #23, #24, and #10), this bin remains rela-
tively constant across theµθ range. This pattern likely occurs
because these regions have larger topographic variation and
are effective at redistributing moisture, therefore preventing
the wettest areas (or source areas; Lyon et al., 2004; Dunne
and Black, 1970; Frankenberger et al., 1999) from expand-
ing in area. In many cells on the western plains (e.g., #27,
#28, #40, and #47), there appears to be a threshold soil mois-
ture value, around 0.35, above which the wettest bin sud-
denly grows very rapidly as mean moisture increases. This
rapid change is due to the upper limit of saturation set by soil
porosity and the flatter terrain.

3.5 Relationships between soil moisture heterogeneity
and system properties

As mentioned in the Introduction, many of the convex-
upward relationships reported in the literature appear to have
a peak in this relationship atµθ of ∼ 0.2, although that value
is not universal (e.g., Rosenbaum et al., 2012). This transi-
tion point represents the transition between system proper-
ties (e.g., roughness, hydraulic conductivity) and fluxes (e.g.,
evapotranspiration) that tend to homogenize soil moisture
versus those that lead to more heterogeneity. For example,
imagine a flat region with a distribution of plants of equal po-
tential evapotranspiration but with drought tolerances that are
different functions of soil moisture (Fig. A2 in the Appendix
shows an example using CLM4.5’s estimate of water stress
on photosynthesis (βt ) for soils with different sand compo-
sition). A precipitation event that occurs on a dry coarse-
resolution grid cell would tend to alleviate the drought stress
in a fraction of the plants, thereby leading to a higher hetero-
geneity in soil moisture (and thereforeσ 2

θ ). If the precipita-
tion continued andµθ increased to a level where none of the
plants were stressed, the now relatively more homogeneous
evapotranspiration would tend to reduceσ 2

θ . As discussed in
the Methods section, many controllers of these tradeoffs have
been inferred from observations, and include topographical
features, evapotranspiration, and edaphic properties.

Hydrol. Earth Syst. Sci., 18, 2463–2483, 2014 www.hydrol-earth-syst-sci.net/18/2463/2014/



W. J. Riley and C. Shen: Characterizing coarse-resolution watershed soil moisture heterogeneity 2471

0.002

0.004

0.006

#4 #5 #6 #7

0.002

0.004

0.006

#8 #9 #10 #11 #12 #13 #14

0.002

0.004

0.006

σ 
2 Θ

#15 #16 #17 #18 #19 #20 #21

0.002

0.004

0.006

#22

0.3 0.4
#23 #24 #25 #26 #27

0.3 0.4
#28

0.3 0.4

0.002

0.004

0.006

#29 #32 #33 #34

0.3 0.4

0.002

0.004

0.006

#38

0.3 0.4
#39 #40

0.3 0.4
#41

0.3 0.4

0.002

0.004

0.006

μΘ

#47

0.3 0.4

2

4

6

x 10
−3

μΘ

σ 
2 Θ

All Gridcells

(a)

0 0.5 1
0

0.2

0.4

R2

P

(b)

Figure 5. In each subplot (except for the two in the bottom left-hand corner), soil moisture variance (σ2
θ ) is plotted versus mean (µθ ) for

that coarse-resolution grid cell based on the fine-resolution (220 m) model predictions (blue dots) and the best-fit third-order polynomial fits
(green line). The individual 7040 m coarse-resolution grid cells are placed in their relative position in the watershed. Bottom left-hand corner:
(a) soil moisture variance (σ2

θ ) versus mean (µθ ) for all grid cells combined;(b) the PDF ofR2 values referenced to the polynomial fit from
each coarse-resolution grid cell.

Because most of the coarse-resolution grid cells in our
computational domain did not experienceµθ below ∼ 0.2,
we investigated the relationship betweenσ 2

θ andµθ over the
range whereσ 2

θ decreases with increasingµθ . In our predic-
tions, ∼ 80 % of the coarse-resolution grid cells were rela-
tively well characterized by a linear fit with a negative slope.
For the remaining∼ 20 %, we evaluated the best-fit slope for
the portion of the data to the wetter side of the peak of the
convex-up relationship.

Of the 16 hypothesized controllers of this slope (m) that
we investigated (see Methods), 6 had independent linear
best-fits withR2 > 0.05: gradient (g, R2

= 0.07), mean of

evapotranspiration (E (W m−2), R2
= 0.16), temporal mean

of the spatial variance of evapotranspiration (R2
= 0.05),

porosity (R2
= 0.08), mean of groundwater depth (R2

=

0.06), and mean of stream density (R2
= 0.05). Using a step-

wise linear regression with these six variables and allowing
for first-order interactions, the best-fit model explained 59 %
of the variance inm and had the formC1 +C2gE, whereC1
andC2 are constants. Thus, over the five years of simulation,
the rate at whichσ 2

θ declined with increasingµθ was con-
trolled primarily by the elevation gradient convolved with the
temporal mean of evapotranspiration. In this relationship, in-
creases in this product lead to less negative values ofm (i.e.,
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Figure 6. Drainage density (length of streams per area) for streams
of order 1 and higher. Areas with clear convex-upward shapes for
soil moisture variance versus mean tend to be in grid cells with
higher drainage density.

less sensitive response ofσ 2
θ to variations inµθ ). The larger

the gradient and higher the evapotranspiration in the grid cell,
the lower the response of soil moisture spatial heterogene-
ity to mean soil moisture. This conclusion is consistent with
the ideas that (1) high-evapotranspiration grid cells are more
likely to be those with lower likelihood of partial water stress
limitation and (2) the high-gradient grid cells more efficiently
mix surface water, thereby reducing soil moisture gradients.

3.6 Applying the simple surrogate models to predict
fine-scale heterogeneity

We also evaluated whether the simple polynomial surrogate
models can be used to predict dynamic variations inσ 2

θ , sθ ,
andkθ given variations inµθ . For this exercise, we used the
first three years of the simulations to train the third-order
polynomial surrogate model. We then applied those surro-
gates across the five years of simulation to evaluate estimates
for σ 2

θ , sθ , andkθ within each coarse-resolution grid cell and
compared those estimates to the moments calculated directly
from the fine-resolution simulation.

The surrogate-estimated values ofσ 2
θ over time corre-

sponded well to those from the fine-scale solution, with an
R2 value of 0.78 and mean absolute bias of 0.00014 (Fig. 9).
The estimates relatively accurately captured several of the
dominant transients that occurred, including during the 2006
drought in, for example, grid cells #26, #27, and #28. These
grid cells span aµθ gradient from relatively drier to wetter,
and that transition is apparent in theσ 2

θ gradient across these
grid cells (from a value∼ 0.001 to∼ 0.006). The temporal
dynamics during drying are also different between these grid
cells; for example, during 2006 the response in grid cell #26

is a reduction inσ 2
θ , while in grid cells #27 and #28 the re-

sponse is an increase inσ 2
θ . This differential response oc-

curred because grid cells #27 and #28 hadµθ that was high
enough before the drought that, even though they dried, re-
mained to the right of the peak in the convex-upward rela-
tionship betweenσ 2

θ andµθ . In contrast, grid cell #26 had a
µθ value before the drought that was close to the peak in that
relationship and the reduction inµθ therefore resulted in a
reduction inσ 2

θ .
The surrogate-estimated values ofsθ over time corre-

sponded well to those from the fine-scale solution, with an
R2 value of 0.74 and mean absolute bias of 0.11 (Fig. 10).
The temporal variability insθ was largest in the coarse-
resolution grid cells in the eastern (wetter) portion of the
watershed and, in particular, during 2006 as the soils dried.
During this period, for example,sθ in grid cells #27 and #28
increased rapidly in spring and then stabilized at a value near
zero, indicating a relatively uniform distribution ofµθ . In-
terestingly, the relatively drier grid cell #26 did not have as
strong a response insθ , but all three grid cells stabilized at
values indicating a more uniformµθ distribution.

The polynomial surrogate model forkθ was less accurate
than those for eithersθ or µθ , with anR2 value of 0.51 and
mean bias of 0.43 (Fig. A3 in the Appendix). In contrast to
thesθ dynamics,kθ was relatively temporally variable in both
the western (e.g., grid cells #15 and #29) and eastern portions
of the watershed. In most years in many of the wetter south-
eastern grid cells there was a reduction inkθ (i.e., a flattening
of the µθ PDF) following the spring thaw followed by pe-
riodic increases associated with precipitation events. In con-
trast, during the 2006 dry period, the southeastern wetter grid
cells showed a reduction that was sustained over the summer.

4 Limitations and future work

Many factors impact near-surface soil moisture heterogene-
ity in watersheds; characterizing this heterogeneity and its re-
lationships with the mean moisture field, topographical fea-
tures, vegetation, and climate forcing could improve regional
to global-scale estimates of surface energy and greenhouse
gas exchanges (which depend on soil moisture). The ap-
proach we applied here, using a tested high-resolution nu-
merical model, showed promise in this regard, yet a number
of limitations remain for future work. For example, we did
not consider the temporal pattern of the relationships. We
note, though, that we did not observe large hysteresis in the
relationships between the mean moisture field and higher-
order moments, as has been reported previously (Ivanov et
al., 2010; Vivoni et al., 2010). The high-dimensional state
space, especially the influence of vertical soil moisture pro-
files, also needs to be examined in detail. We also consid-
ered only one watershed over a relatively short (five-year) pe-
riod. A longer study, covering several decades, would better
capture the interannual range in precipitation and vegetation
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Figure 7. In each subplot (except for the two in the bottom left-hand corner), soil moisture skewness (sθ ) is plotted versus mean (µθ ) for
that coarse-resolution grid cell based on the fine-resolution (220 m) model predictions (blue dots) and the best-fit third-order polynomial fits
(green line). The individual 7040 m coarse-resolution grid cells are placed in their relative position in the watershed. Bottom left-hand corner:
(a) soil moisture skewness (sθ ) versus mean (µθ ) for all grid cells combined;(b) the PDF ofR2 values referenced to the polynomial fit from
each coarse-resolution grid cell.

status (and therefore soil moisture) that the watershed expe-
riences. Repeating the analyses described here for other wa-
tersheds with different topography, vegetation, bedrock fea-
tures, soil properties, etc. could yield insights into the im-
pacts these various properties have on soil moisture hetero-
geneity and its relationship with mean soil moisture. Such an
analysis could also be used to test the extent to which rela-
tionships developed in one watershed could be used for other
watersheds, and more specifically, for which watershed fea-
tures such an extrapolation would be appropriate. We also

note that soil moisture heterogeneity exists at scales much
smaller than we simulated here (220 m), including down
to the soil macropore scale, where the soil biogeochemi-
cal transformations that impact ecosystem function and cli-
mate occur. Further computational and data enhancement
that examine variability at hyper-resolution (on the order of
10 m) are the next reasonable steps and are possible with cur-
rent computational resources. Developing modeling struc-
tures that account for, at some level, this wide range of
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scales will be important for consistently representing terres-
trial ecosystem processes.

Finally, an important application of the relationships de-
veloped here would be to apply them with coarse-resolution
simulations to substantially reduce computational costs for
regional and global simulations. Comparisons between fine
and coarse-resolution simulations of a particular watershed
have been used to transfer nonlinearity from microscale
to mesoscale models via nonstationary effective parameters
(Barrios and Frances, 2012). The approach we envision here
would combine that type of model calibration with a cost
function that includes a larger suite of observations, includ-
ing the ability to capture the fine-scale predicted soil mois-
ture heterogeneity and its relationship with mean moisture.

5 Summary and conclusions

We applied a watershed-scale hydrological model
(PAWS+ CLM4) that has been previously tested in the
Clinton River watershed in Michigan to investigate rela-
tionships between fine-scale, near-surface soil moisture
mean and spatial heterogeneity. We used fine-resolution
(220 m) simulations to calculate statistical properties of
soil moisture at a resolution 25 times coarser (∼ 7 km),
and then (1) developed and evaluated simple polynomial
surrogate models relating soil moisture mean to its variance,
skewness, and kurtosis during the nonfrozen portion of five
years; (2) applied those surrogates over the time period to
evaluate their accuracy; and (3) investigated the relationship
between the predicted soil moisture mean and variance and
topographic and hydrological system properties.
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Figure 9. Comparison over time between the fine-resolution (220 m) simulated soil moisture variance (σ2
θ ) and that predicted by the surro-

gate model using the mean of the fine-resolution soil moisture (µθ ). The individual 7040 m coarse-resolution grid cells are placed in their
relative position in the watershed. Bottom left-hand corner:(a) the PDF ofR2 values between the surrogate model and fine-resolution model
predictions of soil moisture variance across all the coarse-resolution grid cells;(b) mean absolute bias between the surrogate and fine-model
predictions of soil moisture variance across all the coarse-resolution grid cells.

The surrogate models accurately reproduced the relation-
ships between the soil moisture mean and higher-order mo-
ments (R2

∼ 0.7–0.8). Driving the surrogate model with the
mean coarse-resolution soil moisture predictions across the
simulation period gave comparably accurate predictions for
variance and skewness, and a less accurate (R2

∼ 0.5) pre-
diction of kurtosis. This close correspondence between the
surrogate and fine-resolution model predictions argues that
these types of reduced-order models can be used to inform
heterogeneity at scales below those explicitly represented at
coarse resolution. It also argues that the surrogates can be

effectively applied to understand controls on spatial hetero-
geneity of soil moisture, as discussed below.

In our predictions, and in many reported observations,
there is typically a reduction in soil moisture variance with
increasing mean past a particular intermediate value of the
mean. Many possible controllers of this relationship have
been hypothesized; in our predictions the approximately lin-
ear relationship was estimated (R2

= 0.59) using only the
elevation gradient convolved with the mean of evapotran-
spiration in the coarse-resolution grid cell. Increases in the
elevation gradient and mean evapotranspiration each, and
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Figure 10. Comparison over time between the fine-resolution (220 m) simulated soil moisture skewness (sθ ) and that predicted by the
surrogate model using the mean of the fine-resolution soil moisture (µθ ). The individual 7040 m coarse-resolution grid cells are placed in
their relative position in the watershed. Bottom left-hand corner:(a) the PDF ofR2 values between the surrogate model and fine-resolution
model predictions of soil moisture skewness across all the coarse-resolution grid cells;(b) mean absolute bias between the surrogate and
fine-model predictions of soil moisture skewness across all the coarse-resolution grid cells.

even more strongly in combination, caused a shallower slope
in the soil moisture mean versus variance relationships. An
explanation for this pattern is that high-evapotranspiration
grid cells are more likely to be those with lower likelihood
of partial water stress limitation and the high-gradient grid
cells more efficiently mix surface water. However, because
we inferred these patterns from a full-complexity model with
multiple interacting processes, we believe carefully designed
modeling experiments that isolate in turn the various pro-

cesses will be helpful for better understanding the controls
on these relationships. We conclude that these types of ex-
periments can improve understanding of the causes of soil
moisture heterogeneity across scales, and inform the types of
observations required to more accurately represent what is
often unresolved spatial heterogeneity in regional and global
hydrological and biogeochemical models.
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Figure A1. In each subplot (except for the two in the bottom left-hand corner), soil moisture kurtosis (kθ ) is plotted versus mean (µθ ) for
that coarse-resolution grid cell based on the fine-resolution (220 m) model predictions (blue dots) and the best-fit third-order polynomial fits
(green line). The individual 7040 m coarse-resolution grid cells are placed in their relative position in the watershed. Bottom left-hand corner:
(a) soil moisture kurtosis (kθ ) versus mean (µθ ) for all grid cells combined;(b) the PDF ofR2 values referenced to the polynomial fit from
each coarse-resolution grid cell.
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Figure A3. Comparison over time between the fine-resolution (220 m) simulated soil moisture kurtosis (k) and that predicted by the surro-
gate model using the mean of the fine-resolution soil moisture (µθ ). The individual 7040 m coarse-resolution grid cells are placed in their
relative position in the watershed. Bottom left-hand corner:(a) the PDF ofR2 values between the surrogate model and fine-resolution model
predictions of soil moisture kurtosis across all the coarse-resolution grid cells;(b) mean absolute bias between the surrogate and fine-model
predictions of soil moisture kurtosis across all the coarse-resolution grid cells.
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