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Abstract. Nationally framed assessment and planning as-
sists coordination of resource management activities across
jurisdictional boundaries and provides context for assess-
ing the cumulative effects of impacts that can be underesti-
mated by local or regional studies. However, there have been
significant shortcomings in the existing spatial frameworks
supporting national assessment and planning for Australia’s
rivers and streams.

We describe the development of a new national stream
and nested catchment framework for Australia that includes
a fully connected and directed stream network and a nested
catchment hierarchy derived using a modified Pfafstetter
scheme. The directed stream network with associated catch-
ment boundaries and Pfafstetter coding respect all distribu-
tary junctions and topographically driven surface flow path-
ways, including those in the areas of low relief and inter-
nal drainage that make up over half of the Australian con-
tinent. The Pfafstetter coding facilitates multi-scale analy-
ses and easy tracing and query of upstream/downstream at-
tributes and tributary/main stem relationships. Accompany-
ing the spatial layers are 13 lookup tables containing nearly
400 attributes describing the natural and anthropogenic en-
vironment of each of the 1.4 M stream segments at multiple
spatial scales (segment, sub-catchment and catchment).

The database supplies key spatial layers to support na-
tional water information and accounting needs and assists a
wide range of research, planning and assessment tasks at re-
gional and continental scales. These include the delineation
of reporting units for the Australian Water Resources Assess-
ment, the development of an ecohydrological environment
classification for Australian streams and the identification
of high conservation value aquatic ecosystems for northern
Australia.

1 Introduction

A continental framework for natural resource planning and
assessment enables management activities to be coordinated
across jurisdictional boundaries (Corkum, 1999; Jensen
et al., 2001). Continental assessment also provides unam-
biguous evidence of the cumulative impact of human activi-
ties (Boulton and Brock, 1999; Ormerod, 1999; Frissell et al.,
2001) that are often underestimated by local or regional stud-
ies (Hughes et al., 2000; Australian State of the Environment
Committee, 2001). This is especially important for cross-
border rivers and streams where local decision-making can
undermine the broader goals of environmentally sustainable
management (Kingsford et al., 1998, 2005; Australian State
of the Environment Committee, 2001). A national framework
can guide priority setting for national funding programs and
provide context for more detailed and specifically targeted
planning and assessment (Veitch and Walker, 2001).

However, the continental frameworks that have been avail-
able for planning and assessment of Australia’s water re-
sources have significant shortcomings. The most widely
adopted of these, the Australian Water Resources Coun-
cil (AWRC) River Basins and Drainage Divisions (Fig. 1)
(Australian Water Resources Council, 1976; AUSLIG, 1997;
Geoscience Australia, 2003a) has served for several decades,
but does not always adhere to topographically defined hy-
drological boundaries and does not recognise the distribu-
taries that link many major river systems. The Murray
River, for example, divides river basins within the Murray–
Darling Basin Drainage Division, while the boundary be-
tween the Paroo and Warrego River basins intersects a dis-
tributary that connects the two (Kingsford et al., 2001). The
AWRC river basins confuse a number of spatial scales and
are too coarse for many water resource assessment needs.
They include topographically defined basins (e.g. the Fitzroy
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Figure 1. Australian Water Resource Council (AWRC) Drainage
Divisions and River Basins.

River in Queensland), the catchments of major rivers (e.g.
in the Murray–Darling Basin) and sub-catchments (e.g. the
lower Avon River in Western Australia). The nested sub-
catchments that supported the National Land and Water Re-
sources Audit (Hutchinson et al., 2000) supplied a finer sub-
division of topographically derived catchments. However,
these catchments also fail to recognise distributary drainage
structures, and the patterns of drainage density, derived by
application of uniform area thresholds, are inconsistent with
observed patterns, especially in areas with low topographic
relief or extreme aridity. These areas make up over half of
the Australian continent (Hutchinson et al., 2008).

A national catchment framework requires an underpin-
ning spatially consistent streamline network. However, the
streams comprising the 1: 250 000 scale Geodata TOPO
250K series 3 watercourse lines (Geoscience Australia,
2006), the most accurately located national stream layer,
were not consistently directed downstream. The more re-
cently published Australian Hydrological Geospatial Fab-
ric (AHGF) cartographic streams (Bureau of Meteorology,
2010), based largely on the Geodata TOPO 250K series 1
watercourse lines (AUSLIG, 1992), are consistently directed
but display major disparities in drainage density across map
sheet boundaries. Both are cartographic products that are not
readily amenable to spatial analysis tasks such as catchment
delineation and network tracing.

Global drainage data sets also have serious shortcomings
as national frameworks for planning and assessment. The
earlier of these were developed from digital elevation mod-
els (DEMs) at relatively coarse spatial scales of 30′ to 1◦

to provide a basis for continental and global scale mod-
elling of water and sediment transport (Renssen and Knoop,
2000; Vörösmarty et al., 2000; Döll and Lehner, 2002). The
HYDRO1k data set (US Geological Survey, 2001) includes

streams, drainage basins and ancillary layers (e.g. slope, as-
pect, contributing area) derived from the USGS’ 30 s DEM
of the world (GTOPO30). HYDRO1k delivers a nested hier-
archical catchment framework by successively sub-dividing
drainage basins according to the Pfafstetter scheme (Verdin
and Verdin, 1999). The most recent, and the most accurate of
the global hydrological databases, known as HydroSHEDS
(Lehner et al., 2008,http://www.hydrosheds.org/), supplied
a river network and a basin layer for Australia at 15 s grid
cell resolution. These global data sets, however, map only
the larger streams. Thus the contributing area thresholds ap-
plied to delineate the HydroSHEDS and HYDRO1K stream
networks exclude streams with contributing areas less than
20 and 1000 km2, respectively. HydroSHEDS also offers a
seamless flow direction grid at 3 s resolution to enable users
to apply a lower contributing area threshold and thus de-
lineate smaller streams. However, it is difficult to identify
suitable thresholds to represent the highly variable drainage
density that occurs across the Australian continent. Impor-
tantly, none of the global databases recognise distributary and
anabranching drainage structures.

Here we introduce a new national stream and nested
catchment framework for Australia that overcomes many
of these limitations. We begin with an overview of our ap-
proach, and the encoding of surface flow pathways in the 9 s
DEM (Hutchinson et al., 2008) on which it depends. This
is followed by a description of the framework components
and their development. Applications of the new framework
across a range of disciplinary areas, as well as limitations
of the framework, are also described. The paper concludes
by comparing key aspects of the new framework with other
catchment databases and discussing future developments.

2 Drainage analysis methods

The spatial framework that underpins the National Stream
and Catchment database has been developed using new meth-
ods of drainage analysis of a DEM that are especially suited
to application at continental scale. In particular, these meth-
ods recognise the extensive distributary drainage structures
and natural variability in drainage density that occur across
the Australian continent. They significantly extend those pre-
sented in earlier material (Stein, 2006; Stein et al., 2009a)
and will be described fully in a forthcoming manuscript.
Analyses were undertaken using raster-based methods both
for reasons of computational efficiency and for compatibility
with the raster DEM on which many of the attributes charac-
terising the land surface depend. However, for ease of display
and mapping, each of the spatial layers in the database is also
supplied in vector format by converting the raster outputs.

All components of the database fundamentally depend on
the surface flow pathways encoded in the national 9 s flow
direction grid as calculated in 43 rectangular tiles by ver-
sion 5.2 of the ANUDEM program (Hutchinson et al., 2008;
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Hutchinson, 2011). This version includes a multiple-flow ex-
tension that incorporates flow to an anabranch at each dis-
tributary point in the stream network. Infrequent shortcom-
ings in the grid, including loops at tile edges, spurious sinks,
spurious multiple flow directions, flow directions that pro-
duced catchment “tails” or crossing flow paths, and flow
pathways that connected from the mainland to close islands
(in an adjacent grid cell), were corrected using a combina-
tion of automatic procedures and manual editing. Supple-
mentary flow directions were also added to a grid cell where
the two directions coded by ANUDEM were insufficient to
ensure the connectivity of flow pathways in the more com-
plex braided or anastomosed sections of the channel network.
More recently, these procedures have been fully automated
so that the task of removing such anomalies in the flow di-
rection grid is more easily replicated. Improvements in the
ANUDEM elevation gridding program have also reduced the
number of such anomalies and hence reduced the need for
corrections to the flow direction grid.

3 A nested stream and catchment framework

The new framework includes three closely linked compo-
nents (Fig. 2):

1. a fully connected and directed stream network that
recognises distributary drainage structures, derived
from the national 9 s DEM and flow direction grid ver-
sion 3 (Hutchinson et al., 2008)

2. a nested hierarchy of catchments and associated Pfaf-
stetter coding that respects these distributary junctions

3. readily interrogated lookup tables that provide attributes
describing the natural and anthropogenic characteristics
of the stream and catchment environment.

3.1 DEM stream network

The stream network was derived by tracing the flow path-
ways encoded in the multiple flow direction grid from the
gridded channel heads of the AusHydro cartographic streams
(the foundation layer for the AHGF mapped streams) to an
outlet on the coast or an inland sink. The distributary points
encoded into the flow direction grid ensure that the derived
network connects streams and their anabranches.

Unlike the more commonly adopted method based on the
application of a constant contributing area threshold (Mont-
gomery and Foufoula-Georgiou, 1993; Hutchinson et al.,
2000; Jenson, 1991; Verdin and Verdin, 1999), this method
delineates a continent-wide steam network with a variable
drainage density that is consistent with the mapping scale of
the streamlines used to support the construction of the DEM,
which in this case is about 1: 250 000. The resolution of the
DEM, however, limits the extent of the stream network and

Figure 2.Components of the nested stream and catchment database.
The nested hierarchy of catchments aggregates drainage basins at its
highest levels and at its lower levels, sub-divides basins into succes-
sively smaller catchment units based on the Pfafstetter system. The
smallest units in the catchment framework are the catchment ar-
eas draining to individual stream segments in the associated DEM
stream network. Attributes describing the natural and anthropogenic
environment of the stream and its catchment are contained in the re-
lated lookup tables. The area shown at each level is highlighted with
a red boundary at the next higher level.

the size of the drainage features that can be extracted (Gar-
brecht and Martz, 1994). Thus, source channels with a con-
tributing area of less than 1.25 km2 at their pour point were
removed, while main stem segments draining larger upstream
contributing areas were retained to their source.

The raster stream network was divided into uniquely iden-
tified segments by inserting breaks at all tributary conflu-
ences and distributary points, where a channel flows into or
out of an AusHydro water body or over a cliff, and where the
traced network connects gaps in the AusHydro watercourse
lines (a “DEM connector”) (Fig. 3).

An AusHydro identifier was assigned to each segment to
link it to the corresponding AusHydro watercourse line fea-
ture based on their shared topological relationships. The at-
tributes associated with the AusHydro cartographic streams
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Figure 3. Breaks inserted into the DEM stream network at con-
fluences, distributary nodes and water bodies. The breaks delineate
uniquely identified stream segments.

(stream name, hierarchy and perenniality) were then trans-
ferred to the corresponding DEM stream segment. Occa-
sional shortcomings in the attribution, such as missing names
or an inconsistent hierarchy assignment, were corrected us-
ing automatic procedures to trace the network to ensure
that attribution followed expected downstream conventions.
Thus, it was assumed that major hierarchy status was main-
tained along the main channel to the stream network outlet.
Similarly, attribution was traced downstream to the DEM
connectors that were not associated with a cartographic
stream.

The derived stream network comprises nearly 1.4 M
stream segments and has a total length of 3.3 M km. About
90 % of these segments are bounded by tributary confluences
or distributary points. The remainder comprise 122 578 DEM
connectors that join gaps in the mapped stream network, just
over 64 000 water body connectors (of which 89 % are lo-
cated within a natural lake and 11 % within a reservoir) and
2700 segments that break the stream at a cliff.

Segments vary in length from that of a single grid cell
(about 270 m) up to 243 km, with an average segment length
of 2.4 km. This variation reflects the natural variability in
drainage density across the continent, as mapped at a scale
of 1 : 250 000, without the discrepancies between map tiles
due to differences in cartographic interpretation.

The locations of the streams derived from the DEM accu-
rately reflect the locations of the input map streams. A ran-
dom sample of 1000 points along the DEM stream lines (ex-
cluding DEM connectors) on each of the 44 tiles that cor-
respond to Geoscience Australia’s 1: 1 million scale map
series were found to be on average 61 m from an AusHy-
dro watercourse, the expected difference due to gridding and

generalisation of the vector stream lines to the grid cell reso-
lution of 9 s of latitude and longitude. Just 5 % of the sample
points were located more than 125 m from an AusHydro wa-
tercourse and all were less than 500 m away.

3.2 Hierarchically nested catchments

The nested hierarchy of catchments (Fig. 2) was formed by
first aggregating, then successively sub-dividing, drainage
basins using a modified version of the Pfafstetter scheme of
Verdin and Verdin (1999). The Pfafstetter scheme labels each
catchment unit with a code that conveys useful information
about stream topological characteristics and higher-level re-
lationships. It stands out among other methods for delineat-
ing and coding catchment units for its efficient use of digits,
its ease of implementation, the ready interpretation of its cod-
ing scheme and its widespread use (Stein and Hutchinson,
2008).

The Pfafstetter scheme uses the topology of the stream
network and the size of the drainage area to guide the sub-
division of drainage basins into successively smaller catch-
ment units that are coded with the digits 0 to 9 sequentially
from the outlet of the catchment unit upstream to its source.
Thus, the four largest tributary catchments are coded with
the even digits 2 to 8 while the five inter-catchment units are
assigned the odd digits between 1 and 9. A single closed (in-
ternal draining) basin, being the largest in area within the
larger, higher-level catchment unit, is assigned a Pfafstetter
code of 0.

3.2.1 Drainage basins

Drainage basins delineate the entire connected drainage ar-
eas of each outlet to the sea and each inland sink such as
a natural depression or lake. The same identifier was as-
signed to drainage areas that were connected by a distribu-
tary, or drained to multiple sinks within a single lake so that
these connected areas were together recognised as a single
drainage basin. For example, the Norman, Staaten, Gilbert
and Flinders rivers, draining to the Gulf of Carpentaria, are
linked by distributaries and their drainage areas delineate
a single basin (Fig. 4). Small drainage basins flowing to
a connected group of grid cells in the sea but not drained
by a DEM stream were similarly aggregated and treated as
a single drainage basin.

Nearly 90 000 (88 434) drainage basins were thus de-
lineated, each basin draining to one or more outlets on
the coast (44 % by area) or to inland sinks (56 % by area)
(Fig. 5). However, only 722 basins have an area greater
than 1000 km2. More than 80 % of the basins are very small
(less than 10 km2). These include the areas draining to
clusters of clay pans or small dry lakes inland or directly
to the sea rather than through a river mouth on the coastal
fringe. Just 49 of the basins with an area less than 10 km2

are drained by a named AusHydro stream. In contrast, the
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Figure 4. The Flinders–Norman Drainage Basin combining the
catchment areas of the Norman, Flinders, Staaten and Gilbert rivers
that are linked by floodplain distributaries. In contrast, the AWRC
river basins delineate four separate river basins with boundaries
drawn through the floodplain distributary channels. Note also the
small areas of internal drainage.

largest basins are typically drained by a major river system
or terminate in a large lake (Table 1). The new drainage
analysis recognises substantial areas of internal drainage
within the Murray–Darling Basin. Consequently, the total
area draining to the mouth of the Murray River is calculated
to be nearly 270 000 km2 less than the usually quoted area
of 1 059 000 km2 (http://www.mdba.gov.au/about-basin/
basin-environment/georgraphy/geology-and-size).

3.2.2 Level 1 and 2: aggregated drainage basins

Levels 1 and 2 of the nested catchment framework were de-
rived by grouping the drainage basins based largely on the
AWRC boundaries. This produced more evenly sized regions
than the Pfafstetter scheme when applied at the continental
level (Stein, 2006). Linking with the AWRC boundaries also
facilitates the transfer of existing water resource information
to the new framework.

Figure 5. Drainage basins delineated from the 9 s DEM.

The Level 1 topographic drainage divisions (Fig. 6) were
thus delineated by first allocating each of the coastal-draining
basins to the AWRC drainage division that occupied the ma-
jority of the drainage basin area. Internally draining basins
were then associated with either a coastal draining AWRC
division or the interior Lake Eyre drainage basin by suc-
cessively merging them with a lower neighbouring drainage
basin via the lowest pour point on the basin divide. The de-
rived Level 1 boundaries were compared with the AWRC
boundaries, the topographically based analysis by Hutchin-
son and Dowling (1991), palaeodrainage systems established
by van de Graaff (1977) and colleagues and divisions sim-
ilarly derived from locally averaged 1 s Shuttle Radar To-
pography Mission (SRTM) data (Gallant et al., 2011). Ma-
jor discrepancies were further checked by local inspection of
the terrain features on Landsat imagery (Furby, 2002) and
1 : 100 000 topographic mapping.

Supported by the additional evidence, we reassigned the
group of internally draining basins draining towards Lake
Breaden in the Gibson Desert in Western Australia from the
North Western Plateau division to the South Western Plateau
division. For compatibility with the legislated administrative
boundaries for the Murray–Darling Basin (MDB) that are
based on the old AWRC boundaries, the Level 1 boundaries
were also modified to move a small group of internally drain-
ing basins along the MDB southern border from the MDB di-
vision to the Level 1 South-east Coast division. In both cases,
the elevations of the competing pour points on the drainage
divide differed by less than the 10 m standard elevation error
of the 9 s DEM (Hutchinson et al., 2008).
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Table 1.Australia’s largest drainage basins with area> 25 000 km2.

Basin name Area (km2)

Lake Eyre (North) 826 161
Murray–Darling Basin 792 600
Flinders–Norman rivers 231 314
Fitzroy River (Qld) 141 283
Burdekin River 129 868
Gascoyne River 103 688
Fitzroy River (WA) 91 190
Victoria River 89 416
Ord River 83 800
Nicholson–Leichhardt rivers 82 947
Mitchell River (Qld) 82 743
Swan River 81 790
Ashburton River 74 975
Bulloo River 70 915
Roper River 66 445
Murchison River 65 368
De Grey River 59 431
Lake Moore 55 538
Lake Frome 51 366
Lake Gregory 49 496
Daly River 49 443
Fortescue River 48 671
Hanson River 48 580
Lake Mackay 38 164
Burnett River 33 272
Lake Torrens 32 020
Hay River 30 621
Lake Disappointment 30 382
Newcastle Waters/Lake Woods 28 844

Level 2 in the catchment hierarchy was delineated by sub-
dividing the Level 1 drainage basin groupings based on the
AWRC river basins (Fig. 6). Thus, the 9 s topographically
defined drainage basins were associated with an AWRC river
basin draining to the sea or in the case of the internally drain-
ing Lake Eyre Drainage Division, into Lake Eyre (North).
The associated AWRC river basin was the one that occupied
the majority of the 9 s drainage basin area or, if an internally
draining 9 s basin, the AWRC river basin that it would be as-
sociated with if the 9 s basin were to overflow successively
into lower neighbouring basins via the lowest pour points.

3.2.3 Level 3 and beyond: application of a modified
Pfafstetter scheme

The Level 2 basin groups were sub-divided into successively
smaller basin and sub-basin units using a modified version
of the Pfafstetter scheme of Verdin and Verdin (1999). The
continental-scale Pfafstetter scheme of Verdin and Verdin
was applied to initially divide and code Level 2 basin groups.
The Verdin system was then modified to successively sub-
divide these drainage basins into tributary catchments and

Figure 6.Levels 1 and 2 of the new hierarchically nested catchment
framework. Shown are the Level 1 topographic drainage division
names.

main stem “inter-basins”, using a modelled estimate of an-
nual mean runoff volume rather than contributing area to dis-
criminate the tributary and main stem. Runoff volume was
calculated by summing the upstream values of the annual
time series of runoff estimates produced by the Australian
Water Availability Project for the years 1900 to 2007 (Rau-
pach et al., 2009; 2012). The Pfafstetter system was also
extended to include a coding method for distributary and
anabranching drainage systems and catchments that drained
stream networks with less than four tributaries.

Only distributary channels that drained to an alternative
outlet or into a different tributary basin were coded sepa-
rately from the main stem. Other multi-channel streams were
assigned a Pfafstetter code as if a single channel. The iden-
tifier of the upstream main stem segment (in the case of an
anabranch) or the downstream anabranch segment (if a main
stem segment that is an anabranch off-take) and the level
in the catchment hierarchy at which the anabranch is coded
separately from the main stem channel are recorded in the
database. This allows the user to optionally include these
relationships in network tracing and catchment delineation
tasks.

The original Verdin and Verdin scheme codes only the
largest of the internally draining basins at each level. This
was modified so that a Pfafstetter code was assigned to each
of the numerous internally draining basins that were de-
lineated from the 9 s DEM. Each of these smaller, inter-
nally draining basins was assigned the Pfafstetter code of the
catchment unit to which it would flow if it were to overflow
into the lower neighbouring basin via the lowest pour point
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Table 2.Number and average area of catchment units at each level
in the nested hierarchy.

Number of Average
Level catchment units area (km2)

1 12 641 977
2 191 40 334
3 1740 4427
4 12 614 611
5 56 782 136
6 161 198 47.8
7 336 753 22.9
8 559 250 13.8
9 748 118 10.3
10 881 719 8.7
11 978 391 7.9
12 1 036 084 7.4
13 1 066 063 7.2
14 1 082 029 7.1
15 1 090 035 7.1

on the drainage divide, a process akin to that used to asso-
ciate the internally draining basins with a Level 1 or 2 unit.

A 13-level Pfafstetter sub-division of the Level 2 basin ag-
gregations was derived to obtain a 15-level nested catchment
hierarchy overall. The finest level sub-division in the nested
hierarchy delineates the sub-catchment areas draining to each
of the segments in the DEM stream network or, where there
were no AusHydro watercourse features, the drainage basins
that drain directly to the coast or an inland sink. The size of
the catchment units varies greatly within each level of the
hierarchy, depending on the extent of drainage basin sub-
division, although the average area of the catchment units
changes little after Level 9 (Table 2).

The hierarchical relationships of the catchments are coded
into the catchment identifier that combines the Level 1
drainage division and Level 2 basin group together with the
13-level Pfafstetter code. Not all basins were sub-divided as
far as the topology of the stream network allowed, even af-
ter 15 levels of sub-division. For instance, small, internally
draining basins are so numerous in some areas that many
still needed to be merged with a lower neighbour for Pfaf-
stetter code assignment, as they were not yet the largest in-
ternal basin. To assist users wishing to utilise the Pfafstetter
coding within a specific basin, the database also records the
results of an independent, 15-level, within-basin Pfafstetter
sub-division applied to each drainage basin individually to
code every tributary and main stem stream segment in the
basin.

3.3 Stream and catchment environmental descriptors

An extensive suite of environmental descriptors (Table 3)
characterise the natural and anthropogenic environment of

each stream segment and its catchment at three, increasingly
broader, spatial scales:

1. the local stream and its valley as defined by the grid cells
that comprise the stream segment and where appropri-
ate, the adjacent valley bottom flats;

2. the sub-catchment, being the local area draining directly
to a segment in the DEM stream network and the small-
est spatial units of the catchment hierarchy; and

3. the entire catchment upstream or, for some attributes,
the flow path downstream of the sub-catchment outlet
cell.

The stream valley was delineated by the valley bottom flats
identified from the values of the multi-resolution Valley Bot-
tom Flatness (mrVBF) and Ridge Top Flatness (mrRTF) in-
dices calculated using the method of Gallant and Dowling
(2003) for the 9 s DEM.

The selection of attributes for inclusion was informed
by literature review (Stein, 2006) and the requirements of
national- and regional-scale applications (Walsh et al., 2007;
Stein et al., 2009b; Kennard, 2010), constrained by the avail-
ability of data with consistent continent-wide coverage. The
principal objective was to include attributes that described
key drivers of stream ecological, hydrological and geomor-
phological processes.

Catchment mean values were calculated by averaging the
values of all grid cells upstream of the stream segment out-
let cell, dividing accumulated totals and cell counts at bi-
furcations in the stream network in the ratio of 8 rivers : 4
creeks : 1 unnamed streams: 0.1 floodplain wetlands, based
on the ratios observed for gauged streams (Stein, 2006). Cus-
tom tools were developed to calculate the catchment attribute
values, as the multiple flow directions used to encode dis-
tributary points in the stream network were not recognised
by the flow accumulation and routing functions in standard
GIS packages. These distributary drainage structures also re-
quired special treatment so that, for example, stream order
did not increment and contributing areas were not counted
twice when bifurcating streams rejoined downstream.

To ensure that small but potentially important features
were included, categorical source data (geology, land use and
vegetation) were gridded and classified at a grid cell res-
olution finer than 9 s, and then the proportion of each 9 s
grid cell occupied by each category used to calculate the
stream segment, sub-catchment or catchment summary val-
ues. Indicators of connectivity were derived by considering
the length of stream that was unimpeded by built structures
(dam walls, spillways or large reservoirs) that formed poten-
tial barriers to in-stream movement of aquatic biota. The lo-
cation of a stream segment relative to a natural barrier (a wa-
terfall or cliff) was also recorded in the database, as was the
name of the AWRC river basin overlaying the majority of the
segment sub-catchment to enable linkages with existing data
organised according to the AWRC spatial framework.
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Table 3.Stream environment descriptors. Data are organised into lookup tables that can be related to both the DEM streams and catchment
spatial layers using a shared segment identifier.

Table Description Primary source data

Climate Parameters describing annual and seasonal climate and
rainfall erosivity

ANUCLIM (Xu and Hutchinson, 2013)
National Land and Water Resources Audit (2000)
9 s DEM version 3.1 (Hutchinson et al., 2008)

Terrain Elevation, relief, slope, aspect, catchment area and shape,
stream order, confinement, distance from source/outlet

9 s DEM version 3.1 (Hutchinson et al., 2008)

Substrate Soil hydrological characteristics and lithological composition Surface geology of Australia 1: 1 M (Liu et al., 2006;
Raymond et al., 2007a, b, c; Stewart et al., 2008; Whitaker
et al., 2007, 2008), Soil hydrological properties of Aus-
tralia (Western and McKenzie, 2004)

Veg; Veg-MVSG Catchment and valley natural and extant vegetation cover
(forests, woodlands, shrubs, grasses, bare),
Valley natural and extant vegetation cover (NVIS major
vegetation sub-groups)

NVIS 100 m (Australian Government Department of the
Environment and Water Resources, 2006a, b)

Runoff Monthly time series of accumulated runoff volume 1970
to 2008, summary statistics describing annual and sea-
sonal mean and extreme conditions, inter- and intra-annual
variability

Monthly climate surfaces 1970 to 2008 (Kesteven et al.,
2004; Hutchinson, 2004)
GROWEST water balance module (Hutchinson et al.,
2004)

NPP Catchment average of annual and monthly mean net primary
productivity

Raupach et al. (2001)

Land use Stream and valley and catchment average and maximum
population density, proportion of stream and valley, sub-
catchment or catchment on which particular land use activ-
ities take place

Catchment-scale land use mapping for Australia (Bureau
of Rural Sciences, 2009), Population density 2006
(Australian Bureau of Statistics, 2006)

River disturbance Indicators of pressure on stream ecosystems due to human
activities (Stein et al., 2002)

Data sources in Stein et al. (1998) updated with catchment-
scale land use mapping for Australia (Bureau of Rural Sci-
ences, 2009), Geodata TOPO 250K series 2 (Geoscience
Australia, 2003b), Integrated Vegetation Cover (Bureau of
Rural Sciences, 2003)

Network Stream network parameters/indicators of habitat availability AusHydro (Bureau of Meteorology, 2010)
connectivity Presence of major in-stream barriers including dams and

waterfalls
9 s DEM Version 3.1 (Hutchinson et al., 2008)

Identifiers AWRC and topographically defined basin identifier, up and
downstream segment identifiers, outlet geographic location

Australia’s River Basins (AUSLIG, 1997)

The summary statistics derived from the monthly time se-
ries of runoff are indicative of the catchment water balance.
They were produced by summing the upstream values of the
grid cell runoff estimates calculated by the single bucket wa-
ter balance model of the GROWEST program (Hutchinson
et al., 2004). This runoff model was well suited to continent-
wide application, as it required just two parameters that were
set based on grid cell soil attributes. Runoff generated using
alternative models are currently being investigated and may
be readily substituted.

The stream and catchment environmental descriptors are
best explored within a GIS or in the context of particular
applications. Nevertheless, it is possible to derive directly
from the database useful summaries that can demonstrate
the continent-wide spatial variation in key drivers of riverine
processes and the human activities that threaten the integrity
of those processes (Table 4). Thus, while the variability in
runoff in Australia is often highlighted (McMahon et al.,
2007), and supported by our modelling, it is also clear that

there are many regions that experience less variable runoff
and thus more reliable stream flow (Fig. 7).

4 Discussion

4.1 A new national framework

The new national framework has been developed to support
resource assessment and planning for Australia’s rivers and
streams. It overcomes many of the shortcomings of previ-
ously available national catchment data. Its continent-wide
delineation of streams and their catchments is based consis-
tently on surface topography, irrespective of administrative
arrangements.

The analysis of these catchments has identified previ-
ously unrecognised areas of inland drainage, including those
within the Murray–Darling Basin. It also highlights the
prevalence (56 %) of endorheic drainage in Australia, in con-
trast to other continents where endorheic regions occupy less
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Table 4.Characteristics of Australian streams and catchments: examples derived from the environmental descriptors for a subset of named
streams.

Longest flow path (source to outlet along main channel) Murray–Darling Basin (3515 km)
Wettest stream (highest catchment average annual rainfall) East Mulgrave River, Queensland (3845 mm)
Driest stream (lowest catchment average annual rainfall) Manuwalkaninna Creek, Lake Eyre Basin (110 mm)
Hottest stream (highest catchment average maximum
temperature of the hottest month)

Dead Horse Creek, Ashburton River Basin (41.4◦C)

Coldest stream (lowest catchment average minimum
temperature of the coldest month)

Swampy Plain River, Murray–Darling Basin (−5.7◦C)

Greatest relief (basin with highest relief ratio) Ketchem Creek, southern Tasmania (relief 594 m, basin length
4.8 km)

Least relief (basin with the lowest relief ratio) Station Creek, Gulf of Carpentaria, Qld. (relief 6 m, basin length
25.7 km)

Most variable flow (basin of named stream with highest CV
annual mean accumulated runoff, 1970–2008)

Manunda Creek, South Australia (largest of 108 basins with
CV = 6.2)

Basin with greatest proportion of annual mean runoff
(1970–2008) generated above the snow line

Mersey River, Tasmania (32 %)

Most urbanised basin Cherry Creek, Melbourne, Victoria (78.9 % of the 19 km2

catchment is urban land use)
Largest undisturbed or minimally disturbed stream (RDI≤ 0.01)
(Stein et al., 2002)

South Alligator River, Northern Territory

Undisturbed or minimally disturbed stream length (RDI≤ 0.01)
(Stein et al., 2002)

5.95 % length of named streams

Stream length fragmented by large dams (up or downstream) 45.6 % length of named streams

than 20 % of the landmass and as low as 5 % in North Amer-
ica (Hammer, 1986).

The Level 1 and 2 groupings of drainage basins reveal the
broader-scale drainage structure of the continent and indi-
cate some significant departures from the AWRC boundaries,
most notably for the Western Plateau Drainage Division and
the rivers flowing into the Timor Sea. Consistent with the
drainage analysis of Hutchinson and Dowling (1991), and the
palaeodrainage analysis of van de Graaff (1977) and others,
our analysis recognises a major drainage divide that splits the
Western Plateau Division into northern and southern sections
associated with drainage into the Indian Ocean and Great
Australian Bight, respectively. Also consistent with Hutchin-
son and Dowling (1991), our analysis links the AWRC basins
Mackay, Wiso and Barkly, which were included within the
Western Plateau Division, to coastal basins in the AWRC
Timor Sea Drainage Division and includes the AWRC Bulloo
Bancannia Division within the Lake Eyre Level 1 division.

Unlike the AWRC second tier however, our Level 2 divi-
sion encompasses entire drainage basins and does not divide
the Murray–Darling and Swan River drainage basins. Sim-
ilarly, by recognising distributary drainage structures, con-
nected drainage areas have been delineated where the AWRC
identified separate basins. Our analysis required that inter-
nally draining basins, such as the AWRC river basins of
Mackay and Warburton, were connected to either the coast
or Lake Eyre. Accordingly, our Level 2 analysis delineates
54 fewer aggregated basin units than the 245 AWRC river
basins.

Figure 7. Interannual runoff variability: coefficient of variation of
the annual totals of accumulated runoff volume for the period 1971
to 2000. Values extracted from the runoff lookup table described in
Sect. 3.3.

The stream network derived from the DEM complements
the AHGF cartographic streams. The direct link to sub-
catchments and the enhanced connectivity of the DEM-
derived product facilitates network tracing and other analyti-
cal tasks while the shared AusHydro identifier enables users
to link the results of these analyses to the AHGF cartographic
streams.
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The Pfafstetter coding associated with each stream seg-
ment and its sub-catchment encodes complex streamline and
nested catchment relationships in a readily accessible form.
Users are thus able to infer information about topological re-
lationships in a catchment using simple algebraic queries,
for example, to identify all sections of a river network up-
or down-stream of any feature of interest or to discriminate
main stem and tributary streams. The identifying codes also
enable users to extract catchments at any level in the hierar-
chy, allowing the scale of analysis and reporting to be varied
to match the scale of the available data and to optimise the
derived spatial patterns for particular applications. The size
of the catchment unit at each level in the nested hierarchy
varies substantially, largely as a consequence of the natu-
ral variation in drainage density and basin size that occurs
at continental scale. Nevertheless, it is relatively straightfor-
ward to extract catchment units from different levels for each
drainage basin to satisfy requirements for more homoge-
nously sized catchment units.

The Pfafstetter coding and unique catchment identifiers
can be associated with other features of the hydrological
system located within the sub-catchment, whether natural
(e.g. wetlands and lakes) or anthropogenic (stream gauges,
locks, weirs, dams). This catchment reference system estab-
lishes a standard and seamless scheme for consistent ref-
erencing of water features to assist coordinated approaches
to cross-agency water resource data collection and colla-
tion, overcoming the difficulties associated with current sys-
tems based on stream names that are inconsistently applied
(e.g. streams that change their name along their length or
share the same name) or are simply unnamed (Wilson and
Nason, 1991).

We have modified the Pfafstetter scheme of Verdin and
Verdin (1999) to use modelled runoff rather than contributing
area to discriminate the main stem and tributary. This reduces
the likelihood of erroneous main stem assignment for rivers
draining the larger, but more arid regions of a drainage basin.
However, a change in the model used to derive the runoff esti-
mates, or indeed in the time period over which they were cal-
culated, might require re-assignment of the Pfafstetter codes
and hence the delineation of the levels of the nested catch-
ments in some drainage basins.

The database supplies attributes that describe the stream
and catchment environment at multiple spatial scales. These
attributes characterise important drivers of hydrological, ge-
omorphological and ecological processes that in turn influ-
ence water resource availability and condition and ultimately,
river ecosystem patterns and processes. For example, the size
and shape of the catchment influence the water and sediment
yield and its timing and distribution (Fryirs and Brierley,
2012) while measures of slope and relief provide an indi-
cator of the energy available for sediment transport and the
potential for erosion or deposition (Jerie et al., 2003).

4.2 Applications

The seamless national data offered by the new framework
can support a wide range of modelling and analytical uses in
addition to more traditional reporting and mapping applica-
tions. The data have already been used to

1. assist the selection of monitoring sites for bioassess-
ment programs (Gilligan, 2010; Davies et al., 2010)

2. develop models of reference condition for macroinver-
tebrate community composition and channel physical
form for the Murray-Darling Basin Sustainable Rivers
Audit program (Walsh et al., 2007; Davies et al., 2010,
2012)

3. underpin an ecohydrological environment classification
for Australia (Pusey et al., 2009)

4. explore the environmental factors that control genetic
diversity and dispersal of riverine fish species (Faulks
et al., 2010) and compositional turnover (Turak and
Blakey, 2011).

The data have also facilitated the application of systematic
conservation planning approaches to riverine systems in Aus-
tralia (Linke et al., 2011; Turak et al., 2011). In particu-
lar, recent enhancements to conservation planning methods
to account for catchment connectivity and condition (Linke
et al., 2012) depend on the Pfafstetter coding and the broad-
scale indicators of disturbance provided by the new national
framework. Catchment units extracted from this framework
also provided planning units for the identification of priority
areas for terrestrial biodiversity (Douglass et al., 2011; Klein
et al., 2009a, b; Fuller et al., 2010).

A trial of the Australian Government’s new high conser-
vation value aquatic ecosystems framework across northern
Australia (Kennard, 2010) relied on data supplied by the new
stream and nested catchment framework and associated en-
vironmental attributes. The DEM stream network delineated
riverine hydrosystems (Aquatic Ecosystems Task Group,
2012b) for classification according to the draft Australian
National Aquatic Ecosystem Classification Scheme (Aquatic
Ecosystems Task Group, 2012a). The ecotopes level of this
semi-hierarchical classification scheme was derived by clus-
tering the stream segments according to the similarity of their
environmental attributes. The environmental predictors were
also used to develop predictive models of the distribution
of a wide range of aquatic taxa using sampling units tai-
lored to the ecological characteristics of the faunal group ex-
tracted from different levels in the catchment hierarchy. This
includes larger catchments (average area 72 km2) for mod-
elling the distribution of more mobile taxa such as water-
birds, and finer-resolution catchments (average area 3.5 km2)
for other aquatic taxa including macroinvertebrates, fish and
turtles (Kennard, 2010). The modelled distribution of these
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aquatic taxa, together with the ecotope classification, pro-
vided spatially explicit biodiversity surrogates to assess rela-
tive conservation value across northern Australia.

The DEM stream network and nested catchments are the
foundation data for the Australian Hydrological Geospa-
tial Fabric (the “Geofabric”) network streams and catch-
ment products that support the Bureau of Meteorology’s
water information and accounting needs (http://www.bom.
gov.au/water/geofabric/index.shtml). The reporting units
for the 2010 Australian Water Resources Assessment
(AWRA) (http://www.bom.gov.au/water/about/publications/
document/InfoSheet_10.pdf), the first in a series of an-
nual reports on the availability, quality and use of water
to be produced by the bureau, were based on the Level 1
drainage divisions, while the geofabric hydrology report-
ing regions that will provide finer level catchment delin-
eations for future AWRA assessments are largely delineated
by the Level 2 Drainage Basin Groups, except in the Murray–
Darling Basin, where the reporting regions are delineated by
lower-level Pfafstetter aggregations that represent the AWRC
river basins (Australian Government Bureau of Meteorology,
2012). This tailored delineation of the hydrology reporting
regions demonstrates the flexibility of the new nested catch-
ment framework and its capacity to be adapted to individual
user needs, in this case, the requirement that the reporting
regions resemble the AWRC river basins.

4.3 Limitations and uncertainty

The new framework consistently represents streams and their
catchments at a map scale of about 1: 250 000 and is thus
appropriate for applications at regional to continental scale.
The environmental attributes are derived from best available,
but relatively coarse-scale, national data sources, so are also
best suited for applications at regional and national scales.

A primary source of spatial data uncertainty is that asso-
ciated with the 9 s DEM representation of height and surface
drainage flow paths (Hutchinson et al., 2008). In particular,
in areas of dune fields the DEM depicts the land surface un-
derlying the sand ridges and so might more accurately de-
lineate palaeocatchment boundaries (Craddock et al., 2010).
The sinks that are the terminal points of the internally drain-
ing basins are likely to be reliably identified due to the com-
prehensive process of verification that was undertaken during
the 9 s DEM development (Hutchinson et al., 2008), although
the elevation difference between alternate pour points may
be small in some cases; thus there is uncertainty as to which
neighbouring basin a sink basin would overflow. The variable
representation of smaller peaks by the DEM and the reliance
on the ANUDEM diagnostics to identify sinks rather than a
thorough search (Hutchinson et al., 2008) may also have pro-
duced occasional errors in the location of drainage divides
and derived terrain attributes. On the other hand, the remark-
able consistency of the 9 s drainage division analysis with
that obtained from the earlier 90 s DEM, derived by Hutchin-

Figure 8. The stream network delineated by(a) this study and(b)
that supplied by the HydroSHEDS database. Level 1 drainage divi-
sions are indicated by the bold black lines.

son and Dowling (1991) from completely different source
data, indicates broad-scale robustness in the delineation of
catchment boundaries from drainage-enforced DEMs.

Floodplains and floodplain flow paths are inadequately
represented at the 9 s DEM resolution. There is no modelling
of overbank flow and other floodplain processes and hence
the environmental characteristics attributed to isolated flood-
plain channels (e.g. oxbows, flood runners, etc.) describe
the local environment only, not the broader catchment up-
stream of the associated main river channel. There will also
be uncertainty around the location of individual stream links
within the more dynamic, braided and anastomosed channel
networks though they will be contained within the broader-
scale catchment boundaries that contain the floodplain.
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Table 5.A comparison of the new Australian stream and catchment framework with comparable international examples.

DEM resolution Streamline Hierarchical
mapping scale coding system

Australia 9 s (∼ 270 m) 1: 250 000 Pfafstetter
USA (McKay et al., 2013; Wang et al., 2011) 1/9 to 1 s (∼ 3 to 30 m) 1: 100 000 Hydrological Units Code (HUC)
Europe (Vogt et al., 2007) 100 m 1: 100 000 Pfafstetter
New Zealand (Snelder and Biggs, 2002;
Wild et al., 2005)

30 m 1: 50 000 River Environment Classification∗

∗ Supplies a hierarchical context for each stream segment based on its environmental characteristics but not a unique identifier.

Figure 9. The stream network and drainage basins delineated by
(a) this study and(b) supplied by the HydroSHEDS database for
the area shown in the inset map of Fig. 4. By recognising distribu-
tary drainage connections, one drainage basin is delineated for these
rivers draining into the Gulf of Carpentaria, while the HydroSHEDS
database delineates multiple basins.

4.4 International comparisons

The new national streamline and nested catchment database
for Australia, based on the 9 s DEM, may be compared with
catchment frameworks and associated suites of environmen-
tal attributes that have been developed to underpin national
and global water information needs elsewhere (Table 5). The
Australian 9 s framework differs in a number of key aspects.

The Australian catchments are based on a coarser-
resolution DEM and streamline mapping than the compara-
ble international examples. However, unlike the US and Eu-
ropean DEMs or that underpinning the HydroSHEDS global
database (Lehner et al., 2008) , no “stream burning” or other
additional hydro-enforcement processes were required to im-
pose stream positions into the DEM. These processes signifi-
cantly alter the elevation values of the grid cells that comprise
the DEM stream network, leading to errors in terrain param-
eters such as the stream segment slope, catchment relief and
terrain curvature that are calculated from the grid cell ele-
vation values. Instead the drainage enforcement applied by

the ANUDEM program (Hutchinson, 2011) incorporated the
streamlines directly into the elevation gridding (Hutchinson
et al., 2008; Hutchinson, 1989). Thus stream positions are
accurately located within the DEM without distorting DEM
heights. Accordingly, topographic descriptors can be derived
directly from the DEM. This includes the large areas of the
continent with low topographic relief, effectively overcom-
ing what is commonly seen as a key limitation of DEMs.

The new Australian database overcomes a number of
the shortcomings of HydroSHEDS, the best of the global
hydrological data sets with Australian coverage, and sup-
plies additional features and attribution. It delineates a finer-
resolution stream network than the baseline product sup-
plied by HydroSHEDS. Thus, for example, it includes more
than 4500 stream segments totalling nearly 10 000 km of
stream (mean 2.2 km) in the Macleay River basin in north-
eastern New South Wales, where the 316 HydroSHEDS
stream segments total 2176 km (mean 6.9 km). A lower-
contributing area threshold can be employed to delineate a
finer-resolution stream network from the HydroSHEDS 3 s
flow direction grid. However, this would produce unrealis-
tic patterns of drainage density similar to those of the sup-
plied HydroSHEDS streams (Fig. 8b), delineating streams
where surface drainage is absent in arid areas of low relief
and highly permeable geology such as the limestone Nullar-
bor Plain (Australian Bureau of Statistics, 1974). In contrast,
the novel methods of drainage analysis described above have
reproduced the natural variation in drainage density and the
diversity of drainage patterns that are evident at continen-
tal scale. Thus, the patterns of drainage density of the de-
rived stream network are graphically indistinguishable from
the cartographic streams mapped at a scale of 1 : 250 000
(Fig. 8a). The national framework presented here appears
to be the first to derive a stream network from a DEM that
explicitly includes complex distributary and anabranching
drainage patterns, yet these drainage patterns are common
among large rivers globally (Jansen and Nanson, 2004) and
occur extensively across the low relief areas of the Australian
continent. Thus, for example, our stream network identifies
the distributary channels that connect the rivers draining into
the Gulf of Carpentaria so that a single drainage basin is de-
lineated (Fig. 4). Like AWRC, however, the HydroSHEDS
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streams do not recognise this connectivity and so delineate a
disconnected drainage network and multiple drainage basins
for these rivers (Fig. 9).

Our framework also delivers catchments at multiple spa-
tially nested scales and extensive attribution linked to
each stream segment and its associated sub-catchment. Hy-
droSHEDS currently supplies just the single, drainage basin
scale and minimal attribution. Future HydroSHEDS releases
are, however, planned to include additional attribution and
nested sub-basin delineations with associated Pfafstetter cod-
ing (Lehner and Grill, 2013). We also provide a simple solu-
tion to the problem of apportioning accumulated runoff and
other attributes between a stream and its anabranch that is
appropriate for continental-scale applications.

The coding of the hierarchical relationships between
catchments presented here is compatible with that used in the
European Catchment Characterization and Modelling data
set (CCM). The highest levels in the European catchment hi-
erarchy were formed by grouping basins according to the sea
into which they drain and their connectivity to the open ocean
(de Jager and Vogt, 2010). This is analogous to our levels
1 and 2. The CCM similarly applies the Pfafstetter coding
scheme to individually code and then internally sub-divide
drainage basins. Our application of the Pfafstetter scheme
differs, however, in our use of a surrogate for river flow
instead of contributing area to distinguish the tributary and
main stem, and the necessary inclusion of a method to sys-
tematically sub-divide and code the very large number of in-
ternally draining basins and distributary stream networks.

4.5 Data availability and future developments

The stream and nested catchment database is freely available
under a Creative Commons licence – the AHGF version in
vector format fromhttp://www.bom.gov.au/water/geofabric/
about.shtmland the original foundation layers in raster for-
mat, together with the lookup tables of environmental at-
tributes, fromhttp://ga.gov.au/surfacewater. Future develop-
ments include an upgrade of the AHGF foundation layers by
Geoscience Australia based on the higher-resolution SRTM
1 s DEM-S (Gallant et al., 2011) drainage enforced with
a compilation of the best available streamline mapping (map
scales ranging from 1: 25 000 to 1: 250 000). The AHGF up-
grade will include tables to link the new stream segments and
their catchments to the equivalent features in the 9 s DEM-
derived version so that attribution and other associated data
can be easily transferred. There will be fine-scale differences
in catchment delineations due to the finer-resolution of the
SRTM DEM and the streamline mapping, but also due to
the nature of the surface topography depicted by the DEM.
Thus the 1 s SRTM DEM models the land surface in the
year 2000 when the radar observations were collected and so
may include anthropogenic features such as large buildings,
open cut mines, road cuttings and artificial drainage chan-
nels. In contrast, the 9 s DEM was interpolated from eleva-

tion spot heights principally sampled from 1 : 100 000 scale
contour mapping and essentially represents a pre-European
landscape.

5 Conclusions

The new stream and nested catchment database supplies
a comprehensive spatial framework for regional and national
scale planning and assessment across Australia. The struc-
ture of this framework reflects the natural hierarchical or-
ganisation of the river system and its boundaries respect
the surface drainage characteristics of the Australian conti-
nent, largely irrespective of administrative or jurisdictional
borders. The broad applicability of this framework and its
associated environmental database has already been amply
demonstrated, suggesting it could provide a useful template
to serve the water information needs of other continents.

The successful implementation of the spatial framework
across the large areas of low topographic relief and endorheic
drainage that make up the majority of the continent has been
jointly facilitated by the underpinning drainage-enforced 9 s
DEM and associated drainage analysis methods and a sys-
tematic extension of the Pfafstetter system.

Future higher-resolution versions of the catchment frame-
work for Australia will extend its application to management
tasks requiring finer-scale information. Nevertheless, the ro-
bustness of catchment delineations from drainage-enforced
DEMs is likely to generate a high degree of concordance be-
tween the 9 s catchment framework presented here and fu-
ture finer-scale national catchment frameworks. For many
broader-scale planning and assessment tasks the 9 s frame-
work will still be a suitable choice.
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