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Supplement - Model Evaluation
S.1 Methods

Water elevation measurements from four stations in the domain, (Spencer
Street, Burnley Depot, Hawthorn and Dight’s Falls refer to Figure 1) were
compared to model output. For salinity and oxygen, 9 along channel profile
transects of surveys conducted between September 2009 and June 2009 were
used (refer to Roberts et al.,, 2012)). For these data comparisons were made for
time series data, field profiles, degree of stratification as well as upstream extent
of salt wedge, hypoxia and anoxia. For each survey, depth profile data were
collected at 5-6 of the 17 stations indicated in Figure 1 (chainage listed in Table
A1l). Time series comparisons of surface and bottom salinity and oxygen were
made at three representative stations where greatest data were available:
Morell Bridge (in the down stream end of the estuary); Scotch College (middle of
the estuary) and Bridge Road (upstream end of the estuary) (Figure 1).

In this study we evaluate five alternative measures of model performance. The
purpose of calculating alternative model fit parameters are two fold: to enable
comparison to similar modelling studies with various methods of performance
evaluation, and secondly because different methods of model evaluation tell us
different things about model performance (Bennett et al,, 2013). Measures of

model fit were calculated as:

1) Normalised mean absolute error (NMAE; Alewell and Manderscheid,

1998):
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2) Root mean square error (RMSE):
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3) Model Efficiency (MEF; Murphy, 1988; Nash and Sutcliffe, 1970):
MEF = 1 — ie1 (P — 0)?
(3)
4) Model Skill Score (MSS; Willmott (1981)):
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where N is the number of observations, O; and P;, the “it"” observed and model
predicted data and O and P the mean observed and model predicted data

respectively.

NMAE is a measure of the absolute deviation of simulated values from
observations, normalized to the mean; a value of zero indicated perfect
agreement and greater than zero an average fraction of the discrepancy
normalized to the mean. Similarly RMSE is a measure of the average square
error with values near zero indicating a close match. MEF is a measure of the
square of the deviation of simulated values from observations, normalized to the
standard deviation of the observed data. For both MEF and MSS, a maximum
value of one indicates perfect fit; zero indicates that the model provides equal
predictive skill as assuming mean observed data. Ralston et al. (2010) showed

MEF to be an unreliable measure of model fit, however we have included this



metric as it is commonly used allowing us to compare model fit with similar
estuary modelling studies. The correlation coefficient gives an indication of the
linear relationship between observed and predicted data and is the most

common measure for assessing aquatic models (Ahronditsis and Brett 2004).
S.2 Results

The model performed well in measure of fit for surface water elevation in all four
gauged stations (Table A2). All correlation coefficients were > 0.95, the lowest
measure of fit occurred at Burnley Depot located just downstream of the first
horseshoe bend. Model skill scores were all reasonably high (>0.8) and NMAE
reasonably low (<0.3) with the exception of Burnley Depot. Patterns of model fit

for water level elevation were consistent for all four measures of skill score.

Simulated time series of the surface and bottom concentrations of salinity and
oxygen followed both the seasonal and episodic patterns observed in the field
measurements (Figure Al). Comparisons of along channel transects showed
good agreement between model and data including the extent of salt-wedge
propagation and associated regions of oxygen depletion (Figure A2).
Measurements of model fit for salinity and oxygen varied significantly from
position in the water column and region (Table A3). Whilst measures of MSS,
MEF and r? were greater overall for salinity (0.42/0.85/0.72) than oxygen
(0.29/0.80/0.65) measures of NMAE were lower for oxygen (0.28) than salinity
(0.47). For salinity, measures of model fit indicated that the model predicted
bottom salinities better than surface and surface oxygen better than bottom
(Table A3). The model simulated salinity of the lower reaches of the estuary
better than the upstream end, with negative values of MSS indicating that the
model predicted worse than using an observational average for the regions >
10km upstream of Spencer Street Bridge. For simulated oxygen, the patterns of
model fit were similar although the model performed better than salinity in the
upper reaches of the estuary. In fact, for r? the highest value was in the region >

15km from Spencer Street Bridge (r?2 = 0.74).

S.3 Discussion



Whist there has been significant progress made in modeling morphologically
complex coastal environments (Chen et al., 2003, 2007; Liu et al., 2007; Luyten et
al, 2003; Xu et al, 2012) simulating the finely resolved pycnocline of a salt
wedge riverine estuary with tight curvature has remained a challenge (Kurup et
al,, 2000; Li et al., 2005; Oey et al., 1985; Warner et al,, 2005). Progress has been
made with respect to horizontal grid co-ordinates able to accurately represent
more complex estuarine bathymetries, including a move from Cartesian
(Simanjuntak et al, 2011) to curvilinear (Burchard et al, 2004) and finite
element models (Wang and Justi¢, 2009). The recent development of the finite
volume method that combines finite element grid structures with finite-
difference methods has led to improved computational efficiency in estuarine
modeling studies (Chen et al.,, 2003; Wang and Justi¢, 2009). Most models use
sigma-coordinates in the vertical that may be less suited to resolve sharp
pycnoclines in a riverine estuary due to problems with numerical diffusion.
Depending on the bathymetric complexity of a particular system, the choice of
physical model is crucial to the correct simulation of the salt-wedge dynamics
and therefore critical in determining the extent of oxygen depletion. After
attempting to model the Yarra River estuary with both cartesian and curvilinear
grid structures, the choice of flexible mesh structure gave the greatest accuracy
in predicting the position and extent of the salt wedge dynamics. Where the

model fit results were low, ideas for model improvement are discussed below.

Whilst rigorous analysis of the accuracy or “model fit” of numerical models is
considered crucial, particularly when a model is used for predictive management
decisions (Stow et al., 2009), quantitative measurements of model fit are rarely
presented (Arhonditsis and Brett, 2004; Mooij et al., 2010). A further challenge
in the comparison of model performance is a lack of consistent model fit metrics
reported. In this study we included five alternative measures of model fit in
order to compare against similar estuarine modelling studies. The measures for
surface water elevations were generally high and in close agreement with those
measured by Ralston et al. (2010 MSS=0.78-0.92 r=0.99), Xu et al. (2012 RMSE =
0.13 MSS=0.8 MEF=0.9 r=0.91) and Warner et al. (2005 MSS=0.85-0.95). The

greatest deviation from observed data occurred at Burnley Depot (13.1km) and



can be attributed to the over simplification of bathymetry in the mesh cells just
downstream of the sampling station. In calculating the measures of model fit for
surface elevations, the number of sampling points in the time series record
(N=17524) was relatively high which could account for the observed consistency
in model fit measures since a large sample space minimises bias and sensitivity
to phase errors. In general, the high measures of model fit for surface elevation
were an indication that the mesh bathymetry, inflows and tidal boundary forcing
were well represented in the model. An improved mesh structure with higher
resolution particularly of the river banks and regions of high curvature could

lead to improved prediction of water elevations in the estuary.

Much progress has been made in the accurate prediction of stratification in the
lower reaches of estuaries (Ralston et al., 2010) with less success in the upper
reaches of narrow, shallow estuaries (Sharples et al.,, 1994). In general for this
application, measures of model fit for salinity decreased with upstream distance.
Values of MSS and r? compared well to Ralston et al. (2010) for bottom salinity
(0.70-0.94/0.88-0.99) and surface salinity (0.29-0.86/0.77-0.94), Xu et al. (2012)
for overall salinity (0.88/0.94) and Warner et al. (2005) for salinity (MSS=0.85).
The slope and offset calculations suggest that the model is under-predicting
lower salinities and over predicting higher salinities indicating the degree of
vertical mixing was under-predicted. Some deviations from observed data could
be attributed to uncertainty in the boundary conditions, particularly the
meteorological data and absence of smaller tributary inflows such as storm
water drains. Calibration of mixing parameters and a higher resolution
bathymetry may also lead to improved (less stratified) predictions of salinity

distribution.

Measures of model fit for oxygen were generally lower than for salinity and
surface water elevations. This difference is consistent with a general trend in
modelling of aquatic ecosystems (Arhonditsis and Brett, 2004; Burchard et al,,
2006) where model fit measures decrease from the physics, through nutrients to
higher order plankton (Allen et al., 2007a). Whilst salinity is dependent only on
the hydrodynamic model equations, oxygen concentrations may additionally

include error related to biotic factors represented in the model, which are often



less controlled and not as easily parameterised. It is interesting to note that for
NMAE the model performed better for oxygen than salinity. Since NMAE is a
measure of the absolute error, normalized to the mean the difference in model
performance is attributed to the greater relative spread of data for oxygen
(standard deviation = 94% of mean) compared to salinity (standard deviation =
49% of mean). These results emphasise the need to calculate a number of
measures of model to fit to evaluate model performance against variables with a

range of variance.

For salinity, higher values of model fit for the bottom layer compared to the
surface layer are indicative of a better representation of the salt-wedge
propagation and less on mixing in the surface layers. On the other hand for
oxygen, higher values of model fit for the surface layer compared to the bottom
reflect the dominance of air-water surface exchange at the top, and highlight a
need to focus calibration methods on improved parameterisation of sediment
oxygen demand. Simulated outputs indicated significant diurnal variations in
the position and extent of both the salt wedge and oxygen depleted waters
similar to those observed by data loggers employed in 2008 outside the
simulated period (Roberts et al., 2012). Whilst a simplified mesh of just a few
hundred cells gave acceptable levels of model fit related to the propagation and
strength of the salt wedge intrusion, a mesh with increased resolution in the
cross section would allow improved predictability of the fine resolution of the

pcynocline and lateral mixing.

For prediction of oxygen concentrations, closeness of model fit were limited by
the error associated with parameter estimations and the assumption of
homogeneous sediment oxygen demand. Whilst a best fit Arrhenius oxygen
limitation was used to parameterize the oxygen sediment flux parameters using
measured data from laboratory studies, there was a substantial amount of
scatter in the data. This scatter indicates that other limitation factors were at
play including sediment organic matter and that the sediment flux is also
dependent on sediment type and therefore location in the estuary. Errors
associated with the experimental method also contribute to uncertainty in

estimation of model parameters and predicted concentrations. Furthermore



errors associated with boundary condition interpolation calculations as
discussed in the methods contributed to errors associated with model

prediction.

Each model skill equation used to measure the performance of the model results
gave slightly different indications of model fit which is why a number of
measures is preferable as they tell us different things about model performance
(Bennett et al., 2013; Stow et al.,, 2009). Traditional methods of fit such as r?,
NMAE and RMSE were useful in determining absolute deviations from observed
and calculated for each spatial domain in the vertical and horizontal helped
direct focus on further model refinement. Measures of model fit that relates
error to variability in observational error, such as MEF and MSS, on the other
hand are useful measures of model efficiency that can be compared to similar
modelling studies (Allen et al., 2007b; Stow et al., 2009). For this study we found
that in regions with low variance in observed data such as the upper reaches of
the estuary values of MEF and MSS gave little benefit in evaluation of model
performance. On the other hand in the middle regions with more dynamic
patterns of salinity and oxygen depletion, MEF and MSS indicated a strong model
performance. The different measures of model performance demonstrated that
whilst the general dynamics of the shifting salt-wedge and associated anoxia
were well reproduced by the model, refinement of boundary conditions and
mesh morphometry is required to improve model performance near the domain

boundaries.
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Table S1. Chainage (distance along thalweg from Port Philip Bay) of main
sampling stations used for model evaluation.

Station Name No Chainage

Spencer Street Bridge 0 7.4

Morell Bridge 4 10.6
Burnley Depot 5 12.6
Scotch College 8 15.0
Hawthorn Reserve 9 15.3
Bridge Road 13 16.4
Dight’s Falls 19 219

Table S2. - Model fit metrics for surface water elevation. Normalised mean
absolute error (NMAE), model efficiency (MEF), model skill score (MSS) and

correlation coefficient (r).

Station NMAE MEF MSS r
SPEN 0.11 0.98 0.99 0.99
BURN 0.55 0.69 0.93 0.96

HAWTH 0.31 0.83 0.96 0.97
COLL 0.20 0.91 0.98 0.96
Total 0.31 0.89 0.97 0.95

Table S3. - Model fit metrics for salinity and oxygen. Normalised mean absolute
error (NMAE), root mean square error (RMSE), model efficiency (MEF), model

skill score (MSS) and correlation coefficient (r).

Variable Salinity Oxygen

Data NMAE RMSE MEF MSS r NMAE RMSE MEF MSS r
Surface 0.66 0.42 0.05 0.69 0.50 0.14 0.19 0.21 0.78 0.64
Bottom 0.30 0.13 0.27 0.79 0.64 0.40 0.23 0.24 0.76 0.58
0-5km 0.24 0.35 0.33 0.85 0.73 0.17 0.44 041 0.85 0.75
5-10km  0.33 0.44 0.60 0.89 0.80 0.28 0.49 049 0.84 0.72
10-15km 0.98 0.43 -0.36 0.69 0.44 0.32 0.21 0.21 0.77 0.62
>15km 1.58 0.95 -094 0.64 048 0.40 0.14 - 0.75 0.74

0.14
Total 0.47 0.31 042 085 0.72 0.28 0.29 0.29 0.80 0.65
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Figure S1. - Time series data for surface (blue) and bottom (red) salinity and
oxygen for (a) Morell Bridge (b) Scotch College and (c) Bridge Road. Dots
represent observed and solid lines simulated data. Refer to error metrics in
Appendix A, supplementary material for measures of model fit.

Sep



94 11.4 134 154 17.4 . - 74 9.4 11.4 134 154 174 194 214
5 10 15 20 25 30 35 40 0 50 100 150 200 250 300 350 400

Figure S2. - Along channel transects of salinity (left) and oxygen (right), for
three different time periods showing simulated output above field data
contoured around available profile data (+).



