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Abstract. The formulation of canopy evaporation is investi- 1 Introduction

gated on the basis of the combination equation derived from

the Penman equation. All the elementary resistances (surlhe combination equation, which expresses the evaporation
face and boundary |ayer) within the canopy are taken intofrom natural surfaces, has certainly been one of the most
account, and the exchange surfaces are assumed to be subjéggcessful breakthroughs in our understanding of evapora-
to the same vapour pressure deficit at canopy source heightion. It is obtained by combining the energy balance equa-
This deve|0pment leads to genera”zed combination equation with EXpI'ESSiOHS of the convective fluxes of sensible
tions: one for completely dry canopies and the other for par-and latent heat. The first equation of this type is the original
tially wet canopies. These equations are rather complex bePenman formula, initially derived to estimate the evapora-
cause they involve the partitioning of available energy within tion from a completely wet surface such as open water (Pen-
the canopy and between the wet and dry surfaces. By makman, 1948). It was extended by Monteith (1963) to describe
ing some assumptions and approximations, they can providéhe rate of evaporation from a dry surface characterized by
simpler equations similar to the common Penman—Monteith2 surface resistances| to vapour transfer added to the re-
model. One of the basic assumptions of this down-gradingsistance of the airr§). The surface resistance is opposed to
process is to consider that the available energy interceptethe transfer of water vapour between the level where evapo-
by the different elements making up the canopy is uniformly ration takes place and the interface with the open air (source
distributed and proportional to their respective area. Despitedr Sink of sensible heat). Provided both levels are at the same
the somewhat unrealistic character of this hypothesis, it altemperature, the Penman—Monteith equation is written as
lows one to retrieve the simple formulations commonly and AA + pcpDa/ra

successfully used up to now. Numerical simulations are car£ = At v(ltradry’ (1)

ried out by means of a simple one-dimensional model of +ydtrs/ra)

the vegetation—atmosphere interaction with two different leafvhere A is the available energy of the surface abd the
area profiles. In dry conditions and when the soil surfacevapour pressure deficit of the air. A familiar example is a
is moist (low surface resistance), there is a large discrepthin dry layer covering a wet soil or a single leaf with its
ancy between the generalized formulation and its simme,epidermis exchanging sensible heat and its stomatal cavities
Penman—Monteith form, but much less when the soil surfacécting as a source of water vapour. Equation (1) simplifies
is dry. In partially wet conditions, the Penman—Monteith- into Penman equation wheg=0.

type equation substantially underestimates the generalized Monteith (1963, 1965) extended Eq. (1) to a stand of veg-
formulation when leaves are evenly distributed, but providesetation assuming the canopy to exchange sensible and la-

better estimates when leaves are concentrated in the upp&nt heat with the atmosphere from a theoretical surface lo-
half of the canopy. cated at the same level as the effective sink of momentum:

zm = d + zo (d: displacement height;p: roughness length).
The aerodynamic resistaneg(assumed to be the same for
sensible and latent heat) is calculated between this level and
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1138 J. P. Lhomme and C. Montes: Canopy evaporation under dry and wet conditions

the reference height, wher, is measured. The original idea z T,
of Monteith to place the source surface at leyglis a pri-

ori questionable, because no real theoretical basis supports

it. Thom (1972) showed that the transfer of heat and mass H’I

encounters greater aerodynamic resistance than momentum
therefore, the effective source of sensible and latent heat m
should be located at a lower level# zo, with zo, <zo (€.9.
Garrat and Hicks, 1973). The excess resistanggy), asso- |
ciated with the boundary-layer resistances for the transfer of HI
water vapour and sensible heat, is commonly expressed as ’
B~1/ux, whereB—1 is a dimensionless bulk parameter and !
ux is the friction velocity: B~1 is linked tozg, by B~1 = r % \
In(zo/zor)/ k. According to Monteith (1965), the surface re- i
sistance is) is expected to be a plant factor depending on

the stomatal resistance of individual leaves and on foliage Soil surface
area (soil evaporation being neglected). It is interpreted as T,

the effective stomatal resistance of all the leaves acting as . ) K and ials f q
resistances in parallel (Shuttleworth, 1976b): F|g: 1. Resistance network and potentials or a canopy represente
by its elementary exchange surfaces (see list of symbols). All the

1 Z i @) component fluxes (sensible hedt and latent heat E;) converge

Ts - — Is,i at canopy source heighirg). Tc s is soil surface temperature.

rs,i being the stomatal resistance of an individual kedthe

Penman-Monteith equation is often called “big-leaf model” to myti-component canopies can be applied to a simple
because the whole canopy is assimilated to a big leaf located, oy where the individual leaves and soil surface consti-

at leveld +zo and with stomatal resistaneg The transfer s the different components, and can be rewritten in a form
processes through the air surrounding the leaves, supposediynijar to a combination equation. Different levels of approx-
negligible, are not taken into account or indirectly through jmation are identified to transform the general formulation of
the excess resistance. The lack of theoretical foundation Ofevaporation into the common Penman—Monteith equation. In
Eq. (1) applied to a canopy of leaves was apparent in a Congyis way, a bridge is established between a complex multi-

troversy which occurred in the 1970s about the formulationgg,rce representation and the common practice based on the
of evaporation from partially wet canopies (Shuttleworth, penman_Monteith model with two bulk resistances (air and

1976a, 1977; Monteith, 1977). The Penman-Monteith equagrface). The question of the “excess” resistance, linked to

tion was considered not to be able to represent the transige exact location of the canopy source height, is also in-
tion between dry and wet canopies, because the definition ofijrectly dealt with. Finally, the errors made when applying
canopy resistance according to Penman-Monteith (EQ. 2) imgjmje equations of the Penman—Monteith type instead of the

plies that, if only a small part of the canopy is weg{=0),  more general ones are numerically assessed.
the canopy resistanog should be equal to zero, which is

unrealistic.

In this context, the main objectives of the paper are to in-2  Eyaporation from a dry canopy
vestigate, under dry and wet conditions, the theoretical foun-
dations of the combination equation applied to a canopy2.1 General formulation
of leaves and concurrently to examine the different ways
of aggregating the in-canopy resistances (surface and aiffhe canopy exchanges sensible and latent heat with the at-
in a general single-source formulation of canopy evapora-mosphere through its leaf area and its soil surface. The mod-
tion. The basic principles used in the study are similar toelling framework describing this interaction is similar to the
those established by Shuttleworth (1978) in his simplified de-one used by Lhomme et al. (2013) to derive the formulation
scription of the vegetation—atmosphere interaction: the wholeof evaporation from a canopy made mofdifferent compo-
canopy (soil surface included) is assumed to be subject tments; however, the individual components or elements are
the same vapour pressure defi€lf, at the mean source represented here by the different leaves of the canopy and
heightzm(d+z0), as in the original Penman—Monteith model the soil surface, as shown in Fig. 1. The elementary evapora-
and in two-source models (Shuttleworth and Wallace, 1985)tion (LE;) per unit area of exchange surface (each side of a
Our investigation follows up previous works made on the leaf being considered separately) is calculated from an equa-
formulation of evaporation from heterogeneous and sparséion of the Penman—Monteith type. It involves the saturation
canopies (Lhomme et al., 2012, 2013). We show that the gendeficit of the air at canopy source heiglit ) and the avail-
eralized formulation derived by Lhomme et al. (2013, Eq. 12) able energy 4;) for elementi within the canopy (Lhomme

Hydrol. Earth Syst. Sci., 18, 11374149 2014 www.hydrol-earth-syst-sci.net/18/1137/2014/



J. P. Lhomme and C. Montes: Canopy evaporation under dry and wet conditions 1139

etal., 2012): stomatal counterpart (which is the assumption made in the
Penman—Monteith equation), Eqgs. (7) and (8) can be eas-
AE; = AAi + pepDm/rai . @3) ily simplified. Excluding the soil component and putting
A+yA+rsi/rai) ra; = 0, the summation in the right-hand term of Eq. (8) de-

fines the canopy stomatal resistance in the sense of Monteith

In Eq. (3), for the canopy leaved, is the net radiation per denoted by:s ¢

unit area of leafys; the leaf stomatal resistance (one side)
er unit area of leaf ang, ; the corresponding leaf boundary- 1 1 2L4
p e, ; p g y — — Z 1re; ~ (9)

~ B
(rS,l)

layer resistance for sensible and latent heat. For the soil surR; Fsc

face symbolized by subscript=s, As is the net radiation ) . )
minus the soil heat flux per unit area of soil,s being the ~ Where «sp is the harmonic mean of leaf stomatal resistances
i

soil surface resistance to evaporation agdthe air resis-  (P€r unit one-sided leaf area). The different leaves of the
tance between the soil surface and the canopy source heigG&NOPY acting as parallel resistors for the transfer of sensible
(zm), defined by integrating the reciprocal of the appropriateheat and water vapour, harmonic means should be chosen
eddy diffusivity (Choudhury and Monteith, 1988). Canopy when combining the elementary resistances (whereas arith-
leaf area index (LAI) being noteH;, the total exchange sur- metic means would be used if conductances were consid-
face area per unit area of soil$s=2 L; + 1 and total evap- ered). For a hypostomatous canop¥; hould be replaced
oration is obtained by summing the contributions of each in-PY Lt. Hence Eg. (7) becomes

iEZL[

dividual exchange surface (soil and leaves): gt AA+ pcpDa/rap (10)
=% 1 .
)\fEt:Z)\E[- (4) . +V( ?i‘rS,C/ra,O) .
ies: Equation (10) is the well-known Penman—Monteith equa-

_ . . tion, which appears now as a particular case of a more gen-
The vapour pressure deficif) in Eq. (3) is calculated from  eral equation (Eq. 7), when all the air resistances within the
the vapour pressure deficit at reference heighf (Shuttle-  canopy are set to zero and soil surface is neglected.

worth and Wallace, 1985; Lhomme et al., 2013): The case of a completely wet canopy can also be inferred
¢ from Eq. (7). When all the exchange surfaces (leaves and soil
Dm = Da+ [AA —(A+y)AE ]ra,O/(PCp)’ (5) surface) are wet, the surface resistanegg) @re nil andr;
= (14 A/y)ra;. Noting that) " A; = A and after some ma-

whereA is the available energy of the whole canopy and ics:
the aerodynamic resistance between the mean source heighipulations, Eq. (7) transforms into a Penman-type equation:
(zm) and the reference height{. Defining

_ AA+ pcpDa/(ra0+rad

A LE! , 11
Ri=rsi+(1+;>rai, (6) A+y D
where
and introducing Eq. (5) into Eq. (3) and Eq. (3) into Eq. (4) 4 1 2L, 1
leads to — =) —~= +—, (12)
Ta,c iest Tai Tal Tas
A |:A + (Re/ra0) X (Airai/R,»)} + pcpDa/ra0 <rap being the harmonic mean of leaf boundary-layer resis-
ZE = (€St ) tances and, sthe air resistance between the soil surface and
A+y (1+ Re/ra) ’ the canopy source height. There is no surface resistance in the
) denominator of Eq. (11), as in the original Penman equation,
whereR is expressed as but an additional air resistance,¢) is added to the com-
mon aerodynamic resistance above the canepy)( This
1 1 . ) ) e )
7= R (8) additional resistance is the parallel sum of individual air re-
¢ jes M sistances and encapsulates the bulk canopy resistance to heat

. . . .and water vapour transfer from the wet exchange surfaces
Equations (7) and (8) represent a kind of generalized Comb'tleaves and soil) to the canopy source height.
nation equation, where all the within-canopy resistances (air

and surface) are taken into accouk¢.defines a bulk canopy 2.2 Penman-Monteith-type formulation

resistance which includes the surface resistances (leaves and

soil) and the air resistances within the canopy. The temperThe general combination equation derived above (Eq. 7) does

ature of each exchange surface can be determined from theot follow the exact form of the Penman—Monteith equa-

above equations, as detailed in Appendix B. tion since an additional term mixing resistances with avail-
If the boundary-layer resistances, () within the canopy able energy partitioning is added to the total available en-

are neglected, assuming they are small compared to theergy (A). This section investigates under which conditions
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1140 J. P. Lhomme and C. Montes: Canopy evaporation under dry and wet conditions

and approximations this general formula of canopy evapora-

tion can be putin the simplified form of a Penman—Monteith R A

equation, without neglecting the air resistances within thers c~ —— — (1+ —> <Djrgp. (19)
canopy. The approximations made below are essentially dic- St Y

tated by the result we aim at: i.e. the common form of the These expressions still depend upon available energy par-
Penman—Monteith equa“on with bulk resistances expressegtioning, but it is interesting to note that if available en-

inasimple way. N _ ergy is equally distributed within the canopy (soil included),
‘The variable4; giving the partition of available energy je. @; =1/$; , the bulk air and surface resistances reduce
within the canopy is assumed to be in the fafin= A® (i),  to simple expressions independent of available energy. Al-

where A is the total available energy for the whole canopy though this assumption is not really realistic and constitutes
and ®(i) is a function resulting from the radiative trans- g priori a strong approximation, it has been used by Shuttle-
fers within the canopy and depending on canopy structureyorth (1978) in his “simplified general model”. Using this
and leaf area distribution. Beer's law, which is commonly assumption and separating the soil and leaves components

used to express the attenuation of net radiation within thes, = 27, + 1), the bulk canopy resistances can be rewritten
canopy, is typically a function of this kind. This assumption jn 5 way similar to Egs. (12) and (9):

on the repartition of available energy is certainly a crude ap-
proximation. It is required, however, to mathematically de- 1 _ St _ 2Lt 1 (20)

rive a Penman—Monteith-type equation from the generalizedrac <rai> <aP ras
form of Eq. (7), which means that the former implicitly in-
cludes this assumption. Consequently, after some manipula-

tions, it can be shown that canopy evaporation (Eq. 7) can be— ~ St = St = 2Lt + i (22)
written as 'se (R — <1+%> aap TSP ISP Tss
AA D .
AE' = + pcpDa/(ra o+ rac 7 (13)  where rap and ¢sp are the harmonic means of leaf
Aty [1""’ s,/ (rao+r, a,c)] boundary-layer resistances and stomatal resistances respec-
where the bulk resistancesc andrs c are defined as tively. If the canopy is hypqstomatous and if f[he average
stomatal resistancersp applies to the lower side of the
Fae = Re Zq;l.r“_*’, (14) It_eaves, 2 should be replaced_ by.: in Eq. (21). E_qua-
s, R; tion (13) appears now as a typical Penman—Monteith equa-

tion with its bulk resistances defined in the conventional
way. The canopy surface resistanegd( accounts for all
rec= Re|1— (1+ _> Zq)i@ ) (15) surface resistances, including leaves and soil. Thg ext.ra
14 R; resistancer ), added to the common aerodynamic resis-
_ . _ _ tance above the canopyafp), accounts for the air resis-
The resistances defined above involve air and surface remnces opposed to heat and water vapour transfer within the
sistances and the distribution function of available energycanopy and can be perceived as similar to the excess resis-

within the canopy. In order to get simpler formulations, sometance g1 /ux) introduced by Thom (1972) in the formula-
approximations are made substituting average values to Sumion of canopy evaporation.

mations. Introducing the harmonic mean of surface resis-

tances per unit area of exchange surfage>«@and the corre-

sponding harmonic mean of leaf boundary-layer resistance§ Evaporation from a partially wet canopy
noted 5>, EQ. (8) can be written as

ieSt

The partially wet canopy is taken here in the sense of “dou-
1 & ble canopy limit” described by Shuttleworth (1976b, 1978),
— = . (16) e . : ;
Rc  <Rp all the individual elements being considered either totally dry
or totally wet. It is opposed to the “single canopy limit”,
%vhere the distribution of surface water resembles that of
stomata, as when droplets of fog and mist impact the leaves.
The “double canopy” is the most realistic case applicable to
canopies which are drying out or in the process of wetting
up by rainfall.
Substituting Egs. (16) and (17) into Egs. (14) and (15) leads
to the following approximate expressions for bulk canopy re-3.1 ~ General formulation
sistances:

Summation in Egs. (14) and (15) can be approximated usin
means denoted by angle brackets:

Tai D;ra; S
Zq)l.ﬂ A (LB >St ~ t «D;ra . a7
i€St Ri ki Ri>

The whole canopy is divided into two parts assumed to be
Fac™ «®;ra;>, (18) independent: one is dry (with exchange surfdgeand the
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J. P. Lhomme and C. Montes: Canopy evaporation under dry and wet conditions 1141

other wet (with exchange surfadg) andsS; = Sq+ Sw. The Shuttleworth (1976b, 1978). It is worthwhile noting that ne-
assumption of independence is certainly questionable, but, aglecting the air resistances within the canopy (i«.= 0)
expressed by Shuttleworth (1978, p. 8): “such an assumptiomvould lead to an inconsistency, as is the case for the Penman—
is certainly essential if theoretical progress is to be made irMonteith equation applied in partially wet conditions. The
this field”. Consequently, Eq. (4) can be rewritten in the fol- bulk resistance&. pwwould become zero and Eq. (28) would
lowing way: turn into a simple Penman equation, which is not realistic.

ME'=AEY+AEY =Y AEi+ ) AE;. (22) 3.2 Penman-Monteith-type formulation
i€Sq ieSw

This section examines under which conditions and approx-
imations the general evaporation formula for partially wet
canopies (Eg. 28) can be putin a form similar to the Penman—

A pep A . Monteith equation with simply defined resistances. Consid-
AE; = [;(’afAi +raod) + (7) Da— (1+7> rao*E}/Rf’ (23)  ering an amphistomatous canopy, the same assumptions as

o ) those made by Shuttleworth (1978) to derive the “Double

whereRr; is given by Eq. (6). Bulk canopy resistances for the Canopy Limit of the Simplified General model” are used
dry and wet parts of the canopy will be respectively definedpgre- (i) soil surface is neglected:; (i) a proportishof the

After substituting the expression &f,, (Eq. 5) into Eq. (3),
elementary evaporation can be rewritten as

as canopy is taken as wet, which means that= WS and Sq

1 Z 1 1 1 (24) = (1- W)S; with S; = 2L¢; (iii) as discussed above, avail-
— = — and— = — i et
Red = R Rew & rai able energy is assumed to be equally distributed amongst the

exchange surfaces, which implies that the available energy
With these definitions, the evaporation from the dry part of °f ach part (wet and dry) is proportional to its areg; =

the canopy can be written as AW_and Ag =A(1-W). Substitutin_g average values to sum-
mations, Eq. (24) can be approximated by
)\Ed:é @A+ZM 1 2WL
¢ i€Sy ! RC,W Ta,lw
D A
- R_a — (1+ —) %AEQ (25) where ¢, |y represents the average value of leaf boundary-
vy Ked v/ Red layer resistances for the wet part of the canopy, and

and the contribution of the wet part is 1 21— W) Ly

(30)

WEW= B (ra0, Soa)+ 22 Da _ ra0, it (26) Red s+ <1+ %) Tald
A+y \ Rew icSw A+y Rew Rew

where 5 and ¢ | represent the average values of leaf
After some rearrangement, putting, = > A; and defin-  resistances (air and surface) for the dry part of the canopy.
ing a bulk canopy resistance for a parti:sflli;vwet canopy as Two bulk air resistances{ c,wandra,c,d, respectively for t.he
wet and dry parts of the canopy, and a bulk surface resistance
1 1 Y 1 (rs,c,9 for the dry part, are defined in the following way:

=— 4+ — , 27)
Rc,pw Rc,d A+y Rc,w

1 2WL
o~ (31)
Eqg. (22) becomes racw  <alw
Re,pw raiAi a
A{A+ ag {(Ayw)/*wgdk,“ﬂ%& 1 2(1-W)L, 52)
t__ ! = s
M= A+y 1+ Repw/ra0 - (28) acd Tal.d
The contribution of each part of the canopy (wet and dry)
to total evaporation is obtained by replacihg! by its ex- 1 _ 2(1— W)Lt. (33)
pression in Egs. (25) and (26). As could be expected, the's,c,d I

limit of Eq. (28) when the canopy becomes completely dry is . .
Eq. (7), and itis Eq. (11) when it becomes entirely wet. Con_Consequently, Eq. (.27) can be rewritten as a function of the
bulk resistances defined above:

sequently, Eq. (28) constitutes a kind of generalized combi-
qation equation appli_cable in aII_ conditions (o_lry, wet orpar- 4 rscd+ (1+ %)(ra'C’WJr Fac.d

tially wet canopy). It is also a different and simpler writing = . (34)
of the single-source limit of the general model developed by “¢P¥  (1+ %)ra,c,w[rs,c,d—i- 1+ %)ra,c,d]
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1142 J. P. Lhomme and C. Montes: Canopy evaporation under dry and wet conditions

The assumption on the equal distribution of available energyEquation (40) has now the typical form of a Penman—

(A; =A/(2Ly)) leads to Monteith equation, becausg o+ racis a “pure” air resis-
raid; A ol tance. Equation (39), which represents the canopy surface
Z —_ . S 21— W)Lt resistance in partially wet conditions, was initially derived
ise R 2Lt asie+ L+ P)vale by Shuttleworth (1978, Eq. 32; 2007, Eq. 16) using a dif-
A(l—W)racd ferent procedure, but with similar assumptions (those spec-

(35) ified above and “intrinsic” resistances being disregarded).

WhenW = 1 (totally wet canopy)s pw= 0 and Eq. (40) re-
The generalized equation in partially wet conditions (Eq. 28)duces to a Penman-type equation (Eq. 11), as could be ex-
can be rewritten in a form similar to the Penman—Monteith pected. WherW = 0 (totally dry canopy);spw= rs,c and

B rscd+ (1+ %)ra,c,d.

equation as Eqg. (40) reduces to the Penman—Monteith equation defined
by Eq. (13).
L Et— AA+ pcpDa/(ra,0+ ra,pw) 7 (36)
A [1 ¢] T
Tyt raotrapw 4 Numerical simulations

where the parameterg py andrs pyw have the dimension of

. ; In order to illustrate the different equations developed above
resistance and are defined as

and to assess the errors made when using simplified equa-

rayclw[Wrs‘C’dJr(lJr %)ra,c,d] tions instead of the more comprehensive ones, numerical
rapw= , (37)  simulations were undertaken. Table 1 summarizes the dif-
rs,c,d+ <1+ é) (racd+racw ferent formulations or methods and specifies the corre-
4 sponding equations and their notations. The simulations are
based upon a simple one-dimensional model describing the
<1+ %) (1= W)racwscd vegetation—atmosphere interaction.
I's,pw= . (38) . .
Fecdt <1+ %) (racd+ racw 4.1 The simulation process

Equation (36), however, has not the strict form of the In the modelling approach, the crop canopy is considered as
Penman-Monteith equation, where an air resistance divide§orizontally homogeneous with a mean height It is di-
Da in the numerator and where the ratio between a surfac&/ided into several parallel layers (widtk;) counted from 1
resistance and an air resistance appears in the denominf2 7 from the top of the canopy to the soil surface. The dif-
tor, because,py includes a surface resistanog {d and ferent components or unit exchange surfaggof the sys-
consequently is not a “pure” air resistance. Additional as-{8m are represented here by the different layers of vegeta-
sumptions should be made if we want to derive a strictfion making up the canopy plus the soil surface. This mod-
Penman—Monteith equation. First, the mean (harmonic) leaf!ling approach is different from the traditional multi-layer
boundary-layer resistance should be assumed to be the sar@@Proach (Waggoner and Reifsnyder, 1968) in the sense that
for the dry and wet parts of the canopy and equal to that ofé@ch layer is subject to the same saturation defi)(with-
the whole canopy, which means that the bulk resistances cafut the _|nclu3|0n of aerodyrjamlc resistances in relation to
be rewritten asacw = radW andracd= rad(1-W) with the vertlca_l tra_msfer of sensible he_at anq water vapour. The
racthe bulk air resistance of the whole canopy (defined as inParameterizations .used for the mlc_rocllmauc pro_flles,. leaf
Eq. (20) without the soil component). Second, the mean (har&réa Q|str|but|on, air and surface resistances are given in Ap—
monic) leaf surface resistance for the dry part of the canopyPendix C. The available energy for each layer (see Eq. C2) is
should be assumed to be equal to that of the whole canopygXPressed as
which leads tors c = rs,d (1 — W) with rs ¢ the bulk surface
resistance of the whole c(anopy) (defined as in Eq. (21) with-Ai = ¢Rn.a eXp(=cLi) AL, (41)
out the soil component). Under these conditiongw Sim- \hereL,; is the cumulative leaf area above layerRy , the
plifies intora ¢, andrs pw can be rewritten in a simpler way as net radiation of the whole canopy amdl; = I(z;)Az; the
leaf area of the corresponding layAg;) being the leaf area
(1—W)radsc density at height;. Component air and stomatal resistances

rs,pw= (39) i

SPw= T Ai Wrse (amphistomatous case) are expressed as
. ral(zi) rs,1(zi)

Equation (36) becomes ;= — and rg; = — 42

q ( ) Fai AL, I's,i ZALI" ( )

AA+ D + .

LEt = pepDa/ (rj,o ra‘C), (40)  wherera (z;) andrs(z;) are respectively the leaf bound-

A+y [1+ #’)ﬁlc] ary layer resistance and the leaf stomatal resistance (per
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Table 1. Methods used in the numerical simulations to calculate canopy total evaporation with their corresponding equations and their
symbol.

Method Equations Symbol
Dry canopy
General equation without any assumption Eq. (7) viithgiven by Eq. (8) Gk

Simplified equation: available energy isEg. (13)withresistances givenby  SEy
equally distributed (soil surface included). Eqgs. (20) and (21)

Common Penman—Monteith equation with-Eq. (10) with surface resistance PMy
out soil surface contribution given by Eq. (9)

Partially wet canopy

General equation without any assumption Eq. (28) wRbpw given by GEw

Eq. (27)

Penman—Monteith-type equation withoutEq. (40) with surface resistance PMy
soil surface contribution given by Eq. (39)

unit area of leaf) at each height within the canopy, given by 12

Egs. (C5) and (C8) respectively. The soil surface resistance

rsshas a fixed value depending on soil surface moisture, and 1.0f

the corresponding air resistanegs (between the soil sur-

face and the canopy source height) is given by Eq. (C7). sl

Calculations are made for an amphistomatous canopy with
zh=21.2m andL; = 4 under the following weather condi-
tions at a reference height= 3 m: incoming solar radiation
Rsa= 700 W nT2, air temperaturd, = 25°C, vapour pres-
sure deficitD, = 10 hPa, and wind speed = 2ms L. Two 04y
types of leaf area profile are considered, as detailed in Ap-

pendix C and shown in Fig. 2: a profile constant with height 02
(noted A) and another with a high leaf area density in the

top layers and a lower density in the bottom layers (B). The 0
canopy is divided into 20 layers plus the soil surface.

Profile A |
— Profile B
8 10 12

6
I(z)
4.2 Numerical results Fig. 2. Profiles of leaf area density considered in the simulation

process(A) constant profile an{B) profile adapted from a gamma

The differences among the predictions in relation to different™nction with a higher leaf area density in the top layers.

formulations are assessed. In Fig. 3, the generalized combi-

nation equation giving canopy evaporation in dry conditions

(GRy) is compared with two simplified formulations (see Ta- justifies the use of the Penman—Monteith equation in such
ble 1): SK derived assuming available energy to be equally conditions. However, when the soil surface becomes wetter
distributed amongst the exchange surfaces and the commdns s= 100snT?) (Fig. 3c, d), there is a large discrepancy
Penman—Monteith equation (RM The comparison is made between the formulations: the common Penman—Monteith
as a function of canopy water stress for two leaf area pro-equation (PN) clearly underestimates canopy evaporation
files (A and B). In parallel, the figure shows the variation of (GEy), as could be anticipated, and $tnds to overesti-
canopy surface resistaneg. calculated with methods QE  mate it. In parallel, the surface resistances depart from each
and PMy. When the soil surface is dry<= 2000snTl), other with a departure greater for leaf area profile B.

the simplified equations for canopy evaporation {&Bd In Fig. 4, the generalized combination equation estab-
PMg) approximate fairly well the complete formulation: for lished in partially wet conditions (GB is compared with

LAI profile A, the three estimates are practically mingled its simpler form (PM,) based upon a series of simplify-
and the two surface resistances are very close to each otheéng assumptions. This comparison is made as a function of
for profile B, there is a slight underestimation of the sim- the fractional surface wetnedg, assuming the wetting pro-
plified formulations Sg and PM; (Fig. 3a, b). This clearly cess begins by the top layers, as generally occurs during
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Fig. 4. Latent heat fluxX E) from a partially wet canopy as a func-
Fig. 3. For a dry canopy, latent heat flux£) and canopy surface tion of its fractional surface wetnes®(. Comparison of two for-
resistancerg, ¢ as a function of minimal stomatal resistaneg) () mulations (Gl and PMy) for two profiles of leaf area densityA(
(Eq. C8) representing the canopy water stress. Comparison of threendB) and two different values of minimal stomatal resistancg,
methods (G, SEy, PMg) for two profiles of leaf area densith\(  representing canopy water stre@:and(b) rs | n= 100 (un-

andB) and two different values of soil surface resistan@g:and  sressed canopyic) and(d) rs |, = 1000 s L (stressed canopy).
(b) rs,s= 2000 s T (dry soil); (c) and(d) rs s= 100 s nT 1 (moist N

i Soil surface resistanagsis set to 500 s mZ.
soil).

kB~1 appears as an increasing function of wind speed and
rainy events. With leaf area profile A, the Penman—Monteith-a decreasing function of LAl with values ranging approxi-
type equation (PM) underestimates the true evaporation mately from 0.5 to 2. Compared with the values given by
rate (GEy) by up to 200 W mi? for a water stressed canopy Garrat (1992, Fig. 4.4) for different surface types, our results
(Fig. 4c), and the discrepancy decreases when the canopy bexhibit a slight underestimation. The same figures drawn us-
comes wetteri close to 1). With leaf profile B, where most ing leaf area profile B provide almost identical results (results
of the leaves are concentrated in the upper half of the canopyot shown): this should mean that different leaf area profiles
the agreement is better: RMoverestimates or underesti- do not lead to substantial change in bulk canopy air resis-
mates G depending on surface wetnedg )Y and canopy tance. In interpreting these results, it is necessary to keep in
water statusrg | n). A reason for this relative agreement could mind that (i) the fact of representing canopy elements by lay-
be that leaf profile B is closer to the “big-leaf” model repre- ers necessarily restricts the theoretical space; (ii) the model
sented by the Penman—Monteith equation. Canopy surfacased for simulating the vegetation—atmosphere interaction is
resistance rapidly decreases with the wetting process: wheitself relatively crude; (iii) the evaluation was done without
W =0.5,rscis already close to zero for both profiles. addressing sensitivity to assumed canopy conditions; (iv) the

As previously noticed, the “extra” resistances ¢ equation definingac (Eq. 20) is a simplified version of a

(Eg. 20), added to the aerodynamic resistangey)(in more complex one (Eg. 18); and (v) thB~1 concept itself
the Penman—Monteith form of the combination equationsis questionable and not really physically based (Verhoef et
(Egs. 13 and 40), plays the same role as the excess resistanak, 1997).
(raex= B~1/ux) introduced by Thom (1972) and mentioned
in the introduction. The dimensionless parameger! can
be estimated by equating ¢ t0 raex kB~1 = In(zo/zon) = 5 Conclusions
ku=.ra ¢ In Fig. 5a the extra resistaneg:is plotted vs. wind
speed at reference height for different LAl using leaf areaThe present paper sets a theoretical framework for canopy
profile A; racis also compared with the rough approxima- evaporation through the development of two generalized
tion based onB~—1 =4, which is a typical value for per- combination equations — one for completely dry canopies
meable vegetation (Thom, 1972). The extra resistange (EQ. 7) and the other for partially wet canopies (Eq. 28) —
is a decreasing function of wind speed (as could be anticithe former being included in the latter. These general equa-
pated) and also of LAI, with values close to the ones pre-tions are derived assuming that all the exchange surfaces are
dicted by Thom’s approximation{ ex= 4/ux). In Fig. 5b, subject to the same vapour pressure deficit at canopy source
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(a) the basic assumptions is to consider that the available en-

30 » , ; o
Profile A : gy ergy is equally distributed amongst the exchange surfaces.

This hypothesis appears to be rather unrealistic, both in dry
and wet conditions, but it leads to simple formulations of the
Penman—Monteith type (Egs. 13 and 40, respectively), which
have been successfully used up to now. The numerical sim-
ulations, based on a simple one-dimensional model with two
types of leaf area profile, confirm that the Penman—Monteith
equation performs well in dry conditions, when the soil sur-
face does not evaporate. In partially wet conditions, a dis-
crepancy with the comprehensive formulation exists, but it
tends to be less when the leaves are concentrated in the upper
part of the canopy.
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Appendix A

Table Al. List of symbols.

A

A;
Rsa
Rn,a
G
H[
H;
LE!
AEd
LEW
LE;
Da
Dm
€a
em
ex(T)
Ta
Tm
Tci
Ua
u*x

k
‘p
0

14
A

Available energy for the whole canopy (WTh)

Available energy for the unit area of exchange surfa@4 m—2)
Incoming solar radiation (W m?)

Net radiation of the whole canopy (WTR)

Soil heat flux (W nT?2)

Sensible heat flux from the whole canopy (W)

Sensible heat flux from the unit area of exchange surfgeém—2)
Latent heat flux from the whole canopy (W)

Latent heat flux from the dry part of the canopy (W)

Latent heat flux from the wet part of the canopy (W)

Latent heat flux from the unit area of exchange surfa@ m—2)
Vapour pressure deficit at reference height (7o) — ea) (Pa)
Vapour pressure deficit at canopy source height((m) — em) (Pa)
Vapour pressure at reference height (Pa)

Vapour pressure at canopy source height (Pa)

Saturated vapour pressure at temperalu(Pa)

Air temperature at reference heighQ)

Air temperature at canopy source height}

Surface temperature of the unit area of exchange suiféd®)
Wind speed at reference height (m's

Friction velocity (ms'1)

von Karman’s constant (0.41)

Specific heat of air at constant pressure (Jkg 1)

Air density (kg n3)

Psychrometric constant (Pa®)

Slope of the saturated vapour pressure curve (FaK

Canopy physical characteristics

d

Lt

St
AL;
rao
rai
I'si
Ta,l
s
Is,l,n
ra,s
rs,s
ra,c
Ta,c,d
ra,c,w
I's,c
I'sc,d
r's,pw

ar
Zh
Zm
20
20h

Zero plane displacement height (m)

Leaf area index of the whole canopy4m—2)

Canopy exchange surface area per unit area of s@ihgi?)
Leaf area of the vegetation layewith width Az; (m2m—2)

Aerodynamic resistance between the source height and the reference heighj (s m
Boundary-layer resistance for sensible heat and water vapour of the unit area of exchange sirfade

Surface resistance per unit area of exchange surface¥s m

Boundary-layer resistance for sensible heat and water vapour of the unit area of leaf (one sidg) (s m

Leaf stomatal resistance per unit area of leaf (one sidey égm
Minimal leaf stomatal resistance (Eq. C8) (5h

Air resistance between the soil surface and the canopy source heights m

Soil surface resistance to evaporation per unit area of soitfym
Bulk air resistance of the canopy (sth

Bulk air resistance for the dry part of the canopy (3

Bulk air resistance for the wet part of the canopy (i

Bulk surface resistance of the canopy (3t

Bulk surface resistance for the dry part of the canopy (¢m

Canopy surface resistance in partially wet conditions defined by Eq. (39)¥s m

Wet proportion of the canopy expressed as a fraction of 1
Reference height (m)

Mean canopy height (m)

Mean canopy source heightd + zg) (m)

Canopy roughness length for momentum (m)

Canopy roughness length for sensible and latent heat (m)
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Appendix B

Expressing the temperature of exchange surfaced{ ;)

The basic equations for the transfer of sensible heat are

) (Tc,i - Tm)

H; ———~ with H;=A;, —\E;, (Bl)
ra[
Tm—T: .

pt=LeIm= 10 o bt 4Bt (B2)
ra,0

Surface temperature is inferred from Eqgs. (B1) and (B2):

Hydrol. Earth Syst. Sci., 18, 11374149 2014

(Aj —AE)ra; N (A= 2EYra0
PCp PCp '

Tc,i =Ta++ (83)

Elementary fluxX,E; is given by Eq. (3) withD,, expressed
by Eg. (5). Substituting and rearranging gives the following
expression of; as a function ok Et (Eq. 7):

Ar
Tei—Ta=— {[(A—AE! Airgi ] [1- =2
C,i a ,OCp{[( )ra,0+ 1r&t]< v R,)}
ﬁﬁ(}\Etra’O_D_a> (B4)
i PCp 14
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Appendix C

1/2
Parameterizations used in the simulation process ral(z) = @ [w/u(Z)] / ) (C5)

Solar radiationRs and net radiatiorR, are assumed to de- With & = 2op in $I units. For the sake of co_nvenience, the
crease within the canopy as exponential functions of the Cuagrodynamlp re5|sta}nce above Fhe canopy'ls expressed as a
mulative leaf area index (z) (Beer's law) counted from the simple function of wind speed without stability correction:

top of the canopy 1 In[Zr —d

1, (C6)

ra,0=
Rs(z) = Rsa €xp [—¢L(2)], (C1) ke
where ux = kua/In[(zy — d)/zo0] with d =0.63z, and zg =
0.13zn. The air resistance between the soil surface and the
Rn(2) = Rna exp [—cL(2)]. (C2) canopy source height is given by Choudhury and Mon-
teith (1988):
The attenuation coefficient is assumed to be the same for both

profiles:c = 0.60. Net radiation above the canoRyais cal-  ras= Zn exp (@) {exp[—wzo,s/2n]
culated as 60 % of global radiatidts and soil heat fluxG, @K (zn)
as half the net radiation reaching the soil surface. The profile ~ —€Xp [~ (d +z0)/zn]}, (C7)

of wind speed within the canopy is given by where K (zn) = K2ua(zr — d)n[(zr —d)/z0] is the value of

u(z) =u(zn) exp [-BL()], (c3)  eddy diffusivity at canopy heighty = 2.5 (dimensionless)

andzp s = 0.01 m. The profile of leaf stomatal resistance (per
whereu(zn) is the wind speed at canopy height(inferred  unit one-sided leaf area) is made a function of solar radiation
from wind speed:, at reference height using a simple log- ~ within the canopy following a Jarvis-type formulation:
arithmic profile) and8 = 0.5 (Inoue, 1963). Two profiles of Fsin
leaf area density(z) are considered: one is constant with rs(z) = 1 = R ,
heightl(z) = Li/zn (profile A) and the other (profile B) uses expl—vRs(2)]
a gamma-type function to represent a canopy with a higheyherer  , is a minimal stomatal resistance, which depends
leaf area density in the top layers, as frequently occurs,  on available soil water, and= 0.009 with Rs expressed in
Wm~2 (Lhomme et al., 2001).

(C8)

I(z) = Aou” texp(—u) with u = S (C4)
Z

The shape parameteris taken equal to 4 and is deter-
mined ait/foz"l(z) dz to obtain a canopy LAI equal tf;.

Leaf boundary-layer resistance (per unit one-sided leaf area)
is calculated as a function of wind speed and leaf width
(0.01 m) as (Choudhury and Monteith, 1988)
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