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Abstract. Urban catchments in sub-Saharan Africa (SSA)
are increasingly becoming a major source of phosphorus (P)
to downstream ecosystems. This is primarily due to large
inputs of untreated wastewater to urban drainage channels,
especially in informal settlements (or slums). However, the
processes governing the fate of P in these catchments are
largely unknown. In this study, these processes are investi-
gated. During high runoff events and a period of base flow,
we collected hourly water samples (over 24 h) from a pri-
mary channel draining a 28 km2 slum-dominated catchment
in Kampala, Uganda, and from a tertiary channel draining
one of the contributing slum areas (0.54 km2). The sam-
ples were analysed for orthophosphate (PO4-P), particulate
P (PP), total P (TP), suspended solids (SS) and hydrochem-
istry. We also collected channel bed and suspended sediments
to determine their geo-available metals, sorption characteris-
tics and the dominant phosphorus forms. Our results showed
that the catchment exported high fluxes of P (0.3 kg km2 d−1

for PO4-P and 0.95 for TP), which were several orders of
magnitude higher than values normally reported in literature.
A large proportion of P exported was particulate (56 % of TP)
and we inferred that most of it was retained along the channel
bed. The retained sediment P was predominantly inorganic
(> 63 % of total sediment P) and consisted of mostly Ca and
Fe-bound P, which were present in almost equal proportions.
Ca-bound sediment P was attributed to the adsorption of P
to calcite because surface water was near saturation with
respect to calcite in all the events sampled. Fe-bound sedi-
ment P was attributed to the adsorption of P to iron oxides in

suspended sediment during runoff events given that surface
water was undersaturated with respect to iron phosphates.
We also found that the bed sediments were P-saturated and
showed a tendency to release P by mineralisation and des-
orption. During rain events, there was a flushing of PP which
we attributed to the resuspension of P-rich bed sediment that
accumulated in the channel during low flows. However, first-
flush effects were not observed. Our findings provide useful
insights into the processes governing the fate and transport
of P in urban slum catchments in SSA.

1 Introduction

Phosphorus (P) derived from urban catchments in sub-
Saharan Africa (SSA) is increasingly becoming a major
cause of eutrophication of urban fresh water bodies (Nhapi
et al., 2002; Nyenje et al., 2010). This is primarily attributed
to the increasing release of untreated or partially treated
wastewater into the environment especially in the informal
settlements or slums. The number of informal settlements
in most cities in SSA is growing rapidly following rapid
urbanisation and population growth. Furthermore, these ar-
eas often lack sewerage systems for collecting and treating
wastewater while at the same time the existing on-site sani-
tation systems are usually poor. Consequently, most wastew-
ater generated from these types of catchments is discharged
untreated or partially treated into urban streams/channels re-
sulting in the introduction of high concentrations of nutrients
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(nitrogen, N, and phosphorus, P) to downstream fresh water
bodies (NWSC, 2008; Kulabako et al., 2010; Isunju et al.,
2011; Bere, 2007; Nhapi and Tirivarombo, 2004; Nhapi et
al., 2002; Foppen and Kansiime, 2009; Katukiza et al., 2010).
This has led to deterioration in the water quality of most ur-
ban fresh water bodies in SSA due to eutrophication. Phos-
phorus is considered to be the limiting nutrient for eutrophi-
cation (Reddy et al., 1999). However, current literature shows
there is limited research on P transport in urban catchments
dominated with informal settlements especially in SSA.

A large number of studies in recent years have focused
on understanding the dynamics of P transport during high-
and base-flow periods (e.g. Stutter et al., 2008; Zhang et
al., 2007; Blanco et al., 2010; Peters and Donohue, 2001;
Jordan et al., 2005). It is often realised that high flows exhibit
higher P concentrations predominantly in particulate form
compared to base flows (or low flows). This is largely at-
tributed to the flushing of pollutants and sediments from the
catchment by the increased flow. The first-flush effect is also
usually reported and it occurs when the first part of the storm
runoff has substantially higher concentrations of pollutants
than later parts (Deletic, 1998). A view therefore exists that
during the rising limb of the hydrograph, there is an initial
flushing of P-rich sediments generated from either terrestrial
catchment runoff or from the resuspension of channel bed
sediments (e.g. Zhang et al., 2007; Rodríguez-Blanco et al.,
2013; Blanco et al., 2010; Evans et al., 2004; Stutter et al.,
2008). First-flush effects are, however, not widely reported
for dissolved nutrients such as NO3 and PO4 because other
mechanisms such as dilution and discharge from base flows
tend to be dominant (Zhang et al., 2007; Blanco et al., 2010;
Evans et al., 2004; Chua et al., 2009; Jordan et al., 2005).

There is also a large number of studies focusing on under-
standing the chemical processes that influence the transport
and fate of phosphorus in streams and rivers (e.g. Froelich,
1988; Evans et al., 2004; Bedore et al., 2008; Olli et al.,
2009). These processes generally include precipitation and
dissolution, adsorption to soils and sediments and redox re-
actions. The precipitation of P minerals usually occurs with
Fe, Al, Ca and Mn ions and this normally leads to retention
of P in sediments (Evans et al., 2004; Bedore et al., 2008;
Golterman and Meyer, 1985; Reddy et al., 1999). In hard and
alkaline fresh waters, most P is often retained by precipitat-
ing as hydroxyapatite (Olli et al., 2009; Golterman, 1995).
The adsorption of P to iron, aluminium or manganese oxides
and hydroxides in sediments or soils is also another impor-
tant process that contributes to the retention of P to bed sedi-
ments in river systems (Froelich, 1988; Golterman, 1995). In
Ca-rich waters, P is also widely reported to adsorb and co-
precipitate with calcite precipitates (e.g. Bedore et al., 2008;
Olli et al., 2009; Golterman, 1995). Phosphorus retained in
the bed sediments can also be released back into discharging
waters by a number of processes, which generally include
(e.g. Fox et al., 1986; Søndergaard et al., 1999; Boers and de
Bles, 1991) (1) the mineralisation of organic phosphorus in

the bed sediment, (2) increased solubility of phosphate min-
erals or desorption when external P loads are low and (3) the
release of Fe-bound P following the reductive dissolution of
Fe3+ to Fe2+ in anoxic conditions.

Whereas a lot of research has been done on P transport
in surface water, little has been done in urban informal set-
tlements especially in SSA. Most research is carried out in
agricultural and forested watersheds and in temperate sys-
tems (e.g. Evans et al., 2004; Rodríguez-Blanco et al., 2013;
Blanco et al., 2010), with very few studies in tropical, urban
informal systems. However, these two systems could have
contrasting mechanisms controlling P transport due to dif-
ferences in climate, land use and geology. Hence, the fate
of P in urban tropical catchments with informal settlements
remains unknown (Nyenje et al., 2010). Chua et al. (2009)
presented a case study of P transport in a tropical environ-
ment but they only focused on P transport dynamics during
high and low flows without providing insights into the chemi-
cal processes regulating P transport. Informal catchments are
rapidly evolving in urban areas in SSA and so is the amount
of wastewater and P discharged in the environment. There is
therefore a strong need to understand and manage the trans-
port of P in these catchments.

Hence, the main objective of this paper was to contribute
to the understanding of processes influencing the transport
and fate of P in drainage channels in a slum-dominated trop-
ical catchment in Kampala, Uganda. More specifically, our
objectives were to (i) determine the concentrations of the var-
ious forms of P discharged from the urban slum catchment
during high- and low-flow conditions, (ii) identify the effect
of rainfall runoff on the discharge of P, and (iii) identify the
dominant geochemical mechanisms that are likely control-
ling the fate of P in these channels.

2 Catchment description

The upper Lubigi catchment (28 km2) is located Northwest
of Kampala, the capital city of Uganda, with the outlet at
latitude 0◦21′ N and longitude 32◦33′ E (Fig. 1). The catch-
ment is largely urbanised with a number of illegal informal
settlements (or slums) such as Bwaise, Mulago, and Kam-
wokya, located in low-lying areas (Fig. 1). Bwaise slum is lo-
cated at the outlet of the catchment. The underlying geology
of the catchment is characterised by Precambrian basement
rocks consisting of predominantly granite gneiss overlain by
deeply weathered lateritic regolith soils (about 30 m thick)
(Taylor and Howard, 1999). The saturated regolith is an im-
portant aquifer containing shallow groundwater flow systems
that usually discharge as springs in the valleys of the catch-
ment (Flynn et al., 2012; Taylor and Howard, 1998). These
springs generally form the upper reaches or headwaters of the
secondary channels or streams (Nyenje et al., 2013a). The
mineralogy of the weathered regolith is dominated by non-
calcareous kaolinite and quartz minerals with minor amounts
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Fig. 1.Location of the study area (upper Lubigi catchment) in Kampala, the capital city of Uganda.

of crystalline iron oxides (Flynn et al., 2012). The mean an-
nual rainfall measured at the Makerere University weather
station (see location in Fig. 1) is 1450 mm a−1 with two
rain seasons (March–May and September–November). Dur-
ing heavy storms, low-lying areas experience a lot of flood-
ing because the catchment is highly urbanised. In slum areas
like Bwaise (Fig. 1), flooding is even worse because of heavy
siltation and blockage of drainage pipes owing to poor solid
waste disposal (Kulabako et al., 2010).

The catchment is unsewered (not provided with a sewer).
In fact, most parts in the city of Kampala (> 90 %) as well
as other urban areas in SSA (> 70 %) are largely unsew-
ered (Nyenje et al., 2010) implying that most people liv-
ing in these areas rely on on-site sanitation for wastewa-
ter disposal. However, due to poor on-site sanitation sys-
tems especially in slum areas (Kulabako et al., 2007; Nyenje
et al., 2013a; Isunju et al., 2011; Katukiza et al., 2010),
most wastewater generated in the catchment ends up into the
drainage system hence introducing a number of pollutants
and nutrients to downstream ecosystems. The drainage sys-
tem consists of small open drains or tertiary channels located
between buildings, which convey a combination of runoff
and wastewater (primarily grey water: Katukiza et al., 2010,

2014) into a system of larger channels, or secondary chan-
nels. The secondary channels then discharge into the pri-
mary Nsooba channel (about 3 m wide), which eventually
discharges through the Bwaise slum into the Lubigi swamp
(not shown in Fig. 1). The Lubigi swamp is one of the largest
wetlands in the city of Kampala and, like many other wet-
lands in Uganda, it performs a number of important func-
tions such as the retention of the nutrients derived from ur-
ban catchments via drainage channels (e.g. Natumanya et al.,
2010; Okiror et al., 2009). Most wetlands in Uganda are,
however, being degraded due to extensive encroachment for
agricultural activities and infrastructure development. This
has hampered their ability to retain nutrients, resulting in de-
terioration of adjacent water bodies such as Lake Victoria
due to eutrophication (Kansiime et al., 2005; Kansiime and
Nalubega, 1999; Kelderman et al., 2007; Kyambadde et al.,
2005; Mugisha et al., 2007).
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3 Methodology

3.1 Discharge monitoring and precipitation

Stream gauges, each equipped with a Mini-Diver data
logger (Schlumberger water services, Delft, the Nether-
lands), were installed in Nsooba channel at the outlet of
the catchment (B1) and at two upstream locations B5
and B6 to monitor discharge along the Nsooba primary
channel (Fig. 1). The divers continuously recorded wa-
ter levels at 20 min intervals. The water levels were com-
pensated for atmospheric pressure using a Baro-Diver
(Schlumberger water services, Delft, the Netherlands) in-
stalled near the stream gauges. The compensated water
levels, H (cm) were converted to discharge,Q (m3 s−1)
using rating curves (Q = 0.0006H 2

− 0.0076H : r2 = 0.99,
n = 13 for B1,Q = 0.0039H 1.4152: r2 = 0.89n = 7 for B5 and
Q = 0.0021H 1.54 : r2 = 0.86,n = 4 for B6), that were devel-
oped from a series of discharge measurements carried out.
These discharges were measured during different hydrologi-
cal situations using the salt dilution method (Moore, 2004).
It was not possible to perform discharge measurements in
the tertiary channel in Bwaise slum (Fig. 1). Long-term daily
precipitation data, which were used to estimate the annual
average precipitation, were provided by the Uganda mete-
orological department whose nearest weather station is lo-
cated in Makerere University, about 2 km from the outlet
of the catchment (Fig. 1). During storms, rainfall data at
5 min intervals and 0.2 mm resolution were obtained from
the CREEC project (the Centre for Research in Energy and
Energy Conservation;http://creec.or.ug/) located next to the
College of Engineering, Design, Art and Technology, Mak-
erere University, about 2 km from the catchment outlet.

3.2 Water quality sampling and analysis

We initially collected water samples at intervals of 1–2 h
for 24 h during a low flow period on 26 May 2010 (depict-
ing base-flow conditions) and during two rainfall events on
28 June and 28 July 2010. The samples were collected in
clean 1 L plastic bottles from the primary channel (Nsooba)
at the catchment outlet (B1) and in one of the tertiary chan-
nels (B4) in the Bwaise III slum (Fig. 1). Tertiary chan-
nels are considered to be the primary source of P into the
primary channel due to sewage effluents especially in slum
areas (Nyenje et al., 2013b; Katukiza et al., 2010). To ac-
count for spatial and temporal variability of our data, we col-
lected two more rainfall events on 18 September 2012 and
on 8 November 2012 at two upstream locations (B5 and B6)
along the Nsooba primary channel (Fig. 1).

All water samples were first analysed on-site for electri-
cal conductivity (EC), temperature, pH, dissolved oxygen
(DO) and alkalinity (HCO3) immediately after sampling. EC
and temperature were measured with an EC electrode (Tetra-
Con 325, WTW) connected to an EC meter (WTW 3310),

pH with a pH electrode (SenTix 21, WTW) connected to pH
meter (WTW 3310) and DO with a DO sensor (CellOx 325,
WTW) connected to a DO meter (WTW 3310). The me-
ters were calibrated before taking measurements. HCO3 was
determined by titrating with 0.2 M sulfuric acid. After on-
site measurements, the water samples were kept in a cool
box at 4◦C and transported to Makerere University Pub-
lic Health and Environmental Engineering (PH & EE) Lab-
oratory. Here, the samples were analysed for total phos-
phorus (TP), orthophosphate (PO4-P) and total dissolved
phosphorus (TDP), ammonium (NH3-N), nitrate (NO3-N),
total solids (TS) and total suspended solids (SS) in less
than 24 h after collecting the samples. TP was determined
on unfiltered samples using the Ascorbic acid method af-
ter digestion with persulfate (APHA/AWWA/WEF, 2005),
TDP on filtered samples using the same method as TP and
PO4-P determined on filtered samples using the ascorbic
acid method (Murphy and Riley, 1962). Particulate phos-
phorus (PP) was calculated as the difference between con-
centrations of TP and TDP. Nitrate (NO3-N) and ammo-
nium (NH3-N) were determined on filtered samples using
the cadmium reduction method and the Nessler method, re-
spectively. All filtered samples were passed through 0.45 µm
Whatman membrane filters. Final readings were carried out
on a HACH DR/4000 U spectrophotometer (USA). Sus-
pended solids (SS) were calculated as the difference between
TS and TDS. Total solids (TS) were determined by evapo-
rating an unfiltered sample in an oven at 105◦C for 24 h,
and then determining the mass of the dry residue per litre
of sample, whereas TDS were determined using the same
method as TS but on samples filtered using Whatman GF/C
filters (APHA/AWWA/WEF, 2005). Samples collected at lo-
cations B1 and B4 were very turbid and frequently clogged
the filter papers. For these samples, SS were calculated as
the difference between TS and the TDS estimated from EC
as recommended in APHA/AWWA/WEF (2005) in such sit-
uations. Here, TDS were estimated from EC using a conver-
sion factor of 0.56, which was computed from a series of
TDS and EC values measured during our initial samplings.
The factor we used was within acceptable limits (0.55–0.7;
APHA/AWWA/WEF, 2005). Cations and anions were mea-
sured on filtered samples at the UNESCO-IHE laboratory
in the Netherlands only for the samples collected at loca-
tions B1 and B4: cations (Ca, K, Mg, Na, Mn and Fe) us-
ing an inductively coupled plasma spectrophotometer (ICP
– Perkin Elmer Optima 3000) and anions (Cl and SO4) by
ion chromatography (IC – Dionex ICS-1000). These samples
were filtered on-site using 0.45 µm Whatman membrane fil-
ters and kept cool at 4◦C prior to analysis. Cation samples
were preserved by adding 2 drops to concentrated nitric acid.

3.3 Mineral saturation indices

We used the PHREEQC model code (version 2, Parkhurst
and Appelo, 1999) to calculate the saturation indices of
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the most important phosphate minerals including calcite
(CaCO3), hydroxyapatite (Ca5(PO4)3(OH)) and vivianite
(Fe3(PO4)2 · 8 H2O) (Stumm and Morgan, 1981). These min-
erals can regulate P either by precipitation/dissolution (for
hydroxyapatite and vivianite) or by co-precipitation (for cal-
cite). Strengite (FePO4 · 2 H20) was not considered because
surface water was anoxic and alkaline (as shown in results),
and under these conditions the strengite forming Fe3+ is ex-
pected to be insoluble (Appelo and Postma, 2007). Moreover,
Fe3+ is insoluble in the pH range of 5–8. We also determined
the saturation indices of rhodochrosite (MnCO3) and siderite
(FeCO3) because these metal carbonates can also regulate
the concentrations of P by co-precipitation or by precipita-
tion/dissolution reactions.

3.4 Sediment sampling and analysis

We collected both surface and deep layer bed sediments at
locations B1, B7 and B4 (see Fig. 1). The surface layer sed-
iment (herein called shallow sediment) is where most P in-
teractions between the water column and bed sediment oc-
cur (Hooda et al., 2000), whereas deep layer sediments rep-
resent older deposits that can give insights into earlier in-
teractions that took place. Shallow sediment was loose and
was sampled at depths of 0–30 cm using a 1m long multi-
sampler with a 40 cm internal diameter (Eijkelkamp, the
Netherlands). Deep layer sediments were more consolidated
and were sampled at depths of 30–60 cm using a hand auger.
In the tertiary channel (B4, Fig. 1), only the shallow sed-
iment was sampled because the channel was lined and the
sediment layer was thin (< 10 cm). Due to logistic reasons,
suspended sediments were only collected from location B1
during the first rainfall event. This was done by settling
and decanting water samples collected in 20 L jerry cans.
At the Public Health and Environmental Engineering Lab-
oratory, Makerere University, Uganda, the sediments were
air-dried for two weeks. All samples were then sieved us-
ing a 2 mm sieve, kept in plastic bags and then transported
to the UNESCO-IHE, the Netherlands, for analysis. For sus-
pended sediment, only the sample collected during the peak
flow at 11:30 LT (event 1) was analysed because the other
samples did not contain enough useable sediment for the
soil experiments. Sediments were analysed for geo-available
metals (Fe, Ca, Mg and K), pH, organic matter (OM), or-
ganic carbon (OC), available phosphorus and grain size dis-
tribution. Geo-available metals were extracted with 0.43 M
HNO3 (Rauret, 1998; Novozamsky et al., 1993) and anal-
ysed using an ICP spectrophotometer (Perkin Elmer Op-
tima 3000). Al and Si were not determined due to analyti-
cal limitations. Available phosphorus was extracted using the
Bray 2 method (Bray and Kurtz, 1945) and analysed by spec-
trophotometry using the ascorbic acid method. Grain size
distribution was determined at the VU University Amster-
dam, the Netherlands, by laser diffraction technique using the
Helos/KR Sympatec instrument (Konert and Vandenberghe,

1997). The pH was measured on a 2.5 : 1 water to soil sus-
pension. Soil OC was determined using the Walkley–Black
method (Walkley and Black, 1934). Soil OM was estimated
from OC using a conversion factor of 1.722 based on the
assumption that OM contains 58 % carbon (Kerven et al.,
2000). All measurements were carried out in duplicate and
the results averaged.

3.5 Sequential extraction of phosphorus species from
selected sediments

To determine the different forms of phosphorus in the stream
sediments, we used a sequential extraction technique de-
scribed by Ruban et al. (2001). The technique was slightly
modified to adapt to the equipment available at the laboratory
whereby the sediment-solution ratio of 10 : 1 (mg mL−1) was
maintained, but the amount of soil used was 500 instead of
200 mg. The following forms of P were extracted: P bound
to iron, aluminium and manganese oxides and hydroxides
(Fe/Al/Mn-bound P), P associated with Ca (Ca-bound P), in-
organic P (IP), organic P (OP) and total P. Before analysis,
the sediment was first oven dried at 60◦C for 2 h. For each
form of P, extractions then were carried out by adding 50 mL
of extracting solution to 500 mg of sediment (or the residue
of a previous extraction) and the mixture stirred for 16 h.
The samples were centrifuged at 4000 rpm for 15 min and
the P in the extract determined by spectrophotometry using
the ascorbic acid method. Fe/Al/Mn-bound P was extracted
from 500 mg of dry sediment using 1 M NaOH (also referred
to as NaOH-P). The residue from this extraction was used for
the extraction of Ca-bound P using 1 M HCl (also referred to
as HCl-P). Total P was extracted from 500 mg of dry sedi-
ment using 3.5 M HCl. IP was extracted from 500 mg of dry
sediment using 1 M HCl. The residue of the IP extraction was
washed with distilled water and calcinated at 450◦C for 3 h
and then the ash used for extraction of OP using 1M HCl.
All extractions were carried out in duplicate and the results
averaged.

3.6 Phosphorus sorption experiments on selected
sediments

Sorption experiments were carried out using duplicate batch
experiments. Thereto, 25 mg of sediment samples were ac-
curately weighed and mixed with 500 mL of 0.01 M CaCl2
solution of varying initial P concentrations of 0, 20, 40,
80, 100 and 250 mg L−1 (i.e. a soil-solution ratio of 0.05).
The CaCl2 solution minimises the competition for sorp-
tion sites between phosphate ions and other ions (Froelich,
1988). The phosphorus solutions were prepared using an-
hydrous KH2PO4. The P concentrations used were much
higher than those present in the channel (∼= 0.5 mg P L−1) in
order to establish the maximum adsorption capacity of the
sediments. The mixtures were gently shaken on an orbital
shaker at 100 rpm to equilibrate. After 24 h equilibrium time,
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the final P concentrations in the solutions were measured
by spectrophotometry using the ascorbic acid method. The
amount of phosphate sorbed was calculated as

Cads =

(
Co − Ceqm

)
× V

m
× 1000, (1)

whereCads is the sorbed amount of P (mg kg−1), Co is the
initial P concentration in solution (mg L−1), Ceqm is the mea-
sured P concentration in solution after equilibrium (mg L−1),
V is the volume of the sample in litres (0.5 L in this experi-
ment) andm is the mass of the dried soil sample (kg).

To establish which sorption isotherm provided the best fit,
the Langmuir (Eq. 2) and Freundlich (Eq. 3) equations were
fitted to the data. These two equations are often employed
to describe adsorption processes (Appelo and Postma, 2007;
Golterman, 1995):

Cads =
SmaxCeqm

KL + Ceqm
, (2)

Cads = KF · Ceqm, (3)

where Smax is the maximum adsorbed amount possible
(mg kg−1) andKL, KF andn are adjustable constants (−).

4 Results

4.1 The hydrochemistry of drainage channels

Table 1 presents the hydrochemistry of surface water based
on the samples collected at the catchment outlet and in
the tertiary channel during base-flow conditions. Surface
water in the Nsooba primary channel was primarily alka-
line (pH = 7.0–7.5; mean of 7.3) and had high values of
EC (471–612 µS cm−1: mean of 554 µS cm−1), high concen-
trations of HCO3 (181–326 mg L−1: mean of 213 mg L−1)
and Cl (26.2–71.3 mg L−1: mean of 40.8 mg L−1) and rel-
atively high concentrations of cations, primarily Na (4.1–
51 mg L−1; mean of 14.9 mg L−1) and Ca (3.4–25.5 mg L−1;
mean of 8.2 mg L−1). The tertiary channel, which drains
Bwaise slum, was more alkaline (pH = 7.4–7.8; mean of 7.7)
and had much higher concentrations of dissolved solutes
– about 3 times higher than in the Nsooba primary chan-
nel. The mean base-flow concentration of PO4-P in the pri-
mary channel was 0.36 mg L−1 (range = 0.11–0.78 mg L−1)
accounting for 30 % of TP (1.2 mg L−1; Table 1). In the ter-
tiary channel, it was 3.3 mg L−1 (range = 2–4.8 mg L−1) ac-
counting for 64 % of TP (5.2 mg L−1; Table 1). Hence, PP
was the dominant form of P in the primary channel dur-
ing base flows whereas in the tertiary channel PO4-P was
dominant.

The channels were generally anoxic and characterised by
low concentrations of dissolved oxygen (DO< 1 mg L−1;
Table 1) in both the primary and the tertiary chan-
nel. Consequently, the concentrations of NO3-N were

Table 1. Hydrochemistry of drainage channels during base-flow
conditions at the catchment outlet and in the tertiary drain. Data are
shown in concentration ranges with the average values in brackets.

Parameter Nsooba channel Tertiary channel
(Outlet, B1) (B4)

EC (µS cm−1) 471–612 (554) 1511–1983 (1792)
T (◦C) 19.7–28.4 (24.5) 19.3–28.3 (24.2)
pH 7.0–7.5 (7.3) 7.4–7.8 (7.7)
DO (mg L−1) 0.03–1.87 (0.7) 0.03–0.99 (0.37)
Ca (mg L−1) 3.4–25.5 (8.2) 7.1–46.0 (20.3)
Mg (mg L−1) 0.75–6.20 (1.98) 2.3–28.3 (7.8)
K (mg L−1) 2.8–24 (7.5) 13.5–89.3 (39.5)
Na (mg L−1) 4.1–51.0 (14.9) 21.5–229.9 (77.0)
Fe (mg L−1) 0–0.47 (0.12) 0.01–0.31 (0.07)
Mn (mg L−1) 0.14–1.28 (0.40) 0.04–1.13 (0.48)
NH3-N (mg L−1) 6.8–12.1 (10.4) 24.5–41.0 (32.4)
NO3-N (mg L−1) 0.5–3.6 (1.61) 0–7.4 (1.66)
Cl (mg L−1) 26.2–71.3 (40.8) 26.5–117.6 (78.3)
HCO3 (mg L−1) 181–326 (213) 522–725 (624)
SO4 (mg L−1) 5.7–27.5 (9.5) 3.8–28.0 (11.8)

Phosphorus forms (mg L−1)

TP 0.51–1.61 (1.15) 3.5–7.7 (5.2)
PP 0.09–0.93 (0.64) 0.9–4.8 (2.2)
PO4-P 0.11–0.78 (0.36) 2–4.8 (3.3)

low (< 1.6 mg L−1) while NH3-N concentrations were
high (mean of 10.4 mg L−1 in the primary channel and
32.4 mg L−1 in the tertiary channel). With regard to re-
dox sensitive elements, Fe concentrations were very low
(mean< 0.12 mg L−1) whereas SO4 concentrations were
high (about 10 mg L−1; Table 1). Although Mn concentra-
tions were also low (mean of 0.4 mg L−1 in the primary chan-
nel and 0.48 mg L−1 in the tertiary channel), they were rel-
atively higher than the Fe concentrations. Hence, the redox
status of the surface water was likely Mn-reducing.

4.2 Saturation indices (SIs)

Surface water is considered to be saturated or near sat-
urated when the saturation index (SI) of a given min-
eral ranges between−0.5< SI< 0.5 (Deutsch, 1997). A
range of−0.7< SI< 0.7 is also considered in some stud-
ies (e.g. Griffioen, 2006). In the tertiary drain, most samples
were saturated (−0.4< SI< 0.4) with respect to calcite and
rhodochrosite (Fig. 2b). In the primary channel, some sam-
ples were near saturation levels with respect to calcite and
rhodochrosite (0< SI< −0.7) whereas some were under-
saturated (SI< −1) especially during rain events (Fig. 2a).
The two minerals (calcite and rhodochrosite) therefore likely
regulated P concentrations by co-precipitation (or the ad-
sorption of P onto carbonate precipitates). The SI values
of MnHPO4 were high but relatively constant (SI ranged

Hydrol. Earth Syst. Sci., 18, 1009–1025, 2014 www.hydrol-earth-syst-sci.net/18/1009/2014/



P. M. Nyenje et al.: Phosphorus transport and retention in a channel draining an urban, tropical catchment 1015

 

‐4

‐3

‐2

‐1

0

1

2

3

4

Sa
tu
ra
tio

n 
in
de
x

NSOOBA CHANNEL (OUTLET, B1)
Baseflow

(a)

‐4

‐3

‐2

‐1

0

1

2

3

4

Sa
tu
ra
tio

n 
in
de
x

Event 1

‐4

‐3

‐2

‐1

0

1

2

3

4

Sa
tu
ra
tio

n 
in
de
x

Calcite Rhodochrosite MnHPO4 Hydroxyapatite

Event 2

‐4

‐3

‐2

‐1

0

1

2

3

4

Sa
tu
ra
tio

n 
in
de
x

TERTIARY CHANNEL (B4)
Baseflow

(b)

‐4

‐3

‐2

‐1

0

1

2

3

4

Sa
tu
ra
tio

n 
in
de
x

Event 1

‐4

‐3

‐2

‐1

0

1

2

3

4
Sa
tu
ra
tio

n 
in
de
x

si_Calcite Rhodochrosite MnHPO4 Hydroxyapatite

Event 2

 

Fig. 2. Saturation indices of the most important phosphate minerals during base-flow and runoff events:(a) at the outlet of the catchment
and(b) in the tertiary channel draining the Bwaise III slum. The minerals vivianite and siderite are not shown here because they had high
negative values of saturation indices suggesting that they were not present.

from 2 to 3) in both the tertiary and the primary channels
and in all the events (Fig. 2). These high saturation levels
of MnHPO4 were likely regulated by the near saturated lev-
els of rhodochrosite, which suggests that MnHPO4 was not
reactive. The term reactive mineral here refers to a mineral
that can easily dissolve into or precipitate from the water col-
umn under certain conditions (Deutsch, 1997). The SI values
of iron phosphates (vivianite) were most of the times less
than−1 (undersaturated) implying that these minerals were
either not present or not reactive. Surface water was supersat-
urated with respect to hydroxyapatite in the tertiary channel
(Fig. 2b) but undersaturated in the primary channel (Fig. 2a).

4.3 Phosphorus concentrations during base flow

During base-flow conditions, high concentrations of P were
measured in the Nsooba channel, with values ranging from
0.51 to 1.61 mg L−1 (average 1.15 mg L−1) for TP, 0.09 to
0.93 mg L−1 (average 0.64 mg L−1) for PP and 0.11 to

0.78 mg L−1 (average 0.36 mg L−1) for PO4-P (Table 1,
Fig. 3a). The dominant form of P was PP accounting for
56 % of TP whereas PO4-P accounted for 31 %. Concentra-
tions of P seemed to vary slightly during the day with rela-
tively higher concentrations (> 1 mg L−1 as TP) occurring
between 07:00 LT and midnight, and lower concentrations
occurring after midnight (< 1 mg L−1 TP) (Fig. 3a). The
base-flow P concentrations in the tertiary channel were much
higher than in the primary Nsooba channel and ranged 3.5–
7.7 mg L−1 (average of 5.2 mg L−1) for TP, 0.9–4.8 mg L−1

(average of 2.2 mg L−1) for PP and 2–4.8 mg L−1 (average
of 3.3 mg L−1) for PO4-P (Table 1; Fig. 6a). Here particulate
P accounted for 42 % of TP whereas PO4-P accounted for
58 %.

4.4 Phosphorus concentrations during rainfall events

We collected hourly data over 24 h on four rainfall events on
26 June 2010 and 28 July 2010 (at the catchment outlet, B1,
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Fig. 3.Temporal trends in concentrations of phosphorus (TP, PP and
PO4-P) and SS in the Nsooba channel at location B1 (catchment
outlet) during(a) a base-flow event,(b) rainfall event 1 and(c) rain
fall event 2.

and in the tertiary channel, B4) and on 18 September 2012
and 8 November 2012 (at upstream locations B5 and B6
along the primary channel).

In all these events, there was a simultaneous increase in
concentrations of TP and PP (and SS as well) with peak
concentrations almost coinciding with the peak discharge
of the rainfall–runoff hydrographs (Figs. 3–5). Thereafter,
base-flow concentrations were restored. At the catchment
outlet, B1, about 8.6 mm (intensity of 14 mm h−1) fell dur-
ing the first event (28–29 June 2010) producing a peak dis-
charge of 6.7 m3 s−1. Subsequently, there was an increase
in concentrations of TP and PP, and concentration peaks
of 4 mg L−1 for TP and 3.66 mg L−1 for PP (about 92 %
of TP) were realised (Fig. 3b). During the second event
(28–29 July 2010; 14.8 mm, intensity of 6.5 mm h−1), two
smaller peak discharges of 1.3 and 1.4 m3 s−1 were pro-
duced. Consequently, two peak concentrations of TP and PP
were produced (Fig. 3c). The first concentration peak had
3.0 mg L−1 for TP and 2.4 mg L−1 for PP whereas the sec-
ond had 2.1 mg L−1 for TP and 1.5 mg L−1 for PP.
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 Fig. 4.Temporal trends in concentrations of phosphorus (TP, PP and
PO4-P) and SS in the Nsooba channel at location B5 during(a) rain-
fall event 3 and(b) rainfall event 4. Note: during these events, pre-
cipitation data was not available and is therefore not presented.
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 Fig. 5. Temporal trends in concentrations of phosphorus (TP, PP
and PO4-P) and SS in the Nsooba channel at location B6 during
(a) rainfall event 3 and(b) rainfall event 4.

In the upper locations (B5 and B6; Fig. 1), the drainage
area was smaller (about 8 km2) resulting into smaller
discharges (peak of about 2 m3 s−1; see Figs. 4 and 5) af-
ter a storm event. However, the peak concentrations of PP
and TP at these locations after the storm events were slightly
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Fig. 6.Temporal trends in concentrations of phosphorus (TP, PP and
PO4-P) and SS in a tertiary channel discharging from the Bwaise
slum during(a) a base-flow event,(b) rain event 1 and,(c) rain
event 2. Discharge measurements were not possible at this site.

higher than those observed at the catchment outlet, which
had a larger drainage area. For example, at location B5, about
7 mm of rain fell on 18 September 2012 (event 3) producing
a peak discharge of 1.9 m3 s−1. The resulting peak concentra-
tions of TP and PP were 6.8 mg L−1 for TP and 5.7 mg L−1

for PP (about 84 % of TP) (Fig. 4a).
In the tertiary channel, the P trends following storm events

were similar to those in the primary channel, except here,
the concentrations were much higher (see Fig. 6b and c). For
example, after the first rainfall event (28 June 2010), peak
concentrations of 19.7 mg L−1 for TP and 14.1 mg L−1 for
PP were realised (almost 3 times higher than corresponding
peak concentrations in the primary channel) (Fig. 6b).

Rainfall events also increased the concentrations of sus-
pended solids (SS) and we observed that the concentration
peaks of SS generally coincided with those of PP and TP (see
Figs. 3–6). However, the responses of PO4-P were not readily
evident as was observed for TP and PP (Figs. 3–5) except in
the tertiary channel (Fig. 6b, c). In all runoff events sampled,
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Fig. 7. Mean concentrations of P forms in the bed and suspended
sediments. The P forms included Fe/Al-bound P, Ca-bound P, OP,
total P and available P (Bray-2 extractable P). Suspended sediments
were only collected at peak flow during event 1 (error bars represent
standard error,n = 2).

the concentrations peaks of PP and TP were realised after the
peak discharge implying a late delivery of nutrients.

4.5 Physical and chemical characteristics of sediments

Table 2 presents the results of the soil analyses. The bed sed-
iments had very high values for sand content (63–83 %) and
low values for silt content (5–11 %). Suspended sediments,
however, had a high silt content (56 %) and low sand and clay
contents (< 23 % each). The sediments were alkaline with
pH ranging from 7.1 to 7.3. Organic matter content ranged
from 1.8 to 3 % and was highest in deeper sediments. Based
on the 0.43 M HNO3 extraction, Ca was the dominant cation
followed by Fe and then Mn. Al was not determined due to
analytical limitations. Hence Ca, Fe and Mn were most ca-
pable of interacting with P. Suspended sediments contained
higher contents Ca, Fe and Mn than the bed sediments.

The results of sequential P extraction showed that the total
sediment P ranged from 1375 to 1850 mg kg−1. Inorganic P
was the dominant form of P in the sediments accounting for
over 63 % (range of 64–80 %) of the total sediment P (Fig. 7).
Here Ca-bound P and Fe/Mn-bound P were present in almost
equal proportions (i.e. 51–54 and 46–49 % of total P, respec-
tively). The measured IP contents (not shown) were close to
the calculated values (sum of Ca-P and Fe-P) except for sus-
pended sediments. Organic P accounted for 17–22 % of total
sediment P whereas adsorbed P (i.e. Bray-2 extractable P) ac-
counted for only 5–8 % of total sediment P. Hence, P retained
in sediments was probably a result of precipitation of calcium
and iron phosphates or the adsorption of P to iron/manganese
oxides. Suspended sediment collected during the peak of the
first rain event had the highest content of phosphorus (to-
tal sediment P of 2316 mg kg−1) of which Ca-bound P ac-
counted for 43 % of the total sediment P and Fe/Mn-bound P
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Table 2.Physical and chemical properties of bed and suspended sediments in the Nsooba channel and in the tertiary channel of the Bwaise
slum.

Geo-available metals (mg kg−1) Grain size
distribution∗∗ (%)

Location pH OM∗ OC∗ Ca Mg K Mn Fe Sand Silt Clay
(−) (%) (%)

Deep sediment (30–60 cm)

B1 (outlet) 7.1 3.0 1.7 3636 173 105 387 3761 79 14 7
B7 7.3 3.0 1.7 4691 216 194 348 3269 77 16 7

Shallow sediment (< 30 cm)

B1 (outlet) 7.3 2.0 1.2 8505 375 311 767 3437 63 26 11
B7 7.2 2.7 1.6 2729 130 117 375 2338 84 11 5
B4 (tertiary drain) 7.3 1.8 1.1 7620 292 381 379 2262 83 12 5

Suspended sediment (Event 1 at 11:30 LT)

B1 (outlet) – – – 18 125 939 1405 908 5755 23 56 21

∗OM, organic matter; OC, organic carbon;∗∗ clay (< 2 µm), silt (2–50 µm) and sand (50 µm–2 mm)
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Fig. 8.Langmuir sorption isotherms for sediments sampled at loca-
tions B1 (catchment outlet), B7 (inlet of slum area) and B4 (tertiary
channel).

accounted for 29 % of the total sediment P. There seemed to
be no significant differences between the shallow and deep
sediments.

From the P sorption experiments, the Langmuir isotherm
provided the best fit of the sediment data (r2 = 0.85–0.98;
Fig. 8). The sediments in the tertiary channel, however,
had a poor fit (r2 = 4.3) probably due to the relatively low
Fe content (2262 mg kg−1) compared to that in the Nsooba
channel (> 3400 mg kg−1) (Table 2). The maximum sorp-
tion capacity (Smax) of the sediments ranged from 820 to
2350 mg kg−1 (Fig. 8). Deeper sediments had the highest

sorption capacity (Smax= 2350 mg kg−1). Shallow sediments
generally had low sorption capacities (Smax= 1550 mg kg−1

in Nsooba sediment andSmax= 850 mg kg−1 in the tertiary
channel). From Fig. 8, it became clear that the predicted
amount of P sorbed to the sediment based on the measured
PO4-P concentrations (means of 0.36 and 3.3 mg L−1; Ta-
ble 1) was about 0.02 mg g−1 (or 20 mg kg−1), which is much
less than the sum of the inorganic and the Bray-2 extractable
P (1.15–1.29 mg g−1; Fig. 7). Hence, the sediments were
likely P saturated.

5 Discussion

5.1 Phosphorus exported from the catchment

Our results showed that the average base-flow concentra-
tions of PO4-P and TP at the outlet of the studied catchment
were 0.36 and 1.2 mg L−1, respectively (Fig. 3a; Table 1).
These concentrations are about 16 times the eutrophication
limit of 0.075 mg TP L−1 proposed by Dodds et al. (1998)
for streams implying that the channel was very eutrophic.
For a mean base flow of 0.22 m3 s−1 (Fig. 3), the fluxes
of PO4-P and TP from the studied catchment were about
0.3 and 0.95 kg km−2 d−1, respectively. These fluxes appear
to be very high compared to those normally reported in pub-
lished literature for agricultural, forested and other urban
catchments. Jordan et al. (2007) for example reported a TP
flux of 0.2 kg km−2 d−1 for a 5 km2 rural agricultural catch-
ment in Northern Ireland. In a mixed land use catchment
in Galicia, Spain, Rodríguez-Blanco et al. (2013) reported a
much lower TP flux of 0.04 kg km−2 d−1. Zhang et al. (2007)
found a TP flux of only 0.034 kg km−2 d−1 in nutrient runoff
from forested watershed in central Japan. Nhapi et al. (2006)
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showed that the TP flux for the two major river inflows to
the eutrophic Lake Chievero in the city of Harare (Zim-
babwe) ranged between 0.1 and 0.35 kg km−2 d−1. Although
these rivers were heavily polluted by on-site sanitation and
sewage overflows from treatment plants, the TP fluxes were
still low when compared to those in our study. Our find-
ings therefore suggest that phosphorus exported from urban
catchments with informal settlements (or slums) poses a very
serious threat to downstream surface water quality due to
eutrophication.

5.2 Source of phosphorus

There are three possible sources of P the high concentrations
of observed in the Nsooba channel: groundwater exfiltration,
precipitation and anthropogenic sources (use of agricultural
fertilisers and sewage effluents). However, groundwater and
precipitation in the study area contain relatively low concen-
trations of P (< 0.06 mg L−1 as PO4-P; Nyenje et al., 2013b).
There is also limited use of fertilisers for agriculture in the
study area and in most parts of Uganda. Hence, sewage ef-
fluents were the most likely sources of P in the studied chan-
nels. The lack of a sewer system and the existing poor on-
site sanitation systems in the studied catchment means that
most wastewater generated from households was directly dis-
charged untreated into the drainage channels thereby intro-
ducing high levels of nutrients. The water quality of these
channels was characterised by high concentrations of EC,
HCO3, NH4, PO4-P and cations (Table 1), which is typical of
wastewater streams derived from sewage effluents. A recent
study by Katukiza et al. (2014) revealed that most wastewa-
ter in these channels is composed of grey water (wastewater
from bathrooms, kitchens and laundry), which is normally
transported to the primary channel via small channels (or ter-
tiary channels) between households especially in slum areas.
We monitored one of the tertiary channels in the Bwaise slum
and indeed it contained very high P concentrations (TP = 3.5–
7.7 mg L−1 and PO4-P = 2–4.8 mg L−1; Table 1) similar to
those found in grey water in this slum area (6–8 mg TP L−1;
Katukiza et al., 2014). The influence of domestic wastewa-
ter as a source of P can also be seen from the 24 h trends
of the base-flow concentrations of TP in the primary chan-
nel (Fig. 3a). From midnight onwards, the concentrations of
TP in the primary channel were less than 1 mg L−1, whereas
from 07:00 to 10:00 LT they were greater than 1 mg TP L−1

(Fig. 3a). This suggested that P was being added to the sys-
tem during the hours of the day and this was likely due to
wastewater effluents from human activity. This may also ex-
plain why orthophosphates accounted for the largest propor-
tion of P in the tertiary channel given that orthophosphate is
the dominant form of P in wastewater streams (Bedore et al.,
2008). We therefore concluded that sewage effluents, espe-
cially from grey water streams, were the main source of P in
the studied catchment.

5.3 Effects of rainfall runoff events

Rainfall runoff events indicated a flushing of P predomi-
nantly in particulate form (e.g. 92 % of TP during event 1
was particulate, Fig. 3b). This flush was characterised by a
sharp increase in concentrations of TP and PP (and SS) dur-
ing the rising limb of the hydrograph and a subsequent de-
crease during the falling limb and finally restoration of base-
flow concentrations. This phenomenon was present in all the
four rainfall events at the catchment outlet (B1), the upstream
stations B5 and B6 and in the tertiary channel (B4). During
the second event (Fig. 3c), there were two discharge peaks
at B1 which resulted in two concentration peaks of TP and
PP, with the later peak lower than the former probably due
to flushing effects. The peak concentrations of SS during the
runoff events coincided with those of TP and PP in all the
four rain events (Figs. 3–6), which implied that most phos-
phorus transported during rain events was associated with
suspended sediments. These sediments were likely mobilised
from the resuspension of the P-rich bed sediments accumu-
lated in the channel or by erosion of material stored on the
urban surface. We observed that the peak concentrations of
TP and PP in the primary channel during storm events were
not so different at the catchment outlet and the upstream lo-
cations B5 and B6, yet discharge varied significantly because
of differences in drainage areas. It is therefore unlikely that
catchment runoff was the primary source of TP and PP dur-
ing rain events. Instead, we think that resuspension of P-rich
bed sediment played a more important role. This sediment
phosphorus was likely deposited during low flows because a
large amount of P (about 56 %) in the primary channel was
particulate during the base-flow event sampled. Our results
therefore suggest that there was a flushing of TP and PP, pri-
marily due to the resuspension of bed sediments. Flush ef-
fects were not observed for the dissolved form of P (PO4-
P) probably because other mechanisms such as precipita-
tion/dissolution or dilution were more dominant.

First-flush effects for PP and SS have been reported in
many studies investigating P transport during storm events
(e.g. Stutter et al., 2008; Zhang et al., 2007). They occur
when the rising limb of a hydrograph contains higher con-
centrations of pollutant than the falling limb (Deletic, 1998).
Results from our study, however, seem to suggest that PP and
TP did not exhibit first-flush effects. This is because the con-
centration peaks of PP and SS were most of the times realised
after the peak events (see Figs. 3–6), implying that the falling
limb contained higher concentrations of pollutants than the
rising limb. This could have been caused by the poor on-site
sanitation systems in the catchment. Here, wastewater espe-
cially from pit latrines is normally released into the drainage
channels after rain events (particularly when increased flows
are observed) as a cheap way of emptying the latrines (see
description study area). One study by Chua et al. (2009) also
investigated a tropical catchment with proportions of rural
and urban land use similar to the catchment we studied, and
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they also observed that the first-flush effects were generally
weak for TP and PP. In our study, however, our sample col-
lection was not frequent enough during peak flows and it is
therefore not possible to confirm whether the first-flush ef-
fects for PP were present or not.

5.4 Sediment-water column phosphorus interactions

5.4.1 P retention and role of overlying water

The settling of particulate matter is one of the most impor-
tant mechanisms of P retention in the channel bed sediments
(Reddy et al., 1999). As already mentioned above, our re-
sults showed that most P discharged at the outlet of the catch-
ment during low flows was particulate (56 % of TP) and was
likely retained along the channel bed by settling. Fraction-
ation analyses also showed that the P retained in the bed
sediment was largely inorganic accounting for 64–80 % of
the total sediment P. Additionally, inorganic sediment P was
mostly bound to Ca (HCl-P) and Fe/Mn (NaOH-P) and in
almost equal proportions (51–54 and 46–49 % respectively;
Fig. 7). This implies that P retention processes in the bed sed-
iment were attributed to either mineral precipitation or the
adsorption of P to sediments. Therefore, sediment inorganic
P that was bound to Ca (or Ca-bound P) could either be min-
eral precipitates of hydroxyapatite or P adsorbed to calcite.
These two minerals (hydroxyapatite and calcite) are widely
reported in literature to regulate P transport in river systems
by precipitation and co-precipitation respectively (e.g. Reddy
et al., 1999; Golterman, 1995; Griffioen, 2006; Tournoud et
al., 2005). However, the nature of the rocks in our study area
(Precambrian granite-gneiss rocks; see section “Catchment
description”) shows that there are no carbonate-bearing rocks
like calcite. Hence, the likely source of calcite in sediment,
if it was present, was through mineral precipitation reactions
in the water column (i.e. calcite precipitates). Sediment in-
organic P bound to Fe/Mn (or Fe/Mn-bound P) was likely a
result of the adsorption of P to iron oxides or the precipita-
tion of iron and manganese phosphates. Note that we were
unable to determine Al in this study and therefore the role
of aluminium oxides to the adsorption of P is not consid-
ered. Here, below, we try to identify the relative importance
of these two processes (sorption and mineral solubility) to
the retention of P in the sediment.

With regard Ca-bound P, geochemical speciation results
showed that surface water was most of the times near sat-
uration or saturated with respect to calcite in both the pri-
mary and the tertiary channels (0< SI< 0.7; Fig. 2) imply-
ing that calcite was reactive (may equilibrate with surface
water) in the studied channels. The channels were, how-
ever, undersaturated with respect to hydroxyapatite (SI gen-
erally less than−1) in the primary channel but oversatu-
rated in the tertiary channel (SI generally greater than 1).
This phenomena likely occurred due to the high concentra-
tions of Ca (7.1–46 mg L−1) and phosphate (2–4.8 mg L−1

as PO4-P) in the tertiary channel (Table 1) and the low con-
centrations in the primary channel (Ca = 3.4–25.5 mg L−1;
PO4 − P = 0.1–0.9 mg L−1) following dilution. Hence, hy-
droxyapatite seemed not to be reactive. Indeed some studies
suggest that hydroxyapatite precipitation can only take place
when the SI> 9.4 and when Ca concentrations are very high
(> 100 mg L−1) (e.g. Diaz et al., 1994). Given that phospho-
rus has strong adsorption affinity to calcite (e.g. Reddy et
al., 1999) and that calcite was reactive, we conclude that Ca-
bound P in the bed sediments was due to the adsorption of P
to calcite precipitates.

With regard to Fe/Mn-bound P, the studied drains were un-
dersaturated with respect to vivianite (SI< −3; not shown in
Fig. 2) implying that vivianite was not present in the studied
channels. Strengite was also likely not present because Fe3+

is insoluble in the pH range of 5–8 (Appelo and Postma,
2007), which was the pH range of the drainage channels
studied (pH = 7.0–7.8). MnHPO4 was consistently oversatu-
rated (SI∼= 2–3) in both the tertiary and the primary channel,
which suggests that this mineral was not reactive. It is also
possible that the high SI values of MnHPO4 were caused
by the near saturated state of rhodochrosite (MnCO3) be-
cause surface water was saturated with respect to this min-
eral (Fig. 2a, b). Although mineral carbonates such as calcite
can regulate P by co-precipitation (e.g. Freeman and Rowell,
1981), there are currently no published reports of phospho-
rus scavenging by rhodochrosite (MnCO3). Hence, P bound
to the iron/manganese oxides was likely due to the adsorp-
tion of P to iron/manganese oxides. We think that iron ox-
ides played a more important role instead of manganese ox-
ides because of the dominance of Fe-rich laterite in the study
area. The adsorption of P to iron oxides likely occurred dur-
ing and after rain events when there was resuspension of bed
sediment and the erosion of Fe-rich soils from urban surface.

Nutrient ratios are also often used to predict whether the
deposited sediment P is produced by adsorption or pre-
cipitation reactions or both. A molar ratio of Fe / P∼= 2
(range = 1.5–2.5) suggests that Fe-bound P in the sediment
was produced by the precipitation of iron phosphates such
as vivianite and strengite whereas higher ratios (Fe / P = 3.3–
9.7) suggest that it was produced by the adsorption of P to
iron oxides (e.g. Cooke et al., 1992; Gunnars et al., 2002;
Clark et al., 1997). For Ca, the limiting Ca : P ratio for min-
eral precipitation is about 1.7 (Freeman and Rowell, 1981).
In our study, both the Fe : P and Ca : P molar ratios in the
sediment were too high (> 3.6 for Fe : P and> 5.2 for Ca : P;
Table 3) to argue that the precipitation of iron and calcium
phosphates took place. Instead, these high ratios confirm that
sediment inorganic P was produced by the adsorption of P to
calcite and iron oxides. These revelations are in agreement
with our earlier arguments from mineral saturation indices
that the adsorption of P to calcite and iron oxides regulated P
transport in the studied drains.

Based on the discussions above, Fig. 9 shows a schematic
of the processes likely affecting P transport in the studied
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Table 3.Nutrient and metal molar ratios of bed sediments and the water column in comparison with literature values.

System Fe : P∗ Ca : P∗∗ OC : OP Remarks
(molar) (molar) (molar)

Nsooba channel, Uganda

Sediment B1 – deep 3.8 5.0 17 This study
Sediment B7 – deep 3.6 5.2 15 This study
Sediment B1 – shallow 3.6 12.1 9 This study
Sediment B7 – shallow 2.6 3.6 14 This study
Water column (base flow) 0.2 17.8 This study
Suspended sediment 14.9 4.5 This study

Tertiary channel, Uganda

Sediment B4 – shallow 2.3 9.2 9 This study
Water column (base flow) 0.0 4.7 This study

Nakivubo channel, Uganda

Bed sediment 1–6 68–92 Kansiime and Nalubega (1999)

Mozhaisk reservoir, Russia

Bed sediment 5.7 Martynova (2011)

P∗, iron bound P (NaOH− P); P∗∗, calcium bound P (HCl− P)
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Fig. 9. Schematic of the possible phosphorus transport processes during low flow and high flood events. The grey oval shapes of different
sizes illustrate settling and resuspension of particulate P.

catchment. Currently, there are few published studies in ur-
ban informal settlements in SSA with which we can compare
our results with regard to P transport. One study by Kansi-
ime and Nalubega (1999), however, did try to investigate the
removal of P by sediment in the Nakivubo channel/swamp,
which had received wastewater from the city of Kampala
(Uganda), for over 30 yr. The findings of this study, on the
contrary, suggested that the precipitation of CaCO3 was not
a very important process for P retention because of the low

Ca content (60 mg kg−1) and the low Ca-bound P (10 % of
TP) in the sediment. The retention of P was instead attributed
to precipitation of vivianite because of the low Fe : P molar
ratios (1–3). However, this study did not carry out geochem-
ical speciation of phosphate phases in the overlying water
to confirm if there was a strong likelihood for vivianite to
precipitate. In our study, Fe : P ratios in the sediment were
generally high (> 3.6; Table 3) and the overlying water was
undersaturated with respect to iron phosphates. In addition,
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the sediment Ca content was very high (> 2000 mg kg−1; Ta-
ble 1) while at the same time Ca-bound P contributed over
50 % of total sediment P. This implies that there were indeed
interactions between Ca and P in our study. These findings
show that P retention processes in surface water in urban in-
formal settlements can vary significantly depending on the
location.

5.4.2 P release from sediments

Our results further indicated that the bed sediments, particu-
larly the shallow ones, were P saturated because the total sed-
iment P was almost equal to or more than maximum P sorp-
tion capacity,Smax (Figs. 7, 8). For example, theSmax of the
shallow sediments at location B1 was 1550 mg kg−1 whereas
the total sediment P was 1668 mg kg−1 (Figs. 7, 8). In the ter-
tiary drain, theSmaxwas 820 mg kg−1 whereas total sediment
P was 1840 mg kg−1. The P saturation state of sediments is
one of the most important factors that indicate the poten-
tial for sediments to release P (Hooda et al., 2000). Three
processes are mainly responsible for the release of P from
sediments: (1) mineralisation of organic matter, (2) desorp-
tion, and (3) reductive dissolution of P bound to iron oxides
(e.g. Fox et al., 1986; Søndergaard et al., 1999; Boers and de
Bles, 1991). Given that surface water was Mn-reducing, it is
unlikely that reductive dissolution of Fe-bound P took place.
Hence, if P release took place, it was by mineralisation of
organic matter or by desorption.

Metal / nutrient and C / P molar ratios are also often used
to indicate P release by dissolution of metal bound P and
mineralisation of organic P respectively. Fe : P (and Ca : P)
ratios< 2 indicate a tendency for bed sediments to release
PO4 (Jensen et al., 1992). Table 3 shows that Fe : P ratios in
the water column in our study were very low (< 2) whereas
Ca : P ratios were very high (up to 17) indicating that P was
potentially released from Fe-bound P in the sediment by
desorption. On the other hand, P release by mineralisation
usually occurs when the C : P molar ratio< 200 (Stevenson,
1986). In our study, the C : P ratios of all sediments collected
were less than 200 implying that there was a potential for
mineralisation of P from the organic P retained in the bed
sediment.

This study has provided useful insights into the processes
regulating the transport of sanitation-related phosphorus in
drainage channels in a typical urban slum catchment. We
showed that the adsorption of P to iron oxides in the sedi-
ments and to calcite precipitates in the water column played
an important role in regulating P transport to downstream
areas. We have also demonstrated the presence of flush ef-
fects and the role of the channel-bed sediments to release
phosphorus back into the water column. Knowledge of these
processes is crucial in developing process-based water qual-
ity models, which can aid policy and decision making re-
garding strategies to reduce nutrients exported from urban
catchments. A complete understanding of these processes,

however, requires more research to be carried out in these
types of catchments. Future work could focus on using on-
site automated samplers and analysers in order to obtain
high-resolution data, which allows for improved understand-
ing (at a much higher scale) of the P transport processes and
the trends that occur when hydrological conditions change.

6 Conclusions

In this study, we attempted to understand the processes gov-
erning the transport and retention of phosphorus (P) during
high and low flows in a channel draining a 28 km2 urban
catchment with informal settlements in Kampala, Uganda.
Results from our study revealed the following.

– A large amount of phosphorus was discharged from
the studied catchment. The base-flow concentrations
of P in the primary channel were 1.15 mg L−1 for to-
tal P and 0.36 mg L−1 for PO4-P, which were about
16 times the minimum required to cause eutrophica-
tion. The corresponding P fluxes of 0.3 kg km2 d−1 for
PO4-P and 0.95 kg km2 d−1 for TP were also of sev-
eral orders of magnitude higher than values normally
reported in published literature for other catchments.

– By comparing the hydrochemistry and P concentra-
tions in the primary channel and a tertiary channel
draining a slum area, we were able conclude that the
primary source of P in the channels was the direct dis-
charge of untreated wastewater into the tertiary chan-
nels, primarily due to grey water effluents from infor-
mal settlements.

– In the four rain events we sampled, we observed a
flushing of P mainly in particulate form. We attributed
this flushing to the resuspension of the P-rich bed sed-
iments that had accumulated in the channel during low
flows. It is unlikely that the terrestrial runoff signif-
icantly contributed to the flushing of TP and PP be-
cause the concentration peaks of TP and PP during the
rain events were almost similar irrespective of the sam-
ple location along the primary drain. Our results, how-
ever, seemed to suggest that first-flush effects were not
present. In all the rain events sampled, the concentra-
tion peaks of TP, PP and SS were realised after the
peak discharge. This was likely caused by the poor
on-site sanitation practices in the catchment whereby
most residents, especially in informal settlements, re-
lease untreated wastewater into drainage channels dur-
ing and after storm events.

– In relation to chemical processes, our results indicated
that P transport in the channels was regulated by the
co-precipitation of P with calcite precipitates and by
the adsorption of P to iron oxides, especially during
rain events when there was resuspension of sediments.
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These findings were consistent with our other findings
that the retained P in the sediment was largely inor-
ganic (64–80 % of total sediment P) and was bound to
Ca and iron/manganese oxides in almost equal propor-
tions (51–54 and 46–49 %, respectively). The retention
of P by settling of organic matter also seemed to be im-
portant because organic-bound P in the bed sediments
was also relatively high (i.e. 17–22 % of the total sedi-
ment P). The sediments, however, showed potential to
release P to the overlying water by mineralisation of
organic matter and desorption of P bound to iron ox-
ides/hydroxides.

Our study provides useful insights into mechanisms likely
controlling P transport in a typical urban catchment with in-
formal settlements. To have a complete understanding of the
P transport processes in these catchments, we recommend
that additional P transport studies be carried out in other ur-
ban informal catchments with emphasis on high-resolution
nutrient monitoring during high flows.
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