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Abstract. The equation of one-dimensional gradually varied Subramanya, 2009; Jan and Chen, 2012; Vatankhah, 2012).
flow (GVF) in sustaining and non-sustaining open channelsThe most widely used methods for computing GVF profiles
is normalized using the critical depthg, and then analyt- could be classified into the step methods and the direct in-
ically solved by the direct integration method with the use tegration methods. The step methods are numerical methods
of the Gaussian hypergeometric function (GHF). The GHF-and are primarily used in natural channels with non-prismatic
based solution so obtained from thebased dimensionless sections. On the other hand, the direct integration methods
GVF equation is more useful and versatile than its counterinvolve the integration of the GVF equation and may be
part from the GVF equation normalized by the normal depth,performed by using analytical, semi-analytical, or numeri-
yn, because the GHF-based solutions of gkbased dimen-  cal procedures. Numerical integration of the GVF equation is
sionless GVF equation for the mild (M) and adverse (A) pro- primarily used in non-prismatic channels. In some prismatic
files can asymptotically reduce to thgbased dimensionless channels, such as artificial channels, the GVF equation can
horizontal (H) profiles as¢/yn — 0. An in-depth analysis of be simplified so as to let the analytical (or semi-analytical) di-
the yc-based dimensionless profiles expressed in terms of theect integration be applied. The analytical direct-integration
GHF for GVF in sustaining and adverse wide channels hasnethod is straightforward and can provide the total length
been conducted to discuss the effectsyghn and the hy-  of the profile in a single computation step. In the direct-
draulic exponentVv on the profiles. This paper has laid the integration method, the one-dimensional (1-D) GVF equa-
foundation to compute at one sweep fhebased dimension-  tion is usually normalized to be a simpler expression in ad-
less GVF profiles in a series of sustaining and adverse chanvance so as to allow the performance of direct integration. In
nels, which have horizontal slopes sandwiched in betweemost cases, the GVF equation is normalized by the normal
them, by using the GHF-based solutions. depth yn (Chow, 1959; Subramanya, 2009; Jan and Chen,
2012; Venutelli, 2004; Vatankhah, 2012), while in some
cases, it is normalized by the critical depth (Chen and
1 Introduction Wang, 1969). Many attempts have been made by previous in-
vestigators on the direct-integration method. The varied-flow
Many hydraulic engineering works involve the computation function (VFF) needed in the direct-integration method con-
of surface profiles of gradually varied flow (GVF) that is ventionally used by Bakhmeteff (1932), Chow (1955, 1957,
a steady non-uniform flow in an open channel with grad-1959), Kumar (1978), among others, has a drawback caused
ual changes in its water surface elevation. The computatioly the imprecise interpolation of the VFF values. To over-
methods of GVF profiles in open channels have been discome the drawback, Jan and Chen (2012) already success-
cussed in many textbooks and journal papers (Chow, 1959fully used the Gaussian hypergeometric functions (GHFs)
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974 C.-D. Jan and C.-L. Chen: Gaussian hypergeometric functions

to analytically solve the GVF equation in sustaining wide nels. Chow (1957, 1959) was probably the first person who
channels without recourse to the VFF. directly computed the VFF values for GVF in adverse chan-
Success to formulate the normal-depth(based non- nels from the corresponding two transformed VFF values for
dimensional GVF profiles expressed in terms of GHFsGVF in sustaining channels. He further tabulated the VFF
for flow in sustaining channels, as reported by Jan andvalues so computed fa¥ values ranging from 3 to 5.5 for
Chen (2012), does not necessarily warrant that it can likewiseise in engineering applications to compute théased di-
prevail to useyy, in the normalization of the GVF equation for mensionless GVF profiles in adverse channels.
flow in adverse channels becaugefor an assumed uniform In the direct integration of the GVF equation, regardless
flow in adverse channels is undefined. Even though one canf whether it is carried out for sustaining or adverse chan-
use an imaginary flow resistance coefficient to evalyafer nels, most previous investigators expressed the rational func-
such an assumed uniform flow in adverse channels (Chowtion representing the reciprocal of the slope of the GVF pro-
1959), as will be treated later in this paper, it is inappropriatefile in terms of the dimensionless flow depth rather than in
to use such amy, in the normalization of the GVF equation terms of the geometric elements of a given channel section
for flow in adverse channels becauseso evaluated is ficti-  before the two indefinite integrals were evaluated. Never-
tious and the two normalized variables in sughbased di-  theless, Allen and Enever (1968) as well as Kumar (1979)
mensionless GVF equation collapse (in virtueygf— co) did it in reverse by substituting their geometric elements of
as the channel-bottom slope approaches zero. To fill sucl rectangular, trapezoidal, or triangular channel section into
a mathematical gap as a result of the indiscreet choice of ghe section factorZ, and the conveyancé;, of the channel
characteristic length in the normalization of the GVF equa- section in the GVF equation before evaluating the two indef-
tion for adverse channels, Chen and Wang (1969) ws¢a inite integrals. Subsequently, they evaluated the two indef-
replaceyn along to derive twoyc-based dimensionless GVF inite integrals using the partial-fraction expansion and then
equations, one for sustaining channels and the other for adgot the elementary-transcendental-function (ETF)-based so-
verse channels. For the hydraulic exponemts=3 (wide lution for each of the cross-sectional shapes under study,
channels) an&v = 10/3 (equivalent to using Manning’s for- such as rectangular, triangular and parabolic cross-sectional
mula) they integrated both equations numerically over theshapes. Another approach taken by Zaghloul (1990, 1992) to
normalized depthy/yc, to get theyc-based dimensionless integrate the GVF equation for the profiles in circular pipes
GVF profiles in sustaining and adverse channels. was the same as that used by Allen and Enever (1968) by
This study focuses on the direct integration method thatsubstituting the geometric elements of a circular conduit sec-
used to analytically compute the GVF profiles in sustainingtion into Z and K in the GVF equation before integrating it
and non-sustaining channels, in which the GVF equation isby use of Simpson'’s rule (Zaghloul, 1990) or both the direct
normalized by using. and then analytically solved by using step and integration methods (Zaghloul, 1992). After all, he
the GHFs. Before proceeding to formulate the twebased  developed a computer model on the basis of such methods to
dimensionless GVF equations for sustaining channels andompute GVF profiles not only in sustaining and horizontal
adverse channels, respectively, it is worthwhile to review allpipes, but also in adverse pipes.
of what has been attained by previous investigators to com- For computing GVF profiles in sustaining channels, one
pute the GVF profiles in both sustaining and adverse chanean solve then-based dimensionless GVF equation by using
nels. We already reviewed quite comprehensively most of thehe direct integration method and the Gaussian hypergeomet-
previous work on the analytical computation of the GVF pro- ric function (GHF), as presented by Jan and Chen (2012).
files in sustaining channels, as reported in our paper (Jan andevertheless, for computing GVF profiles in adverse chan-
Chen, 2012). Therefore, in this paper, we focus on the liter-nels, one cannot do likewise due to the difficulty in quan-
ature survey only of the computed GVF profiles in adversetifying the y,-value to be used in the normalization of the
channels. GVF equation becausg, for an assumed uniform flow in
As a matter of fact, there are not many previous investi-adverse channels is undefined. Useypfinstead ofy, in
gators who have contributed to the computation of the GVFthe normalization of the GVF equation for flow in adverse
profiles in adverse channels. One of the earliest investigachannels can resolve such a vital issue resulting from the
tions in this study may be credited to Matzke (1937), who undefinedy, becausey; can be uniquely determined for a
formulated theyn-based dimensionless GVF equation for given discharge. The primary objective of this paper is thus
GVF in adverse channels, thereby integrating the indefiniteto formulate and then analytically solve the twgbased di-
integrals of the GVF equation in the form of the varied- mensionless GVF equations for GVFs in both sustaining and
flow function (VFF), following in Bakhmeteff's (1932) foot- adverse channels by using the direct integration method and
steps. However, unlike the four methods used by Bakhmetefthe Gaussian hypergeometric functions (GHFs). The GHF-
to compute the VFF values numerically, Matzke evaluatedbased solutions of this study will lay the theoretical founda-
them by a graphical method and constructed a table thereafon to compute suchc-based dimensionless GVF profiles in
for any N values between 3 and 4, inclusive, for computing a series of interconnected sustaining and adverse channels.
the yn,-based dimensionless GVF profiles in adverse chan-
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2 Critical-depth-based dimensionless GVF equations ing channels. Therefore, for the first case in which Hy. (

is normalized based om,, we can introduce the dimen-
Before deriving theic-based dimensionless one dimensional sionless variables (= y/yn) andx, (= xSo/yn), as done by
GVF profiles in sustaining channelso(> 0), horizontal  Chow (1959), Jan and Chen (2012) among others, thereby

channels §o = 0), and adverse channelSo(< 0), we first  expressing the reciprocal of E4)(in terms ofu andx., as
formulate theyc-based dimensionless GVF equations for

three such types of channels in the following. dx.

B _uN 4 My N-M
du 1—uN

2
2.1 Equation of the GVF in sustaining channels

which has been referred to as the dimensionless GVF equa-
The dimensional form of the 1-D GVF equation expressed intion based ony, with A(= yc/yn), M, andN as three param-
terms of the flow depth prior to normalization can be written eters. The characteristic length ratidn Eq. @) is the pri-

as (Chow, 1959) mary parameter that classifies the GVF profiles into those in

N the mild (M), critical (C), and steep (S) channels if the ratio
d_y =S5 1-(On/y) _ 1) A is less than, equal to, and larger than unity, respectively.
dx 1— (ye/ )M Instead ofy,, we want to use to normalizex andy in

This equation is a first order differential equation and denotesEq' (1) herein by simply adopting the dimensionless vari-

. o ablesv (= y/yc) and xx (=x&/yc), as done by Chen and
the relation between the flow depttand the axial distance : .
along the open channel having a sidfseThe subscripts “n” Wang (1969), to rewrite the reciprocal of EQ) {(n terms of

. i, n in the following- imensionl
and “c” refer to the normal and critical flow conditions, re- v andux; S0 as to obtain the following:-based dimensionless

spectively. The exponentg andN are usually called the hy- GVF equation witfh, M, andN as three parameters.
draulic exponents for critical-flow computation and uniform- dey  —vN VM
flow computation, respectively. It is expected that the solu-—— = W
tion of Eq. (L), if obtainable, can be expressed in a form of
y as an implicit function ofc with So, yn, yc, M, andN as  which is valid in the domain of 6 v < oo.
parameters. The following two relations are the normalized flow depth
Though the validity of Eq.X) is not at issue, one should and normalized longitudinal coordinate defined on the basis
be aware of its implication before normalizing it for solu- of yy, to their counterparts defined on the basigof
tion. Firstly, the resistance to GVF in open channels, as in-
corporated in Eq.1), is conventionally evaluated on the as- 4_Xe 4)
sumption that the resistance at any section is equal to what ~ In
it would be as if the sam@ passed through the same sec- , g, ye \ VL
tion under conditions of uniformity. However, this conven- P = %S_c = (%> . (5)
tional assumption made in Eql)(does not take the effect
of boundary non-uniformity into account in the evaluation of Both normalized variables so related in Eqd.4nd 6) will
the non-uniform flow resistance. According to Rouse (1965),be useful in converting the solutions of Eg) {o its counter-
the effect of boundary non-uniformity on the flow resistance parts obtained from Eq3}, or vice versa.
should include any change in shape or size of the section
along the longitudinal direction. Secondly, Et) tannotbe 2.2 Equation of the GVF in horizontal channels
used to compute GVF profiles in nonsustaining (horizontal ] . ]
or adverse) channels becauseis infinite for flow in hori-  Although Chow (1959, p. 223) did not classify horizontal
zontal channels and undefined for flow in adverse channelschannels as a type of sustaining channels, we can prove
Thirdly, N is related to the power in the power-law flow re- that theyc-based dimensionless GVF equation, E8), {s
sistance formula, which has been incorporated informu|atingst|” valid for GVF profiles in horizontal channels. In other
Eq. (1). Itis noted thatv = 3 for hydraulically smooth flows ~Words, because we hagg = 0, yn — oo, and(= yc/yn) —
andN = 2m + 3 (wherem is the exponent of a unified sim- O for GVF profiles in horizontal channels, Eqg)(can
ilarity variable used in the power laws of the wall) for fully Pe simplified to
rough flows (Chen, 1991). ds
By and large, there are two ways in whishandy in = V=M _yN (6)
Eqg. @) can be normalized: one is based on the normal depth, v
yn, @s usually adopted by many researchers (Chow, 195%vhich is still valid in the domain of & v < co. Equation 6)
for GVF in sustaining channels, and the other based on thés the dimensionless equation basedygrior GVF profiles
critical depth,yc, as treated by Chen and Wang (1969), who in horizontal channels with/ andN as two parameters. For
adoptedy in place ofy, to compute in one sweep GVF pro- convenience, Eq6) may be referred to as the asymptote of
files in a series of interconnected sustaining and nonsustairkEg. ) asA — 0. Under the assumption of constadtand

®)
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N, Eq. @) can be analytically integrated overusing the  dimensionless equation for GVF in adverse channels.
GHPF, as will be shown later, while we can directly integrate

. . . . deg —vN 4N M
Eq. 6) without resorting to the GHF in the following manner. —% — (8)
dv 1+ (w)N
oN-M+1 N4l in vyhich v=y/ye andxx = x_&/yc, the same Qimensionless
Xp = — 4 Const (7)  variables used in the derivation of EG).(As pointed out ear-
N-M+1 N+1 lier, Eq. @) for GVF in adverse channels can reduce asymp-

The above equation describes thebased dimensionless totically to Eq. §) for GVF in horizontal channels & — 0
GVF profiles in wide horizontal channels (in whigl = 3). (i.e.yn—> oo ora - 0). o _
The constant of integration, “Const”, in Eq) (s to be deter- Undoubtedly, at issue herein is the controversial approach

mined from a given boundary condition. It should be notedtaken in evaluating for use in Eq. §) because the resis-
that Eq. ) can readily be identified with Chow's (1959, tance coefficientin the flow resistance formula is assumed to

Sect. 10.2) Egs. (10)—(26). be imaginary and the,-value so evaluated is fictitious in an

Chow’s (1959, Sect. 10.2) classification to distinguish aadverse channel. Nevertheless, for a gigerthe yc-value so
horizontal slope fo = 0) from a sustaining slopesg > 0) computed is unigue, regardless of whether it is in a sustaining
or an adverse slopeSd < 0) seems at odds with the limit Or adverse channel. The parametéY, appearing in Eq.8)
of differential calculus, because tiye-based dimensionless Signifies the slope raticso/Sc, thus implying that." is of a
horizontal profiles, Eq.7), can be derived from the.-based ~ hegative value for GVF in adversgy(< 0) channels. There-
dimensionless equation for GVF profiles in sustaining or ad-fore,  (=(So/Se)”/") as a parameter for GVF in adverse
verse channels having any resghvalues. In fact, Chow could ~ channels is not so physically meaningful as that in Bj. (
have treated GVF profiles on a horizontal slope as the asympfor GVF in sustaining channels, in which the flow criteria of
tote of those on a sustaining slope $is— 0, as deduced theA-value being less than, equal to, and greater than unity
above from Egs.3) to (7) by lettingx — 0 (or yn — 00). We can represent respectively the GVF on the mild, critical, and
shall also later prove that the GHF-based solutions of 8q. ( Steep slopes. In contrast, the fictitiousalue in Eg. §) for
for GVF on the mild S|0pe (Where QA< l) can reduce to GVF in adverse channels is nothing but an index. Although
Eq (7) when we approach its asymptote by |ettmg_) 0. the ultimate usefulness of ECB)(may not be realized un-
Likewise, theyc-based dimensionless equation for GVF in til after such an issue in the evaluationygfis resolved, we
adverse channels, as will be formulated later, can also apPresently rest content with such fictitioys because there
proach its asymptote, namely Eq),(asx — 0. Therefore, ~appears no other approach better than that taken above to
for coherence in treating the asymptote of thebased di-  evaluatey, for GVF in adverse channels.
mensionless GVF equation and its solutions throughout the Although yn-value so evaluated is fictitious in an adverse
paper, we henceforth regard the horizontal slope as an inte€hannel regardless of whether E) (s normalized on the
mediate (or interface) between the sustaining slope and thBasis ofyc or y,, we prefer to normalize Eqlf based on

adverse slope a% approaches zero from either slope. yc rather than based om, for the following main reason.
Most previous investigators, such as Chow (1957, 1959) for-
2.3 Equation of the GVF in adverse channels mulated they,-based dimensionless GVF equation for com-

puting GVF profiles in adverse channels, i.e., thebased
To formulate theyc-based dimensionless GVF equation for counterpart of Eq.8) instead of theyc-based Eq.8§). How-
GVF in adverse channels, we deem the slope of the channelver, Eq. 8) has the obvious advantage over jigbased
bottom as negative, i.e5o < 0. Such a fictitious treatment counterpart because the latter cannot reduce asymptotically
may result in an imaginary value @f, (the conveyance for to Eq. §) asSo — O (i.e. yn — oo or A — 0) unless the nor-
uniform flow at a depthyn) or a negative value ok fora  malizing quantity of they-based GVF equation for adverse
given Q (= KnS{, providedg = 1/2). Althoughyn for uni-  channels can be altered from to yc so as to enable one
form flow in adverse channels is undefined, we may assumeop switch the normalized variables fromto v via Eq. @)
that the coefficient of the flow resistancg,in the flow resis-  and fromx, to x4 via Eq. 6) asSo — 0. By implication, if
tance formula is imaginary so as to enable the computationhe y,-based counterpart of Eq8)(would have been used
of yn. In other words, for a negative value B¢, the value of o compute GVF profiles in adverse channels, the horizontal
€2 used in computingy, from K2=C2A2R3” (wherep is  slope could not have been treated as an intermediate (or in-
the exponent related to the flow resistance formpla; 2/3 terface) between the sustaining slope and the adverse slope
for Manning’s formula ang = 1/2 for Chezy formula) must  asSp — 0. Insomuch that, we can deem E8) With the pa-
be negative, thus resulting in a fictitious valueygf if deter- rameter), a completely general equation to compute the
mined from the above relation. Because the critical depth based dimensionless GVF profiles on adverse slopes, espe-
can be determined from the critical relation for a given  cially versatile in a series of interconnected sustaining and
(Chow, 1959, Sect. 4.2), the fictitiogg so calculated can be adverse channels, having horizontal channels sandwiched in
further incorporated witly. to derive the followingy.-based  between them.
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3 Gaussian hypergeometric function expression, such agb, z) = F(1, b; b+1, z), to reduce the
related equations to shorter expressions for facilitating the

Prior to find the analytical solutions of the critical-depth- reading of the manuscript, as treated by Jan and Chen (2012).

based equations for the gradually varied flows in sustainingrherefore, we will usegz(b, z) instead of F(1, b; b+1; z)

and adverse channels by using the Gaussian hypergeomettiferein to represent GHF when we treat the GHF-solutions in

function (GHF), we will introduce the definition of GHF and  the present paper.

some relations first. GHF can be expressed as an infinite se- The following recurrence formulas between two GHFs can

ries and symbolized in the form e#1(a, b; ¢; z) as shown  pe generally established from Ed.1j as shown in Jan and
in the books of Korn and Korn (1961), Luke (1975), Pear- Chen (2012).

son (1974), and Seaborn (1991). The foff (a, b; c; 2) bz
can be safely changed to the more friendly fofitu, b; c; gh,2)=1+—-g(b+172). (12)

z) as Olde Daalhuis (2010, Sect. 15.1) indicates, i.e. b+1

- Sincel“(lla)z @—1)r®-1),rkm+1) = br@p), and F
Fla.b:cio) = (o) Z F((l—FS)F(b—i—S)ZX ©) (»,0h;z7H =1, we can rewrite Eq.10), for |z]>1, in a

I'(a)T'(b) == Tlet+s)s! much shorter expression as

in which a, b, andc are the function parameters ands g(b,7) = _bz lg(l_b’{l)
the variable. The infinite series in E@)(is convergent for b—-1
arbitrary a, b, andc, provided thatc is neither a negative 4T (1—b)T (1+b) (_Z—1>h (13)
integer nor zero and that or b is not a negative integer
forreal-1<z <1 (or|z]<1),and forz==x1if c>a+b  In addition, for the condition4r)N <1 (i.e. Bt <1) , in
(Olde Daalhuis, 2010). Equatiof))(has the symmetric prop- which g is a positive parameter,is a positive variable, and
erty: F(a, b; c; 2)=F (b, a; c; 2). N is a positive real number, using the commerditdthe-

A survey of the literature reveals that there are two lin- maticasoftware (Wolfram, 1996), we can find the following
early independent solutions of the hypergeometric differen-general relation for the solution of the indefinite integral in
tial equation at each of the three singular points0, 1, and  terms of GHF as shown below.
oo for a total of six special solutions, which are in fact fun- ) L i1
damental to Kummer’s (1836) 24 solutions. Any three of theJ ydt = g (
aforementioned six special solutions satisfy a relation, thu 1¥(B1) ¢+1 N
giving rise to twenty combinations thereof. Among them, in which the parametep is a real number. The terng{)
there is a relation connecting one GHF in the domain ofin Eq. (14) could be fv) or (w/x) for the study herein as
|z| <1 to two GHFs in the domain df| > 1 in the following ~ shown in the next sections. This kind of indefinite integrals as
way (Luke, 1975): shown in Eq. {4) will be applied many times in the following
sections when we find GHF-based solutions for GVF profiles
in sustaining and adverse channels.

, :l:(ﬂt)N>+Const (14)

F(a,bic;z7) = w (_Zfl)a

ro)yrc—a
_ IF'@a—b)T'(c) 1 _1\°
: -1 1
F (“’ a—ctla-b+lz ) T @T (c—b) (‘Z ) 4 Analytical solutions of the yc-based GVF equations
F <b, b—c+1l—a+b+1 Z_l) (10)  There are two ways to analytically solve the normal-depth-

based {-based) dimensionless GVF equation by the direct-
integration method: One is based on the GHF and the other
on the elementary transcendental functions (ETF). The inno-
vative results obtained by Jan and Chen (2012) shows that the
GHF-based solutions are more useful and versatile than the
ETF-based solutions, because the former allows its involved
parameterd/ andN being real numbers while the latter can
at the most accept rational numbers, but not real numbers.
s This paper is henceforth focused only on the acquisition and
(11)  analysis of the GHF-based solutions for the critical-depth-
based {¢-based) dimensionless GVF equation. Analogous

The GHFs used in the solutions of the gradually varied flowto the direct integration of the,-based dimensionless GVF
profiles herein are all in the form of EqLY). Since the first ~equation, as treated by Jan and Chen (2012), we can directly
argument of the GHF of Eq1() is always unity, the second integrate both Egs.3] and @) for the sustaining and ad-
and third arguments differ in one unity, and the fourth argu-Verse channels respectively, and then express their solutions
ment is a variable only, we can express the GHF in a simplefn terms of the GHF by using Eq14).

One may use Eq.10) to transform the GHF-based solu-
tions in the domain ofz| <1 to their counterparts in the
domain of|z| > 1. The commerciaMathematicasoftware
treats Eq. 10) as a definition of (a, b; c; z) for |z| > 1 (Wol-
fram, 1996).

For the special case, b, andc are fixed with specified
relationsa = 1 andc = b + 1, Eq. ) can be written as

z
b+s’

o
F(Lbib+1:2)=g(b.2)=b)y
s=0
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4.1 Alternative forms of Egs. 3) and (8) The GHF-based solutions for Eq&.7}, (18) and (L9) can be
easily obtained by using the help of Eq4]. Three GHF-
The validity of the solutions of Eq3] or (8) to be expressed based solutions to be obtained from E@7)(to Eq. (L9)
in terms of the GHF is confined to the convergence criterionshould be identical. Equating any two of the three GHF-
of GHF itself, i.e.|]Av| < 1. Therefore, an alternative form of hased solutions will thus establish a recurrence formula be-
Eq. @) or (8) has to be formulated so as to allow its solu- tween the two contiguous GHFs as shown in E@)(Only
tions expressed in terms of the GHF be valid fov| >1.  one of the three solutions is needed. Because Eg.Has
Every GHF-based solution of E¢B)(or (8) thus consists of  shorter length of expression, we will use it latter to derive our
two parts: one in the domain ¢fv| <1 and the other in the  GHF-based solutions for GVF profile in a sustaining channel.
domain of|Av| > 1. To derive alternative forms of Eqs3)( Likewise, to derive the GHF-based solutions of Ebg)(
and 6) in order that their GHF-based solutions be valid for for |Av| > 1, we can make a direct integration to EmSXaS
|av| > 1, Egs. 8) and @) on substitution ob = w~! and o shown below.
= —w~2 dw will respectively yield the following Eqs.16) 5
and (L6) for GVF in sustaining and adverse channels, respecy, — —A‘N/ w dw + 1N

tively. 1—(w/MN
M—-2
dey w2 wM2 / w—Ndw + Const (20)
o= " (15) 1—(w/2)
With the help of Eq. 14), the complete GHF-based solutions
des w2 — M2 (16) of the dimensionless GVF equation, Eg),for GVF in sus-
dw 1+ (w/M)N taining channels can be obtained by executing the integra-

) ) tion of the two indefinite integrals in Eqly) for [Av| <1
Before procuring the G_HF.—based solutions from Ed$) ( and then carrying out the same in ERO) for |w/x| < 1 (or
and (16), it merits mentioning that such GHF-based solu- Iv] > 1), as shown below.

tions, if obtainable, are premised on the assumption that they

are valid only in the domains ofv/A| <1 (i.e.|Av| > 1). oML N1 N pN-M+1
Xg=— gl — )" |+ ——8
L - N+1 N N-M+1
4.2 GVF profiles in sustaining channels
N-M+1 v
o ] ) ] ) ——, (Av)" ) +Const (21)
For facilitating the direct integration to obtain the GHF-based N

solutions of Eq. ) for [Av| < 1 and Eq. {4) for |Av| > 1, we

can rearrange Eq3) into three different forms. The right-

hand side of Eq.J) is the rational function ob, which by LN -1 (-1 <w>N> A—NywM-1
w g _—

which is valid only for|iv| < 1.

the process of long division can be expressed in the form of # = N\ M—_1 ¢
a polynomial plus a proper fraction in two ways before we M—1 s w\N
integrate them. One way is to divide the first term of the nu- (T (x) > + Const (22)

merator on the right-hand side of E) py the denominator;
the other way is to divide the second term of the numeratorwhich is valid only for|w/x | <1. To express Eq.2Q) in
on the right-hand side of Eg3) by the denominator. There- terms ofv, we substitutav = v=1 into Eq. £2) to have

fore, they are three possible representations of the solution of

Eq. 3) by the direct integration method, as shown below. _ ,-~,, (_i (M)N) n VNU*MHg
N M-1
- A U iconst (7 M-1
= _/ -GV +/ TGy v eonst (D) (T (xvr”) +Const (23)
N-M+1 N which is valid only for|Av| > 1.
=N 1 —f 1= GV dv+ AN It is worthwhile to reiterate that we can use Eﬂ;B)( to
- transform the GHF-based solutions in the domaimnzpk 1
/ v dv + Const (18) to their counterparts in the domain|af > 1. Herez = (Av)V
1- ()N for Eq. 21). That is to say that we can use E§j3) to directly
transform Eq. 21) to Eq. £3), vice versa, without recourse
pN+1 VM v to the formulation of Eq.15) [i.e. an alternative form of
WETN 1 "‘/ 1— )N dv —2 Eq. (3) with its variable,w, being expressed as 1], which
2N can be solved for GVF profiles in the domains|of/A| <1
f ———dv+Const (29) (i.e.|rv| > 1), thereby proving that we can obtain E&3) di-
1-Gw) rectly from Eq. 21) rather than indirectly through EqL¥).
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It should be noted that such GHF-based solutions excludevhich is valid only for|Av| > 1.
points wheréiv|=1 (or|w/A|=1) because the GHF diverges It is also found that the two GHFs appearing in each of
at|av|=1 (or|w/A| = 1). Physically, such points correspond Egs. 6) and @8) converge but not diverge at = 1 because
to the convergent limits of the GHF in the GHF-based solu-the variable of both GHFs is of a negative value through
tions of Eq. B) atxz = oo, where GVF profiles run parallel its entire domain oftv > 0. That is to say that Eqs26)
with the channel bottom. and @8) cover the domains of & Av < 1 andiv > 1, re-
Although the absolute value of the variable in the GHF, spectively. Although the absolute value of the variable in the
i.e. |(Av)|, has been imposed to derive the GHF-based soluGHF, i.e.| »v|, has been imposed to derive the GHF-based so-
tions of Eq. 8) for GVF profiles in sustaining channels, the lutions from both Eqgs.§) and (6), the complete GHF-based
complete GHF-based solutions of E8) ¢an only cover the  solutions of Eq. §) for GVF profiles in adverse channels can
physically possible domain afv, i.e. 0< Av < 0o, thus con-  only cover the physically possible domain bf > 0. It is
sisting of Eq. R1) for 0 <Av<1,xg=o0c0 atAv=1, and thusinferred that the Al profile does not exist.
Eq. @3) for Av > 1. Insomuch that we can lift the absolute- It is worthwhile to reiterate that we can use EQ.3)
value restriction imposed orv in expressing the GHF-based to transform the GHF-based solutions in the domain of

solutions without the loss of generality. |z| <1 to their counterparts in the domain faf > 1. Here
o z=—(w)N for Eq. (26). That is to say that we can use
4.3 GVF profiles in adverse channels Eq. (13) to directly transform Eq.26) to Eq. 8), and vice

) o versa, without recourse to the formulation of Etg)([i.e. an

By the same token, the solution of the GVF profiles in ad- alternative form of Eq. & with its variable,w, being ex-
verse channels by the direct integration method can be Obf)ressed as—1], which can be solved for GVF profiles in
tained from Eq. §) for [av| <1 and Eq. 16) for [Aw| <1 {he Gomains ofw/A| < 1 (i.e.|%v| > 1), thereby proving that

(i-e.[2v]> 1), as shown below. we can obtain Eq.28) directly from Eq. @6) rather than in-

oV oN—M directly through Eq. 16), vice versa. If we accept EqlQ)
Xyt = —/ 1T ooV dv+/ Tr ooV dv+Const  (24) s a definition of GHF for|z| > 1, as treated by the com-
mercial Mathematicasoftware (Wolfram, 1996), then one

of Egs. @6) and @8) is enough to represent the complete

-2
xu=A"N / w—Ndw N GHF-based solutions of Eq8) for GVF profiles in ad-
1+ @/a) verse channels, covering the physically possible domain of O
wM=2 < Av < 00. Table 1 shows the summary of the critical-depth-
———dw + Const (25) . . ' .
1+ (w/)N based dimensionless GVF profiles expressed by using the

With the help of Eq. 14), the complete GHF-based solutions GHF on all types of slopes.

of Eq. @) for dimensionless GVF profiles in adverse chan-
nels can be obtained by executing the integration of the two ) )
indefinite integrals in Eq.24) for [v| <1 and then carry- 2 Discussions

ing out the same in Eq26) for jw/A| <1 (or|Av| > 1). The ) i )
5.1 Plotting the GHF-based solutions withk as

results are
N N1 y IN-MAL a parameter
Xy = — g(—,—(kv) )~I——g . . .
N+1 N N-M+1 Equations 21) and @3), which span respectively the do-
N—M+1 N mains of O<Av <1 andiv > 1, are the GHF-based solu-
(T’ — () ) + Const (26)  tions of Eq. B) for yc-based dimensionless GVF profiles in
sustaining channels, while EqR6] and @8), covering re-
1 WA N AN ypM-1 spectively the domains of 8 Av <1 andiv > 1, are GHF-
Xy = —A‘Nw‘lg <_N’ - <K) ) - ﬁg based solutions of Eq8) for y.-based dimensionless GVF
- profiles in adverse channels. As explained in the last section,
<_M -1 (E)N> + Const (27)  one of Egs. 26) and @8) is enough to represent the com-
N A plete GHF-based solutions of E®) for GVF profiles in ad-

Equations 26) and @7) should be valid in the domain of Verse channels, covering the whole domain ef Qv < co.
|| <1 and|w/A| < 1, respectively. To express E@7jin ~ Equation g6) is chosen herein. A plot of Eqgs21), (23)
terms ofv, substitutingw = v~ into Eq. @7) yields and @6) on the # v)-plane witha as a parameter may
N M1 help gain an insight into the uniqueness and versatility of
xg=—-2"Nug <_£ _ ()Lv)—N> AT g such GHF-based solutions. We thus uge= 3 (i.e. a typi-
N M-1 cal value corresponding to the wide channels) Ang 10/3
<MN 1’ B (Av)‘N> + Const (28) (i.e. a typical value corresponding to the Manning formula)

as an example to plot the-based solution curves on they(
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Fig. 1. A plot of the yc-based dimensionless 1-D GVF profiles for
M = 3 andN = 10/3 with yc/yn as a parameter.

v)-plane herein, as shown in Fig. 1. In Fig. 1, three bound-

ary conditions are arbitrarily prescribed ag(v) = (10, 10)

for Eq. 23), and at &, v) = (0,0) for Egs. 0) and £6),
respectively. There exist twelve types of thebased GVF
profiles, two on the H sloper(= 0), three on the M slope
(0 < 1<1), two on the C slopeix(= 1), three on the S slope
(1 <X < 0), and two on the A slope (8 1 < oo, in which

yn is fictitious). The twelveyc-based GVF profiles in three
zones may be respectively referred to as H2 and H3; M1
M2, and M3; C1 and C3; S1, S2, and S3; A2 and A3. The

twelve profiles so classified are the same as those classified

by Chow (1959) except for C2 (Chow treated it as for a uni-
form flow), which is excluded from our classification because
it is just a singularity for all the\ values except fol = 3,

as treated by Jan and Chen (2012).

5.2 Mild (M), steep (S), and adverse (A) profiles in zones
1,2,and 3

Examination of Fig. 1 reveals that two solution curves drawn
for the critical value oh (i.e. A = yc/y, = 1) and the asymp-
totic value of A (i.e. A =0) combined with the horizontal
line atv =1 and the horizontal asymptotes Jat =1 (or

v = ynlyc) can divide the entire domain of the solution curves
on the %, v)-plane into nine regions, which are constituted

Hydrol. Earth Syst. Sci., 17, 973987, 2013
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by a combination of three slopes and three zones, i.e. the
same division adopted by Chow (1959). The three slopes
consist of mild (M) slopes, steep (S) slopes, and adverse
(A) slopes, while the three zones are composed of zone 1
(A < v <oo for M1 profiles or 1< v < oo for S1 profiles),
zone 2 (1< v < A for M2 profiles,A < v <1 for S2 profiles,

or 1 < v<oo for A2 profiles), and zone 3 8 v <1 for

M3 profiles, 0< v < A for S3 profiles, or < v <1 for A3
profiles). Apparently, the particular solution curves drawn by
Egs. 1) and @3) with A(= yc/yn) = 1 separate the region of

M profiles from that of S profiles, while the unique solution
curve constructed by Eq7) through the asymptotic reduc-
tion of Eq. @1) or (26) asi — 0 separate the region of M
profiles from that of A profiles. These two solution curves
are respectively referred to as the critical (C) profiles on the
critical (C) slope £ = 1) and the horizontal (H) profiles on
the horizontal (H) slopex(= 0).

5.3 Ciritical (C) profiles in zones 1 and 3

The particular solutions of Eq21) and £3) on substitution
of A = 1yield

B vN+l N4+1 v N UN_M+1
WETN S UV Y N-m+1°
N—-—M+1
<—+, UN> + Const (29)
N
1 N v—M+1
M—-1
< , vN> + Const (30)

which are specifically referred to as the equations fgr
based C3 profiles in zone 3 @v < 1) and C1 profiles in
zone 1 (1<v < 00), respectively. In particular, upon substi-
tution of M = N = 3 and with the use of the recurrence for-
mulas Eq. 12), Eqg. 9) can readily reduce to

x# = v+ Const (32)
which is a straight line. Likewise, we can prove that E3f))(

on substitution ofM = N = 3 and with the help of the re-
currence formula Eq1@) also reduces to Eg3(), a straight
line. We can readily plot Eqs20) and @0) in Fig. 1 for all
the values ob except av = 1, where both equations are un-
defined due to the existence of a singularity. Two small open
circles are used to mark the singularity in Fig. 1. It is self-
evident from Fig. 1 that both equations so plotted Xt 1
irrespective of the existence of a singularitywat 1 are the
lines of demarcation, which divide the domain of solutions
curves obtained from Eqs2) and @3) into two regions,
one for M profiles (0< A < 1) and the other for S profiles
(A >1).
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as shown in the Fig. 1 of Jan and Chen (2012), the horizon-
tal asymptotes at = »~1(i.e. \v = 1) for variousi-values

on the {4, v)-plane translate vertically, as shown in Fig. 1
herein. Accordingly, the horizontal asymptotes at =1 on

the (v, v)-plane for the giverk-values may be deemed as
“movable” lines of demarcation drawn to divide the domain
of v into two major regions: One region spansQ.v < 1 (or

0 < v <1~1), which covers both zones 2 and 3 for M profiles
as well as zone 3 for S profiles, and the other region extends
overiv > 1 (orv > A~1), which covers zone 1 for M profiles
as well as both zones 1 and 2 for S profiles.

In comparison, there exist no horizontal asymptotes at
v=2x"1 for various A-values in the domain of solution
curves plotted for Eq.26) on the (%, v)-plane, which rep-
resent theyc-based dimensionless GVF profiles on the ad-
verse slope. An inspection of Fig. 1 clearly reveals that the
solution curves plotted for Eqs21) and @3) diverge at
v =1"1on the 4, v)-plane, whereas those which are plot-
ted for Eq. 26) do not diverge ab = A~ for any A-value
shown. The latter result may be attributed to the fact that
yn adopted in the derivation of Eq26€) is simply fictitious
(i.e. nonexistent).

5.6 Two inflection points of the M profiles

The inflection point of a flow profile on thevtixx versusv
plane takes place at a point, whergddky is an extremum

Fig. 2. A close-up of those H, M, C, S and A profiles which are (i.€., either a minimum or a maximum). It lies either be-
plotted in Fig. 1 around the boundary conditionss,(v) = (0, 0). tween the two vertical asymptotes or between the horizontal
asymptote and its adjacent vertical asymptote. The v-value,
at which the inflection point occurs, can be determined from
the condition under whick?v/dx2 = 0. We can derive such

, i ~_acondition from the reciprocal of EqB)as follows:
To separate the region of M profiles from that of A profiles is
d?v _ [L—aNoN][MAN N — NoM (N — M)]

a solution curve plotted by use of E@)(to which Egs. 21) av
dx2 p2(N=M+ (1 — vM)3

5.4 Horizontal (H) profiles in zones 2 and 3

; ; . 32
and @6) reduce asymptotically as— 0 from either side of (32)

Eq. (7), as shown in Fig. 1. For clarity in highlighting this line
of demarcation, Eq.7), i.e. a solution curve fok =0, we :
draw Fig. 2, a close-up of Fig. 1 around the commonly pre-Z&ro yields

scribed boundary condition of Eq¥)( (21) and 6) at (x4, MANVN — NoM (N — M) =0. (33)
v) = (0, 0). One can easily prove that EQ) can be obtained ) i . )

by the asymptotic reduction of EQY) or (26) asx — 0, us- For illustration, the twoyc-based solutions ofi obtained
ing the GHF definition. The A2 and A3 profiles plotted using oM Eq. @3) for variousN values under each of the assumed
Eq. (26) can also reduce asymptotically to E@) si — 0.  » = 0.6 and 0.95 are tabulated in Table 2, where E3§) (
As displayed clearly in Fig. 2, the H2 profile divides per- for N =10/3, 17/5, 7/2, aljd 11/3 are specifically referred to
fectly between the regions of M2 profiles and A2 profiles; so @S Eas. (33a—d), respectively. On the contrary, B8) ¢an

does the H3 profile between the regions of M3 profiles ang@symptotically reduce to the sole solutionwoét the inflec-
A3 profiles. tion point of the H3 profile on the horizontal slopejas> 0,

as shown in the following subsection. EQ3 is thus valid
in the range of O< A < 1, including one end point at=0
but excluding the other end pointiat= 1.

In Fig. 3, we plot eight solution curves to trace the paths
It is already known that Eqs2() and @3) diverge along the  of the two inflection points of the M1 and M3 profiles on the
horizontal asymptotes. However, unlike the sole horizontalv versusi plane with N as a parameter for all thid val-
asymptote a& = 1 on the &, u)-plane to represent the water ues studied excep¥ = 3, thereby showing the combined ef-
surface running parallel with the channel bedvas~> 400, fects ofAand N on the locations of the two inflection points.

Equating the right-hand side of the equal sign in B9) ¢o

5.5 Horizontal asymptotes atv = yn/y. for various
A-values
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Table 1. The yc-based dimensionless GVF profiles expressed by using the GHF on all types of slopes except for the horizontal slope.

Types of GVF profiles

Equations for dimensionless GVF profiles in

(valid domain ofv) terms of GHF with hydraulic exponent& and N Eg. no.
2z s e con 0
002D =¥ oo 0
M1 8;1;) v<<ooo)o)or xs=1"Nog (—% (xu)*N) + %g (MT—l (M)fzv> + Const (23)
M2 Ei i K:;\;)l)or = _l;\lfvjig (NTH ()»U)N> il M+l N= M+1 (Av)N) + Const (21)
M3 Egi Kufgl)x())r xp= =4 (G o)) + 2 ,f;flg NML u)V) + Const 21)
Ly sl v =g () 4 5 g (M2, + o 0
c3 Eg z ;iv<<1)1§)r W= ;_:ig (NTH UN) + NN lcllillg< St N) + Const (29)
S1 Eiizviooogr Xp=A" Nvg(—— ()~ N>+ ( il,(kv)—N)_’_conSt 23)

8;1;’5)”‘” xp=2"Nug (=&, Gy ~V) + A - g (272, o)™ ) + Const 23)

3 ey B Y e
A2 &ii:ﬁg; = =2 Vo (= b Gy V) — N (ML Gy V) const (29
A3 Eg 2 ;fgl);;; == ]/jxlrvﬁg <NT+1 - (Kv)N> + NN ,:;Iflg (N*,’\‘,’”l, — (/\v)N> + Const (26)

2Herex = yc/yn, for flow in a adverse channel, is not real. It is presumed to be of a “fictitious” value obtainable from the same flow discharge in a
“fictitious” channel on an identically sustaining (but negative) slope.

Table 2. The yc-based dimensionless flow depths at the two inflection points (IPs), one on the M1 profile and the other on the M3 profile,
computed from Eg. (33) for the folN values of GVF profiles on two mild slopesc(yn = 0.6 and 0.95) in wide channeld3f = 3).

A:yc/yn:O.6 )n=yc/yn:0.95
Hydraulic vatlIPon vatlIP on vatlIP on vatlIP on Given the values of M, andN Eq. No.
exponents M1 profile M3 profile M1 profile M3 profile to solve Eq. (33) or
(M, N) (A l<v<oo) (0<v=<1) A l<v<oo) (O<v<1) MANUN—NUM+(N—M):O
(3, 10/3) 226.861 0.4860 2.2296 0.6668  A1@3,103_10,31 19 (33a)
(3, 17/5) 105.101 0.5111 2.0424 0.6875  AME517/5 %v3 + % =0 (33b)
(3, 7/2) 48.622 0.5426 1.8640 0.7122 A2 L3+ 1 =0 (33c)
(3,11/3) 22.433 0.5842 1.6916 07425  A3ME 3120 (33d)
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which is valid for all theN values studied excepV =3

in wide channels ¥ = 3). For H3 profiles withV = 10/3,
17/5, 7/2, and 11/3, the v-values at the inflection points for
all suchN values can be computed from E@®4] to be
0.46416, 0.49000, 0.52276, and 0.56652, respectively, which
should manifest themselves in Fig. 3. It is noted that Chen
and Wang (1969) obtained the v-value at the sole inflection
point equal to 0.464 foN = 10/3, thus confirming the result
computed from Eq.34).

10000+

1000

1005
i 5.8 Sole Inflection point of the A3 profile

Using Eq. 8), we can determine the v-value, at which the
inflection point of a GVF profile on the adverse slope takes
place, from the condition under whieffv/dxi =0 as fol-
lows:

vat IP

10

d?v [NV [MAN N + NoM — (N — M)] (35)
dx§ a p2(N=M+1 (1 — UM)3 )

0.8
ws 72 Equating the right-hand side of the equal sign in B) o

0.6 zero yields

0.4 175 N=10/3 MAN N L NoM — (N — M) =0, (36)

0.2+ becausey, so determined for GVF on the adverse slope is
1 fictitious and so is the parameted= (yc/yn)], defined in
0 5 T e s s 1 Egs. @5 and @6), we should not mix them up with those
YelYn defined in Egs.32) and 33), respectively. In contrast to the
two solutions ofv which we have obtained from EQ33) for
Fig. 3. Plot of eight solution curves representing the two values of e given valid value of and each of thé\ values studied
at the inflectiorll points (IP), one on each of the M1 and M3 profiles, exceptN = 3 in wide sustaining channel#/(= 3), we can
againstthe various values affyn (0 < yc/yn1) under fouN values. o\ fing 4 sole solution of in Eq. (36), i.e. the condition for
the existence of the inflection point for GVF profiles on the

It merits mentioning that one of the distinctive advantagesadverse slope..The numerical solutionsvobbtained from
Eq. 36) for various values ok and N reveal that Eq.36)

of the yc-based dimensionless GVF equation, E?), ver | lid for 0 < A includi d point at — 0
the correspondingi-based dimensionless GVF equation, 'S V&0 10r U= A < oo, Including one end point &t = o,

Eqg. (2), is reflected in Fig. 3 in which Eg3B) can asymptot- 1€ (34)’_t0 Wh_iCh_ (36)_reduces as_ymptotically_. : :
ically reduce to the sole solution ofat the inflection point To gain an insight into the variation of the inflection point

of the H3 profile as. — 0. Brought up in the following for of the A3 profile on the versusi plane, we plot four solu-

further discussion is the asymptotic reduction of B28) to tion curves W'tr][].v asa pafrﬁ]m?fi‘r, asl ShOV\tmd'.n 5'254’ iaCh
the inflection point of the H3 profile @s— 0. curve representing one ot the totlvalues studied, thereby

showing the combined effects afand N on the path of the
5.7 Sole Inflection point of the H3 profile inflection point in the domain af againstk. The theoretical
range ofx is 0 < A < oo, but for simplicity it is only plotted
Given the values of andN, we can use Eq3@) to findthe  for 0 < A < 2 in the figure due mainly to the space limit im-
two inflection points of aryc.-based dimensionless M profile, posed on drawing the curves. In particular, at 0, Eq. @6)
as pointed out above. We cannot only use Ejji¢ plot the  reduces to Eq34), which yields the unique v-value at the in-
ye-based dimensionless H profiles for all tNevalues stud- ~ flection point of an H3 profile for the giveN value in wide
ied, but also use3@) to determine the sole inflection point of channels # = 3). In a way, Eq. 84) plays the role of an
an yc-based dimensionless H3 profile. To locate the sole in-interface between Eqs38) and @6) to switch the location
flection point is straightforward, i.e. Eq83) on substitution  of the inflection point from an M3 profile to an A3 profile, or

of » = 0 yields vice versa, ad — 0. In fact, the role of Eq.34) is analogous
to that of Eq. 7), which intermediates between Eq&1)and
N-—M\YM (26) to switch GVF profiles from the M2 and M3 profiles to
v= <T> (34) the A2 and A3 profiles, respectively, or vice versaj.as O.
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Fig. 4. Plot of four solution curves, each representing the sin-

gle value of v at the inflection point (IP) of the A3 profile 14
against the various values of/yn (in which yp, is fictitious) under

four N values.
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5.9 Curvature of the yc.-based dimensionless GVF

profiles Fig. 5. Plot of the curvaturek,, atv = 1 againstyc/yn with the N

) i value as a parameter for GVF profiles in sustaining channels and
The curvaturek,, of the y.-based dimensionless GVF pro- ziso in adverse channels.

files at any point £z, v) can be expressed from calculus as

5 2 andN value as a parameter, as shown in Fig. 5. The theoret-
a2/ - adiolly 4
K, = 373" (37) ical range of)»lln this plot is 0< )§<oo, bgt itis o!’lly plotted
[1+ (dv/dx#)z] for 0 < X1 < 2 in the figure. An inspection of Fig. 5 reveals
. ] thatK, atv =1 for GVF profiles in sustaining channels ap-

According to Eq. §7), the equations ok, for the yc-based  roaches infinity as — 1. This trend fork, atv = 1 implies
dimensionless GVF profiles in sustaining channels and ady; the closer the two v-values at the two inflection points of
verse channels can be expressed as B#.and B9), re-  he M profiles approach unity, as shown in Fig. 3, the larger
spectively. is K, atv = 1, irrespective of the M or S profile, as shown

in Fig. 5. In contrastk, atv = 1 for A profiles in adverse
(38) channels decreases and approaches zekoasco. The A
profile corresponding to this limit\(= o) is a vertical line
with its K, everywhere along the line is zero, as manifesting
itself in Fig. 1. As for the effect ofv on K, atv =1, Fig. 5
also shows that the smaller thevalue, the larger i, at
v=1forall M, S, and A profiles in the whole range fex-
Evidently, Egs. 88) and @9) show thatk, is zero at the in-  cept that it tends to behave opposite for A profiles spanning
flection point by virtue of Eqs.33) and @6), respectively; 0< i < 1.
and so is at the place where the GVF profile becomes parallel
with the bed aty = y, (i.e. v = A71) in sustaining channels 5.10 Applicability of the yc-based dimensionless GVF
as a result of the zero factor in the numerator of E8),( profiles
but not in adverse channels owing to the nonzero factor in
the numerator of Eq.30). For gaining an insight into the ef- The fact thaty.-based dimensionless GVF profiles obtained
fects ofA(= yc/yn) andN on K, atv = 1 at a glance, we use herein by using GHF lies in its capability to reduce the
Egs. 38 and @9) to plot K, atv =1 againstiwith M =3 ye-based M or A profiles asymptotically to the-based H

| @ =AM oM [MANVN — NoM + (N — M)

- ‘U—N—O—M—&-l’ {[UN—M(]__ UM)]2+ a1- ANUN)2}3/2

v

| @+ AN [MAN N + NoM — (N — M)

v |U7N+M+l| {[vaM(l_ UM)]Z + (1—|—)»NUN)2}3/2

(39)
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profiles asyc/yn — 0 has laid the foundation to compute at ter surface profile with a single computation. The present
one sweep thec-based dimensionless GVF profiles in a se- method can obtain an analytical solution, so it can obtain
ries of sustaining and adverse channels, which have horizorthe water depth at a specified location in a single computa-
tal slopes sandwiched in between them. Acceptance of angion. The computation of Gaussian hypergeometric function
real numbers by the function parameters (Meand N) of is well established in commercial software, such as Matlab
the GHF suggests the practicality of the GHF-based solu-and Mathematica. No more programming effort is needed by
tions to the GVF profiles in channels with cross-sectionalusing the Gaussian hypergeometric function. A comparison
shape other than wide rectangle. For applying the GHF-basedf the result obtained by the present method and that by the
solutions obtained from Eqs3) and @) to practical prob-  fourth order Runge—Kutta method is presented in the Supple-
lems, our follow-up task needed to be undertaken is the forment. For comparison, we take the Example 5.8 in the book
mulation of various boundary conditions, which will be in- of K. Subramanya (2009), with titi&low In Open Chan-
corporated with the GHF-based solutions to compute at onaels The numerical code written for the commercial soft-
sweep theyc.-based dimensionless GVF profiles in a seriesware Matlab by using the present method, the numerical code
of channels. The accurate formulation of various boundaryfor Matlab by using the standard fourth order Runge—Kutta
conditions holds the key of success to computeythbased  method, and the comparison of M1-profiles obtained by the
dimensionless GVF profiles in such a series of channelspresent method and fourth order Runge—Kutta method are
though it is perhaps the hardest to develop a reliable methodll shown in the Supplement. It is less 10 s for the compu-
to conduct the computation constrained by such a variety otations of this example by these two methods. The numeri-
the boundary conditions. cal error in the water depth obtained by the standard fourth
As for types of the boundary conditions required for com- order Runge—Kutta method is about 2 % at the longitudinal
puting theyc-based dimensionless GVF profiles in a seriescoordinate = —8 km.
of sustaining and adverse channels, we must first locate the In addition, it should be noted that the assumption of con-
internal boundary conditions, which exist at places wherestant hydraulic exponent34 and N) has been made in the
the state of flow suddenly changes (Chen and Wang, 196%irect integration method to solve GVF profiles. Therefore,
Chen and Chow, 1971). One type of the internal boundarya suitable choice of representative hydraulic exponents for a
conditions needed is at hydraulic jumps and overfalls, whichconcerned channel length is important. Even though, the as-
occur in prismatic channels at places where the flow condisumption of constant hydraulic exponents is satisfactory in
tion changes rapidly from a supercritical state to a subcrit-most rectangular and trapezoidal channels, the hydraulic ex-
ical state and vice versa under “freely” flowing conditions. ponents may vary appreciably with respect to the depth of
The other type of the internal boundary conditions neededlow when the channel section has abrupt changes in cross-
is at sudden or rapid transitions in channel width and crosssectional geometry or is topped with a gradually closing
sectional shape under “forced” flowing conditions as a re-crown. In such cases, the channel length should be divided
sult of constricted flows passing through hydraulic structuresjnto a number of reaches in each of which the hydraulic
such as weirs and sluice gates built in non-prismatic chanexponents appear to be constant (Chow, 1959, p. 260).
nels. Apparently, there exist various types of the internal
boundary conditions, such as the hydraulic-jump equations
at places where hydraulic jumps occur, the formation of the6 Conclusions
critical Froude number at places where overfalls are induced,
and the calibrated discharge relations (or rating curves) aBuccess to formulate the normal-depth¢based GVF pro-
places where weirs and sluice gates among other dischargéies expressed in terms of GHFs for flow in sustaining chan-
measuring devices are installed. In fact, it is quite involved tonels, as reported by Jan and Chen (2012), does not warrant
compute they-based dimensionless GVF profiles subject to that it can likewise prevail to usg, in the normalization of
such a variety of the internal boundary conditions imposedthe GVF equation for flow in horizontal and adverse channels
at many places as needed in a series of artificially or natubecausey, for an assumed uniform flow in horizontal and
rally formed prismatic and non-prismatic channels. It is in- adverse channels is undefined. This paper has laid the foun-
deed challenging to undertake such computation though it iglation to compute at one sweep the critical-depthbased

beyond the scope of this paper. GVF profiles in a series of sustaining and adverse channels,
which have horizontal slopes sandwiched in between them.
5.11 Comparison of GVF profile obtained by the To obtain the GHF-based dimensionless solutions from the
present method and that by the fourth order ye-based GVF equation is our first step for developing a vi-
Runge—Kutta method able method to compute thg-based dimensionless GVF

profiles subject to a variety of the boundary conditions im-
Solving the GVF profile by using a fourth order Runge—Kutta posed in such a series of interconnected sustaining and ad-
method is in the field of numerical method. The result from verse channels. Working toward that goal, we have come up
the numerical method cannot provide total length of the wa-with two significant results produced from this study: Firstly,
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we have obtained the GHF-based solutions fromythleased  hydrologist in US Geological Survey, and a distinguished professor
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