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Abstract. The equation of one-dimensional gradually varied
flow (GVF) in sustaining and non-sustaining open channels
is normalized using the critical depth,yc, and then analyt-
ically solved by the direct integration method with the use
of the Gaussian hypergeometric function (GHF). The GHF-
based solution so obtained from theyc-based dimensionless
GVF equation is more useful and versatile than its counter-
part from the GVF equation normalized by the normal depth,
yn, because the GHF-based solutions of theyc-based dimen-
sionless GVF equation for the mild (M) and adverse (A) pro-
files can asymptotically reduce to theyc-based dimensionless
horizontal (H) profiles asyc/yn → 0. An in-depth analysis of
theyc-based dimensionless profiles expressed in terms of the
GHF for GVF in sustaining and adverse wide channels has
been conducted to discuss the effects ofyc/yn and the hy-
draulic exponentN on the profiles. This paper has laid the
foundation to compute at one sweep theyc-based dimension-
less GVF profiles in a series of sustaining and adverse chan-
nels, which have horizontal slopes sandwiched in between
them, by using the GHF-based solutions.

1 Introduction

Many hydraulic engineering works involve the computation
of surface profiles of gradually varied flow (GVF) that is
a steady non-uniform flow in an open channel with grad-
ual changes in its water surface elevation. The computation
methods of GVF profiles in open channels have been dis-
cussed in many textbooks and journal papers (Chow, 1959;

Subramanya, 2009; Jan and Chen, 2012; Vatankhah, 2012).
The most widely used methods for computing GVF profiles
could be classified into the step methods and the direct in-
tegration methods. The step methods are numerical methods
and are primarily used in natural channels with non-prismatic
sections. On the other hand, the direct integration methods
involve the integration of the GVF equation and may be
performed by using analytical, semi-analytical, or numeri-
cal procedures. Numerical integration of the GVF equation is
primarily used in non-prismatic channels. In some prismatic
channels, such as artificial channels, the GVF equation can
be simplified so as to let the analytical (or semi-analytical) di-
rect integration be applied. The analytical direct-integration
method is straightforward and can provide the total length
of the profile in a single computation step. In the direct-
integration method, the one-dimensional (1-D) GVF equa-
tion is usually normalized to be a simpler expression in ad-
vance so as to allow the performance of direct integration. In
most cases, the GVF equation is normalized by the normal
depthyn (Chow, 1959; Subramanya, 2009; Jan and Chen,
2012; Venutelli, 2004; Vatankhah, 2012), while in some
cases, it is normalized by the critical depthyc (Chen and
Wang, 1969). Many attempts have been made by previous in-
vestigators on the direct-integration method. The varied-flow
function (VFF) needed in the direct-integration method con-
ventionally used by Bakhmeteff (1932), Chow (1955, 1957,
1959), Kumar (1978), among others, has a drawback caused
by the imprecise interpolation of the VFF values. To over-
come the drawback, Jan and Chen (2012) already success-
fully used the Gaussian hypergeometric functions (GHFs)
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974 C.-D. Jan and C.-L. Chen: Gaussian hypergeometric functions

to analytically solve the GVF equation in sustaining wide
channels without recourse to the VFF.

Success to formulate the normal-depth(yn)-based non-
dimensional GVF profiles expressed in terms of GHFs
for flow in sustaining channels, as reported by Jan and
Chen (2012), does not necessarily warrant that it can likewise
prevail to useyn in the normalization of the GVF equation for
flow in adverse channels becauseyn for an assumed uniform
flow in adverse channels is undefined. Even though one can
use an imaginary flow resistance coefficient to evaluateyn for
such an assumed uniform flow in adverse channels (Chow,
1959), as will be treated later in this paper, it is inappropriate
to use such anyn in the normalization of the GVF equation
for flow in adverse channels becauseyn so evaluated is ficti-
tious and the two normalized variables in suchyn-based di-
mensionless GVF equation collapse (in virtue ofyn → ∞)

as the channel-bottom slope approaches zero. To fill such
a mathematical gap as a result of the indiscreet choice of a
characteristic length in the normalization of the GVF equa-
tion for adverse channels, Chen and Wang (1969) usedyc to
replaceyn along to derive twoyc-based dimensionless GVF
equations, one for sustaining channels and the other for ad-
verse channels. For the hydraulic exponentsM = 3 (wide
channels) andN = 10/3 (equivalent to using Manning’s for-
mula) they integrated both equations numerically over the
normalized depth,y/yc, to get theyc-based dimensionless
GVF profiles in sustaining and adverse channels.

This study focuses on the direct integration method that
used to analytically compute the GVF profiles in sustaining
and non-sustaining channels, in which the GVF equation is
normalized by usingyc and then analytically solved by using
the GHFs. Before proceeding to formulate the twoyc-based
dimensionless GVF equations for sustaining channels and
adverse channels, respectively, it is worthwhile to review all
of what has been attained by previous investigators to com-
pute the GVF profiles in both sustaining and adverse chan-
nels. We already reviewed quite comprehensively most of the
previous work on the analytical computation of the GVF pro-
files in sustaining channels, as reported in our paper (Jan and
Chen, 2012). Therefore, in this paper, we focus on the liter-
ature survey only of the computed GVF profiles in adverse
channels.

As a matter of fact, there are not many previous investi-
gators who have contributed to the computation of the GVF
profiles in adverse channels. One of the earliest investiga-
tions in this study may be credited to Matzke (1937), who
formulated theyn-based dimensionless GVF equation for
GVF in adverse channels, thereby integrating the indefinite
integrals of the GVF equation in the form of the varied-
flow function (VFF), following in Bakhmeteff’s (1932) foot-
steps. However, unlike the four methods used by Bakhmeteff
to compute the VFF values numerically, Matzke evaluated
them by a graphical method and constructed a table thereof
for anyN values between 3 and 4, inclusive, for computing
the yn-based dimensionless GVF profiles in adverse chan-

nels. Chow (1957, 1959) was probably the first person who
directly computed the VFF values for GVF in adverse chan-
nels from the corresponding two transformed VFF values for
GVF in sustaining channels. He further tabulated the VFF
values so computed forN values ranging from 3 to 5.5 for
use in engineering applications to compute theyn-based di-
mensionless GVF profiles in adverse channels.

In the direct integration of the GVF equation, regardless
of whether it is carried out for sustaining or adverse chan-
nels, most previous investigators expressed the rational func-
tion representing the reciprocal of the slope of the GVF pro-
file in terms of the dimensionless flow depth rather than in
terms of the geometric elements of a given channel section
before the two indefinite integrals were evaluated. Never-
theless, Allen and Enever (1968) as well as Kumar (1979)
did it in reverse by substituting their geometric elements of
a rectangular, trapezoidal, or triangular channel section into
the section factor,Z, and the conveyance,K, of the channel
section in the GVF equation before evaluating the two indef-
inite integrals. Subsequently, they evaluated the two indef-
inite integrals using the partial-fraction expansion and then
got the elementary-transcendental-function (ETF)-based so-
lution for each of the cross-sectional shapes under study,
such as rectangular, triangular and parabolic cross-sectional
shapes. Another approach taken by Zaghloul (1990, 1992) to
integrate the GVF equation for the profiles in circular pipes
was the same as that used by Allen and Enever (1968) by
substituting the geometric elements of a circular conduit sec-
tion into Z andK in the GVF equation before integrating it
by use of Simpson’s rule (Zaghloul, 1990) or both the direct
step and integration methods (Zaghloul, 1992). After all, he
developed a computer model on the basis of such methods to
compute GVF profiles not only in sustaining and horizontal
pipes, but also in adverse pipes.

For computing GVF profiles in sustaining channels, one
can solve theyn-based dimensionless GVF equation by using
the direct integration method and the Gaussian hypergeomet-
ric function (GHF), as presented by Jan and Chen (2012).
Nevertheless, for computing GVF profiles in adverse chan-
nels, one cannot do likewise due to the difficulty in quan-
tifying the yn-value to be used in the normalization of the
GVF equation becauseyn for an assumed uniform flow in
adverse channels is undefined. Use ofyc instead ofyn in
the normalization of the GVF equation for flow in adverse
channels can resolve such a vital issue resulting from the
undefinedyn becauseyc can be uniquely determined for a
given discharge. The primary objective of this paper is thus
to formulate and then analytically solve the twoyc-based di-
mensionless GVF equations for GVFs in both sustaining and
adverse channels by using the direct integration method and
the Gaussian hypergeometric functions (GHFs). The GHF-
based solutions of this study will lay the theoretical founda-
tion to compute suchyc-based dimensionless GVF profiles in
a series of interconnected sustaining and adverse channels.
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2 Critical-depth-based dimensionless GVF equations

Before deriving theyc-based dimensionless one dimensional
GVF profiles in sustaining channels (S0 > 0), horizontal
channels (S0 = 0), and adverse channels (S0 < 0), we first
formulate theyc-based dimensionless GVF equations for
three such types of channels in the following.

2.1 Equation of the GVF in sustaining channels

The dimensional form of the 1-D GVF equation expressed in
terms of the flow depth prior to normalization can be written
as (Chow, 1959)

dy

dx
= S0

1− (yn/y)N

1− (yc/y)M
. (1)

This equation is a first order differential equation and denotes
the relation between the flow depthy and the axial distancex
along the open channel having a slopeS0. The subscripts “n”
and “c” refer to the normal and critical flow conditions, re-
spectively. The exponentsM andN are usually called the hy-
draulic exponents for critical-flow computation and uniform-
flow computation, respectively. It is expected that the solu-
tion of Eq. (1), if obtainable, can be expressed in a form of
y as an implicit function ofx with S0, yn, yc, M, andN as
parameters.

Though the validity of Eq. (1) is not at issue, one should
be aware of its implication before normalizing it for solu-
tion. Firstly, the resistance to GVF in open channels, as in-
corporated in Eq. (1), is conventionally evaluated on the as-
sumption that the resistance at any section is equal to what
it would be as if the sameQ passed through the same sec-
tion under conditions of uniformity. However, this conven-
tional assumption made in Eq. (1) does not take the effect
of boundary non-uniformity into account in the evaluation of
the non-uniform flow resistance. According to Rouse (1965),
the effect of boundary non-uniformity on the flow resistance
should include any change in shape or size of the section
along the longitudinal direction. Secondly, Eq. (1) cannot be
used to compute GVF profiles in nonsustaining (horizontal
or adverse) channels becauseyn is infinite for flow in hori-
zontal channels and undefined for flow in adverse channels.
Thirdly, N is related to the power in the power-law flow re-
sistance formula, which has been incorporated in formulating
Eq. (1). It is noted thatN = 3 for hydraulically smooth flows
andN = 2m + 3 (wherem is the exponent of a unified sim-
ilarity variable used in the power laws of the wall) for fully
rough flows (Chen, 1991).

By and large, there are two ways in whichx and y in
Eq. (1) can be normalized: one is based on the normal depth,
yn, as usually adopted by many researchers (Chow, 1959)
for GVF in sustaining channels, and the other based on the
critical depth,yc, as treated by Chen and Wang (1969), who
adoptedyc in place ofyn to compute in one sweep GVF pro-
files in a series of interconnected sustaining and nonsustain-

ing channels. Therefore, for the first case in which Eq. (1)
is normalized based onyn, we can introduce the dimen-
sionless variablesu (= y/yn) andx∗(= xS0/yn), as done by
Chow (1959), Jan and Chen (2012) among others, thereby
expressing the reciprocal of Eq. (1) in terms ofu andx∗ as

dx∗

du
=

−uN
+ λMuN−M

1− uN
(2)

which has been referred to as the dimensionless GVF equa-
tion based onyn with λ(= yc/yn), M, andN as three param-
eters. The characteristic length ratioλ in Eq. (2) is the pri-
mary parameter that classifies the GVF profiles into those in
the mild (M), critical (C), and steep (S) channels if the ratio
λ is less than, equal to, and larger than unity, respectively.

Instead ofyn, we want to useyc to normalizex andy in
Eq. (1) herein by simply adopting the dimensionless vari-
ablesv (= y/yc) and x# (= xSc/yc), as done by Chen and
Wang (1969), to rewrite the reciprocal of Eq. (1) in terms of
v andx# so as to obtain the followingyc-based dimensionless
GVF equation withλ, M, andN as three parameters.

dx#

dv
=

−vN
+ vN−M

1− (λv)N
(3)

which is valid in the domain of 0≤ v < ∞.
The following two relations are the normalized flow depth

and normalized longitudinal coordinate defined on the basis
of yn to their counterparts defined on the basis ofyc:

u

v
=

yc

yn
(4)

x∗

x#
=

yc

yn

S0

Sc
=

(
yc

yn

)N+1

. (5)

Both normalized variables so related in Eqs. (4) and (5) will
be useful in converting the solutions of Eq. (2) to its counter-
parts obtained from Eq. (3), or vice versa.

2.2 Equation of the GVF in horizontal channels

Although Chow (1959, p. 223) did not classify horizontal
channels as a type of sustaining channels, we can prove
that theyc-based dimensionless GVF equation, Eq. (3), is
still valid for GVF profiles in horizontal channels. In other
words, because we haveS0 = 0,yn → ∞, andλ(= yc/yn) →

0 for GVF profiles in horizontal channels, Eq. (3) can
be simplified to

dx#

dv
= vN−M

− vN (6)

which is still valid in the domain of 0≤ v < ∞. Equation (6)
is the dimensionless equation based onyc for GVF profiles
in horizontal channels withM andN as two parameters. For
convenience, Eq. (6) may be referred to as the asymptote of
Eq. (3) asλ → 0. Under the assumption of constantM and
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976 C.-D. Jan and C.-L. Chen: Gaussian hypergeometric functions

N , Eq. (3) can be analytically integrated overv using the
GHF, as will be shown later, while we can directly integrate
Eq. (6) without resorting to the GHF in the following manner.

x# =
vN−M+1

N − M + 1
−

vN+1

N + 1
+ Const (7)

The above equation describes theyc-based dimensionless
GVF profiles in wide horizontal channels (in whichM = 3).
The constant of integration, “Const”, in Eq. (7) is to be deter-
mined from a given boundary condition. It should be noted
that Eq. (7) can readily be identified with Chow’s (1959,
Sect. 10.2) Eqs. (10)–(26).

Chow’s (1959, Sect. 10.2) classification to distinguish a
horizontal slope (S0 = 0) from a sustaining slope (S0 > 0)
or an adverse slope (S0 < 0) seems at odds with the limit
of differential calculus, because theyc-based dimensionless
horizontal profiles, Eq. (7), can be derived from theyc-based
dimensionless equation for GVF profiles in sustaining or ad-
verse channels having any realS0-values. In fact, Chow could
have treated GVF profiles on a horizontal slope as the asymp-
tote of those on a sustaining slope asS0 → 0, as deduced
above from Eqs. (3) to (7) by lettingλ → 0 (oryn → ∞). We
shall also later prove that the GHF-based solutions of Eq. (3)
for GVF on the mild slope (where 0< λ < 1) can reduce to
Eq. (7) when we approach its asymptote by lettingλ → 0.
Likewise, theyc-based dimensionless equation for GVF in
adverse channels, as will be formulated later, can also ap-
proach its asymptote, namely Eq. (7), asλ → 0. Therefore,
for coherence in treating the asymptote of theyc-based di-
mensionless GVF equation and its solutions throughout the
paper, we henceforth regard the horizontal slope as an inter-
mediate (or interface) between the sustaining slope and the
adverse slope asS0 approaches zero from either slope.

2.3 Equation of the GVF in adverse channels

To formulate theyc-based dimensionless GVF equation for
GVF in adverse channels, we deem the slope of the channel
bottom as negative, i.e.S0 < 0. Such a fictitious treatment
may result in an imaginary value ofKn (the conveyance for
uniform flow at a depthyn) or a negative value ofK2

n for a
givenQ (= KnS

q

0 , providedq = 1/2). Althoughyn for uni-
form flow in adverse channels is undefined, we may assume
that the coefficient of the flow resistance,C, in the flow resis-
tance formula is imaginary so as to enable the computation
of yn. In other words, for a negative value ofK2

n , the value of

C2 used in computingyn from K2
n =C2A2

nR
2p
n (wherep is

the exponent related to the flow resistance formula;p = 2/3
for Manning’s formula andp = 1/2 for Ch́ezy formula) must
be negative, thus resulting in a fictitious value ofyn, if deter-
mined from the above relation. Because the critical depthyc
can be determined from the critical relation for a givenQ

(Chow, 1959, Sect. 4.2), the fictitiousyn so calculated can be
further incorporated withyc to derive the followingyc-based

dimensionless equation for GVF in adverse channels.

dx#

dv
=

−vN
+ vN−M

1+ (λv)N
(8)

in which v = y/yc andx# = xSc/yc, the same dimensionless
variables used in the derivation of Eq. (3). As pointed out ear-
lier, Eq. (8) for GVF in adverse channels can reduce asymp-
totically to Eq. (6) for GVF in horizontal channels asS0 → 0
(i.e.yn → ∞ or λ → 0).

Undoubtedly, at issue herein is the controversial approach
taken in evaluatingyn for use in Eq. (8) because the resis-
tance coefficient in the flow resistance formula is assumed to
be imaginary and theyn-value so evaluated is fictitious in an
adverse channel. Nevertheless, for a givenQ, theyc-value so
computed is unique, regardless of whether it is in a sustaining
or adverse channel. The parameter,λN , appearing in Eq. (8)
signifies the slope ratio,So/Sc, thus implying thatλN is of a
negative value for GVF in adverse (S0 < 0) channels. There-
fore, λ (= (S0/Sc)

1/N ) as a parameter for GVF in adverse
channels is not so physically meaningful as that in Eq. (3)
for GVF in sustaining channels, in which the flow criteria of
theλ-value being less than, equal to, and greater than unity
can represent respectively the GVF on the mild, critical, and
steep slopes. In contrast, the fictitiousλ-value in Eq. (8) for
GVF in adverse channels is nothing but an index. Although
the ultimate usefulness of Eq. (8) may not be realized un-
til after such an issue in the evaluation ofyn is resolved, we
presently rest content with such fictitiousyn because there
appears no other approach better than that taken above to
evaluateyn for GVF in adverse channels.

Althoughyn-value so evaluated is fictitious in an adverse
channel regardless of whether Eq. (1) is normalized on the
basis ofyc or yn, we prefer to normalize Eq. (1) based on
yc rather than based onyn for the following main reason.
Most previous investigators, such as Chow (1957, 1959) for-
mulated theyn-based dimensionless GVF equation for com-
puting GVF profiles in adverse channels, i.e., theyn-based
counterpart of Eq. (8) instead of theyc-based Eq. (8). How-
ever, Eq. (8) has the obvious advantage over itsyn-based
counterpart because the latter cannot reduce asymptotically
to Eq. (6) asS0 → 0 (i.e.yn → ∞ or λ → 0) unless the nor-
malizing quantity of theyn-based GVF equation for adverse
channels can be altered fromyn to yc so as to enable one
to switch the normalized variables fromu to v via Eq. (4)
and fromx∗ to x# via Eq. (5) asS0 → 0. By implication, if
the yn-based counterpart of Eq. (8) would have been used
to compute GVF profiles in adverse channels, the horizontal
slope could not have been treated as an intermediate (or in-
terface) between the sustaining slope and the adverse slope
asS0 → 0. Insomuch that, we can deem Eq. (8) with the pa-
rameter,λ, a completely general equation to compute theyc-
based dimensionless GVF profiles on adverse slopes, espe-
cially versatile in a series of interconnected sustaining and
adverse channels, having horizontal channels sandwiched in
between them.
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3 Gaussian hypergeometric function

Prior to find the analytical solutions of the critical-depth-
based equations for the gradually varied flows in sustaining
and adverse channels by using the Gaussian hypergeometric
function (GHF), we will introduce the definition of GHF and
some relations first. GHF can be expressed as an infinite se-
ries and symbolized in the form of2F1(a, b; c; z) as shown
in the books of Korn and Korn (1961), Luke (1975), Pear-
son (1974), and Seaborn (1991). The form2F1(a, b; c; z)

can be safely changed to the more friendly formF(a, b; c;
z) as Olde Daalhuis (2010, Sect. 15.1) indicates, i.e.

F(a,b;c;z) =
0(c)

0(a)0(b)

∞∑
s=0

0(a + s)0(b + s)

0(c + s)s!
zs (9)

in which a, b, and c are the function parameters andz is
the variable. The infinite series in Eq. (9) is convergent for
arbitrary a, b, and c, provided thatc is neither a negative
integer nor zero and thata or b is not a negative integer
for real−1< z < 1 (or |z| < 1), and forz = ±1 if c >a + b

(Olde Daalhuis, 2010). Equation (9) has the symmetric prop-
erty:F(a, b; c; z) =F(b, a; c; z).

A survey of the literature reveals that there are two lin-
early independent solutions of the hypergeometric differen-
tial equation at each of the three singular pointsz = 0, 1, and
∞ for a total of six special solutions, which are in fact fun-
damental to Kummer’s (1836) 24 solutions. Any three of the
aforementioned six special solutions satisfy a relation, thus
giving rise to twenty combinations thereof. Among them,
there is a relation connecting one GHF in the domain of
|z| < 1 to two GHFs in the domain of|z| > 1 in the following
way (Luke, 1975):

F (a,b;c;z) =
0(b − a)0 (c)

0 (b)0 (c − a)

(
−z−1

)a

F
(
a,a − c + 1;a − b + 1;z−1

)
+

0(a − b)0 (c)

0 (a)0 (c − b)

(
−z−1

)b

F
(
b,b − c + 1;−a + b + 1;z−1

)
. (10)

One may use Eq. (10) to transform the GHF-based solu-
tions in the domain of|z| < 1 to their counterparts in the
domain of |z| > 1. The commercialMathematicasoftware
treats Eq. (10) as a definition ofF(a, b; c; z) for |z| > 1 (Wol-
fram, 1996).

For the special case,a, b, andc are fixed with specified
relations,a = 1 andc = b + 1, Eq. (9) can be written as

F(1,b;b + 1;z) = g(b,z) = b

∞∑
s=0

zs

b + s
. (11)

The GHFs used in the solutions of the gradually varied flow
profiles herein are all in the form of Eq. (11). Since the first
argument of the GHF of Eq. (11) is always unity, the second
and third arguments differ in one unity, and the fourth argu-
ment is a variable only, we can express the GHF in a simpler

expression, such asg(b, z) = F (1, b; b+1; z), to reduce the
related equations to shorter expressions for facilitating the
reading of the manuscript, as treated by Jan and Chen (2012).
Therefore, we will useg(b, z) instead ofF (1, b; b+1; z)

herein to represent GHF when we treat the GHF-solutions in
the present paper.

The following recurrence formulas between two GHFs can
be generally established from Eq. (11) as shown in Jan and
Chen (2012).

g (b,z) = 1+
bz

b + 1
g (b + 1,z) . (12)

Since 0(b) = (b − 1)0(b − 1), 0(b + 1) = b0(b), and F

(b,0;b;z−1) = 1, we can rewrite Eq. (10), for |z| > 1, in a
much shorter expression as

g (b,z) = −
bz−1

b − 1
g

(
1− b,z−1

)
+0(1− b)0 (1+ b)

(
−z−1

)b

. (13)

In addition, for the condition (βt)N < 1 (i.e. βt < 1) , in
which β is a positive parameter,t is a positive variable, and
N is a positive real number, using the commercialMathe-
maticasoftware (Wolfram, 1996), we can find the following
general relation for the solution of the indefinite integral in
terms of GHF as shown below.∫

tφ

1∓ (βt)N
dt =

tφ+1

φ + 1
g

(
φ + 1

N
, ± (βt)N

)
+Const (14)

in which the parameterφ is a real number. The term (βt)

in Eq. (14) could be (λv) or (w/λ) for the study herein as
shown in the next sections. This kind of indefinite integrals as
shown in Eq. (14) will be applied many times in the following
sections when we find GHF-based solutions for GVF profiles
in sustaining and adverse channels.

4 Analytical solutions of theyc-based GVF equations

There are two ways to analytically solve the normal-depth-
based (yn-based) dimensionless GVF equation by the direct-
integration method: One is based on the GHF and the other
on the elementary transcendental functions (ETF). The inno-
vative results obtained by Jan and Chen (2012) shows that the
GHF-based solutions are more useful and versatile than the
ETF-based solutions, because the former allows its involved
parametersM andN being real numbers while the latter can
at the most accept rational numbers, but not real numbers.
This paper is henceforth focused only on the acquisition and
analysis of the GHF-based solutions for the critical-depth-
based (yc-based) dimensionless GVF equation. Analogous
to the direct integration of theyn-based dimensionless GVF
equation, as treated by Jan and Chen (2012), we can directly
integrate both Eqs. (3) and (8) for the sustaining and ad-
verse channels respectively, and then express their solutions
in terms of the GHF by using Eq. (14).
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4.1 Alternative forms of Eqs. (3) and (8)

The validity of the solutions of Eq. (3) or (8) to be expressed
in terms of the GHF is confined to the convergence criterion
of GHF itself, i.e.|λv| < 1. Therefore, an alternative form of
Eq. (3) or (8) has to be formulated so as to allow its solu-
tions expressed in terms of the GHF be valid for|λv| > 1.
Every GHF-based solution of Eq. (3) or (8) thus consists of
two parts: one in the domain of|λv| < 1 and the other in the
domain of|λv| > 1. To derive alternative forms of Eqs. (3)
and (8) in order that their GHF-based solutions be valid for
|λv| > 1, Eqs. (3) and (8) on substitution ofv = w−1 and dv
= −w−2 dw will respectively yield the following Eqs. (15)
and (16) for GVF in sustaining and adverse channels, respec-
tively.

dx#

dw
= λ−N −w−2

+ wM−2

1− (w/λ)N
(15)

dx#

dw
= λ−N w−2

− wM−2

1+ (w/λ)N
(16)

Before procuring the GHF-based solutions from Eqs. (15)
and (16), it merits mentioning that such GHF-based solu-
tions, if obtainable, are premised on the assumption that they
are valid only in the domains of|w/λ| < 1 (i.e.|λv| > 1).

4.2 GVF profiles in sustaining channels

For facilitating the direct integration to obtain the GHF-based
solutions of Eq. (3) for |λv| < 1 and Eq. (14) for |λv| > 1, we
can rearrange Eq. (3) into three different forms. The right-
hand side of Eq. (3) is the rational function ofv, which by
the process of long division can be expressed in the form of
a polynomial plus a proper fraction in two ways before we
integrate them. One way is to divide the first term of the nu-
merator on the right-hand side of Eq. (3) by the denominator;
the other way is to divide the second term of the numerator
on the right-hand side of Eq. (3) by the denominator. There-
fore, they are three possible representations of the solution of
Eq. (3) by the direct integration method, as shown below.

x# = −

∫
vN

1− (λv)N
dv +

∫
vN−M

1− (λv)N
dv + Const (17)

x# =
vN−M+1

N − M + 1
−

∫
vN

1− (λv)N
dv + λN

∫
v2N−M

1− (λv)N
dv + Const (18)

x# = −
vN+1

N + 1
+

∫
vN−M

1− (λv)N
dv − λN

∫
v2N

1− (λv)N
dv + Const (19)

The GHF-based solutions for Eqs. (17), (18) and (19) can be
easily obtained by using the help of Eq. (14). Three GHF-
based solutions to be obtained from Eq. (17) to Eq. (19)
should be identical. Equating any two of the three GHF-
based solutions will thus establish a recurrence formula be-
tween the two contiguous GHFs as shown in Eq. (12). Only
one of the three solutions is needed. Because Eq. (17) has
shorter length of expression, we will use it latter to derive our
GHF-based solutions for GVF profile in a sustaining channel.

Likewise, to derive the GHF-based solutions of Eq. (15)
for |λv| > 1, we can make a direct integration to Eq. (15) as
shown below.

x# = −λ−N

∫
w−2

1− (w/λ)N
dw + λ−N

∫
wM−2

1− (w/λ)N
dw + Const (20)

With the help of Eq. (14), the complete GHF-based solutions
of the dimensionless GVF equation, Eq. (3), for GVF in sus-
taining channels can be obtained by executing the integra-
tion of the two indefinite integrals in Eq. (17) for |λv| < 1
and then carrying out the same in Eq. (20) for |w/λ| < 1 (or
|λv| > 1), as shown below.

x# = −
vN+1

N + 1
g

(
N + 1

N
,(λv)N

)
+

vN−M+1

N − M + 1
g(

N − M + 1

N
,(λv)N

)
+ Const (21)

which is valid only for|λv| < 1.

x# = λ−Nw−1g

(
−1

N
,
(w

λ

)N
)

+
λ−NwM−1

M − 1
g(

M − 1

N
,
(w

λ

)N
)

+ Const (22)

which is valid only for |w/λ | < 1. To express Eq. (22) in
terms ofv, we substitutew = v−1 into Eq. (22) to have

x# = λ−Nvg

(
−

1

N
,(λv)−N

)
+

λ−Nv−M+1

M − 1
g(

M − 1

N
,(λv)−N

)
+ Const (23)

which is valid only for|λv| > 1.
It is worthwhile to reiterate that we can use Eq. (13) to

transform the GHF-based solutions in the domain of|z| < 1
to their counterparts in the domain of|z| > 1. Herez = (λv)N

for Eq. (21). That is to say that we can use Eq. (13) to directly
transform Eq. (21) to Eq. (23), vice versa, without recourse
to the formulation of Eq. (15) [i.e. an alternative form of
Eq. (3) with its variable,w, being expressed asv−1], which
can be solved for GVF profiles in the domains of|w/λ| < 1
(i.e. |λv| > 1), thereby proving that we can obtain Eq. (23) di-
rectly from Eq. (21) rather than indirectly through Eq. (15).
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It should be noted that such GHF-based solutions exclude
points where|λv|=1 (or|w/λ|=1) because the GHF diverges
at |λv|= 1 (or |w/λ| = 1). Physically, such points correspond
to the convergent limits of the GHF in the GHF-based solu-
tions of Eq. (3) at x# = ∞, where GVF profiles run parallel
with the channel bottom.

Although the absolute value of the variable in the GHF,
i.e. |(λv)|, has been imposed to derive the GHF-based solu-
tions of Eq. (3) for GVF profiles in sustaining channels, the
complete GHF-based solutions of Eq. (3) can only cover the
physically possible domain ofλv, i.e. 0≤ λv <∞, thus con-
sisting of Eq. (21) for 0 ≤ λv < 1, x# = ∞ at λv = 1, and
Eq. (23) for λv > 1. Insomuch that we can lift the absolute-
value restriction imposed onλv in expressing the GHF-based
solutions without the loss of generality.

4.3 GVF profiles in adverse channels

By the same token, the solution of the GVF profiles in ad-
verse channels by the direct integration method can be ob-
tained from Eq. (8) for |λv| < 1 and Eq. (16) for |λw| < 1
(i.e. |λv| > 1), as shown below.

x# = −

∫
vN

1+ (λv)N
dv +

∫
vN−M

1+ (λv)N
dv + Const (24)

x# = λ−N

∫
w−2

1+ (w/λ)N
dw − λ−N

∫
wM−2

1+ (w/λ)N
dw + Const (25)

With the help of Eq. (14), the complete GHF-based solutions
of Eq. (8) for dimensionless GVF profiles in adverse chan-
nels can be obtained by executing the integration of the two
indefinite integrals in Eq. (24) for |λv| < 1 and then carry-
ing out the same in Eq. (25) for |w/λ| < 1 (or |λv| > 1). The
results are

x# = −
vN+1

N + 1
g

(
N + 1

N
,−(λv)N

)
+

vN−M+1

N − M + 1
g(

N − M + 1

N
,−(λv)N

)
+ Const (26)

x# = −λ−Nw−1g

(
−

1

N
,−

(w

λ

)N
)

−
λ−NwM−1

M − 1
g(

M − 1

N
,−

(w

λ

)N
)

+ Const. (27)

Equations (26) and (27) should be valid in the domain of
|λv| < 1 and|w/λ| < 1, respectively. To express Eq. (27) in
terms ofv, substitutingw = v−1 into Eq. (27) yields

x# = −λ−Nvg

(
−

1

N
,−(λv)−N

)
−

λ−Nv−M+1

M − 1
g(

M − 1

N
,−(λv)−N

)
+ Const (28)

which is valid only for|λv| > 1.
It is also found that the two GHFs appearing in each of

Eqs. (26) and (28) converge but not diverge atλv = 1 because
the variable of both GHFs is of a negative value through
its entire domain ofλv ≥ 0. That is to say that Eqs. (26)
and (28) cover the domains of 0≤ λv ≤ 1 andλv ≥ 1, re-
spectively. Although the absolute value of the variable in the
GHF, i.e.|λv|, has been imposed to derive the GHF-based so-
lutions from both Eqs. (8) and (16), the complete GHF-based
solutions of Eq. (8) for GVF profiles in adverse channels can
only cover the physically possible domain ofλv ≥ 0. It is
thus inferred that the A1 profile does not exist.

It is worthwhile to reiterate that we can use Eq. (13)
to transform the GHF-based solutions in the domain of
|z| < 1 to their counterparts in the domain of|z| > 1. Here
z =−(λv)N for Eq. (26). That is to say that we can use
Eq. (13) to directly transform Eq. (26) to Eq. (28), and vice
versa, without recourse to the formulation of Eq. (16) [i.e. an
alternative form of Eq. (8) with its variable,w, being ex-
pressed asv−1], which can be solved for GVF profiles in
the domains of|w/λ| < 1 (i.e.|λv| > 1), thereby proving that
we can obtain Eq. (28) directly from Eq. (26) rather than in-
directly through Eq. (16), vice versa. If we accept Eq. (10)
is a definition of GHF for|z| > 1, as treated by the com-
mercial Mathematicasoftware (Wolfram, 1996), then one
of Eqs. (26) and (28) is enough to represent the complete
GHF-based solutions of Eq. (8) for GVF profiles in ad-
verse channels, covering the physically possible domain of 0
≤ λv <∞. Table 1 shows the summary of the critical-depth-
based dimensionless GVF profiles expressed by using the
GHF on all types of slopes.

5 Discussions

5.1 Plotting the GHF-based solutions withλ as
a parameter

Equations (21) and (23), which span respectively the do-
mains of 0≤ λv < 1 andλv > 1, are the GHF-based solu-
tions of Eq. (3) for yc-based dimensionless GVF profiles in
sustaining channels, while Eqs. (26) and (28), covering re-
spectively the domains of 0≤ λv ≤ 1 andλv ≥ 1, are GHF-
based solutions of Eq. (8) for yc-based dimensionless GVF
profiles in adverse channels. As explained in the last section,
one of Eqs. (26) and (28) is enough to represent the com-
plete GHF-based solutions of Eq. (8) for GVF profiles in ad-
verse channels, covering the whole domain of 0≤ λv <∞.
Equation (26) is chosen herein. A plot of Eqs. (21), (23)
and (26) on the (x#, v)-plane withλ as a parameter may
help gain an insight into the uniqueness and versatility of
such GHF-based solutions. We thus useM = 3 (i.e. a typi-
cal value corresponding to the wide channels) andN = 10/3
(i.e. a typical value corresponding to the Manning formula)
as an example to plot theyc-based solution curves on the (x#,
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Figure 1.  A plot of the yc-based dimensionless 1-D GVF profiles for M = 3 and N = 

10/3 with yc/yn as a parameter. 
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   Fig. 1. A plot of theyc-based dimensionless 1-D GVF profiles for
M = 3 andN = 10/3 with yc/yn as a parameter.

v)-plane herein, as shown in Fig. 1. In Fig. 1, three bound-
ary conditions are arbitrarily prescribed at (x#, v) = (10,10)
for Eq. (23), and at (x#, v) = (0,0) for Eqs. (20) and (26),
respectively. There exist twelve types of theyc-based GVF
profiles, two on the H slope (λ = 0), three on the M slope
(0< λ<1), two on the C slope (λ = 1), three on the S slope
(1< λ< ∞), and two on the A slope (0≤ λ <∞, in which
yn is fictitious). The twelveyc-based GVF profiles in three
zones may be respectively referred to as H2 and H3; M1,
M2, and M3; C1 and C3; S1, S2, and S3; A2 and A3. The
twelve profiles so classified are the same as those classified
by Chow (1959) except for C2 (Chow treated it as for a uni-
form flow), which is excluded from our classification because
it is just a singularity for all theN values except forN = 3,
as treated by Jan and Chen (2012).

5.2 Mild (M), steep (S), and adverse (A) profiles in zones
1, 2, and 3

Examination of Fig. 1 reveals that two solution curves drawn
for the critical value ofλ (i.e.λ = yc/yn = 1) and the asymp-
totic value ofλ (i.e. λ = 0) combined with the horizontal
line at v = 1 and the horizontal asymptotes atλv = 1 (or
v = yn/yc) can divide the entire domain of the solution curves
on the (x#, v)-plane into nine regions, which are constituted

by a combination of three slopes and three zones, i.e. the
same division adopted by Chow (1959). The three slopes
consist of mild (M) slopes, steep (S) slopes, and adverse
(A) slopes, while the three zones are composed of zone 1
(λ < v < ∞ for M1 profiles or 1≤ v < ∞ for S1 profiles),
zone 2 (1≤ v <λ for M2 profiles,λ < v ≤ 1 for S2 profiles,
or 1 ≤ v <∞ for A2 profiles), and zone 3 (0≤ v ≤ 1 for
M3 profiles, 0≤ v <λ for S3 profiles, or 0≤ v ≤ 1 for A3
profiles). Apparently, the particular solution curves drawn by
Eqs. (21) and (23) with λ(= yc/yn) = 1 separate the region of
M profiles from that of S profiles, while the unique solution
curve constructed by Eq. (7) through the asymptotic reduc-
tion of Eq. (21) or (26) asλ → 0 separate the region of M
profiles from that of A profiles. These two solution curves
are respectively referred to as the critical (C) profiles on the
critical (C) slope (λ = 1) and the horizontal (H) profiles on
the horizontal (H) slope (λ = 0).

5.3 Critical (C) profiles in zones 1 and 3

The particular solutions of Eqs. (21) and (23) on substitution
of λ = 1 yield

x# = −
vN+1

N + 1
g

(
N + 1

N
,vN

)
+

vN−M+1

N − M + 1
g(

N − M + 1

N
,vN

)
+ Const (29)

x# = vg

(
−

1

N
,v−N

)
+

v−M+1

M−1
g(

M − 1

N
,v−N

)
+ Const (30)

which are specifically referred to as the equations foryc-
based C3 profiles in zone 3 (0≤ v < 1) and C1 profiles in
zone 1 (1<v <∞), respectively. In particular, upon substi-
tution of M = N = 3 and with the use of the recurrence for-
mulas Eq. (12), Eq. (29) can readily reduce to

x# = v + Const (31)

which is a straight line. Likewise, we can prove that Eq. (30)
on substitution ofM = N = 3 and with the help of the re-
currence formula Eq. (12) also reduces to Eq. (31), a straight
line. We can readily plot Eqs. (29) and (30) in Fig. 1 for all
the values ofv except atv = 1, where both equations are un-
defined due to the existence of a singularity. Two small open
circles are used to mark the singularity in Fig. 1. It is self-
evident from Fig. 1 that both equations so plotted forλ = 1
irrespective of the existence of a singularity atv = 1 are the
lines of demarcation, which divide the domain of solutions
curves obtained from Eqs. (21) and (23) into two regions,
one for M profiles (0< λ < 1) and the other for S profiles
(λ > 1).
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Figure 2.  A close-up of those H, M, C, S and A profiles which are plotted in Fig. 1 

around the boundary condition at (x#, v) = (0, 0). 
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   Fig. 2. A close-up of those H, M, C, S and A profiles which are
plotted in Fig. 1 around the boundary condition at (x#, v) = (0,0).

5.4 Horizontal (H) profiles in zones 2 and 3

To separate the region of M profiles from that of A profiles is
a solution curve plotted by use of Eq. (7), to which Eqs. (21)
and (26) reduce asymptotically asλ → 0 from either side of
Eq. (7), as shown in Fig. 1. For clarity in highlighting this line
of demarcation, Eq. (7), i.e. a solution curve forλ = 0, we
draw Fig. 2, a close-up of Fig. 1 around the commonly pre-
scribed boundary condition of Eqs. (7), (21) and (26) at (x#,
v) = (0,0). One can easily prove that Eq. (7) can be obtained
by the asymptotic reduction of Eq. (21) or (26) asλ → 0, us-
ing the GHF definition. The A2 and A3 profiles plotted using
Eq. (26) can also reduce asymptotically to Eq. (7) asλ → 0.
As displayed clearly in Fig. 2, the H2 profile divides per-
fectly between the regions of M2 profiles and A2 profiles; so
does the H3 profile between the regions of M3 profiles and
A3 profiles.

5.5 Horizontal asymptotes atv = yn/yc for various
λ-values

It is already known that Eqs. (21) and (23) diverge along the
horizontal asymptotes. However, unlike the sole horizontal
asymptote atu = 1 on the (x∗, u)-plane to represent the water
surface running parallel with the channel bed asx∗ → ±∞,

as shown in the Fig. 1 of Jan and Chen (2012), the horizon-
tal asymptotes atv = λ−1(i.e. λv = 1) for variousλ-values
on the (x#, v)-plane translate vertically, as shown in Fig. 1
herein. Accordingly, the horizontal asymptotes atv = λ−1 on
the (x#, v)-plane for the givenλ-values may be deemed as
“movable” lines of demarcation drawn to divide the domain
of v into two major regions: One region spans 0≤ λv < 1 (or
0 ≤ v <λ−1), which covers both zones 2 and 3 for M profiles
as well as zone 3 for S profiles, and the other region extends
overλv > 1 (orv >λ−1), which covers zone 1 for M profiles
as well as both zones 1 and 2 for S profiles.

In comparison, there exist no horizontal asymptotes at
v = λ−1 for various λ-values in the domain of solution
curves plotted for Eq. (26) on the (x#, v)-plane, which rep-
resent theyc-based dimensionless GVF profiles on the ad-
verse slope. An inspection of Fig. 1 clearly reveals that the
solution curves plotted for Eqs. (21) and (23) diverge at
v = λ−1 on the (x#, v)-plane, whereas those which are plot-
ted for Eq. (26) do not diverge atv = λ−1 for any λ-value
shown. The latter result may be attributed to the fact that
yn adopted in the derivation of Eq. (26) is simply fictitious
(i.e. nonexistent).

5.6 Two inflection points of the M profiles

The inflection point of a flow profile on the dv/dx# versusv
plane takes place at a point, where dv/dx# is an extremum
(i.e., either a minimum or a maximum). It lies either be-
tween the two vertical asymptotes or between the horizontal
asymptote and its adjacent vertical asymptote. The v-value,
at which the inflection point occurs, can be determined from
the condition under whichd2v/dx2

# = 0. We can derive such
a condition from the reciprocal of Eq. (3) as follows:

d2v

dx2
#

=

[
1− λNvN

][
MλNvN

− NvM
+ (N − M)

]
v2(N−M)+1

(
1− vM

)3
. (32)

Equating the right-hand side of the equal sign in Eq. (32) to
zero yields

MλNvN
− NvM

+ (N − M) = 0. (33)

For illustration, the twoyc-based solutions ofv obtained
from Eq. (33) for variousN values under each of the assumed
λ = 0.6 and 0.95 are tabulated in Table 2, where Eq. (33)
for N = 10/3, 17/5, 7/2, and 11/3 are specifically referred to
as Eqs. (33a–d), respectively. On the contrary, Eq. (33) can
asymptotically reduce to the sole solution ofv at the inflec-
tion point of the H3 profile on the horizontal slope asλ → 0,
as shown in the following subsection. Eq. (33) is thus valid
in the range of 0≤ λ < 1, including one end point atλ = 0
but excluding the other end point atλ = 1.

In Fig. 3, we plot eight solution curves to trace the paths
of the two inflection points of the M1 and M3 profiles on the
v versusλ plane withN as a parameter for all theN val-
ues studied exceptN = 3, thereby showing the combined ef-
fects ofλandN on the locations of the two inflection points.
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Table 1.Theyc-based dimensionless GVF profiles expressed by using the GHF on all types of slopes except for the horizontal slope.

Types of GVF profiles Equations for dimensionless GVF profiles in
(valid domain ofv) terms of GHF with hydraulic exponents,M andN Eq. no.

H2 (1 ≤ v < ∞) x# =
vN−M+1

N−M+1 −
vN+1

N+1 + Const (7)

H3 (0 ≤ v ≤ 1) x# =
vN−M+1

N−M+1 −
vN+1

N+1 + Const (7)

M1
(λ−1 < v < ∞)or
(1 < λv < ∞)

x# = λ−Nvg
(
−

1
N

, (λv)−N
)

+
λ−Nv−M+1

M−1 g
(

M−1
N

, (λv)−N
)

+ Const (23)

M2
(1 ≤ v < λ−1)or
(λ ≤ λv < 1)

x# = −
vN+1

N+1 g
(

N+1
N

, (λv)N
)

+
vN−M+1

N−M+1g
(

N−M+1
N

, (λv)N
)

+ Const (21)

M3
(0 ≤ v ≤ 1)or
(0 ≤ λv ≤ λ)

x# = −
vN+1

N+1 g
(

N+1
N

, (λv)N
)

+
vN−M+1

N−M+1g
(

N−M+1
N

, (λv)N
)

+ Const (21)

C1
(1 < v < ∞)or
(1 < λv < ∞)

x# = vg
(
−

1
N

,v−N
)

+
v−M+1

M−1 g
(

M−1
N

,v−N
)

+ Const (30)

C3
(0 ≤ v < 1)or
(0 ≤ λv < 1)

x# = −
vN+1

N+1 g
(

N+1
N

,vN
)

+
vN−M+1

N−M+1g
(

N−M+1
N

,vN
)

+ Const (29)

S1
(1 ≤ v < ∞)or
(λ ≤ λv < ∞)

x# = λ−Nvg
(
−

1
N

, (λv)−N
)

+
λ−Nv−M+1

M−1 g
(

M−1
N

, (λv)−N
)

+ Const (23)

S2
(λ−1 < v ≤ 1)or
(1 < λv ≤ λ)

x# = λ−Nvg
(
−

1
N

, (λv)−N
)

+
λ−Nv−M+1

M−1 g
(

M−1
N

, (λv)−N
)

+ Const (23)

S3
(0 ≤ v < λ−1)or
(0 ≤ λv < 1)

x# = −
vN+1

N+1 g
(

N+1
N

, (λv)N
)

+
vN−M+1

N−M+1g
(

N−M+1
N

, (λv)N
)

+ Const (21)

A2
(1 ≤ v < ∞)or
(λ ≤ λv < ∞)a

x# = −λ−Nvg
(
−

1
N

,−(λv)−N
)

−
λ−Nv−M+1

M−1 g
(

M−1
N

,−(λv)−N
)

+ Const (28)

A3
(0 ≤ v ≤ 1)or
(0 ≤ λv ≤ λ)a

x# = −
vN+1

N+1 g
(

N+1
N

,−(λv)N
)

+
vN−M+1

N−M+1g
(

N−M+1
N

,−(λv)N
)

+ Const (26)

a Hereλ = yc/yn, for flow in a adverse channel,yn is not real. It is presumed to be of a “fictitious” value obtainable from the same flow discharge in a
“fictitious” channel on an identically sustaining (but negative) slope.

Table 2. Theyc-based dimensionless flow depths at the two inflection points (IPs), one on the M1 profile and the other on the M3 profile,
computed from Eq. (33) for the fourN values of GVF profiles on two mild slopes (yc/yn = 0.6 and 0.95) in wide channels (M = 3).

λ = yc/yn = 0.6 λ = yc/yn = 0.95

Eq. No.Hydraulic v at IP on v at IP on v at IP on v at IP on Given the values ofλ, M, andN

exponents M1 profile M3 profile M1 profile M3 profile to solve Eq. (33) or
(M, N) (λ−1 < v < ∞) (0 ≤ v ≤ 1) (λ−1 < v < ∞) (0 ≤ v ≤ 1) MλNvN

− NvM
+ (N − M) = 0

(3, 10/3) 226.861 0.4860 2.2296 0.6668 3λ10/3v10/3
−

10
3 v3

+
1
3 = 0 (33a)

(3, 17/5) 105.101 0.5111 2.0424 0.6875 3λ17/5v17/5
−

17
5 v3

+
2
5 = 0 (33b)

(3, 7/2) 48.622 0.5426 1.8640 0.7122 3λ7/2v7/2
−

7
2v3

+
1
2 = 0 (33c)

(3, 11/3) 22.433 0.5842 1.6916 0.7425 3λ11/3v11/3
−

11
3 v3

+
2
3 = 0 (33d)

Hydrol. Earth Syst. Sci., 17, 973–987, 2013 www.hydrol-earth-syst-sci.net/17/973/2013/



C.-D. Jan and C.-L. Chen: Gaussian hypergeometric functions 983

Figure 3.  Plot of eight solution curves representing the two values of v at the 

inflection points (IP), one on each of the M1 and M3 profiles, against the various 

values of yc/yn (0 < yc/yn < 1) under four N-values. 
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Fig. 3.Plot of eight solution curves representing the two values ofv

at the inflection points (IP), one on each of the M1 and M3 profiles,
against the various values ofyc/yn (0< yc/yn1) under fourN values.

It merits mentioning that one of the distinctive advantages
of the yc-based dimensionless GVF equation, Eq. (3), over
the correspondingyn-based dimensionless GVF equation,
Eq. (2), is reflected in Fig. 3 in which Eq. (33) can asymptot-
ically reduce to the sole solution ofv at the inflection point
of the H3 profile asλ → 0. Brought up in the following for
further discussion is the asymptotic reduction of Eq. (33) to
the inflection point of the H3 profile asλ → 0.

5.7 Sole Inflection point of the H3 profile

Given the values ofλ andN , we can use Eq. (33) to find the
two inflection points of anyc-based dimensionless M profile,
as pointed out above. We cannot only use Eq. (7) to plot the
yc-based dimensionless H profiles for all theN values stud-
ied, but also use (33) to determine the sole inflection point of
anyc-based dimensionless H3 profile. To locate the sole in-
flection point is straightforward, i.e. Eq. (33) on substitution
of λ = 0 yields

v =

(
N − M

N

)1/M

(34)

which is valid for all theN values studied exceptN = 3
in wide channels (M = 3). For H3 profiles withN = 10/3,
17/5, 7/2, and 11/3, the v-values at the inflection points for
all such N values can be computed from Eq. (34) to be
0.46416, 0.49000, 0.52276, and 0.56652, respectively, which
should manifest themselves in Fig. 3. It is noted that Chen
and Wang (1969) obtained the v-value at the sole inflection
point equal to 0.464 forN = 10/3, thus confirming the result
computed from Eq. (34).

5.8 Sole Inflection point of the A3 profile

Using Eq. (8), we can determine the v-value, at which the
inflection point of a GVF profile on the adverse slope takes
place, from the condition under whichd2v/dx2

# = 0 as fol-
lows:

d2v

dx2
#

=

[
1+ λNvN

][
MλNvN

+ NvM
− (N − M)

]
v2(N−M)+1

(
1− vM

)3
. (35)

Equating the right-hand side of the equal sign in Eq. (35) to
zero yields

MλNvN
+ NvM

− (N − M) = 0, (36)

becauseyn so determined for GVF on the adverse slope is
fictitious and so is the parameter,λ[= (yc/yn)], defined in
Eqs. (35) and (36), we should not mix them up with those
defined in Eqs. (32) and (33), respectively. In contrast to the
two solutions ofv which we have obtained from Eq. (33) for
the given valid value ofλ and each of theN values studied
exceptN = 3 in wide sustaining channels (M = 3), we can
only find a sole solution ofv in Eq. (36), i.e. the condition for
the existence of the inflection point for GVF profiles on the
adverse slope. The numerical solutions ofv obtained from
Eq. (36) for various values ofλ andN reveal that Eq. (36)
is valid for 0 ≤ λ < ∞, including one end point atλ = 0,
i.e. (34), to which (36) reduces asymptotically.

To gain an insight into the variation of the inflection point
of the A3 profile on thev versusλ plane, we plot four solu-
tion curves withN as a parameter, as shown in Fig. 4, each
curve representing one of the fourN values studied, thereby
showing the combined effects ofλ andN on the path of the
inflection point in the domain ofv againstλ. The theoretical
range ofλ is 0 ≤ λ < ∞, but for simplicity it is only plotted
for 0 ≤ λ < 2 in the figure due mainly to the space limit im-
posed on drawing the curves. In particular, atλ = 0, Eq. (36)
reduces to Eq. (34), which yields the unique v-value at the in-
flection point of an H3 profile for the givenN value in wide
channels (M = 3). In a way, Eq. (34) plays the role of an
interface between Eqs. (33) and (36) to switch the location
of the inflection point from an M3 profile to an A3 profile, or
vice versa, asλ → 0. In fact, the role of Eq. (34) is analogous
to that of Eq. (7), which intermediates between Eqs. (21) and
(26) to switch GVF profiles from the M2 and M3 profiles to
the A2 and A3 profiles, respectively, or vice versa, asλ → 0.
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Figure 4.  Plot of four solution curves, each representing the single value of v at the 

inflection point (IP) of the A3 profile against the various values of yc/yn (in which yn is 

fictitious) under four N-values. 
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Fig. 4. Plot of four solution curves, each representing the sin-
gle value of v at the inflection point (IP) of the A3 profile
against the various values ofyc/yn (in which yn is fictitious) under
four N values.

5.9 Curvature of the yc-based dimensionless GVF
profiles

The curvature,Kv, of theyc-based dimensionless GVF pro-
files at any point (x#, v) can be expressed from calculus as

Kv =

∣∣d2v/dx2
#

∣∣[
1+ (dv/dx#)

2]3/2
. (37)

According to Eq. (37), the equations ofKv for theyc-based
dimensionless GVF profiles in sustaining channels and ad-
verse channels can be expressed as Eqs. (38) and (39), re-
spectively.

Kv =

∣∣(1− λNvN )[MλNvN
− NvM

+ (N − M)]
∣∣∣∣v−N+M+1

∣∣{[vN−M(1− vM)]2 + (1− λNvN )2
}3/2

(38)

Kv =

∣∣(1+ λNvN )[MλNvN
+ NvM

− (N − M)]
∣∣∣∣v−N+M+1

∣∣{[vN−M(1− vM)]2 + (1+ λNvN )2
}3/2

(39)

Evidently, Eqs. (38) and (39) show thatKv is zero at the in-
flection point by virtue of Eqs. (33) and (36), respectively;
and so is at the place where the GVF profile becomes parallel
with the bed aty = yn (i.e. v = λ−1) in sustaining channels
as a result of the zero factor in the numerator of Eq. (38),
but not in adverse channels owing to the nonzero factor in
the numerator of Eq. (39). For gaining an insight into the ef-
fects ofλ(= yc/yn) andN onKv atv = 1 at a glance, we use
Eqs. (38) and (39) to plot Kv at v = 1 againstλwith M = 3

Figure 5.  Plot of the curvature, Kv, at v = 1 against yc/yn with the N-value as a 
parameter for GVF profiles in sustaining channels and also in adverse channels. 
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 Fig. 5. Plot of the curvature,Kv , atv = 1 againstyc/yn with theN
value as a parameter for GVF profiles in sustaining channels and
also in adverse channels.

andN value as a parameter, as shown in Fig. 5. The theoret-
ical range ofλin this plot is 0≤ λ<∞, but it is only plotted
for 0 ≤ λ < 2 in the figure. An inspection of Fig. 5 reveals
thatKv at v = 1 for GVF profiles in sustaining channels ap-
proaches infinity asλ → 1. This trend forKv atv = 1 implies
that the closer the two v-values at the two inflection points of
the M profiles approach unity, as shown in Fig. 3, the larger
is Kv at v = 1, irrespective of the M or S profile, as shown
in Fig. 5. In contrast,Kv at v = 1 for A profiles in adverse
channels decreases and approaches zero asλ → ∞. The A
profile corresponding to this limit (λ = ∞) is a vertical line
with its Kv everywhere along the line is zero, as manifesting
itself in Fig. 1. As for the effect ofN on Kv at v = 1, Fig. 5
also shows that the smaller theN value, the larger isKv at
v = 1 for all M, S, and A profiles in the whole range ofλ, ex-
cept that it tends to behave opposite for A profiles spanning
0 ≤ λ ≤ 1.

5.10 Applicability of the yc-based dimensionless GVF
profiles

The fact thatyc-based dimensionless GVF profiles obtained
herein by using GHF lies in its capability to reduce the
yc-based M or A profiles asymptotically to theyc-based H
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profiles asyc/yn → 0 has laid the foundation to compute at
one sweep theyc-based dimensionless GVF profiles in a se-
ries of sustaining and adverse channels, which have horizon-
tal slopes sandwiched in between them. Acceptance of any
real numbers by the function parameters (i.e.M andN) of
the GHF suggests the practicality of the GHF-based solu-
tions to the GVF profiles in channels with cross-sectional
shape other than wide rectangle. For applying the GHF-based
solutions obtained from Eqs. (3) and (8) to practical prob-
lems, our follow-up task needed to be undertaken is the for-
mulation of various boundary conditions, which will be in-
corporated with the GHF-based solutions to compute at one
sweep theyc-based dimensionless GVF profiles in a series
of channels. The accurate formulation of various boundary
conditions holds the key of success to compute theyc-based
dimensionless GVF profiles in such a series of channels,
though it is perhaps the hardest to develop a reliable method
to conduct the computation constrained by such a variety of
the boundary conditions.

As for types of the boundary conditions required for com-
puting theyc-based dimensionless GVF profiles in a series
of sustaining and adverse channels, we must first locate the
internal boundary conditions, which exist at places where
the state of flow suddenly changes (Chen and Wang, 1969;
Chen and Chow, 1971). One type of the internal boundary
conditions needed is at hydraulic jumps and overfalls, which
occur in prismatic channels at places where the flow condi-
tion changes rapidly from a supercritical state to a subcrit-
ical state and vice versa under “freely” flowing conditions.
The other type of the internal boundary conditions needed
is at sudden or rapid transitions in channel width and cross-
sectional shape under “forced” flowing conditions as a re-
sult of constricted flows passing through hydraulic structures,
such as weirs and sluice gates built in non-prismatic chan-
nels. Apparently, there exist various types of the internal
boundary conditions, such as the hydraulic-jump equations
at places where hydraulic jumps occur, the formation of the
critical Froude number at places where overfalls are induced,
and the calibrated discharge relations (or rating curves) at
places where weirs and sluice gates among other discharge-
measuring devices are installed. In fact, it is quite involved to
compute theyc-based dimensionless GVF profiles subject to
such a variety of the internal boundary conditions imposed
at many places as needed in a series of artificially or natu-
rally formed prismatic and non-prismatic channels. It is in-
deed challenging to undertake such computation though it is
beyond the scope of this paper.

5.11 Comparison of GVF profile obtained by the
present method and that by the fourth order
Runge–Kutta method

Solving the GVF profile by using a fourth order Runge–Kutta
method is in the field of numerical method. The result from
the numerical method cannot provide total length of the wa-

ter surface profile with a single computation. The present
method can obtain an analytical solution, so it can obtain
the water depth at a specified location in a single computa-
tion. The computation of Gaussian hypergeometric function
is well established in commercial software, such as Matlab
and Mathematica. No more programming effort is needed by
using the Gaussian hypergeometric function. A comparison
of the result obtained by the present method and that by the
fourth order Runge–Kutta method is presented in the Supple-
ment. For comparison, we take the Example 5.8 in the book
of K. Subramanya (2009), with titleFlow In Open Chan-
nels. The numerical code written for the commercial soft-
ware Matlab by using the present method, the numerical code
for Matlab by using the standard fourth order Runge–Kutta
method, and the comparison of M1-profiles obtained by the
present method and fourth order Runge–Kutta method are
all shown in the Supplement. It is less 10 s for the compu-
tations of this example by these two methods. The numeri-
cal error in the water depth obtained by the standard fourth
order Runge–Kutta method is about 2 % at the longitudinal
coordinate x= −8 km.

In addition, it should be noted that the assumption of con-
stant hydraulic exponents (M andN ) has been made in the
direct integration method to solve GVF profiles. Therefore,
a suitable choice of representative hydraulic exponents for a
concerned channel length is important. Even though, the as-
sumption of constant hydraulic exponents is satisfactory in
most rectangular and trapezoidal channels, the hydraulic ex-
ponents may vary appreciably with respect to the depth of
flow when the channel section has abrupt changes in cross-
sectional geometry or is topped with a gradually closing
crown. In such cases, the channel length should be divided
into a number of reaches in each of which the hydraulic
exponents appear to be constant (Chow, 1959, p. 260).

6 Conclusions

Success to formulate the normal-depth(yn)-based GVF pro-
files expressed in terms of GHFs for flow in sustaining chan-
nels, as reported by Jan and Chen (2012), does not warrant
that it can likewise prevail to useyn in the normalization of
the GVF equation for flow in horizontal and adverse channels
becauseyn for an assumed uniform flow in horizontal and
adverse channels is undefined. This paper has laid the foun-
dation to compute at one sweep the critical-depth(yc)-based
GVF profiles in a series of sustaining and adverse channels,
which have horizontal slopes sandwiched in between them.
To obtain the GHF-based dimensionless solutions from the
yc-based GVF equation is our first step for developing a vi-
able method to compute theyc-based dimensionless GVF
profiles subject to a variety of the boundary conditions im-
posed in such a series of interconnected sustaining and ad-
verse channels. Working toward that goal, we have come up
with two significant results produced from this study: Firstly,
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we have obtained the GHF-based solutions from theyc-based
dimensionless GVF equation, which proves to be applicable
for computing the GVF profiles in both sustaining and ad-
verse channels. Secondly, we have analytically proved that
the GHF-based dimensionless M and A profiles, if normal-
ized byyc rather than byyn, can asymptotically reduce to the
yc-based dimensionless H profiles asyc/yn → 0. Both signif-
icant results thus constitute the principal conclusions drawn
from this study.

In practical applications, theyc-based dimensionless GVF
profiles expressed in terms of the GHF can prove to be more
useful, versatile than theyn-based equivalents obtained by
Jan and Chen (2012) though both profiles are convertible to
each other through the scaling relations, Eqs. (4) and (5).
Among the well-known advantages of suchyc-based dimen-
sionless GVF profiles over their counterparts based onyn,
there lies the most powerful feature of theyc-based GVF
profiles expressed in terms of the GHF, with which one can
readily reduce theyc-based M and A profiles asymptotically
to the yc-based H profiles asyc/yn → 0. In fact, we have
proved that the M2 and M3 profiles can asymptotically re-
duce to the H2 and H3 profiles, respectively, asyc/yn → 0;
and so can the A2 and A3 profiles to the H2 and H3 profiles,
respectively.

After decades-long struggle by hydraulicians in their at-
tempts to improve the rudimentary approach taken to solve
the GVF equation using the direct integration method, based
on yn and the varied-flow function, we have finally come up
with a novel approach to solve the same problem based on
yc and the GHF instead. As shown in Fig. 1, an innovated
formulation of theyc-based dimensionless GVF profiles ex-
pressed in terms of the GHFs has greatly advanced the con-
ventional technique used in the GVF computation to the ex-
tent that hydraulicians for the first time in the computer age
can fully utilize a mathematics software, which is capable of
producing the GHF-based solutions of theyc-based dimen-
sionless GVF equation. The principal conclusions so drawn
from this study embrace all significant results acquired from
the in-depth analysis of theyc-based dimensionless solutions
expressed in terms of the GHF along with those attained
in the exact proof of the asymptotic reduction of theyc-
based dimensionless M and A profiles to the corresponding
H profiles asyc/yn → 0.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
17/973/2013/hess-17-973-2013-supplement.pdf.
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