Comparison of the results by the present method and the fourth order Runge-Kutta method

For comparing the result obtained by the present method and that by the fourth order Runge-Kutta method, we take the Example 5.8 in the book of K. Subramanya (2009). The book title is "Flow In Open Channels." The followings show: (1) the content of Example 5.8, (2) the numerical code **for Matlab** by using the present method (Jan & Chen's method), (3) the numerical code for Matlab by using the standard fourth order Runge-Kutta method, and the comparison of the results by the present method and fourth order Runge-Kutta method.

Example 5.8

A river 100 m wide and 3.0 m deep has an average bed slope of 0.0005. Estimate the length of GVF profile produced by a low dam which raises the water surface just upstream of it by 1.50 m. Assume the channel cross-section is rectangular, the Manning coefficient n equals 0.035, and the normal depth of flow is 3.0 m. Find the GVF profile (M1 curve).

Numerical code for Matlab by the present method (Jan & Chen's method) :

clear all;clc;tic

%Basic Information		
h0=3;	% Normal depth	
S0=0.0005;	% Average bed slope	
n=0.035;	% Manning coefficient	
h1=4.5;	% Water depth (m) at boundary condition, $x=0$	
g=9.81;	% Gravitational acceleration (m/s ²)	
q=h0^(5/3)*S0^(1/2)/n;	% Unit-width discharge for wide channels by Manning equation $(m^3/s/m)$	
$hc=(q^{2/g})^{(1/3)};$	% Critical depth (m)	
N=10/3;	% Hydraulic exponent for uniform-flow computation	
M=3;	% Hydraulic exponent for critical-flow computation in wide channels	
hEND=3.03;	% Upstream water depth (m)	
xs=0;	% Boundary condition at which the start of GVF calculation	
u1=h1/h0;	% Dimensionless water depth at downstream BC $x=0$	
XS=xs*S0/h0;	% Dimensionless longitudinal coordinate	
ld=hc/h0;	% Dimensionless critical depth	
a=1;	% Parameter used in Gaussian hypergeometric function	
b1=-1/N;	N; % Parameter used in Gaussian hypergeometric function	

c1=b1+1;	% Parameter used	in Gaussian hypergeometric function
b2=(M-1)/N;	% Parameter used	in Gaussian hypergeometric function
c2=b2+1;	% Parameter used	in Gaussian hypergeometric function
z1=u1^(-N);	% Dimensionless	water-depth parameter used in GHF
hypergeomBF1= hypergeom([a,b1], c1, z1)		% GHF-1 at BC
hypergeomBF2= hypergeom([a,b2], c2, z1)		% GHF-2 at BC

```
%------M1 Curve calculated by Jan & Chen's method ------
  for i=1:100000
                            % Upper-limit of calculation steps
                            % Water depth (m) at a specified longitudinal location to be determined
      h(i)=h1-0.01*(i-1);
       u(i)=h(i)/h0;
                             % Dimensionless variable of water depth
                            % Dimensionless variable used in GHF
       z(i)=u(i)^{(-N)};
       if y(i)<hEND
                             % Condition for the end of GVF calculation
          break
       end
Xx0(i)=XS+(u(i)*hypergeom([a,b1], c1, z(i))-u1*hypergeomBF1)+
ld^M*(u(i)^(-M+1)*hypergeom([a,b2], c2, z(i))-u1^(-M+1)*hypergeomBF2)/(M-1);
          Xx(i)=Xx0(i)*h0/(S0);
                                      % transfer the longitudinal coordinate to be dimensional
       if h(i)==hEND
                                      % Condition for the end of GVF calculation
          break
      end
  end
                                     % Let storage length for water depth equal that for distance Xx
       h=h(1:length(Xx));
```

```
toc
```

Numerical code for Matlab by the standard fourth order Runge-Kutta method :

clear all;clc;format long;tic

%Basic Information	
h0=3;	% Normal depth (m)
S0=0.0005;	% Average bed slope
n=0.035;	% Manning coefficient
h1=4.5;	% Water depth (m) boundary condition : $x=0$
g=9.81;	% Gravitational acceleration (m/s ²)
q=h0^(5/3)*S0^(1/2)/n;	% Unit-width discharge for wide channels by Manning equation (m³/s/m)
$hc=(q^{2/g})^{(1/3)};$	% Critical depth (m)
B=100;	% Width of a rectangular channel (m)

Q=q*B;	% Flow discharge in a rectangular channel (m ³ /s)
Т=В;	% Top width of a rectangular channel (m)
dx=-1;	% Distance interval (m)
L=-8644;	% Computation end of longitudinal distance (m)
nn=L/dx;	% Number of calculation steps
h=[];	% Water depth (m) for the longitudinal datum

%-----Calculation by Standard Fourth Order Runge-Kutta method solved by Matlab -----for i=1:nn

LL(i)=dx*i;% Storage for longitudinal distance length %-----K1-----A1=B*h1: % Cross-section area of flow in a rectangular channel (m^2) P1=2*h1+B; % Wetted perimeter of flow in a rectangular channel (m) R1=A1/P1; % Hydrau1lic radius (m) V1=Q/A1;% Average velocity (m/s) Sf1=(V1^2)*(n^2)/(R1^(4/3)); % Energy slope evaluated by Manning equation $F1=(S0-Sf1)/(1-Q^2*T/(g*A1^3));$ % Function in the basic differential equation of GVF K1=dx*F1: % First parameter (m)

%-----K2-----

```
A2=B*(h1+K1/2);

P2=2*(h1+K1/2)+B;

R2=A2/P2;

V2=Q/A2;

Sf2=(V2^2)*(n^2)/(R2^(4/3));

F2=(S0-Sf2)/(1-Q^2*T/(g*A2^3));

K2=dx*F2;

%------K3------

A3=B*(h1+K2/2);

P3=2*(h1+K2/2)+B;
```

```
R3=A3/P3;
```

V3=Q/A3;

```
Sf3=(V3^{2})*(n^{2})/(R2^{4}(4));
```

```
F3=(S0-Sf3)/(1-Q^2*T/(g*A3^3));
```

K3=dx*F3;

%-----K4-----

- A4=B*(h1+K3/2); P4=2*(h1+K3/2)+B;
- R4=A4/P4;

V4=Q/A4;

% Wetted perimeter of flow in a rectangular channel (m) % Hydrau1lic radius (m)

% Cross-section area of flow in a rectangular channel (m²)

% Average velocity (m/s)

% Energy slope evaluated by Manning equation

- % Function in the basic differential equation of GVF
- % Second parameter (m)
- % Cross-section area of flow in a rectangular channel (m²)
- % Wetted perimeter of flow in a rectangular channel (m)
- % Hydrau1lic radius (m)
- % Average velocity (m/s)

% Energy slope evaluated by Manning equation

- % Function in the basic differential equation of GVF
- % Third parameter (m)

% Cross-section area of flow in a rectangular channel (m²)
% Wetted perimeter of flow in a rectangular channel (m)
% Hydrau1lic radius (m)
% Average velocity (m/s)

	Sf4=(V4^2)*(n^2)/(R4^(4/3));	% Energy slope evaluated by Manning equation
	F4=(S0-Sf4)/(1-Q^2*T/(g*A4^3));	% Function in the basic differential equation of GVF
	K4=dx*F4;	% Fourth parameter (m)
	h2=h1+(K1+2*K2+2*K3+K4)/6;	% Water depth (m) at the subsequent step
	h1=h2;	% Renew water depth (m) for next-step calculation
	h=[h h2];	% Storage length for water depth
en	d	
to	с	

Comparison of the results by the present method and fourth order Runge-Kutta method

The numerical error in water depth obtained by the standard fourth order Runge-Kutta method is about 2% at the longitudinal distance x = -8 km.