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Abstract. In this paper, a database of water-related insurance
damage claims related to private properties and content was
analysed. The aim was to investigate whether the probabil-
ity of occurrence of rainfall-related damage was associated
with the intensity of rainfall. Rainfall data were used for the
period of 2003–2009 in the Netherlands based on a network
of 33 automatic rain gauges operated by the Royal Nether-
lands Meteorological Institute. Insurance damage data were
aggregated to areas within 10-km range of the rain gauges.
Through a logistic regression model, high claim numbers
were linked to maximum rainfall intensities, with rainfall in-
tensity based on 10-min to 4-h time windows. Rainfall in-
tensity proved to be a significant damage predictor; however,
the explained variance, approximated by a pseudo-R2 statis-
tic, was at most 34 % for property damage and at most 30 %
for content damage. When directly comparing predicted and
observed values, the model was able to predict 5–17 % more
cases correctly compared to a random prediction. No impor-
tant differences were found between relations with property
and content damage data. A considerable fraction of the vari-
ance is left unexplained, which emphasizes the need to study
damage generating mechanisms and additional explanatory
variables.

1 Introduction

In the autumn of 1998 extreme rainfall caused around 410
million euros (1998 value) of direct damages to households,
agriculture and industries in the Netherlands. Damage ex-
perts from the Dutch insurance sector identified a total num-
ber of 10 660 agricultural companies, 2470 buildings, 1220

other companies and 350 governmental agencies as being
damaged by rainwater (Jak and Kok, 2000). The rainfall
event with an associated return period of about 125 yr re-
sulted in flooding of areas before rainwater was able to enter
natural or engineered drainage systems. This type of floods
is commonly known as pluvial flooding (e.g.Hurford et al.,
2012a; Blanc et al., 2012; Falconer et al., 2009). Other se-
vere events that are well documented are the summer floods
of 2007 across the UK, for example in the City of Hull, that
are believed to be for a great deal related to pluvial flooding
(Pitt, 2008; Coulthard and Frostick, 2010), and the 2004 and
2006 floods in Heywood, Greater Manchester (Douglas et al.,
2010). These events are just a few of the many examples that
illustrate the serious consequences of high-intensity rainfall.
But also minor events with relatively small flood volumes
and extensions can produce considerable damage in the long
run due to their high frequency of occurrence (Freni et al.,
2010; Ten Veldhuis, 2011). The aforementioned events have
demonstrated that pluvial floods often occur at much smaller
ranges of spatial and temporal scales than fluvial and coastal
floods.

An increasing number of authors have acknowledged that
a lack of data availability and quality have been important
limitations in quantitative flood damage estimations (e.g.
Freni et al., 2010; Merz et al., 2004; Hurford et al., 2012b).
In the absence of damage data, a common approach in flood
damage estimation is to combine simulated flood depths
and/or flow velocities and stage-damage curves (e.g.Ernst
et al., 2008; Jonkman et al., 2008; Pistrika and Jonkman,
2009; De Moel and Aerts, 2011; Middelmann-Fernandes,
2010). The stage-damage curves are usually related to di-
rect damages occurring in large catchments and are derived
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through synthetic and/or empirical approaches. Only few
studies have focused on modelling damages of pluvial floods
related to the malfunctioning of urban drainage systems (e.g.
Zhou et al., 2012a).

Insurance databases are a promising source for flood dam-
age data. These databases often contain many claim records
that have been collected continuously in time. Disadvantages
are the restricted access and the limited recordings of process
information, such as flood depth and extent measurements,
details on damage causes, and building information (Elmer
et al., 2010; Thieken, 2011; Zhou et al., 2012b).

A few recent studies have analysed insurance data re-
lated to pluvial floods.Freni et al.(2010) conducted a dam-
age assessment based on the outcomes of a simple and
a detailed hydrodynamic model in combination with stage-
damage functions derived from around 600 insurance dam-
age claims and water depth measurements for a case study
in Palermo, Italy. They concluded that uncertainty in stage-
damage function (40–50 % of average value) was higher than
the accuracy gained by adopting a detailed hydrodynamic
model. In another study, 1000 insurance damage claims re-
lated to sewer surcharging for the case of Aarhus, Denmark,
showed that costs per claim were not explained by rainfall
(Zhou et al., 2012b). They did find a significant relationship
between rainfall and total costs per day. These studies con-
firmed the need to obtain accurate damage data to further
investigate costs of pluvial floods.

In this study, data from an insurance database containing
20 yr of water-related claims for private properties and con-
tents in the Netherlands, provided by the Dutch Association
of Insurers, were analysed. The analysis built on earlier work
by the Dutch Association of Insurers, where relationships
between rainfall and claim data were studied at a regional
scale (Ririassa and Hoen, 2010). Using simple linear regres-
sion, they found significant relationships between the total
amount of damage in a province (roughly 2500–3500 km2

in size) and hourly rainfall data (one or two rain gauges per
province), but the explained variance was low (4 % for con-
tent and 12 % for property). It can be argued that, given the
size of a province and the limited number of rain gauges
used, the model does not account for variations in damage
caused by local rainfall, whilst local convective rainfall is
probably an important contributor to damage. The aim of
this study was to investigate whether high numbers of dam-
age claims are associated with high rainfall intensities, con-
sidering rainfall at scales most closely related to functioning
of urban drainage systems. In an exploratory study, various
damage statistics were correlated with rainfall intensity and
the strongest correlation was found between rainfall intensity
and the number of damage claims. Rainfall intensity was se-
lected to characterise rainfall events as it was hypothesized
to be the most critical rainfall characteristic in relation to
damage generating mechanisms such as overloading of sewer
systems. Separate relationships were analysed between rain-
fall data and property damage data as well as content damage

data, through statistical analysis. A better understanding of
relationships between rainfall extremes and floods is useful
in the development of, for example, warning systems for plu-
vial floods (Hurford et al., 2012a; Parker et al., 2011; Priest
et al., 2011).

This paper is structured as follows. In Sect.2 data sources
as well as the statistical model to link rainfall and insurance
damage data are described. Results of the statistical analysis
are discussed in Sect.3, as well as the significance of pre-
dictor variables and the model performance, followed by a
discussion in Sect.4. Conclusions and recommendations are
summarized in Sect.5.

2 Methodology

2.1 Rainfall data

Rainfall data are based on two networks of rain gauges held
by the Royal Netherlands Meteorological Institute (KNMI):
a network of 300+ manual rain gauges (see Fig.1, triangular
markers) and a network of 33 automatic rain gauges (solid
circles). The temporal resolution of the automatic network
is 10 min, and the spatial density is about 1 station every
1000 km2 (see also Table1), with most of the rain gauges
located in rural areas or close to city boundaries. The man-
ual network measures daily volumes based on 08:00 UTC–
08:00 UTC intervals. The spatial density of the manual net-
work is about 1 station every 100 km2. All gauge data have
been extensively validated by KNMI (KNMI , 2000).

2.2 Insurance data

The insurance databases cover water-related damages to pri-
vate properties and content in the Netherlands and are sum-
marized in Table1. Data related to property and content dam-
age are available from 1986 until 2009 and from 1992 until
2009 respectively. The database consists of data from a num-
ber of large insurance companies in the Netherlands, cover-
ing about 20–30 % of the Dutch market related to property
and content policies.

House owners can insure both property and content; ten-
ants can only insure content, while the rented property is
considered a commercial building. Commercial buildings
are covered in a separate database that is not used in this
study. Table2 lists the key characteristics of the insurance
databases. All values are in 2009 euros. Every value associ-
ated with a year before 2009 was adjusted for inflation using
the consumer price index (Statistics Netherlands, 2012).

Water-related damages can be divided into two groups:
(1) non-rainfall-related damages and (2) rainfall-related dam-
ages. Examples in the first group are bursts of water supply
pipes and leakages of washing machines. Examples in the
second group are leakages of roofs and flooding from sewer
systems or regional watercourses. This distinction is not ex-
plicitly made in the data provided by insurance companies.
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Table 1.Summary of rainfall and insurance data sources.

Data source Temporal resolution Spatial resolution Availability Records

Manual rain gauge network daily volumes ≈ 1/100 km2 1950–today
Automatic rain gauge network 10-min volumes ≈ 1/1000 km2 2003–today
Property damage database by day district level 1986–2009≈ 300 000
Content damage database by day district level 1992–2009≈ 270 000

Fig. 1. Locations of 33 automatic rain gauges (solid circles) and
300+ manual rain gauges (triangular markers) and the area within
a 10-km radius of automatic rain gauges (open circles). Urban den-
sity (addresses/km2) is presented in grey scales.

Insurance companies use different systems to classify claims,
and the quality with which claims are assigned to groups
varies between companies.

Damage due to pluvial flooding is included in most of the
insurance policies after 2000 following advice issued by the
Dutch Association of Insurers (Ministry of Transport, Pub-
lic Works and Water Management, 2003). Damage due to
pluvial floods should be directly and solely related to lo-
cal extreme rainfall for a claim to be accepted. Flooding
from rivers, sea or groundwater is not commonly insured in
the Netherlands, and therefore if pluvial flooding coincides
with other flood types, the damage is not insured. Rainfall is
considered “extreme” when “rainfall intensity is higher than
40 mm in 24 h, 53 mm in 48 h or 67 mm in 72 h at or near the
location of the damaged property”, without “near” being pre-
cisely defined. The intensities are associated with occurrence

Table 2. Key characteristics of insurance databases held by the
Dutch Association of Insurers for the period 2003–2009.

Number of Number
policies in of

Damage per claim in euros

millions per year claims Mean P10 Median P90

Property 0.9 111 000 1486 205 825 3140
Content 1.8 96 000 1015 144 564 2202

frequencies of once every 3 to 7 yr in the Netherlands. It is
unclear how and to what extent fulfilment of this requirement
is examined by the insurance companies. Upon further in-
quiry, companies have indicated that detailed rainfall data to
examine individual cases of local rainfall are usually lacking.

The insurance database consists of four sub-databases: (1)
a damage claim database with records related to property;
(2) a damage claim database with records related to building
content; (3) a database with policy holder information related
to property insurances; and (4) a database with policy holder
information related to content insurances. The databases with
policy holder information related to content and property are
separate databases, and it is impossible to link them. There-
fore, content and property claims cannot be related to a single
household. The variables that are included in the database
are listed in Table3. The address of the insured household
is available at 4-position district (i.e. neighbourhood) level.
Typical surface areas of districts are 1–5 km2 for urban areas
and 10–50 km2 for rural areas. Recorded damages include
the costs of cleaning, drying and replacing materials and ob-
jects and the costs of temporarily rehousing of people. For
the analysis in this paper, it is assumed that the number of
insurance policies is constant during one year. In case an in-
surance policy is only active for a part of the year, the insur-
ance policy is counted proportionally for that year. Duplicate
records were removed, as well as records with missing or
incorrect date, location or damage value (around 6 % of the
original database). Records with damage value equal to zero
were also removed (around 1 % of the records), as these are
damage claims that did not meet the policy conditions. First
and last day of the month were excluded as they, in a few
cases, showed unrealistically high claim numbers compared
to other days. These days are probably due to software de-
faults when exact damage date was unknown or not entered
by the insurer’s employee.

www.hydrol-earth-syst-sci.net/17/913/2013/ Hydrol. Earth Syst. Sci., 17, 913–922, 2013
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Table 3. A brief overview of variables recorded in insurance
databases held by the Dutch Association of Insurers. The damage
claim records can be linked to the policy holder information through
the policy ID key.

Damage claim records Policy holder information

Damage value claimed Type of building
Damage value paid out Policy coverage
Date damage occurred Start date of policy
Damage cause End date of policy
Policy ID key Insured sum of property

Insured sum of content
4-position district code
Policy ID key

2.3 Aggregating rainfall and insurance data

This study covers data from April 2003 to 2009. Insurance
damage data were selected within a 10-km radius from the
automatic rain gauges based on the distance between the
district’s centroid and its nearest automatic rain gauge (ver-
sion shapefile of districts: March 2011). It is assumed that
rainfall measured at the rain gauges is uniformly distributed
in the rain gauge area. Rain gauge data are generally as-
sumed to be representative within a range of several kilome-
ters. Several ranges were tested and a 10-km range proved to
be the best compromise between distance from rain gauges
and number of data covered. InOvereem et al.(2011) it is
expected that the decorrelation distance for Dutch rainfall
events is larger than 15 km. They refer to a study byBerne
et al. (2004) where a decorrelation distance of 15 km was
found for typical intense Mediterranean rain events, which
are on average more intense and more convective compared
to rainfall events in the Netherlands. This justifies select-
ing the claims within 10 km from a rain gauge. Figure2
shows two rain gauges and their neighbouring districts. In-
surance data were converted to count data: the number of
water-related claimski and number of insured households
Ki were aggregated by day and by rain gauge area. The sub-
script i denotes the index of the observation. The number of
insured households per rain gauge area ranges from around
300 to 55 000 for property insurance and from around 300 to
120 000 for content insurance. The higher number of content
insurances is explained by the fact that property insurance
only concerns house owners, whereas content insurance con-
cerns both house owners and tenants. Observations with less
than 5000 households were filtered out as they were found
to be very sensitive to errors in data. The maximum rainfall
intensityIi,z is determined for each day and rain gauge area,
where subscriptz denotes the length in minutes of the mov-
ing time window, forz values 10 (original data), 20, 30, 40,
50, 60, 70, 80, 90, 120, 180, 240 or 480 min.

Fig. 2. Example to illustrate the subsetting of insurance data. The
two red dots are rain gauges and the open circles the rain gauge ar-
eas. The black crosses are the centroids of the districts. The shaded
areas are the districts that have been subsetted.

2.4 Distinguishing rainfall-related and
non-rainfall-related events

The distinction between non-rainfall-related and rainfall-
related claims is not explicitly made in the data provided
by insurance companies. Non-rainfall-related claims occur
throughout the year, whereas rainfall-related claims are clus-
tered on wet days. Consequently, a high number of claims in
a rain gauge region on a particular day is more likely to be
associated with rainfall. In the remainder of this paper, these
observations are labelled as “damage events”.

The number of claims that can be expected on dry days
was estimated based on claims recorded on dry days in 10-
km ranges from the network of 300+ manual rain gauges, in
order to obtain an independent estimate of the data associated
with gauges in the automatic network. Observations were
only selected in case of two subsequent dry days, because
the daily volumes recorded by manual gauges are based on
08:00 UTC–08:00 UTC intervals. It was found that the num-
ber of non-rainfall-related claims is well described as a bino-
mially distributed random variable:

ki ∼ B(Ki,ζ ), (1)

whereKi is the number of insured households andζ the
probability that an individual, insured household will have
a non-rainfall-related claim on a day. It is assumed thatζ

is constant in both time and space. Best fits with data were
found forζ = 3.2×10−5 (property data) andζ = 1.3×10−5

(content data). The probability of obtainingy claims at least
as extreme aski , the one observed, given the number of in-
sured householdsKi (i.e.p value) is therefore

Pr(y ≥ ki | Ki) = 1−

ki−1∑
y=0

(
Ki

y

)
ζ y(1− ζ )Ki−y . (2)

Any p value below a significance levelα indicates occur-
rence of a damage event, as it is unlikely to be associated

Hydrol. Earth Syst. Sci., 17, 913–922, 2013 www.hydrol-earth-syst-sci.net/17/913/2013/
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with non-rainfall-related claims. Different levels of signifi-
cance (α = 1× 10−2, 1× 10−3, 1× 10−4 and 1× 10−5) are
used to study its effect on the results. A binary variableYi

is introduced to classify the observations that are considered
a damage eventYi = 1 and those that are notYi = 0:

Yi =

{
1 if p value< α

0 if p value≥ α.
(3)

2.5 Linking binary outcome to maximum
rainfall intensity

The outcome, damage event or not, can be linked to the maxi-
mum rainfall intensity (maximum within one day for the cho-
sen time windowz) using various types of models for binary
data (McCullagh and Nelder, 1989). In this study a logistic
function was used, which yields

logit(θi) = log

(
θi

1− θi

)
= β0 + β1Iz,i, (4)

whereθi is the probability of a damage event (Yi = 1) and
β0 andβ1 are regression coefficients. The regression coeffi-
cients are estimated using maximum likelihood estimation.
The likelihood ratio (LR) test is used to test ifβ1 is signif-
icantly different from zero, i.e. if maximum rainfall inten-
sity is a parameter that contributes to high numbers of dam-
age claims. There is no universally accepted goodness-of-fit
measure in logistic regression that represents the proportion
of variance explained by the predictors, such asR2 in or-
dinary least squares regression. Several pseudo-R2 statistics
have been developed that mimic theR2 in evaluating the
variability explained, which is one of the approaches used
in this study. In this study McFadden’sR2 is used, which
compares the log-likelihood of the model without predictor
and log-likelihood of the model with predictor (Long, 1997,
p. 104). The other approach directly compares observed and
predicted values from the fitted model using contingency ta-
bles, using a cutoff point ofθ = 0.5.

3 Results

3.1 Logistic regression results

In Table4 the results of the logistic regression are summa-
rized. Results are based on the 60-min rainfall intensity. The
significance levelsα, used for the dichotomization of dam-
age data, range from 1× 10−2 to 1× 10−5. Table4 lists es-
timates for slope coefficientβ1, since this is the most impor-
tant parameter for interpretation of logistic regression results.
The standard error inβ1 is denoted as SE. The slope coeffi-
cient is expressed in exponential form, exp(β1), which is the
odds ratio. The odd ratio should be interpreted as the factor
with which the odds (probability of a damage event divided
by probability of no damage) change as an effect one unit

change in the maximum rainfall intensity. For a large num-
ber of observations, LR∼ χ2 with degrees of freedom equal
to the number of parameters being estimated.

The slope coefficient is significantly different from zero
in all cases (atp < 0.05 level), which means the maximum
rainfall intensity is a significant predictor for the probabil-
ity of occurrence of rainfall-related damage. The odd ratios
(exp(β1)) vary between 1.28–1.35 for property damage and
1.26–1.30 for content damage, indicating a 28–35 % (prop-
erty) and 26–30 % (content) increase in odds of a damage
event for each mmh−1 change in rainfall intensity. Different
time windows between 10 min and 4 h have been investigated
and produce similar results.

In Fig. 3 four examples of logistic functions are plotted as
well as the data on which models were fitted. The plots are re-
lated to cases of property damage (with the dichotomization
based onα = 1×10−3) and 10-, 20-, 30- and 90-min rainfall
intensities. The function links the probability of a damage
eventθ on the y-axis to maximum rainfall intensityIz on
the x-axis. The steepness of the slope of the logistic function
is determined byβ1 (see also Table4); a large slope coeffi-
cient makes the transition between “low damage” and “dam-
age event” more abrupt. The grey dots are the observations,
eitherY = 0 in case of “low damage” orY = 1 in case of a
“damage event”. A jitter function was applied to better visu-
alize the density of the data points. The open circles are the
calculated empirical proportions (number of observedY = 1
in a bin divided by total number of observations in a binn)
for eight non-overlapping equally sized bins. The error bars
represent one standard deviationσ of uncertainty on the em-
pirical proportion estimate, whereσ =

√
θ(1− θ)/n.

Most observations without damage (Y = 0) are associ-
ated with low-intensity rainfall; e.g. 99 % of the observa-
tions without damage are below 6.9 mm in 10 min. Few ob-
servations of low damage are associated with high-intensity
rainfall. TheY = 1 observations are distributed over a larger
range of rainfall intensities. The differences in the distribu-
tions ofY = 0 andY = 1 are also reflected in the empirical
proportions (open circles), with increasing values for higher
rainfall intensities. Due to the low number of observations
for high rainfall intensities, large uncertainty ranges occur
for values ofθ > 0.5.

3.2 Goodness-of-fit using pseudo-R2

McFadden’sR2 statistic was calculated using different time
windows (z) and thresholding criteria (α). Results are listed
in Table5. The maximum rainfall intensity accounts for at
most 34 % (for property damage) and at most 30 % (for con-
tent damage) of the variance explained, taking into account
that these values are approximations and depend on the se-
lected pseudo-R2. There is a slight improvement in the model
predictability if rainfall intensity is based on longer time
windows, with an “optimum” between 2 and 4 h. The dif-
ferences are, however, rather small to be conclusive about

www.hydrol-earth-syst-sci.net/17/913/2013/ Hydrol. Earth Syst. Sci., 17, 913–922, 2013
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Table 4.Logistic regression results for model fits on property and content data. The results are based onz = 60 min and a range ofα levels.
The regression coefficientβ1 has units in h mm−1.

95 % C.I. exp(β1)

data α β1 SE LR d.f. p exp(β1) Lower Upper

property 0.01 0.265 0.0093 766 1 < 0.001 1.30 1.28 1.33
0.001 0.309 0.0113 723 1 < 0.001 1.36 1.33 1.39
0.0001 0.319 0.0126 626 1 < 0.001 1.38 1.34 1.41
0.00001 0.325 0.0141 528 1 < 0.001 1.38 1.35 1.42

content 0.01 0.248 0.0081 882 1 < 0.001 1.28 1.26 1.30
0.001 0.281 0.0097 782 1 < 0.001 1.32 1.30 1.35
0.0001 0.276 0.0107 597 1 < 0.001 1.32 1.29 1.35
0.00001 0.282 0.0118 516 1 < 0.001 1.33 1.30 1.36

Fig. 3. Logistic functions (solid lines) fitted on property damage data. Plots are related to the cases ofz = 10, 20, 30 and 90, usingα =

1× 10−3. The grey small dots are the binary observations, eitherY = 0 or Y = 1. A jitter function was applied on the binary observations
to better visualize the density of the data points. The open circles are the calculated empirical proportions for eight non-overlapping, equally
sized bins. The error bars represent one standard deviation of uncertainty on the empirical proportion estimate.

what time window best predicts damage. An optimum, if
true, may reflect the temporal scale at which failure mech-
anisms (e.g. floodings, leakages of roofs) have caused dam-
age. It would be interesting to have more detailed informa-
tion on the cause of a damage claim, which would possi-
bly allow characterising temporal scales of different damage

generating mechanisms. The results suggest that for this kind
of analysis there is no need to collect rainfall data with tem-
poral resolutions smaller than 10 min. Lowering the signifi-
cance levelα, and hence selecting observations that are re-
lated to a larger number of claims, improves the predictabil-
ity by high rainfall intensities. In other words, the results

Hydrol. Earth Syst. Sci., 17, 913–922, 2013 www.hydrol-earth-syst-sci.net/17/913/2013/
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Table 5.Evaluation of model performance using McFadden’sR2. Outcomes are given for ranges ofz andα.

z = 10 z = 20 z = 30 z = 40 z = 50 z = 60 z = 90 z = 120 z = 180 z = 240 z = 480

property α = 0.01 0.102 0.111 0.114 0.117 0.118 0.120 0.123 0.124 0.126 0.127 0.126
α = 0.001 0.186 0.205 0.212 0.215 0.218 0.220 0.224 0.228 0.230 0.227 0.222
α = 0.0001 0.234 0.255 0.263 0.268 0.273 0.275 0.277 0.278 0.280 0.275 0.269
α = 0.00001 0.280 0.305 0.314 0.323 0.329 0.331 0.335 0.339 0.344 0.340 0.333

content α = 0.01 0.092 0.099 0.103 0.107 0.109 0.110 0.114 0.116 0.118 0.116 0.110
α = 0.001 0.167 0.177 0.183 0.189 0.192 0.195 0.202 0.207 0.212 0.210 0.196
α = 0.0001 0.190 0.201 0.209 0.217 0.223 0.227 0.237 0.244 0.250 0.248 0.239
α = 0.00001 0.232 0.244 0.256 0.266 0.272 0.277 0.285 0.292 0.298 0.294 0.284

Table 6.Rainfall thresholds: rainfall intensity in mm h−1 for time windowz at which probability of a damage eventθ = 0.5.

z = 10 z = 20 z = 30 z = 40 z = 50 z = 60 z = 90 z = 120 z = 180 z = 240 z = 480

property α = 0.01 52.2 36.3 27.8 22.7 19.3 17.0 12.6 10.3 7.8 6.4 4.0
α = 0.001 56.2 39.1 29.8 24.4 20.8 18.2 13.5 10.9 8.2 6.8 4.3
α = 0.0001 60.1 42.0 32.1 26.2 22.2 19.4 14.5 11.8 8.8 7.3 4.6
α = 0.00001 64.5 45.2 34.6 28.2 23.9 20.9 15.6 12.5 9.3 7.7 4.8

content α = 0.01 56.3 39.4 30.1 24.5 20.8 18.2 13.5 10.9 8.2 6.8 4.4
α = 0.001 60.8 43.1 33.2 27.0 22.8 20.0 14.7 11.9 8.8 7.2 4.6
α = 0.0001 67.8 48.4 37.3 30.3 25.7 22.4 16.5 13.2 9.8 8.0 5.0
α = 0.00001 71.6 51.2 39.6 32.2 27.2 23.8 17.6 14.1 10.4 8.6 5.3

indicate that observations related to a larger number of claims
are more likely to be associated with rainfall data than ob-
servations related to a smaller number of claims. Property
damage is better explained by rainfall than content damage,
although the differences are marginal (1–4 % point).

3.3 Goodness-of-fit using contingency table

Another way to look at model performance is to directly
compare observed and predicted values using contingency
tables. The model is said to have predicted a significant dam-
age event if the estimatedθ is greater than or equal to 0.5 and
no damage ifθ is smaller than 0.5. The rainfall intensity for
which the probability of success equals 0.5 is here defined
as the rainfall threshold, although it does not necessarily im-
ply a sudden transition from “no damage” to “damage”. The
rainfall thresholds are listed in Table6 for different α and
z. The thresholds are slightly higher for lower significance
levels and higher for content damage compared to property
damage; however, these differences are small compared to
uncertainty introduced by assuming gauge measurement to
be representative for the area in a 10-km range of the rain
gauge.

In a 2×2 contingency table the observedY (0 – no damage
observed or 1 – damage observed) is compared with the pre-
dictedY (0 – no damage predicted or 1 – damage predicted).
Table7 presents the contingency table forα = 1× 10−5 and
z = 60 based on property damage data. The percentage of
correct predictions (= a+d

n
= 0.997) is heavily skewed in this

Table 7.Contingency table, cutoff pointθ = 0.5 (α = 1×10−5, z =

60, property data).

Damage predicted No damage predicted
Iz ≥ 20.9 Iz < 20.9 Total

Damage observed a = 19 b = 101 120
No damage observed c = 13 d = 34 056 34 069

Total 32 34 157 n = 34 189

case due the high number of days without damage. An al-
ternative performance index, less sensitive to skewness of
observations, is the sum of fractions of correctly predicted
observations (= a

a+b
+

d
c+d

) (Kennedy, 2003). Using this ap-
proach, scores are presented in Table8 for a range ofz and
α. The models score around 5–17 % better compared to ran-
dom predictions. In most cases, property damage is better
predicted by rainfall than content damage, although the dif-
ferences are small and for a few cases scores are equal. The
scores do not improve when lowering the significance level
from 1× 10−4 to 1× 10−5. The highest scores are obtained
for time windows between 30 and 50 min, which are smaller
than the 2 to 4 h found using McFadden’sR2.

4 Discussion

The contingency tables can be used to address the fractions
of type 1 errors and type 2 errors. Type 1 errors (b in Table7)
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Table 8.Scores using alternative performance index (=
a

a+b
+

d
c+d

).

z = 10 z = 20 z = 30 z = 40 z = 50 z = 60 z = 90 z = 120 z = 180 z = 240 z = 480

property α = 0.01 1.05 1.07 1.07 1.07 1.07 1.08 1.07 1.07 1.07 1.07 1.06
α = 0.001 1.08 1.13 1.14 1.14 1.14 1.12 1.12 1.11 1.10 1.10 1.10
α = 0.0001 1.11 1.16 1.17 1.16 1.16 1.15 1.15 1.14 1.13 1.11 1.12
α = 0.00001 1.11 1.15 1.17 1.16 1.16 1.16 1.16 1.16 1.13 1.14 1.12

content α = 0.01 1.04 1.05 1.06 1.06 1.07 1.07 1.06 1.06 1.07 1.06 1.05
α = 0.001 1.07 1.09 1.11 1.10 1.10 1.10 1.11 1.11 1.11 1.10 1.08
α = 0.0001 1.06 1.08 1.10 1.12 1.12 1.12 1.14 1.12 1.13 1.12 1.10
α = 0.00001 1.07 1.07 1.09 1.11 1.13 1.12 1.12 1.14 1.14 1.12 1.12

can be indicative of local rainfall that caused damage, while
it was not recorded by the local rain gauge due to insuffi-
cient spatial density of the rain gauge network. They can also
indicate that rainfall intensity does not sufficiently represent
the damage generating mechanism and that other exploratory
variables such as total rainfall volume, wind speeds or build-
ing characteristics need to be added to the model. Type 2 er-
rors (c in Table7) can be related to local rainfall that hit the
rain gauge, but not the surrounding urban area. They can also
be related to cases of overnight rainfall where people claim
the day after. The time window approach used in this study
allowed rainfall intensity to be based on rainfall prior to mid-
night; still rainfall that fell before the start of the time window
was not analysed. Both types of errors could be reduced with
a higher spatial resolution of rainfall data. Weather radar data
are able to provide a better representation of spatial variabil-
ity, although it is less accurate in determining the intensity
than gauge measurements.

The need to reduce type 1 and type 2 errors can be differ-
ent for different stakeholders. As an example from the wa-
ter manager’s perspective, a decision to open or not to open
a water storage facility may lead to unpreparedness in case of
a type 1 error or unnecessary costs in case of a type 2 error. A
more risk-seeking attitude (accepting some damage) of a po-
tential decision-maker allows a larger cutoff point (θ > 0.5),
and a more risk-averse attitude (accepting no damage) allows
a smaller cutoff point (θ < 0.5).

A considerable fraction of the variance is left unexplained,
which emphasizes the need to study other explanatory vari-
ables. There are a few aspects that need to be considered
when taking other explanatory factors into account: (1) the
explanatory variable should be available and parameterized
at the level of 4-position districts, as this is the scale at
which insurance data are available; (2) data should be avail-
able nationwide if the analysis is performed on the whole
insurance database; and (3) since additional data come from
different sources, different levels of data quality need to be
taken into account. Explanatory factors that are worthwhile
to investigate in a future study are topographical properties,
urban drainage system properties (e.g. drainage capacity,
age of infrastructure, percentage of surface water), level of

urbanization, socio-economic indices (e.g. income of house-
holds, property value), and district properties (e.g. percent-
ages of low-rise and high-rise buildings, percentage impervi-
ous surface).

The results of this study are of practical relevance for in-
surers, water managers and meteorologists. Some insurers
have indicated that the staffing of their call centres (that re-
ceive the claims) during extreme events is an issue, and that
a better knowledge of what events are likely to cause consid-
erable calls (tens of times more than on a regular day) can
be helpful to adjust the capacity of their call centres. It can
also be relevant for insurers when reconsidering their policy
conditions. The current “rainfall clause” that is being used
(see Sect.2.2) has some flaws. For example, the rainfall in-
tensity criteria that are mentioned in this clause are not re-
lated to capacities of urban drainage systems. Dutch urban
drainage systems are designed to cope with 21.6 mm h−1;
the “40 mm in 24 h” criterion, for example, normally should
not cause sewer flooding. The results of this study show that
short-duration intense rainfall already results in a significant
number of claims. Another interesting application is the de-
velopment or validation of weather alarms, which are usu-
ally based on some meteorological thresholds. Climate re-
searchers may use the model to extrapolate probabilities of
rainfall damage given some projected change in rainfall ex-
tremes.

The extent to which the available insurance data can be
used for pluvial flood damage models is limited for two main
reasons. First, it is hard to distinguish those claims that are
related to pluvial floods from those claims related to other
failure mechanisms (e.g. leakages of roofs). Insurers use dif-
ferent definitions for pluvial flooding and different systems to
categorize claims. A better and more systematic documen-
tation of claim data could overcome this problem. Second,
the building addresses are available at the level of 4-position
districts (i.e. neighbourhoods), and therefore it is impossible
to relate claims to attributes of individual households, such
as the level of precaution, basement use and door thresh-
old level. Simplified damage assessment may be possible
at the level of neighbourhoods, taking into account district-
specific properties.

Hydrol. Earth Syst. Sci., 17, 913–922, 2013 www.hydrol-earth-syst-sci.net/17/913/2013/



M. H. Spekkers et al.: Insurance damage data and rainfall extremes 921

5 Conclusions and recommendations

This study investigated relationships between water-related
damage data from insurance companies and rainfall extremes
for the period of 2003–2009 in the Netherlands. The results
show that high claim numbers related to private property and
content damages were significantly related to maximum rain-
fall intensity, based on a logistic regression, with rainfall in-
tensity for 10-min to 4-h time windows. The variance ex-
plained by rainfall intensity, approximated by a pseudo-R2

statistic, was at most 34 % for property damage and at most
30 % for content damage, depending on the selected time
window. When directly comparing predicted and observed
values, the model was able to predict 5–17 % more cases cor-
rectly compared to a random prediction. No important dif-
ferences were found between property and content damage
data. A considerable fraction of the variance is left unex-
plained, which emphasizes the need to study damage gen-
erating mechanisms and other explanatory variables, such as
total rainfall volume, wind speed or building characteristics.
For simplified flood risk assessment, it could be of interest
to use the insurance database to investigate relationships be-
tween the total damage of all damaged buildings and rain-
fall characteristics. There is also a need for high-resolution
rainfall data at the urban scale to have better spatial linkages
between rainfall and claim data. A better documentation of
exact damage causes in insurance databases is essential to
detail relationships with damages caused by failure mecha-
nisms of urban drainage systems.
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