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Abstract. Skillful seasonal streamflow forecasts obtained and reduced mean square errors. However, at 1-month lead
from climate and land surface conditions could significantly time, streamflow utilizing the climatological forcing scheme
improve water and energy management. Since climate foreeutperformed ECHAMA4.5 based streamflow forecasts during
casts are updated on a monthly basis, we evaluate the pavinter and spring, indicating a dominant role of IHCs up to
tential in developing operational monthly streamflow fore- a 1-month lead time. During ENSO years, streamflow fore-
casts on a continuous basis throughout the year. Furthecasts exhibit better skill even up to a six-month lead time.
basins in the rainfall-runoff regime critically depend on the Comparisons of the seasonal soil moisture forecasts, devel-
forecasted precipitation in the upcoming months as opposedped using ECHAMA4.5 forcings, with seasonal streamflows
to snowmelt regimes where initial hydrological conditions also show significant skill, up to a 6-month lead time, in the
(IHC) play a critical role. The goal of this study is to quan- four seasons.

tify the role of updated monthly precipitation forecasts and
IHC in forecasting 6-month lead monthly streamflow and
soil moisture for a rainfall-runoff mechanism dominated
basin — Apalachicola River at Chattahoochee, FL. The Vari-1  Introduction

able Infiltration Capacity (VIC) land surface model is imple-

mented with two forcings: (a) updated monthly precipitation Skillful seasonal forecasts of streamflow and soil moisture
forecasts from ECHAM4.5 Atmospheric General Circulation are essential for water management as well as to support
Model (AGCM) forced with sea surface temperature fore- agricultural operations. Previous studies have shown that the
casts and (b) daily climatological ensembles. The difference@pplication of seasonal streamflow forecasts, obtained from
in skill between the above two quantifies the improvementsC"mate and land surface conditions, could significantly im-
that could be attainable using the AGCM forecasts. MonthlyProve water and energy management (Yao and Georgakskos,
retrospective streamflow forecasts are developed from 1982001; Voisin et al., 2006; Sankarasubramanian et al., 2010;
to 2010 and streamflow forecasts estimated from the vicHamlet et al., 2002). Seasonal streamflow forecasts derive
model are also compared with those predicted by using thdheir skill from slowly evolving climatic conditions, partic-
principal component regression (PCR) model. The meartlarly the Sea Surface Temperature (SST) as well as initial
square error (MSE) in predicting monthly streamflows, using hydrologic conditions (IHC) such as soil moisture and snow
the VIC model, are compared with the MSE of streamflow cover (Mahanama and Koster, 2003; Maurer et al., 2004;
climatology under ENSO (EI Niio Southern Oscilation) con- Wood and Lettenmaier, 2008).

ditions as well as under normal years. Results indicate that Considerable progress has been made over the last decade
VIC forecasts obtained using ECHAM4.5 are significantly in understanding the role of IHC and climate forecasts in
better than VIC forecasts obtained using climatological en-improving the skill of streamflow forecasts. Maurer and
sembles and PCR models over 2—6 month lead time during-€ttenmaier (2003) assessed streamflow predictability in

winter and spring seasons in capturing streamflow variabilityth® Mississippi River basin by developing multiple regres-
sion models using observed streamflow, ER®NiSouthern
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Oscillation (ENSO) indices, and IHC (including soil mois- hydrologic conditions in the forecasting of a 6-month lead
ture and snow), and reported that the role of soil mois-monthly streamflow for a river basin dominated by the
ture dominated forecasting skill for lead times of up to 1.5 rainfall-runoff mechanism. Given that monthly climate fore-
months. Shukla and Lettenmaier (2011) quantified the rolecasts are issued and updated on a regular basis (Barnston et
of IHC as well as observed and climatological forcings (CF) al., 2003; Goddard et al., 2003), it is imperative to evalu-
in predicting the runoff and soil moisture over the continen- ate the potential in developing monthly streamflow forecasts
tal US and found that climate forcings dominate IHC over on a continuous basis throughout the year, so that the de-
the northeastern and southeastern US. veloped forecasts can be employed for water resources plan-
Streamflow forecasting skill significantly varies across ning and management. Furthermore, basins in the rainfall-
rainfall-runoff and snowmelt-driven regimes. Maurer et runoff regime critically depend on the forecasted precip-
al. (2004) reported that snow, in its dry state, played a cru-tation in the upcoming months, as opposed to snowmelt
cial role in streamflow predictability of up to 4.5-month lead regimes where IHC play a critical role (Mahanama et al.,
time in the western US. Koster et al. (2010) concluded thatin2012). For this purpose, we utilize a long period of the ret-
snow dominated regions, the snow water equivalent (SWEYospective monthly precipitation forecasts available (1957—to
generally contributed to overall streamflow predictability; date) from the ECHAMA4.5 general circulation model (GCM)
with the role of early-season soil moisture in improving (Li and Goddard, 2005). The six-month ahead precipita-
streamflow prediction being relatively small. Initialization of tion forecasts were updated every month based on the up-
snow also had a greater impact on the overall skill during thedated SST forecasts developed using the constructed ana-
spring-melt season in the Northwest US, while the contribu-logue method (van den Dool, 1994). Using this long time se-
tion of soil moisture is particularly high in the Southeast (up ries of monthly updated six-month ahead precipitation fore-
to 5 or 6 months) during fall and winter (Mahanama et al., casts, we perform a set of experiments to address the follow-
2012). Mahanama et al. (2012) primarily employed climatol- ing research questions related to developing monthly updated
ogy as forcings with updated initial conditions, using differ- streamflow and soil moisture forecasts in a rainfall-runoff
ent LSMs (land surface model) to develop seasonal streamregime:
flow forecasts. In the present study, the main focus is to
utilize updated monthly precipitation forecasts from GCMs
(global circulation model), forced with forecasted SSTs, to
develop monthly streamflow forecasts and also to evaluate 5 oy does the skill in predicting monthly streamflow
their skill against climatological forcings. and soil moisture forecasts vary during Efgi South-
Most studies that developed streamflow foreca;ts basgd ern Oscillation (ENSO) conditions to normal condi-
on land surface models have used observed or climatologi-  iong?
cal forcings (e.g., Hamlet et al., 2002; Maurer and Letten-
maier, 2003; Mahanama et al., 2012), while only fewer stud- 3. What contributes to the variability in the skill in devel-
ies have employed retrospective climate forecasts (Luo and  oping streamflow and soil moisture forecasts?
Wood, 2008; Luo et al., 2007; Yuan et al., 2011). Wood et
al. (2002) found that IHC played a more critical role than LU >
climate forecasts (CF) in predicting streamflow during the Py utilizing monthly updated climate forecasts from
summer of 2000, whereas both IHC and CF were impor-ECHAM4'5 GCM forced with constructed analogue SST
tant in predicting winter streamflow during 1997-1998 E| forecasts. o _
Nifio conditions over the southeastern US. Luo et al. (2007) "€ manuscript is structured as follows: Sect. 2 details

used bias-corrected climate forecasts from multiple modelsfhe study area and retrospective climate forecasts used in the

to predict streamflow in the Ohio River basin, and found thatStudy- Section 3 provides experimental details on developing

climate forecasts contributed more than IHC uncertainties afonthly updated streamflow forecasts, while the results and

long-lead times, of more than one month, in the predictiona”alyses are summar!zed in Sect. 4. Finally, Sect. 5 presents

of the summer flows. Li et al. (2009) pointed out that initial ("€ Summary and findings from the study.

conditions have a dominant effect on forecasting skill over a

short-term lead _time (t_Jp to 1 month), wh_ile climate forcings 5 Study area and data

control forecasting skill at longer lead times based on two

initializations at the beginning of January and July. However,2 1 Study area

all the above studies that utilized retrospective climate fore-

casts, for assessing the streamflow forecasting skill, have priApalachicola River originates in the Appalachian Mountains

marily focused on evaluating the skill in two critical seasonsand it joins the Chattahoochee and Flint Rivers at Chatta-

— summer and winter. hoochee, Florida, draining about 44 032%through Geor-
The primary intent of this study, is to quantify the gia, and some parts of Alabama and Florida (Fig. 1a). It is

role of updated monthly precipitation forecasts and initial one of the major river basins in the Southeast United States,

1. How does the skill in predicting observed monthly
streamflow vary over different seasons and lead time?

This study systematically addresses the above questions
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1957 to 2010 were obtained from Maurer et al. (2002) at
1/8 spatial scale{ 14 km by 12 km). The monthly observed
streamflow data from 1957 to 2010 was obtained from the US
Geological Survey (USGS) at Apalachicola River at Chatta-
hoochee (site #02358000). This site is minimally affected by
anthropogenic interventions, such as reservoir operations as
it is included in the Hydro-Climatic Data Network (HCDN)
database (Slack et al., 1993), and ultimately the extended
USGS streamflow data were used.

2.3 ECHAMA4.5 precipitation forecasts

Retrospective monthly updated climate forecasts were ob-
tained from the International Research Institute of Climate
and Society (IRI) data library (Li and Goddard, 2005) for the
ECHAMA4.5 General Circulation Model (GCM). ECHAM4.5
GCM was forced with constructed analogue Sea Surface
Temperatures (SSTs) forecasts to develop retrospective cli-
mate forecasts of up to 6-month lead time beginning in Jan-
uary 1957. Seven adjacent ECAHMA4.5 grids were selected
that covered the study area and exhibited significant rank cor-

7\,,\1200_ b g /\\ — Obs - — Sim B relgtions with spatially averaged (monthly) qbserved precipi-
(35, 1000 NSE = 0.81 BoBias = 12.7 tation over the study area. The rank correlations between spa-

= tially averaged observed precipitation data from Maurer et
S 800 al. (2002) and average precipitation of 7 selected ECHAM4.5
£ 600 grids, vary between 0.31 and 0.34 over 1-6 month lead times
% for the period from 1957 to 1980 (Table 1). For these seven
400 grids, we averaged monthly time series of the 24 ensem-

T T T T T bles from ECHAMA4.5 precipitation forecasts up to a 6-month

2 4 ISIonth 8 10 12 lead from 1957 to 2010. Although averaging the precipitation

members all together reduces the skill in estimating stream-
Fig. 1. Location of the Apalachicola River at Chattahoochee, FL, flow, in comparison to obtaining the average of ensemble
(a) and observed (Obs) and VIC model simulated (Sim) streamflowstreamflow forecasts, we have considered the ensemble mean
seasonalityb) for the VIC model evaluation period of 1981-2010 for downscaling the precipitation forecasts. In order to run
at USGS gauging station 02358000. Stars indicate location of 7 sethe hydrological model with monthly precipitation forecasts,
lected ECHAM4.5 grids. Figure 1b also shows the Nash-Sutcliff hoth spatial downscaling and temporal disaggregation of data
efficiency (NSE) and %bias over the entire evaluation period. are required on a monthly basis. Thus, both spatial downscal-
ing and temporal disaggregation need to be performed on in-
o . ... dividual ensemble members, which is computationally very
where precipitation is pretty uniform resulting in signifi- intensive. Several studies on probabilistic downscaling meth-

cant runoff throughout the year. Thus, developing streamflowods (Wilks and Hamill, 2007; Wilks, 2009) have faced con-

forecasts, an a continuous basis throughout the year, is Crltt'inuous challenges (e.g., application of logistic regression) in

ical for the region from an op.e.rauonal perspective as well erforming ensemble downscaling due to finite size of the en-
as for management during critical seasons. For this stud)P

. . . . $embles. Further, arandom selection of 1-2 probabilistic pre-
we consider the entire Apalachicola River at ChattahOOChe%ipitation forecast ensemble members may result in higher

Basin, over the period 19812010, for the development of ncertainty in precipitation than using the ensemble mean,

monthly-updated streamflow forecasts. The average armuaLs1|nce each ensemble member has equal probability of occur-

pr.eC|.p|tat|or.1 n the basin is about 1280 mm, with no S€asoNtance. Therefore, mean ensemble forecasts were downscaled
ality in precipitation, and the mean monthly runoff peaks in

March with the | ¢ thiv fl ina during th using a canonical correlation model to drive the land surface
f ﬁr(;:. Wllb € lowest monthly Tlows occurring during the ., q4e| at 1/8 spatial resolution. Details regarding the tem-
all (Fig. 1b). poral disaggregation and spatial downscaling are provided in

2.2 Observed meteorological and streamflow data the next section.

The daily meteorological forcing data for precipitation, max-
imum and minimum air temperatures, and wind speed from
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Daily 1/8° gridded PRCP
ensemble (Jan 57 — Dec 80)

Calibrated VIC
model

Routed

+ streamflow

¢.PCR(Q | fest)

Observed streamflow time series for 1 month
priorto forecasting period
Calibration: Moving window of previous 24
years on monthly flows

Iflead (i) = 1?

PCR

6-monthlead ECHAM4.5 monthly
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to forecasting month from previous

|
step’s PCR output

1 -6 months over Jan81 —Dec 2010

1

Skill evaluation of 1 — 6 months lead forecasts
usingobserved flows

Monthly streamflow forecasts for lead (i) = |

Iflead > 1?

Fig. 2. Experimental design to develop monthly updated 6-
month aljead monthly streamfloa) VICcst, (b) VIC¢iim, and
(c) PCR(Q;_1, fcst). CCA refers to Canonical Correlation Analy-
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Table 1. Rank correlations between monthly time series of average
precipitation from selected 7 ECHAM 4.5 grids for 1-6 month lead
times and spatially averaged (monthly) observed precipitation over
the study area during the period from 1957 to 1980.

Rank Correlation

0.32
0.32
0.31
0.34
0.33
0.31

Lead Time (months)

OO WNE

3.1.1 VIC model calibration and evaluation

The VIC model was first calibrated for the Apalachicola
River at Chattahoochee (site # 02358000), at a monthly time
step from 1957 to 1980 (Table 2), using observed stream-
flow obtained from the USGS. The standard VIC soil param-
eters that control infiltration, runoff and subsurface flow were
manually calibrated to match overall hydrograph shape and
volume of observed monthly streamflow. Finally, the model
was validated from 1981 to 2010 (Fig. 1b) and the overall
Nash-Sutcliff efficiency (NSE) during this period was 0.81.
The monthly NSE was also high for most of the months, ex-
cept during the low flow months of September and Novem-
ber, where it was relatively low (Table 2).

3.1.2 Temporal disaggregation

Daily time series of precipitation were derived from monthly
time series using the temporal disaggregation technique de-

sis and K-NN represents Kernel-Nearest Neighbor approach. PRCBcribed in Prairie et al. (2007). The temporal disaggregation

refers to precipitation, TMAX to maximum air temperature, TMIN
to minimum air temperature, and WIND to wind speed.

3 Retrospective streamflow forecasts development

Figure 2 illustrates the experimental setup, for streamflow
forecasts development, using the VIC model and the statisti-

cal model.

3.1 Variable Infiltration Capacity (VIC) model

involved classifying monthly time series into daily time se-
ries by identifying similar monthly conditions in the histor-
ical record based on the Kernel-nearest neighbor (K-NN)
approach. A brief description is provided here for clarity.
Typically, the K-NN approach resamples monthly data from
daily historic data, generating values that were observed. In
this study, the K-NN approach was implemented (Prairie et
al., 2007), where Kernel nearest neighbors were obtained by
computing the distance between predicted time series and
the historic series for the period 1957-1980. The observed
daily values from the “K” neighbors were resampled based

The VIC model (Liang et., 1994, 1996; Cherkauer and Let-on the Lall and Sharma kernel (Lall and Sharma, 1996). The
tenmaier, 2003) is a semi-distributed macroscale land surfaceumber of neighbors for each month was chosen based on
model that estimates water and energy balance. Streamflolgave-five-out cross-validation for the training period 1957—
is computed at the basin outlet using a stand-alone routind980. For further details of the K-NN approach, see Prairie
model (Lohman et al., 1998a, b). The details of the VIC etal. (2007).

model are described in Liang et al. (1994, 1996). The soil ) )

and vegetation input parameters are described in Sinha et-1.3 Errors due to temporal disaggregation of monthly

al. (2010). The daily meteorological forcings are described observed precipitation

in Maurer et al. (2002). . .
( ) In order to estimate errors due to the temporal disaggrega-

tion scheme, the observed daily precipitation from Maurer et

Hydrol. Earth Syst. Sci., 17, 721433 2013 www.hydrol-earth-syst-sci.net/17/721/2013/
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Table 2.VIC model calibration summary for the period 1957-1980. used to develop regression models for spatial downscaling

NSE represents Nash—Sutcliffe Efficiency.

Month  NSE Rank Correlation % Bias RMSE
Jan 0.74 0.90 7.9 5966.9
Feb 0.67 0.95 16.1 7676.9
Mar 0.61 0.93 15,5 9165.7
Apr 0.90 0.97 7.1 55045
May 0.82 0.88 —-0.2 41275
Jun 0.67 0.83 —-7.4 3927.8
Jul 0.48 0.76 —6.1 3422.6
Aug 0.53 0.81 —-49.4 3604.6
Sep -1.9 0.58 —-22.4 4431.1
Oct 0.55 0.73 —11.9 43915
Nov 0.01 0.69 —-18.2 4984.7
Dec 0.78 0.84 52 4365.1

al. (2002) was aggregated to the monthly scale and then dis-
aggregated to the daily time step using the K-NN approach.
Errors due to temporal disaggregation were estimated on a
monthly basis by computing the Relative Root Mean Square
Error (R-RMSE) between observed daily precipitation (Mau-
rer et al., 2002) and the disaggregated daily time series for
the 1981-2010 period. For each day, average precipitation
was estimated over the 30-yr period using daily time series
of observed precipitation and disaggregated precipitation for
all the 251 1/8 grids covering the entire study area. Finally,
the monthly R-RMSEs, relative to its monthly climatology,
were estimated for all the 251 grids using Eq. (1):

AN\2
\/"_12?_1 (P, - P,)
R-RMSE = = , 1)
t

wherer is time in days, is number of days in a month,

P, is observed average daily precipitatiaf},=temporally
disaggregated average daily precipitation, @hds the ob-
served average daily precipitation (climatology) for a given
month. Figure 3a indicates that relative errors, due to tempo-
ral disaggregation, are higher in fall months (September to
November) while errors are lower during winter and spring
months. This is partly due to the limited skill in predicting
the fall precipitation as well as to the increased error in the
disaggregation model during these months.

3.1.4 Spatial downscaling

For each month, precipitation forecasts from 7 ECHAMA4.5
grids (~ 2.8 by 2.8), over the Apalachicola River basin at
Chattahoochee, were used to obtain monthly precipitation
time series at 1/8spatial resolution. Given that the fore-
casts from these grid points as well as the observed pre-
cipitation over 1/8 resolution are correlated, we employed
Canonical Correlation Analysis (CCA) such that the low-
dimensional components of predictors and predictands were

www.hydrol-earth-syst-sci.net/17/721/2013/

(Tippet et al., 2003; Oh and Sankarasubramanian, 2011).
CCA maximizes inter-relationships between two data sets, in
contrast to Principal Component Analysis (PCA) where vari-
ability is maximized within a single data set (Wilks, 1995).
The spatial downscaling is performed using the observed
gridded data from Maurer et al. (2002) as reference. For each
month, the following steps were followed to spatially down-
scale precipitation forecasts:

1. Monthly anomalies Z), for each of the 251 1/8grids

covering the entire study area, were estimated by sub-
tracting the basin’s monthly spatial average precipita-

tion from the period 1957 to 1980 (pre-forecast period)

from each grid’s monthly precipitation.

. First, six principal components (e.q." = Y1, Y», ...,

Yes, dimension = x 6, wheren =54 yr and T denotes
transpose), which explained more than 95 % variabil-
ity in precipitation anomalies of the 251 grids, were re-
tained from 1957 to 2010 to reduce the dimensionality
and were used as the predictands.

. Similar to step (2), six principal components were re-

tained from the anomalies of ECHAM4.5 monthly pre-
cipitation forecasts that served as predictors (8.9=

X1, X2, ..., Xg, dimension =54 6). The dimensional-

ity of predictors was reduced from 7 to 6 components to
keep it consistent with the dimensions of predictands.
Retaining 7 original components versus 6 components
after PCA had minimal (statistically insignificant) effect
on VIC simulated monthly streamflow.

. A CCA model was developed using a split sampling

approach, where monthly data from 1957 to 1980 was
used for training, while monthly precipitation from
1981 to 2010 was predicted using the CCA model. The
CCA identified a linear combination of 6 predictors,
X* =a' X, which maximized linear combination of 6
predictand¥* = b"Y. The vectors andb were chosen

("52)
Jemsa)(m50)]

> denotes the variance—covariance matrix between the
two variables (see details in Wilks, 1995).

such that was maximized where

. The CCA estimated standardized anomalies were trans-

ferred back to the original standardized anomaly space
(Z) by

ZT=E.UT,

where E is the eigenvector of the anomalies of 251
grids (dimension 25% 6) andU" is the transpose of
the CCA predicted standardized anomalies (dimension
6 x 54) (see details in Tippet et al., 2003).

Hydrol. Earth Syst. Sci., 17, 72433 2013
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a 3.1.6 Land surface model implementation

0.7 A

0.6 | A

The implementation of the VIC model was performed in
T 1 the following ways (Fig. 2): (i) the VIC model was driven
ol T | using observed meteorological forcings data from 1975 to
= % % H % % % é @ 2010 in order to estimate IHCs prior to each month of fore-
T - casting period (1981-2010) (e.g., to forecast streamflow in
(T Wer Aer Way m W AU Sep Ot Nev Dee January 1981, IHCs at the end of December 1980 were up-
N %;0'/ é | dated to force the VIC model); and (i) the statistically down-

0.5

75%
50%

scaled and temporally disaggregated monthly precipitation

of 1 to 6 months were used to drive the VIC model with

% | forecasts from January 1981-December 2010 with lead times
::é %l é % é E‘ é updated IHCs estimated from (i). Since the primary objec-
0.4/ é -

HTH

tive of this study is to analyze the role of initial soil mois-
= ture and precipitation forecasts, other input variables such

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

as maximum and minimum air temperatures and wind speed
Fig. 3. Box plots of relative root mean square error for 251°1/8 were used from the observed 1/Bieteorological forcings
grid cells due to(a) temporal disaggregation of monthly observed during the forecasting period. To compare both variabil-
precipitation to daily scale, ar(@)_ sp_atial downscaling of 1-month ity and mean errors of streamflow forecasts developed us-
lead ECHAM4.5 monthly precipitation forecasts. ing ECHAMA4.5 precipitation forecasts, we also considered
the Ensemble Streamflow Prediction (ESP) approach (Day,
6. Finally, the observed monthly spatial mean was added1985; Franz et al., 2003). For developing streamflow fore-
back to the product of standardized anomalies andcasts using ESP, we updated initial conditions every month
monthly standard deviation to obtain the monthly time and forced the VIC model with the climatological ensem-
series from 1981 to 2010 for each of the 251°1g8ds.  ple, which was developed by drawing equally likely daily ob-
For less than 2% of the cases among all the 251 gridsserved precipitation over the period 1957 to 1980. For both
the spatially downscaled monthly precipitation was lessthese schemes, ECHAMA4.5 forecasts and climatology, pre-
than or equal to zero. In those months, a historical min-dicted streamflow was routed at the basin outlet for each
imum monthly precipitation (for the period 1957-1980) monthly run from the VIC model. The routed streamflow at

of 5mm was assigned. the basin outlet were bias corrected on monthly basis based

on the VIC model calibration statistics (Table 2). Percent-

3.1.5 Errors due to Spatia| downsca”ng of month|y age bias correction on the mean monthly simulated flow for
precipitation forecasts the calibration period (1957 to 1980) was estimated and was

applied on the mean flow simulated for the evaluation pe-
Errors in spatial downscaling of 1-month lead ECHAMA4.5 riod (1981 to 2010) for each month. Thus, for each year,
monthly precipitation forecasts to 251 grids at°l&patial  the streamflow ensemble developed using the climatologi-
scale were evaluated by estimating R-RMSE using equacal ensemble was averaged to evaluate the performance mea-
tion 1, but on a monthly time step. Figure 3b suggests thasures (discussed in Sect. 4). Thus, the final product from the
the median R-RMSE at 1-month lead time is higher duringVIC model was a bias-corrected six-month ahead monthly
fall months specifically during September through Novem- streamflow forecast, from January 1981 to December 2010,
ber, which is similar to errors due to temporal disaggrega-obtained using precipitation forecasts (Vd$ as well as the
tion. This implies that, the accuracy of the spatially down- climatological ensembles (Vigm).
scaled monthly precipitation forecasts in predicting the ob-
served precipitation is relatively lower over the 251°1g8d 3.2 Principal Component Model — implementation
cells during the fall months. The relative errors are lower dur-
ing spring and summer months (Fig. 3b). Streamflow forecasts were also developed using statistical

Since the statistical downscaling scheme preserves longmodels (Fig. 2c) for comparing the skill of VIC model in pre-

term mean monthly precipitation, changes in mean monthlydicting the monthly streamflow. Under a statistical modeling
ECHAMA4.5 precipitation forecasts are statistically insignif- approach, Principal Component Regression (PCR) was de-
icant over different lead times. Finally, the daily time se- veloped between the forecasting month’s streamflow (predic-
ries of precipitation were derived from spatially downscaled tand) and monthly forecasts from the selected ECHAM4.5
monthly ECHAMA4.5 forecasts for 1-6 months lead time (ob- grids, along with previous month’s streamflow (predictors).
tained from CCA) using the temporal K-NN disaggregation PCR, otherwise known as Model Output Statistics (MOS),
technique, described above in Sect. 3.1, to implement a landecalibrates the GCM forecasts over a larger area or corre-
surface model. lated predictors into orthogonal components for estimating
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streamflow (Landman and Goddard, 2002; Sankarasubramaeduction in mean squared error (MSE) from predicting the
nian et al., 2008). The monthly time series from 1957 to VIC simulated flows under observed forcings by utilizing
1980 were used as the training period, with predictions bethe ECHAMA4.5 precipitation forecasts. Similarly, a positive
ing made from 1981 to 2010. For predicting streamflow atMSSS of VIGim,,, quantifies the fractional reduction in

a 1-month lead time, observed streamflow from the previ-MSE that could be obtained using IHCs over the observed
ous month was used with ECHAMA4.5 precipitation forecastsstreamflow climatology.

to predict the current month’s streamflow. For subsequent Since ENSO is one of the dominant climatic mode
lead times (2-6 months), PCR predicted streamflow for thethat influences the winter hydroclimatology of the south-
previous month @,_1) and precipitation forecasts (fcst) for eastern US (Ropelewski and Halpert, 1987; Devineni
the corresponding month were used as predictors. Thus, foand Sankarasubramanian, 2010), we evaluate the skill of
each month, six PCR models were developed under eachtreamflow forecasts during ENSO conditions. Typically,
lead time scheme using the climate predictability tool avail-El Nifio oscillations lead to warm and wet conditions
able from IRI http://portal.iri.columbia.edu/portal/server.pt? in the southeastern US, while La iNi results in cool
open=512&0bjID=697\&PagelD=7264&mode=2. SkKill and dry conditions. For this purpose, we consider the
obtained from the PCR model is compared with the skill ob- Nifio3.4 index, which was obtained from the National
tained for each month using Vi&; and VIC;im over the pe-  Climate Prediction Centerhftp://www.cpc.ncep.noaa.gov/

riod 1981-2010. products/analysisnonitoring/ensostuff/ensoyears.shiml
_ The Nino3.4 index denotes the average SST anomalies, over
3.3 Forecast skill scores 5°Nto 5° S and 120 to 170° W in the tropical Pacific, with

, positive (negative) anomalous conditions denoting EAdNi
The performance of VIC model and the PCR model in pre-(| 5 \jifa). EI Niio (La Niia) conditions were identified

dicting monthly/seasonal streamflow was evaluated using,, oach forecasting month if the past 3-month average
Spearman rank correlation and Mean Square Skill SCOrey the Nifio3.4 index was above the threshold ©D.5°C
(MSSS). Spearman rank correlation measures the monotoni(r:< —0.5°C).

correspondence between the forecasted streamflow and the

observed streamflow, and is referred to as correlation in the

subsequent sections. The correlation was tested for its stq‘: Results and analysis
tistical significance by checking whether the estimated cor-
relation is greater than.a6/./(n — 3), wheren denotes the

number of observation and forecasts pairs. MSSS indicateIn this section, we present the rank correlation and MSSS
. pairs. f monthly streamflow forecasts developed using the VIC
forecast accuracy by comparing the mean square error o

. -model for the period 1981-2010 as well as over the ENSO
the forecasts with respect to the mean square error of cli-

matology (Wilks, 1995). MSSS was also estimated for eachyears. We also compare the.correlatl'on and .MSSS with the
; forecasts developed using climatological forcings as well as
month/season using

with the forecasts developed using PCR. Following that, we
MSSS= present correlations between the VIC model forecasted total
soil moisture and observed streamflow at multiple locations
along with the spatial variability in the forecasted soil mois-
where Mean Square Error (MSE}cast is the average ture during La Niia years.

squared difference between the forecast and observations

pairs, and MSEimatology IS the averaged squared differ- 4.1 Performance of six-month ahead monthly

ence between the observations and the climatological stream-  streamflow forecasts

flow. The climatological estimates of streamflow are obtained

by averaging the observed streamflow over 1957-1980. IfSkill scores, rank correlation (measure of variability) and
MSSS is greater than zero, it indicates forecasts have bettéVSSS (accuracy), for six-month ahead monthly streamflow
skill than climatology. Two forecasts from the VIC (Vi&G forecasts from the VIC model with ECHAM4.5 and climatol-
and VICGim) model are compared with the PCR model ogy forcings are shown in Figs. 4 and 5 along with the corre-
at monthly and seasonal time scales using correlation andponding skills from the PCR model. Panels a—f in both fig-
MSSS. Both VIGcst and PCR have skills from IHCs and pre- ures indicate the lead time and the X-axis indicates the month
cipitation forecasts, while ViIgin has IHCs but no climate for which the skills are assessed. For instance, the skill shown
forecast skill. VIGest and PCR are compared by consider- in Fig. 4f for the month of June indicates the ability of the
ing observed flows as reference streamflow while fyd@nd forecasting scheme to predict variability in June flows based
VIC¢jim are compared by considering VIC model simulated on the initial conditions prior to January and using the six-
flows as reference (as indicated by the subscript sim) whemonth ahead monthly precipitation forecast issued in January
forced with observed meteorological forcings. Improvementsfor the month of June. At 1-month lead time (Fig. 4a), all
in MSSS of VIGesy,, over VICgimg,, quantify the fractional  the forecasting schemes exhibit statistically significant skill

1—[(Mean Square Errgfiecas)/ (Mean Square Ergfmatology] (2)
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Fig. 4. Spearman rank correlations between estimated streamflowrig. 5. Mean Square Skill Score comparison of estimated stream-
and observed streamflow at lead timeg&) to 6 (f) months. The  flow at lead times 1a) to 6 (f) months.
horizontal gray line (at 0.38) indicates statistical significance cor-
relation at 95 % confidence interval. HG; and VIG;im represent
VIC model estimations when forced with ECHAM4.5 monthly pre-
cipitation forecast and daily climatology ensembles, respectively.has both updated IHCs and climate forecast skill. Given that
PCR(Q;-1, fest) represents Principal Component Regression basetMSSS is computed in relation to the MSE of streamflow cli-
on PCR with updated initial conditions (Updated preViOUS month’s mato'ogy' MSSS basica”y quantifies the percentage reduc-
streamflow for subsequent lead times). Sim indicates VIC simulatedign in MSE of climatology resulting from the forecasting
fiow as reference streamflow. scheme. Thus, except during summer, streamflow forecasts
developed from the VIC model with ECHAMA4.5 forcings
provide better streamflow predictions than the reference fore-
in predicting the variability in the observed streamflow over cast — the streamflow climatology. In comparison to the VIC-
the entire year. The only exception is in September, duringmodel based forecasting schemes, the MSSS of the PCR
which the VIC model forced with climatological forcings model is generally inferior in most of the months, with the
(VICiimg,,) did not result in forecasts that are statistically exceptions being February and October. This implies that
significant when using the VIC simulated flows as referencePCR model captures only variability by exhibiting significant
streamflow. Comparing the estimated rank correlation acrossorrelations, but the mean square errors in predicting the ob-
the different forecasting schemes, we infer that VIC modelserved streamflow are relatively higher than the errors of the
based forecasting schemes perform better than PCR forecast§C model.
in almost all months, with the exceptions being February For lead times of 2 to 4 months (Figs. 4b—d and 5b—d),
and October. The performance of &, (ECHAMA4.5) the PCR model performed poorly, indicating almost no skill
and VIGiimg,, iS almost similar in all months except dur- in predicting the observed streamflow beyond 1 month. The
ing fall months when using VIC simulated flows as refer- computed correlation for the PCR model is statistically sig-
ence. VIGgs; outperformed other schemes in capturing over- nificant only in fewer months. However, Vi&g; captures the
all variability in observed flows. variability in the streamflow, exhibiting significant correla-
Though the estimated correlation at 1-month lead time fortions in predicting the observed streamflow in all the months.
VICfest;, and VIGiimg, iS similar (Fig. 4a), VIGijim,, Per- Among the performance of VIC-model simulated schemes,
forms better than Vigsy,,, developed using ECHAMA4.5 in  VICysy,, performs better than Vigm,,, in all months ex-
winter and spring (Fig. 5a) based on MSSS. This indicatescept September to November, where both these schemes fail
that the streamflow forecasts estimated using climatologicato capture streamflow variability. One possible reason for the
forcings result in reduced mean squared error (MSE) in prepoor performance of Vs, during the fall months is due
diction as compared to the MSE of VIC forecasts obtainedto significantly higher relative errors in spatial downscaling
with ECHAMA4.5 forcings during winter and spring. This in- and temporal disaggregation (Fig. 3). Evaluating the perfor-
dicates that the role of IHCs is more important than climatemance on the basis of MSSS also shows thati@nd
forecasts skills during winter and spring at 1-month leadVICscsy,, performed better than VIgm and PCR in win-
time since VIGjim,,, has only updated IHCs, while Vi, ter and spring seasons. Beyond four months, only\C
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and.VIC}Cstsim showgd .s.lgnllflcant correlauong in captu_rmg VIChy sin  VICaim sim  ~ VIChy PCR(IQ_I»fcst)
the interannual variability in streamflow during the winter Ly T
and spring season (Fig. 4e—f), but the MSSS are only positive 0944, -~ —. _~=I ? A 4 B
. . _ . i _.;,,, N M | AN ///“‘} - ~
during spring months beyond a 4-month lead time. The pri- 0.6 A \ NS W,
mary reason for improved performance in capturing stream- g 3| NS L 17\ VIO
flow variability during spring months is due to smaller inter- A
. g - - . . . 0-0 | |
annual variability in precipitation during those months. We R L
\Y

discuss this issue in detail under Discussion (Sect. 5). The§ 0.9¢ A - 4 P B

significant correlation under 5-6 months for \{& during g o.s—ﬁrg/ .\,/\‘\\‘} SRS i | FaenS A F
spring season primarily |nd|cat_es the importance of_usmg go_g_.,f// N /—‘*‘\“ \// B _/.,.’f’ Y \.\./\ avds
precipitation forecasts as a forcing, as opposed to using cli-© g ;_I/ — |\ : :S\I % - / — I\ »’\l o
matology as a forcing. L [ R T N

To recapitulate, six-month ahead streamflow forecasts is- 0-9¢ - 1 N B
sued using VlGst, VICtst;,, and VICjim, have better cor- 0.6 Jff,\/ A i AN SACT
relations and MSSS than that of the PCR model in almostall  0.347/ =\ A\ 42’!\\“\\:;: . Ve /@\,}i;};;j\i;*x.ff L
months. Similarly, VIGsy,,, perform better than Vigimg,, 0.0 M e D ”I Y
in winter and spring from 2 to 6 months lead time. The pri- 2 4 6 8 1012 2 4 6 8 10 12
mary reason for the poor performance of VIC based forecasts Month Month

d“””g the fall months 'S,d,ue _to the poor skill in downscaled Fig. 6. Similar to Fig. 4, but the skill evaluated only for ENSO con-
and disaggregated precipitation forecasts. The low MSSS ofjiions.

VICiimg,, (lesser than zero) beyond one month (see Fig. 5),

indicates that initial soil moisture conditions are useful only

up to a month in reducing the MSE in predicting the refer- for 1-month lead time for the period July—March. For higher
ence streamflow that could be obtainable using streamflowead times, the PCR model’s skill in predicting the observed
climatology. The improved performance of W&, over  variability is statistically significant only in March.

VICiimg;,, indicates the importance of precipitation forecasts At 3-6 month lead time, VIC-model based forecasts,

in developing skillful monthly streamflow forecasts. VICicst,;,, and VIGest, show statistically significant skill only
for the forecasts issued during spring (i.e., predicting the ob-
4.2 Source of skill for ECHAMA4.5 forecasts — served variability in spring flows). For forecasts issued in the
ENSO conditions rest of the months, VIC-model based forecasts did not show

statistically significant skill in predicting the observed vari-

Given that streamflow forecasts developed using ECHAMA4.5ability. However, the performance of Vit in issuing a 3—4
forecasts performed better in capturing variability in almost month lead forecast is good for winter, spring and early sum-
all the seasons except the fall, we investigate the source afer over the entire validation period (Fig. 4). We also ob-
skill for ECHAMA4.5 precipitation forecasts in relation to the serve that the performance of i, issued in the spring
ENSO conditions. For each month, the correlation and MSSSs better than that of VIgimg,-
of VICsst was compared with the corresponding skills of To further understand the role of ENSO in improv-
VICjim and PCR during ENSO and non-ENSO years. ing the prediction of monthly streamflow forecasts, we

Figure 6 shows the correlation for the three forecastingplot (Fig. 7) the MSSS for VIC forecasts, under ENSO
schemes under four scenarios (V.. VICclimgp: VICtcst (VICtestonsy VICclimensy @Nnd normal tropical Pacific condi-
and PCR, considering both simulated and observed flow ations (VICecst,om: VICclimnom), OVEr various lead times by
references) with observed/reference streamflow and over siysing only observed flows as reference. Under ENSO con-
different lead times based on ENSO conditions. At 1-monthditions with one-month lead time, the MSSS of the VIC
lead time, VIGcst, VICtcst,,, and VIGiimg, forecasts are model forced with two climatological forcings (Vlimenso
statistically significant in predicting the observed variabil- and VICgjim,,,,) are not only similar but also better than the
ity in flows in almost all months. The only exceptions are MSSS of VIGcst,, and VIGest,,m, for the forecast issued
VICfest;,, and VIGiimg,,, D€ING Not significant in September. during April-August as well as October—-November. How-
Comparing the correlations in Fig. 6 with Fig. 4, we un- ever, for lead times of 2—6 months, &, and VIGecst,om
derstand that the skill is almost similar for all the months have lower mean square errors than both climatological
except during October—December (OND) at 1-month leadforcing schemes. In particular, Vi&t,.., indicated positive
time. Under OND, the ability to predict the variability in ob- MSSS for the forecasts issued during early winter and spring.
served/reference flow is slightly higher under ENSO condi- This implies that 2—6 month ahead streamflow forecasts for
tions for 1-2 month lead forecasts. This is because ENSQuvinter and spring, obtained using ECHAMA4.5 precipitation
conditions typically peaks around OND. On the other hand,forecasts issued in previous fall and winter, primarily de-
the correlation of the PCR model is statistically significant rive its skill from ENSO conditions, resulting in lower mean
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VICiy oo VICuim enso " VICiestnom  — VICqlim_norm Table 3. Rank correlation between seasonal soil moisture forecasts

L1 I S N and seasonal observed streamflow at (a) Flint River at Newton,

0.9-4 - 1° B GA,; and (b) Apalachicola River at Chattahoochee, FL. Locations
0.6 - - of these sites are shown in Fig. 1a. All correlations are statistically
0_3_ ” . | significant & 0.38).
\ % ’ N \ ,/\;
0.0 .
’ } Drainage Lead
09-c I | Sub-basin Area (kd) (months) JFM AMJ JAS OND
B0.6- A | . u (a) Flint 14694 1 0.81 0.86 080 057
%] A A /\ A 2 0.69 0.87 083 0.69
Z034A AN AEY T /W VoA N 3 057 078 075 0.63
0.0 WV SN A VRN YAY R 4 047 069 064 061
: i : : : : : : : : : 5 052 074 058 0.63
097 - 7 B 6 055 077 045 0.62
0.6 A ] | (b) Apalachicola 44032 1 0.84 085 0.78 0.65
) VAN A N A 2 073 084 083 0.71
0.3 N AN \ FR 3 060 074 080 069
NN AR I\ | RN 4 059 071 064 062
0.0 —r—T1 | w— — 5 054 080 058 0.64
2 4 6 8 1012 2 4 6 8 10 12 6 060 081 049 0.69

Month Month

Fig. 7.Same as Fig. 5, but MSSS calculated separately under ENSO

conditions (VIGest,,ew VICclimensg @nd normal tropical Pacific

(VICtestorm: VICelimpom) conditions. predicting soil moisture variability is highest at a 1-month
lead time. Among all the seasons, spring season (April-June)
exhibits the highest correlations followed by summer sea-

square errors. This is consistent with the earlier findings,son (July—September) for the two rivers. The correlations

of Devineni and Sankarasubramanian (2010), indicating theretween the observed streamflow and soil moisture fore-

skill of precipitation forecasts being significant only during casts are statistically significant for both the Apalachicola

ENSO occurrences. and Flint Rivers over the four seasons for lead times up to 6

The other candidates, Vi, and VICelim,,m did not  months. Therefore, the results of VIC-model forecasted soil

show positive MSSS in most of the months, except duringmoisture are reasonably good for the entire basin up to a 6-

February. Thus, our analyses of splitting the MSSS shown inmonth lead time.

Fig. 7 clearly indicate that ECHAMA4.5 precipitation-forecast

based streamflow forecasts issued during the early winter and

spring season perform well with reduced mean square error‘sl 4 Average soil moisture forecasts and anomalies

under 2—6 month lead-times during ENSO conditions. Under

neutral ENSO conditions, Vs, €xhibits good skill dur- ~ The VIC model 1-month lead monthly streamflow fore-

ing early winter and spring for forecasts issued with a leadcasts show good skills in capturing overall variability during

time of up to 4 months. Based on this understanding, we exspring and summer months, which are crucial for agricultural

tend our analyses for developing 6-month ahead soil moisoperations. Figure 8 indicates spatial variation of total soil

ture forecasts. moisture content in the top 90 cm of soil surface as simulated
by the VIC model. The spatial plot of soil moisture climatol-
4.3 Performance of monthly soil moisture forecasts ogy (Fig. 8g-1) indicates that soil moisture is lowest in the

central regions of the study area. Total soil moisture avail-
The VIC model simulated spatially averaged soil moisture ability decreases as we move from April to September due to
in the top 90 cm soil layer over the two sub-basins are com-increased evapotranspiration. Soil moisture forecast anoma-
pared with the USGS observed streamflow: (a) Flint River atlies were estimated by subtracting total soil moisture during
Newton, GA; and (b) Apalachicola River at Chattahoochee,La Nifia years from soil moisture climatology for the period
FL (Fig. 1a). Flint River is primarily included to demonstrate 1981 to 2010. Thus, positive values indicate a deficit during
the performance of soil moisture and streamflow forecasts in_La Nifia years from climatology. Typically, the La i\ cli-
the upstream sub-basin, thereby exploring the potential to dematic oscillations lead to cool and dry conditions over the
velop forecasts even for other outlet points within the basin.study area. During the La Ra conditions, southern regions
The correlations (Table 3) over different seasons indicate an the study basin are relatively drier during July to Septem-
strong relationship between spatially average soil moistureber while northern and northwestern regions are relatively
and observed seasonal streamflow over the two sites. As exvetter. The most pronounced effect of Lafiiconditions
pected, the correlations are relatively lower at longer leadoccurs in July and August, which are relatively drier than
times, except during the fall season (Table 3). The skill inother months in the growing season.
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(b), the initial soil moisture conditions were updated prior
to the forecasting period. Thus, the difference in correlation
and MSSS between the two forecasting schemes quantifies
the improvements or potential degradation in skill that could
be attributable to the precipitation forecasts obtained from
the GCM. In addition, statistical models were also used to
compare the correlation and MSSS over different lead times
up to 6 months. This section provides discussion related to
the three questions proposed in the introduction (Sect. 1).

5.1 Skill variations over various seasons and lead time

Results from Figs. 4 and 5 suggest that at one-month lead
time monthly streamflow forecasts developed using precip-
itation forecasts capture better variability, whereas monthly
forecasts developed using climatological forcings have lower
mean square errors during winter and spring. Since the cli-
matological forcing scheme only has updated IHCs but no
climate forecast skill, reduced mean errors in comparison to
precipitation forecast schemes (with IHC’s and climate fore-
cast skill) indicates a dominant role of IHCs during winter
and spring at 1-month lead time. In particular, land surface
modeling streamflow forecasts were relatively poorer than
the statistical model during late summer (September) and
early fall (October) months. The poor performance of pre-
cipitation forecasts during these months is partly due to high
R-RMSE due to spatial downscaling and temporal disaggre-
gation in the precipitation forecasts.

At 2—6 month lead times, streamflow forecasts developed
using the precipitation forecasts showed better correspon-
dence (i.e., correlation) in matching the interannual variabil-
ity of observed flows as well as in terms of accuracy with
MSSS> 0 during winter and spring. These findings are con-
sistent with the findings of Shukla and Lettenmaier (2011),
who indicated that soil moisture skills dominate up to a 1-
Fig. 8. VIC-model estimated average monthly soil moistues:to month lead time while climate forcings dominate beyond a
(f) forecasted anomalies (at 1-month lead) estimated by subtracting-month lead in the southeastern US. These results are also
total soil moisturg during La Nia years from soil mqisture clima- jp agreement with Li et al. (2009) who reported that ini-
tology for the period 1981 to 2010, which is shown in pargldo  {j5| conditions have a dominant effect on forecast skill up to
- 1 month while downscaled climate forecasts outperformed

the ESP approach for longer lead times. However, the un-
certainty over the longer lead times could be reduced by
5 Discussion and concluding remarks continuously updating the monthly streamflow forecasts as
we progress through the season (Sankarasubramanian et al.,
This study focuses on quantifying the utility of updated 2008).
monthly precipitation forecasts and the role of initial soil
moisture conditions in developing monthly streamflow fore- 5.2 Role of ENSO conditions
casts. We focused on a rainfall-runoff dominant basin —
Apalachicola River at Chattahoochee, FL — located in theBy analyzing the rank correlation of the three forecasting
southeastern US. We calibrated the VIC land surface modeschemes under ENSO conditions, streamflow forecasts de-
to monthly observed streamflow for the study area and therveloped using ECHAMA4.5 precipitation forecasts capture
forced the model with: (a) statistically downscaled and tem-better variability for the forecasts issued during all seasons up
porally disaggregated 6-month lead ECHAMA4.5 precipita- to a 2-month lead time (Fig. 6), beyond which the skill is lim-
tion forecasts, and (b) an ensemble of daily climatology es-ited to only spring season. Further, our analyses of splitting
timated for the period 1957-1980. Under both cases (a) anthe MSSS (Fig. 7), based on ENSO and normal conditions,

86" -84’ 86" -84’ 86" -84’
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clearly show that ECHAMA4.5 precipitation forecasts basedevery ensemble member of ECHAMA4.5 precipitation fore-
streamflow forecasts issued during the winter season performasts is beyond the scope of this paper. We hope to address
well with reduced mean errors from 2—4 months lead timethis in future research by pursuing ensemble-MOS methods
under neutral conditions and from 2—6 months lead time un-as suggested by Wilks and Hamill (2007). Further, it also
der ENSO conditions. However, MSSS of ECHAMA4.5 basedneeds to be analyzed how spatial downscaling and tempo-
precipitation forecasts is lower than MSSS of climatologi- ral disaggregation contribute to the limited skill during the
cal forcings based streamflow forecasts at 1-month lead timéall season since the statistical model seems to outperform
during winter and spring. This indicates that the role of IHCs both VIC-model based forecasting schemes. Since basins in
is dominant up to 1-month under both ENSO and neutral conthe southeastern US have no seasonality in precipitation, it
ditions. Thus, this analysis provides critical information that is also important to understand the source of error arising
during ENSO conditions, we not only have better MSSS infrom the downscaling and disaggregation scheme. We intend
predicting the observed streamflow using precipitation fore-to address these issues as part of our continuing research on
casts from GCMs beyond a 1-month lead time, but also gairdeveloping operational streamflow forecasts over the south-
increased lead time in predicting the observed flows. eastern US.
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