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Abstract. Skillful seasonal streamflow forecasts obtained
from climate and land surface conditions could significantly
improve water and energy management. Since climate fore-
casts are updated on a monthly basis, we evaluate the po-
tential in developing operational monthly streamflow fore-
casts on a continuous basis throughout the year. Further,
basins in the rainfall–runoff regime critically depend on the
forecasted precipitation in the upcoming months as opposed
to snowmelt regimes where initial hydrological conditions
(IHC) play a critical role. The goal of this study is to quan-
tify the role of updated monthly precipitation forecasts and
IHC in forecasting 6-month lead monthly streamflow and
soil moisture for a rainfall–runoff mechanism dominated
basin – Apalachicola River at Chattahoochee, FL. The Vari-
able Infiltration Capacity (VIC) land surface model is imple-
mented with two forcings: (a) updated monthly precipitation
forecasts from ECHAM4.5 Atmospheric General Circulation
Model (AGCM) forced with sea surface temperature fore-
casts and (b) daily climatological ensembles. The difference
in skill between the above two quantifies the improvements
that could be attainable using the AGCM forecasts. Monthly
retrospective streamflow forecasts are developed from 1981
to 2010 and streamflow forecasts estimated from the VIC
model are also compared with those predicted by using the
principal component regression (PCR) model. The mean
square error (MSE) in predicting monthly streamflows, using
the VIC model, are compared with the MSE of streamflow
climatology under ENSO (El Niño Southern Oscilation) con-
ditions as well as under normal years. Results indicate that
VIC forecasts obtained using ECHAM4.5 are significantly
better than VIC forecasts obtained using climatological en-
sembles and PCR models over 2–6 month lead time during
winter and spring seasons in capturing streamflow variability

and reduced mean square errors. However, at 1-month lead
time, streamflow utilizing the climatological forcing scheme
outperformed ECHAM4.5 based streamflow forecasts during
winter and spring, indicating a dominant role of IHCs up to
a 1-month lead time. During ENSO years, streamflow fore-
casts exhibit better skill even up to a six-month lead time.
Comparisons of the seasonal soil moisture forecasts, devel-
oped using ECHAM4.5 forcings, with seasonal streamflows
also show significant skill, up to a 6-month lead time, in the
four seasons.

1 Introduction

Skillful seasonal forecasts of streamflow and soil moisture
are essential for water management as well as to support
agricultural operations. Previous studies have shown that the
application of seasonal streamflow forecasts, obtained from
climate and land surface conditions, could significantly im-
prove water and energy management (Yao and Georgakskos,
2001; Voisin et al., 2006; Sankarasubramanian et al., 2010;
Hamlet et al., 2002). Seasonal streamflow forecasts derive
their skill from slowly evolving climatic conditions, partic-
ularly the Sea Surface Temperature (SST) as well as initial
hydrologic conditions (IHC) such as soil moisture and snow
cover (Mahanama and Koster, 2003; Maurer et al., 2004;
Wood and Lettenmaier, 2008).

Considerable progress has been made over the last decade
in understanding the role of IHC and climate forecasts in
improving the skill of streamflow forecasts. Maurer and
Lettenmaier (2003) assessed streamflow predictability in
the Mississippi River basin by developing multiple regres-
sion models using observed streamflow, El Niño Southern
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Oscillation (ENSO) indices, and IHC (including soil mois-
ture and snow), and reported that the role of soil mois-
ture dominated forecasting skill for lead times of up to 1.5
months. Shukla and Lettenmaier (2011) quantified the role
of IHC as well as observed and climatological forcings (CF)
in predicting the runoff and soil moisture over the continen-
tal US and found that climate forcings dominate IHC over
the northeastern and southeastern US.

Streamflow forecasting skill significantly varies across
rainfall–runoff and snowmelt-driven regimes. Maurer et
al. (2004) reported that snow, in its dry state, played a cru-
cial role in streamflow predictability of up to 4.5-month lead
time in the western US. Koster et al. (2010) concluded that in
snow dominated regions, the snow water equivalent (SWE)
generally contributed to overall streamflow predictability;
with the role of early-season soil moisture in improving
streamflow prediction being relatively small. Initialization of
snow also had a greater impact on the overall skill during the
spring-melt season in the Northwest US, while the contribu-
tion of soil moisture is particularly high in the Southeast (up
to 5 or 6 months) during fall and winter (Mahanama et al.,
2012). Mahanama et al. (2012) primarily employed climatol-
ogy as forcings with updated initial conditions, using differ-
ent LSMs (land surface model) to develop seasonal stream-
flow forecasts. In the present study, the main focus is to
utilize updated monthly precipitation forecasts from GCMs
(global circulation model), forced with forecasted SSTs, to
develop monthly streamflow forecasts and also to evaluate
their skill against climatological forcings.

Most studies that developed streamflow forecasts based
on land surface models have used observed or climatologi-
cal forcings (e.g., Hamlet et al., 2002; Maurer and Letten-
maier, 2003; Mahanama et al., 2012), while only fewer stud-
ies have employed retrospective climate forecasts (Luo and
Wood, 2008; Luo et al., 2007; Yuan et al., 2011). Wood et
al. (2002) found that IHC played a more critical role than
climate forecasts (CF) in predicting streamflow during the
summer of 2000, whereas both IHC and CF were impor-
tant in predicting winter streamflow during 1997–1998 El
Niño conditions over the southeastern US. Luo et al. (2007)
used bias-corrected climate forecasts from multiple models,
to predict streamflow in the Ohio River basin, and found that
climate forecasts contributed more than IHC uncertainties at
long-lead times, of more than one month, in the prediction
of the summer flows. Li et al. (2009) pointed out that initial
conditions have a dominant effect on forecasting skill over a
short-term lead time (up to 1 month), while climate forcings
control forecasting skill at longer lead times based on two
initializations at the beginning of January and July. However,
all the above studies that utilized retrospective climate fore-
casts, for assessing the streamflow forecasting skill, have pri-
marily focused on evaluating the skill in two critical seasons
– summer and winter.

The primary intent of this study, is to quantify the
role of updated monthly precipitation forecasts and initial

hydrologic conditions in the forecasting of a 6-month lead
monthly streamflow for a river basin dominated by the
rainfall–runoff mechanism. Given that monthly climate fore-
casts are issued and updated on a regular basis (Barnston et
al., 2003; Goddard et al., 2003), it is imperative to evalu-
ate the potential in developing monthly streamflow forecasts
on a continuous basis throughout the year, so that the de-
veloped forecasts can be employed for water resources plan-
ning and management. Furthermore, basins in the rainfall–
runoff regime critically depend on the forecasted precip-
itation in the upcoming months, as opposed to snowmelt
regimes where IHC play a critical role (Mahanama et al.,
2012). For this purpose, we utilize a long period of the ret-
rospective monthly precipitation forecasts available (1957–to
date) from the ECHAM4.5 general circulation model (GCM)
(Li and Goddard, 2005). The six-month ahead precipita-
tion forecasts were updated every month based on the up-
dated SST forecasts developed using the constructed ana-
logue method (van den Dool, 1994). Using this long time se-
ries of monthly updated six-month ahead precipitation fore-
casts, we perform a set of experiments to address the follow-
ing research questions related to developing monthly updated
streamflow and soil moisture forecasts in a rainfall–runoff
regime:

1. How does the skill in predicting observed monthly
streamflow vary over different seasons and lead time?

2. How does the skill in predicting monthly streamflow
and soil moisture forecasts vary during El Niño South-
ern Oscillation (ENSO) conditions to normal condi-
tions?

3. What contributes to the variability in the skill in devel-
oping streamflow and soil moisture forecasts?

This study systematically addresses the above questions
by utilizing monthly updated climate forecasts from
ECHAM4.5 GCM forced with constructed analogue SST
forecasts.

The manuscript is structured as follows: Sect. 2 details
the study area and retrospective climate forecasts used in the
study. Section 3 provides experimental details on developing
monthly updated streamflow forecasts, while the results and
analyses are summarized in Sect. 4. Finally, Sect. 5 presents
the summary and findings from the study.

2 Study area and data

2.1 Study area

Apalachicola River originates in the Appalachian Mountains
and it joins the Chattahoochee and Flint Rivers at Chatta-
hoochee, Florida, draining about 44 032 km2 through Geor-
gia, and some parts of Alabama and Florida (Fig. 1a). It is
one of the major river basins in the Southeast United States,
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Fig. 1. Location of the Apalachicola River at Chattahoochee, FL,
(a) and observed (Obs) and VIC model simulated (Sim) streamflow
seasonality(b) for the VIC model evaluation period of 1981–2010
at USGS gauging station 02358000. Stars indicate location of 7 se-
lected ECHAM4.5 grids. Figure 1b also shows the Nash–Sutcliff
efficiency (NSE) and %bias over the entire evaluation period.

where precipitation is pretty uniform resulting in signifi-
cant runoff throughout the year. Thus, developing streamflow
forecasts, on a continuous basis throughout the year, is crit-
ical for the region from an operational perspective as well
as for management during critical seasons. For this study,
we consider the entire Apalachicola River at Chattahoochee
Basin, over the period 1981–2010, for the development of
monthly-updated streamflow forecasts. The average annual
precipitation in the basin is about 1280 mm, with no season-
ality in precipitation, and the mean monthly runoff peaks in
March with the lowest monthly flows occurring during the
fall (Fig. 1b).

2.2 Observed meteorological and streamflow data

The daily meteorological forcing data for precipitation, max-
imum and minimum air temperatures, and wind speed from

1957 to 2010 were obtained from Maurer et al. (2002) at
1/8◦ spatial scale (∼ 14 km by 12 km). The monthly observed
streamflow data from 1957 to 2010 was obtained from the US
Geological Survey (USGS) at Apalachicola River at Chatta-
hoochee (site #02358000). This site is minimally affected by
anthropogenic interventions, such as reservoir operations as
it is included in the Hydro-Climatic Data Network (HCDN)
database (Slack et al., 1993), and ultimately the extended
USGS streamflow data were used.

2.3 ECHAM4.5 precipitation forecasts

Retrospective monthly updated climate forecasts were ob-
tained from the International Research Institute of Climate
and Society (IRI) data library (Li and Goddard, 2005) for the
ECHAM4.5 General Circulation Model (GCM). ECHAM4.5
GCM was forced with constructed analogue Sea Surface
Temperatures (SSTs) forecasts to develop retrospective cli-
mate forecasts of up to 6-month lead time beginning in Jan-
uary 1957. Seven adjacent ECAHM4.5 grids were selected
that covered the study area and exhibited significant rank cor-
relations with spatially averaged (monthly) observed precipi-
tation over the study area. The rank correlations between spa-
tially averaged observed precipitation data from Maurer et
al. (2002) and average precipitation of 7 selected ECHAM4.5
grids, vary between 0.31 and 0.34 over 1–6 month lead times
for the period from 1957 to 1980 (Table 1). For these seven
grids, we averaged monthly time series of the 24 ensem-
bles from ECHAM4.5 precipitation forecasts up to a 6-month
lead from 1957 to 2010. Although averaging the precipitation
members all together reduces the skill in estimating stream-
flow, in comparison to obtaining the average of ensemble
streamflow forecasts, we have considered the ensemble mean
for downscaling the precipitation forecasts. In order to run
the hydrological model with monthly precipitation forecasts,
both spatial downscaling and temporal disaggregation of data
are required on a monthly basis. Thus, both spatial downscal-
ing and temporal disaggregation need to be performed on in-
dividual ensemble members, which is computationally very
intensive. Several studies on probabilistic downscaling meth-
ods (Wilks and Hamill, 2007; Wilks, 2009) have faced con-
tinuous challenges (e.g., application of logistic regression) in
performing ensemble downscaling due to finite size of the en-
sembles. Further, a random selection of 1–2 probabilistic pre-
cipitation forecast ensemble members may result in higher
uncertainty in precipitation than using the ensemble mean,
since each ensemble member has equal probability of occur-
rence. Therefore, mean ensemble forecasts were downscaled
using a canonical correlation model to drive the land surface
model at 1/8◦ spatial resolution. Details regarding the tem-
poral disaggregation and spatial downscaling are provided in
the next section.

www.hydrol-earth-syst-sci.net/17/721/2013/ Hydrol. Earth Syst. Sci., 17, 721–733, 2013
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Fig. 2. Experimental design to develop monthly updated 6-
month ahead monthly streamflow:(a) VICfcst, (b) VICclim, and
(c) PCR(Q̂t−1, fcst). CCA refers to Canonical Correlation Analy-
sis and K-NN represents Kernel-Nearest Neighbor approach. PRCP
refers to precipitation, TMAX to maximum air temperature, TMIN
to minimum air temperature, and WIND to wind speed.

3 Retrospective streamflow forecasts development

Figure 2 illustrates the experimental setup, for streamflow
forecasts development, using the VIC model and the statisti-
cal model.

3.1 Variable Infiltration Capacity (VIC) model

The VIC model (Liang et., 1994, 1996; Cherkauer and Let-
tenmaier, 2003) is a semi-distributed macroscale land surface
model that estimates water and energy balance. Streamflow
is computed at the basin outlet using a stand-alone routing
model (Lohman et al., 1998a, b). The details of the VIC
model are described in Liang et al. (1994, 1996). The soil
and vegetation input parameters are described in Sinha et
al. (2010). The daily meteorological forcings are described
in Maurer et al. (2002).

Table 1.Rank correlations between monthly time series of average
precipitation from selected 7 ECHAM 4.5 grids for 1–6 month lead
times and spatially averaged (monthly) observed precipitation over
the study area during the period from 1957 to 1980.

Lead Time (months) Rank Correlation

1 0.32
2 0.32
3 0.31
4 0.34
5 0.33
6 0.31

3.1.1 VIC model calibration and evaluation

The VIC model was first calibrated for the Apalachicola
River at Chattahoochee (site # 02358000), at a monthly time
step from 1957 to 1980 (Table 2), using observed stream-
flow obtained from the USGS. The standard VIC soil param-
eters that control infiltration, runoff and subsurface flow were
manually calibrated to match overall hydrograph shape and
volume of observed monthly streamflow. Finally, the model
was validated from 1981 to 2010 (Fig. 1b) and the overall
Nash–Sutcliff efficiency (NSE) during this period was 0.81.
The monthly NSE was also high for most of the months, ex-
cept during the low flow months of September and Novem-
ber, where it was relatively low (Table 2).

3.1.2 Temporal disaggregation

Daily time series of precipitation were derived from monthly
time series using the temporal disaggregation technique de-
scribed in Prairie et al. (2007). The temporal disaggregation
involved classifying monthly time series into daily time se-
ries by identifying similar monthly conditions in the histor-
ical record based on the Kernel-nearest neighbor (K-NN)
approach. A brief description is provided here for clarity.
Typically, the K-NN approach resamples monthly data from
daily historic data, generating values that were observed. In
this study, the K-NN approach was implemented (Prairie et
al., 2007), where Kernel nearest neighbors were obtained by
computing the distance between predicted time series and
the historic series for the period 1957–1980. The observed
daily values from the “K” neighbors were resampled based
on the Lall and Sharma kernel (Lall and Sharma, 1996). The
number of neighbors for each month was chosen based on
leave-five-out cross-validation for the training period 1957–
1980. For further details of the K-NN approach, see Prairie
et al. (2007).

3.1.3 Errors due to temporal disaggregation of monthly
observed precipitation

In order to estimate errors due to the temporal disaggrega-
tion scheme, the observed daily precipitation from Maurer et

Hydrol. Earth Syst. Sci., 17, 721–733, 2013 www.hydrol-earth-syst-sci.net/17/721/2013/
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Table 2.VIC model calibration summary for the period 1957–1980.
NSE represents Nash–Sutcliffe Efficiency.

Month NSE Rank Correlation % Bias RMSE

Jan 0.74 0.90 7.9 5966.9
Feb 0.67 0.95 16.1 7676.9
Mar 0.61 0.93 15.5 9165.7
Apr 0.90 0.97 7.1 5504.5
May 0.82 0.88 −0.2 4127.5
Jun 0.67 0.83 −7.4 3927.8
Jul 0.48 0.76 −6.1 3422.6
Aug 0.53 0.81 −49.4 3604.6
Sep −1.9 0.58 −22.4 4431.1
Oct 0.55 0.73 −11.9 4391.5
Nov 0.01 0.69 −18.2 4984.7
Dec 0.78 0.84 −5.2 4365.1

al. (2002) was aggregated to the monthly scale and then dis-
aggregated to the daily time step using the K-NN approach.
Errors due to temporal disaggregation were estimated on a
monthly basis by computing the Relative Root Mean Square
Error (R-RMSE) between observed daily precipitation (Mau-
rer et al., 2002) and the disaggregated daily time series for
the 1981–2010 period. For each day, average precipitation
was estimated over the 30-yr period using daily time series
of observed precipitation and disaggregated precipitation for
all the 251 1/8◦ grids covering the entire study area. Finally,
the monthly R-RMSEs, relative to its monthly climatology,
were estimated for all the 251 grids using Eq. (1):

R-RMSEt =

√
n−1

∑n
t=1

(
Pt − P̂t

)2

Pt

, (1)

where t is time in days,n is number of days in a month,
Pt is observed average daily precipitation,P̂t = temporally
disaggregated average daily precipitation, andPt is the ob-
served average daily precipitation (climatology) for a given
month. Figure 3a indicates that relative errors, due to tempo-
ral disaggregation, are higher in fall months (September to
November) while errors are lower during winter and spring
months. This is partly due to the limited skill in predicting
the fall precipitation as well as to the increased error in the
disaggregation model during these months.

3.1.4 Spatial downscaling

For each month, precipitation forecasts from 7 ECHAM4.5
grids (∼ 2.8◦ by 2.8◦), over the Apalachicola River basin at
Chattahoochee, were used to obtain monthly precipitation
time series at 1/8◦ spatial resolution. Given that the fore-
casts from these grid points as well as the observed pre-
cipitation over 1/8◦ resolution are correlated, we employed
Canonical Correlation Analysis (CCA) such that the low-
dimensional components of predictors and predictands were

used to develop regression models for spatial downscaling
(Tippet et al., 2003; Oh and Sankarasubramanian, 2011).
CCA maximizes inter-relationships between two data sets, in
contrast to Principal Component Analysis (PCA) where vari-
ability is maximized within a single data set (Wilks, 1995).
The spatial downscaling is performed using the observed
gridded data from Maurer et al. (2002) as reference. For each
month, the following steps were followed to spatially down-
scale precipitation forecasts:

1. Monthly anomalies (Z), for each of the 251 1/8◦ grids
covering the entire study area, were estimated by sub-
tracting the basin’s monthly spatial average precipita-
tion from the period 1957 to 1980 (pre-forecast period)
from each grid’s monthly precipitation.

2. First, six principal components (e.g.Y T
= Y1, Y2, ...,

Y6, dimension =n × 6, wheren = 54 yr and T denotes
transpose), which explained more than 95 % variabil-
ity in precipitation anomalies of the 251 grids, were re-
tained from 1957 to 2010 to reduce the dimensionality
and were used as the predictands.

3. Similar to step (2), six principal components were re-
tained from the anomalies of ECHAM4.5 monthly pre-
cipitation forecasts that served as predictors (e.g.XT

=

X1, X2, ..., X6, dimension = 54× 6). The dimensional-
ity of predictors was reduced from 7 to 6 components to
keep it consistent with the dimensions of predictands.
Retaining 7 original components versus 6 components
after PCA had minimal (statistically insignificant) effect
on VIC simulated monthly streamflow.

4. A CCA model was developed using a split sampling
approach, where monthly data from 1957 to 1980 was
used for training, while monthly precipitation from
1981 to 2010 was predicted using the CCA model. The
CCA identified a linear combination of 6 predictors,
X∗

= aTX, which maximized linear combination of 6
predictandsY ∗

= bTY . The vectorsa andb were chosen

such that

(
aT ∑

XY

b

)
√{(

aT
∑
XX

a

)(
bT

∑
YY

b

)} was maximized where

∑
denotes the variance–covariance matrix between the

two variables (see details in Wilks, 1995).

5. The CCA estimated standardized anomalies were trans-
ferred back to the original standardized anomaly space
(Z) by

ZT
= E · UT,

where E is the eigenvector of the anomalies of 251
grids (dimension 251× 6) andUT is the transpose of
the CCA predicted standardized anomalies (dimension
6× 54) (see details in Tippet et al., 2003).

www.hydrol-earth-syst-sci.net/17/721/2013/ Hydrol. Earth Syst. Sci., 17, 721–733, 2013
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Fig. 3. Box plots of relative root mean square error for 251 1/8◦

grid cells due to:(a) temporal disaggregation of monthly observed
precipitation to daily scale, and(b) spatial downscaling of 1-month
lead ECHAM4.5 monthly precipitation forecasts.

6. Finally, the observed monthly spatial mean was added
back to the product of standardized anomalies and
monthly standard deviation to obtain the monthly time
series from 1981 to 2010 for each of the 251 1/8◦ grids.
For less than 2 % of the cases among all the 251 grids,
the spatially downscaled monthly precipitation was less
than or equal to zero. In those months, a historical min-
imum monthly precipitation (for the period 1957–1980)
of 5 mm was assigned.

3.1.5 Errors due to spatial downscaling of monthly
precipitation forecasts

Errors in spatial downscaling of 1-month lead ECHAM4.5
monthly precipitation forecasts to 251 grids at 1/8◦ spatial
scale were evaluated by estimating R-RMSE using equa-
tion 1, but on a monthly time step. Figure 3b suggests that
the median R-RMSE at 1-month lead time is higher during
fall months specifically during September through Novem-
ber, which is similar to errors due to temporal disaggrega-
tion. This implies that, the accuracy of the spatially down-
scaled monthly precipitation forecasts in predicting the ob-
served precipitation is relatively lower over the 251 1/8◦ grid
cells during the fall months. The relative errors are lower dur-
ing spring and summer months (Fig. 3b).

Since the statistical downscaling scheme preserves long-
term mean monthly precipitation, changes in mean monthly
ECHAM4.5 precipitation forecasts are statistically insignif-
icant over different lead times. Finally, the daily time se-
ries of precipitation were derived from spatially downscaled
monthly ECHAM4.5 forecasts for 1–6 months lead time (ob-
tained from CCA) using the temporal K-NN disaggregation
technique, described above in Sect. 3.1, to implement a land
surface model.

3.1.6 Land surface model implementation

The implementation of the VIC model was performed in
the following ways (Fig. 2): (i) the VIC model was driven
using observed meteorological forcings data from 1975 to
2010 in order to estimate IHCs prior to each month of fore-
casting period (1981–2010) (e.g., to forecast streamflow in
January 1981, IHCs at the end of December 1980 were up-
dated to force the VIC model); and (ii) the statistically down-
scaled and temporally disaggregated monthly precipitation
forecasts from January 1981–December 2010 with lead times
of 1 to 6 months were used to drive the VIC model with
updated IHCs estimated from (i). Since the primary objec-
tive of this study is to analyze the role of initial soil mois-
ture and precipitation forecasts, other input variables such
as maximum and minimum air temperatures and wind speed
were used from the observed 1/8◦ meteorological forcings
during the forecasting period. To compare both variabil-
ity and mean errors of streamflow forecasts developed us-
ing ECHAM4.5 precipitation forecasts, we also considered
the Ensemble Streamflow Prediction (ESP) approach (Day,
1985; Franz et al., 2003). For developing streamflow fore-
casts using ESP, we updated initial conditions every month
and forced the VIC model with the climatological ensem-
ble, which was developed by drawing equally likely daily ob-
served precipitation over the period 1957 to 1980. For both
these schemes, ECHAM4.5 forecasts and climatology, pre-
dicted streamflow was routed at the basin outlet for each
monthly run from the VIC model. The routed streamflow at
the basin outlet were bias corrected on monthly basis based
on the VIC model calibration statistics (Table 2). Percent-
age bias correction on the mean monthly simulated flow for
the calibration period (1957 to 1980) was estimated and was
applied on the mean flow simulated for the evaluation pe-
riod (1981 to 2010) for each month. Thus, for each year,
the streamflow ensemble developed using the climatologi-
cal ensemble was averaged to evaluate the performance mea-
sures (discussed in Sect. 4). Thus, the final product from the
VIC model was a bias-corrected six-month ahead monthly
streamflow forecast, from January 1981 to December 2010,
obtained using precipitation forecasts (VICfcst) as well as the
climatological ensembles (VICclim).

3.2 Principal Component Model – implementation

Streamflow forecasts were also developed using statistical
models (Fig. 2c) for comparing the skill of VIC model in pre-
dicting the monthly streamflow. Under a statistical modeling
approach, Principal Component Regression (PCR) was de-
veloped between the forecasting month’s streamflow (predic-
tand) and monthly forecasts from the selected ECHAM4.5
grids, along with previous month’s streamflow (predictors).
PCR, otherwise known as Model Output Statistics (MOS),
recalibrates the GCM forecasts over a larger area or corre-
lated predictors into orthogonal components for estimating
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streamflow (Landman and Goddard, 2002; Sankarasubrama-
nian et al., 2008). The monthly time series from 1957 to
1980 were used as the training period, with predictions be-
ing made from 1981 to 2010. For predicting streamflow at
a 1-month lead time, observed streamflow from the previ-
ous month was used with ECHAM4.5 precipitation forecasts
to predict the current month’s streamflow. For subsequent
lead times (2–6 months), PCR predicted streamflow for the
previous month (̂Qt−1) and precipitation forecasts (fcst) for
the corresponding month were used as predictors. Thus, for
each month, six PCR models were developed under each
lead time scheme using the climate predictability tool avail-
able from IRI (http://portal.iri.columbia.edu/portal/server.pt?
open=512\&objID=697\&PageID=7264\&mode=2). Skill
obtained from the PCR model is compared with the skill ob-
tained for each month using VICfcst and VICclim over the pe-
riod 1981–2010.

3.3 Forecast skill scores

The performance of VIC model and the PCR model in pre-
dicting monthly/seasonal streamflow was evaluated using
Spearman rank correlation and Mean Square Skill Score
(MSSS). Spearman rank correlation measures the monotonic
correspondence between the forecasted streamflow and the
observed streamflow, and is referred to as correlation in the
subsequent sections. The correlation was tested for its sta-
tistical significance by checking whether the estimated cor-
relation is greater than 1.96/

√
(n − 3), wheren denotes the

number of observation and forecasts pairs. MSSS indicates
forecast accuracy by comparing the mean square error of
the forecasts with respect to the mean square error of cli-
matology (Wilks, 1995). MSSS was also estimated for each
month/season using

MSSS=

1− [(Mean Square Errorforecast)/(Mean Square Errorclimatology)], (2)

where Mean Square Error (MSE)forecast is the average
squared difference between the forecast and observations
pairs, and MSEclimatology is the averaged squared differ-
ence between the observations and the climatological stream-
flow. The climatological estimates of streamflow are obtained
by averaging the observed streamflow over 1957–1980. If
MSSS is greater than zero, it indicates forecasts have better
skill than climatology. Two forecasts from the VIC (VICfcst
and VICclim) model are compared with the PCR model
at monthly and seasonal time scales using correlation and
MSSS. Both VICfcst and PCR have skills from IHCs and pre-
cipitation forecasts, while VICclim has IHCs but no climate
forecast skill. VICfcst and PCR are compared by consider-
ing observed flows as reference streamflow while VICfcst and
VICclim are compared by considering VIC model simulated
flows as reference (as indicated by the subscript sim) when
forced with observed meteorological forcings. Improvements
in MSSS of VICfcstsim over VICclimsim quantify the fractional

reduction in mean squared error (MSE) from predicting the
VIC simulated flows under observed forcings by utilizing
the ECHAM4.5 precipitation forecasts. Similarly, a positive
MSSS of VICclimsim quantifies the fractional reduction in
MSE that could be obtained using IHCs over the observed
streamflow climatology.

Since ENSO is one of the dominant climatic mode
that influences the winter hydroclimatology of the south-
eastern US (Ropelewski and Halpert, 1987; Devineni
and Sankarasubramanian, 2010), we evaluate the skill of
streamflow forecasts during ENSO conditions. Typically,
El Niño oscillations lead to warm and wet conditions
in the southeastern US, while La Niña results in cool
and dry conditions. For this purpose, we consider the
Niño3.4 index, which was obtained from the National
Climate Prediction Center (http://www.cpc.ncep.noaa.gov/
products/analysismonitoring/ensostuff/ensoyears.shtml).
The Niño3.4 index denotes the average SST anomalies, over
5◦ N to 5◦ S and 120◦ to 170◦ W in the tropical Pacific, with
positive (negative) anomalous conditions denoting El Niño
(La Niña). El Nĩno (La Niña) conditions were identified
for each forecasting month if the past 3-month average
of the Niño3.4 index was above the threshold of> 0.5◦C
(< −0.5◦C).

4 Results and analysis

In this section, we present the rank correlation and MSSS
of monthly streamflow forecasts developed using the VIC
model for the period 1981–2010 as well as over the ENSO
years. We also compare the correlation and MSSS with the
forecasts developed using climatological forcings as well as
with the forecasts developed using PCR. Following that, we
present correlations between the VIC model forecasted total
soil moisture and observed streamflow at multiple locations
along with the spatial variability in the forecasted soil mois-
ture during La Nĩna years.

4.1 Performance of six-month ahead monthly
streamflow forecasts

Skill scores, rank correlation (measure of variability) and
MSSS (accuracy), for six-month ahead monthly streamflow
forecasts from the VIC model with ECHAM4.5 and climatol-
ogy forcings are shown in Figs. 4 and 5 along with the corre-
sponding skills from the PCR model. Panels a–f in both fig-
ures indicate the lead time and the X-axis indicates the month
for which the skills are assessed. For instance, the skill shown
in Fig. 4f for the month of June indicates the ability of the
forecasting scheme to predict variability in June flows based
on the initial conditions prior to January and using the six-
month ahead monthly precipitation forecast issued in January
for the month of June. At 1-month lead time (Fig. 4a), all
the forecasting schemes exhibit statistically significant skill
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Fig. 4. Spearman rank correlations between estimated streamflow
and observed streamflow at lead times 1(a) to 6 (f) months. The
horizontal gray line (at 0.38) indicates statistical significance cor-
relation at 95 % confidence interval. VICfcst and VICclim represent
VIC model estimations when forced with ECHAM4.5 monthly pre-
cipitation forecast and daily climatology ensembles, respectively.
PCR(Q̂t−1, fcst) represents Principal Component Regression based
on PCR with updated initial conditions (updated previous month’s
streamflow for subsequent lead times). Sim indicates VIC simulated
flow as reference streamflow.

in predicting the variability in the observed streamflow over
the entire year. The only exception is in September, during
which the VIC model forced with climatological forcings
(VICclimsim) did not result in forecasts that are statistically
significant when using the VIC simulated flows as reference
streamflow. Comparing the estimated rank correlation across
the different forecasting schemes, we infer that VIC model
based forecasting schemes perform better than PCR forecasts
in almost all months, with the exceptions being February
and October. The performance of VICfcstsim (ECHAM4.5)
and VICclimsim is almost similar in all months except dur-
ing fall months when using VIC simulated flows as refer-
ence. VICfcst outperformed other schemes in capturing over-
all variability in observed flows.

Though the estimated correlation at 1-month lead time for
VICfcstsim and VICclimsim is similar (Fig. 4a), VICclimsim per-
forms better than VICfcstsim developed using ECHAM4.5 in
winter and spring (Fig. 5a) based on MSSS. This indicates
that the streamflow forecasts estimated using climatological
forcings result in reduced mean squared error (MSE) in pre-
diction as compared to the MSE of VIC forecasts obtained
with ECHAM4.5 forcings during winter and spring. This in-
dicates that the role of IHCs is more important than climate
forecasts skills during winter and spring at 1-month lead
time since VICclimsim has only updated IHCs, while VICfcstsim

Fig. 5. Mean Square Skill Score comparison of estimated stream-
flow at lead times 1(a) to 6 (f) months.

has both updated IHCs and climate forecast skill. Given that
MSSS is computed in relation to the MSE of streamflow cli-
matology, MSSS basically quantifies the percentage reduc-
tion in MSE of climatology resulting from the forecasting
scheme. Thus, except during summer, streamflow forecasts
developed from the VIC model with ECHAM4.5 forcings
provide better streamflow predictions than the reference fore-
cast – the streamflow climatology. In comparison to the VIC-
model based forecasting schemes, the MSSS of the PCR
model is generally inferior in most of the months, with the
exceptions being February and October. This implies that
PCR model captures only variability by exhibiting significant
correlations, but the mean square errors in predicting the ob-
served streamflow are relatively higher than the errors of the
VIC model.

For lead times of 2 to 4 months (Figs. 4b–d and 5b–d),
the PCR model performed poorly, indicating almost no skill
in predicting the observed streamflow beyond 1 month. The
computed correlation for the PCR model is statistically sig-
nificant only in fewer months. However, VICfcst captures the
variability in the streamflow, exhibiting significant correla-
tions in predicting the observed streamflow in all the months.
Among the performance of VIC-model simulated schemes,
VICfcstsim performs better than VICclimsim in all months ex-
cept September to November, where both these schemes fail
to capture streamflow variability. One possible reason for the
poor performance of VICfcstsim during the fall months is due
to significantly higher relative errors in spatial downscaling
and temporal disaggregation (Fig. 3). Evaluating the perfor-
mance on the basis of MSSS also shows that VICfcst and
VICfcstsim performed better than VICclim and PCR in win-
ter and spring seasons. Beyond four months, only VICfcst
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and VICfcstsim showed significant correlations in capturing
the interannual variability in streamflow during the winter
and spring season (Fig. 4e–f), but the MSSS are only positive
during spring months beyond a 4-month lead time. The pri-
mary reason for improved performance in capturing stream-
flow variability during spring months is due to smaller inter-
annual variability in precipitation during those months. We
discuss this issue in detail under Discussion (Sect. 5). The
significant correlation under 5–6 months for VICfcst during
spring season primarily indicates the importance of using
precipitation forecasts as a forcing, as opposed to using cli-
matology as a forcing.

To recapitulate, six-month ahead streamflow forecasts is-
sued using VICfcst, VICfcstsim and VICclimsim have better cor-
relations and MSSS than that of the PCR model in almost all
months. Similarly, VICfcstsim perform better than VICclimsim

in winter and spring from 2 to 6 months lead time. The pri-
mary reason for the poor performance of VIC based forecasts
during the fall months is due to the poor skill in downscaled
and disaggregated precipitation forecasts. The low MSSS of
VICclimsim (lesser than zero) beyond one month (see Fig. 5),
indicates that initial soil moisture conditions are useful only
up to a month in reducing the MSE in predicting the refer-
ence streamflow that could be obtainable using streamflow
climatology. The improved performance of VICfcstsim over
VICclimsim indicates the importance of precipitation forecasts
in developing skillful monthly streamflow forecasts.

4.2 Source of skill for ECHAM4.5 forecasts –
ENSO conditions

Given that streamflow forecasts developed using ECHAM4.5
forecasts performed better in capturing variability in almost
all the seasons except the fall, we investigate the source of
skill for ECHAM4.5 precipitation forecasts in relation to the
ENSO conditions. For each month, the correlation and MSSS
of VICfcst was compared with the corresponding skills of
VICclim and PCR during ENSO and non-ENSO years.

Figure 6 shows the correlation for the three forecasting
schemes under four scenarios (VICfcstsim, VICclimsim, VICfcst
and PCR, considering both simulated and observed flow as
references) with observed/reference streamflow and over six
different lead times based on ENSO conditions. At 1-month
lead time, VICfcst, VICfcstsim, and VICclimsim forecasts are
statistically significant in predicting the observed variabil-
ity in flows in almost all months. The only exceptions are
VICfcstsim and VICclimsim, being not significant in September.
Comparing the correlations in Fig. 6 with Fig. 4, we un-
derstand that the skill is almost similar for all the months
except during October–December (OND) at 1-month lead
time. Under OND, the ability to predict the variability in ob-
served/reference flow is slightly higher under ENSO condi-
tions for 1–2 month lead forecasts. This is because ENSO
conditions typically peaks around OND. On the other hand,
the correlation of the PCR model is statistically significant

Fig. 6.Similar to Fig. 4, but the skill evaluated only for ENSO con-
ditions.

for 1-month lead time for the period July–March. For higher
lead times, the PCR model’s skill in predicting the observed
variability is statistically significant only in March.

At 3–6 month lead time, VIC-model based forecasts,
VICfcstsim and VICfcst, show statistically significant skill only
for the forecasts issued during spring (i.e., predicting the ob-
served variability in spring flows). For forecasts issued in the
rest of the months, VIC-model based forecasts did not show
statistically significant skill in predicting the observed vari-
ability. However, the performance of VICfcst in issuing a 3–4
month lead forecast is good for winter, spring and early sum-
mer over the entire validation period (Fig. 4). We also ob-
serve that the performance of VICfcstsim issued in the spring
is better than that of VICclimsim.

To further understand the role of ENSO in improv-
ing the prediction of monthly streamflow forecasts, we
plot (Fig. 7) the MSSS for VIC forecasts, under ENSO
(VICfcstenso, VICclimenso) and normal tropical Pacific condi-
tions (VICfcstnorm, VICclimnorm), over various lead times by
using only observed flows as reference. Under ENSO con-
ditions with one-month lead time, the MSSS of the VIC
model forced with two climatological forcings (VICclimenso

and VICclimnorm) are not only similar but also better than the
MSSS of VICfcstenso and VICfcstnorm for the forecast issued
during April–August as well as October–November. How-
ever, for lead times of 2–6 months, VICfcstenso and VICfcstnorm

have lower mean square errors than both climatological
forcing schemes. In particular, VICfcstenso, indicated positive
MSSS for the forecasts issued during early winter and spring.
This implies that 2–6 month ahead streamflow forecasts for
winter and spring, obtained using ECHAM4.5 precipitation
forecasts issued in previous fall and winter, primarily de-
rive its skill from ENSO conditions, resulting in lower mean
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Fig. 7.Same as Fig. 5, but MSSS calculated separately under ENSO
conditions (VICfcstenso, VICclimenso) and normal tropical Pacific
(VICfcstnorm, VICclimnorm) conditions.

square errors. This is consistent with the earlier findings,
of Devineni and Sankarasubramanian (2010), indicating the
skill of precipitation forecasts being significant only during
ENSO occurrences.

The other candidates, VICclimenso and VICclimnorm did not
show positive MSSS in most of the months, except during
February. Thus, our analyses of splitting the MSSS shown in
Fig. 7 clearly indicate that ECHAM4.5 precipitation-forecast
based streamflow forecasts issued during the early winter and
spring season perform well with reduced mean square errors
under 2–6 month lead-times during ENSO conditions. Under
neutral ENSO conditions, VICfcstnorm exhibits good skill dur-
ing early winter and spring for forecasts issued with a lead
time of up to 4 months. Based on this understanding, we ex-
tend our analyses for developing 6-month ahead soil mois-
ture forecasts.

4.3 Performance of monthly soil moisture forecasts

The VIC model simulated spatially averaged soil moisture
in the top 90 cm soil layer over the two sub-basins are com-
pared with the USGS observed streamflow: (a) Flint River at
Newton, GA; and (b) Apalachicola River at Chattahoochee,
FL (Fig. 1a). Flint River is primarily included to demonstrate
the performance of soil moisture and streamflow forecasts in
the upstream sub-basin, thereby exploring the potential to de-
velop forecasts even for other outlet points within the basin.
The correlations (Table 3) over different seasons indicate a
strong relationship between spatially average soil moisture
and observed seasonal streamflow over the two sites. As ex-
pected, the correlations are relatively lower at longer lead
times, except during the fall season (Table 3). The skill in

Table 3.Rank correlation between seasonal soil moisture forecasts
and seasonal observed streamflow at (a) Flint River at Newton,
GA; and (b) Apalachicola River at Chattahoochee, FL. Locations
of these sites are shown in Fig. 1a. All correlations are statistically
significant (> 0.38).

Drainage Lead
Sub-basin Area (km2) (months) JFM AMJ JAS OND

(a) Flint 14 694 1 0.81 0.86 0.80 0.57
2 0.69 0.87 0.83 0.69
3 0.57 0.78 0.75 0.63
4 0.47 0.69 0.64 0.61
5 0.52 0.74 0.58 0.63
6 0.55 0.77 0.45 0.62

(b) Apalachicola 44 032 1 0.84 0.85 0.78 0.65
2 0.73 0.84 0.83 0.71
3 0.60 0.74 0.80 0.69
4 0.59 0.71 0.64 0.62
5 0.54 0.80 0.58 0.64
6 0.60 0.81 0.49 0.69

predicting soil moisture variability is highest at a 1-month
lead time. Among all the seasons, spring season (April–June)
exhibits the highest correlations followed by summer sea-
son (July–September) for the two rivers. The correlations
between the observed streamflow and soil moisture fore-
casts are statistically significant for both the Apalachicola
and Flint Rivers over the four seasons for lead times up to 6
months. Therefore, the results of VIC-model forecasted soil
moisture are reasonably good for the entire basin up to a 6-
month lead time.

4.4 Average soil moisture forecasts and anomalies

The VIC model 1-month lead monthly streamflow fore-
casts show good skills in capturing overall variability during
spring and summer months, which are crucial for agricultural
operations. Figure 8 indicates spatial variation of total soil
moisture content in the top 90 cm of soil surface as simulated
by the VIC model. The spatial plot of soil moisture climatol-
ogy (Fig. 8g–l) indicates that soil moisture is lowest in the
central regions of the study area. Total soil moisture avail-
ability decreases as we move from April to September due to
increased evapotranspiration. Soil moisture forecast anoma-
lies were estimated by subtracting total soil moisture during
La Niña years from soil moisture climatology for the period
1981 to 2010. Thus, positive values indicate a deficit during
La Niña years from climatology. Typically, the La Niña cli-
matic oscillations lead to cool and dry conditions over the
study area. During the La Niña conditions, southern regions
in the study basin are relatively drier during July to Septem-
ber while northern and northwestern regions are relatively
wetter. The most pronounced effect of La Niña conditions
occurs in July and August, which are relatively drier than
other months in the growing season.
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Fig. 8. VIC-model estimated average monthly soil moisture:(a) to
(f) forecasted anomalies (at 1-month lead) estimated by subtracting
total soil moisture during La Niña years from soil moisture clima-
tology for the period 1981 to 2010, which is shown in panels(g) to
(l).

5 Discussion and concluding remarks

This study focuses on quantifying the utility of updated
monthly precipitation forecasts and the role of initial soil
moisture conditions in developing monthly streamflow fore-
casts. We focused on a rainfall–runoff dominant basin –
Apalachicola River at Chattahoochee, FL – located in the
southeastern US. We calibrated the VIC land surface model
to monthly observed streamflow for the study area and then
forced the model with: (a) statistically downscaled and tem-
porally disaggregated 6-month lead ECHAM4.5 precipita-
tion forecasts, and (b) an ensemble of daily climatology es-
timated for the period 1957–1980. Under both cases (a) and

(b), the initial soil moisture conditions were updated prior
to the forecasting period. Thus, the difference in correlation
and MSSS between the two forecasting schemes quantifies
the improvements or potential degradation in skill that could
be attributable to the precipitation forecasts obtained from
the GCM. In addition, statistical models were also used to
compare the correlation and MSSS over different lead times
up to 6 months. This section provides discussion related to
the three questions proposed in the introduction (Sect. 1).

5.1 Skill variations over various seasons and lead time

Results from Figs. 4 and 5 suggest that at one-month lead
time monthly streamflow forecasts developed using precip-
itation forecasts capture better variability, whereas monthly
forecasts developed using climatological forcings have lower
mean square errors during winter and spring. Since the cli-
matological forcing scheme only has updated IHCs but no
climate forecast skill, reduced mean errors in comparison to
precipitation forecast schemes (with IHC’s and climate fore-
cast skill) indicates a dominant role of IHCs during winter
and spring at 1-month lead time. In particular, land surface
modeling streamflow forecasts were relatively poorer than
the statistical model during late summer (September) and
early fall (October) months. The poor performance of pre-
cipitation forecasts during these months is partly due to high
R-RMSE due to spatial downscaling and temporal disaggre-
gation in the precipitation forecasts.

At 2–6 month lead times, streamflow forecasts developed
using the precipitation forecasts showed better correspon-
dence (i.e., correlation) in matching the interannual variabil-
ity of observed flows as well as in terms of accuracy with
MSSS> 0 during winter and spring. These findings are con-
sistent with the findings of Shukla and Lettenmaier (2011),
who indicated that soil moisture skills dominate up to a 1-
month lead time while climate forcings dominate beyond a
1-month lead in the southeastern US. These results are also
in agreement with Li et al. (2009) who reported that ini-
tial conditions have a dominant effect on forecast skill up to
1 month while downscaled climate forecasts outperformed
the ESP approach for longer lead times. However, the un-
certainty over the longer lead times could be reduced by
continuously updating the monthly streamflow forecasts as
we progress through the season (Sankarasubramanian et al.,
2008).

5.2 Role of ENSO conditions

By analyzing the rank correlation of the three forecasting
schemes under ENSO conditions, streamflow forecasts de-
veloped using ECHAM4.5 precipitation forecasts capture
better variability for the forecasts issued during all seasons up
to a 2-month lead time (Fig. 6), beyond which the skill is lim-
ited to only spring season. Further, our analyses of splitting
the MSSS (Fig. 7), based on ENSO and normal conditions,
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clearly show that ECHAM4.5 precipitation forecasts based
streamflow forecasts issued during the winter season perform
well with reduced mean errors from 2–4 months lead time
under neutral conditions and from 2–6 months lead time un-
der ENSO conditions. However, MSSS of ECHAM4.5 based
precipitation forecasts is lower than MSSS of climatologi-
cal forcings based streamflow forecasts at 1-month lead time
during winter and spring. This indicates that the role of IHCs
is dominant up to 1-month under both ENSO and neutral con-
ditions. Thus, this analysis provides critical information that
during ENSO conditions, we not only have better MSSS in
predicting the observed streamflow using precipitation fore-
casts from GCMs beyond a 1-month lead time, but also gain
increased lead time in predicting the observed flows.

5.3 Difference in skill variations in streamflow and soil
moisture forecasts

Our previous discussion suggests that the primary source of
variability in the skill on predicting streamflow arises from
ENSO conditions. Given that we do not have observed soil
moisture information, we compared the seasonal soil mois-
ture forecasts to the observed seasonal streamflow. The VIC-
model soil moisture forecasts compare reasonably well with
the observed streamflow at two sites, particularly, up to a 6-
month lead time. VIC-model soil moisture climatology sug-
gests that April is the wettest while September is the driest
month in the growing season. During La Niña conditions, the
drying effect is more pronounced in June and August months.
The correlation between the soil moisture forecasts for the
winter and spring seasons and the corresponding observed
seasonal streamflow increase as the drainage area increases.
On the contrary, the correlation between the soil moisture
forecasts, for the summer season, and the observed stream-
flow decrease as the drainage area increases. This is primarily
due to the increased role of temperature during the summer
season leading to enhanced evapotranspiration over a larger
area, resulting in decreased correlation with streamflow.

Climate forecasts from the ECHAM4.5 GCM along with
the updated initial conditions provide useful information
which can be utilized in improving the management of wa-
ter and energy systems. This study quantified the additional
skill that could be gained using precipitation forecasts from
ECHAM4.5 forecasts over the climatological forcings. This
study uses precipitation forecasts from one GCM; however,
combining climate information from multiple models has
been shown to result in improved streamflow forecasts (Devi-
neni et al., 2008). The climatological forcings were run as en-
semble and the mean of the streamflow ensemble was used
to quantify the skill. On the other hand, we forced the VIC
model with downscaled ensemble mean precipitation fore-
casts due to the challenges in downscaling of finite size of
probabilistic forecast ensembles (Wilks and Hamill, 2007;
Wilks, 2009). Running the hydrological model using the
downscaled and disaggregated forecasts based on each and

every ensemble member of ECHAM4.5 precipitation fore-
casts is beyond the scope of this paper. We hope to address
this in future research by pursuing ensemble-MOS methods
as suggested by Wilks and Hamill (2007). Further, it also
needs to be analyzed how spatial downscaling and tempo-
ral disaggregation contribute to the limited skill during the
fall season since the statistical model seems to outperform
both VIC-model based forecasting schemes. Since basins in
the southeastern US have no seasonality in precipitation, it
is also important to understand the source of error arising
from the downscaling and disaggregation scheme. We intend
to address these issues as part of our continuing research on
developing operational streamflow forecasts over the south-
eastern US.
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