Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF 5-year value: 5.460
IF 5-year
CiteScore value: 7.8
SNIP value: 1.623
IPP value: 4.91
SJR value: 2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
h5-index value: 65
Volume 17, issue 1
Hydrol. Earth Syst. Sci., 17, 63–84, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Towards theories that link catchment structures and model...

Hydrol. Earth Syst. Sci., 17, 63–84, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Jan 2013

Research article | 11 Jan 2013

A mechanistic description of the formation and evolution of vegetation patterns

R. Foti1,* and J. A. Ramírez1 R. Foti and J. A. Ramírez
  • 1Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
  • *now at: Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, USA

Abstract. Vegetation patterns are a common and well-defined characteristic of many landscapes. In this paper we explore some of the physical mechanisms responsible for the establishment of self-organized, non-random vegetation patterns that arise at the hillslope scale in many areas of the world, especially in arid and semi-arid regions. In doing so, we provide a fundamental mechanistic understanding of the dynamics of vegetation pattern formation and development. Reciprocal effects of vegetation on the hillslope thermodynamics, runoff production and run-on infiltration, root density, surface albedo and soil moisture content are analyzed. In particular, we: (1) present a physically based mechanistic description of processes leading to vegetation pattern formation; (2) quantify the relative impact of each process on pattern formation; and (3) describe the relationships between vegetation patterns and the climatic, hydraulic and topographic characteristics of the system. We validate the model by comparing simulations with observed natural patterns in the areas of Niger near Niamey and Somalia near Garoowe. Our analyses suggest that the phenomenon of pattern formation is primarily driven by run-on infiltration and mechanisms of facilitation/inhibition among adjacent vegetation groups, mediated by vegetation effects on soil properties and controls on soil moisture and albedo. Nonetheless, even in presence of those mechanisms, patterns arise only when the climatic conditions, particularly annual precipitation and net radiation, are favorable.

Publications Copernicus