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Abstract. This study demonstrates the possibility of in-
verting hydrologic parameters using surface flux and runoff
observations in version 4 of the Community Land Model
(CLM4). Previous studies showed that surface flux and
runoff calculations are sensitive to major hydrologic param-
eters in CLM4 over different watersheds, and illustrated the
necessity and possibility of parameter calibration. Both de-
terministic least-square fitting and stochastic Markov-chain
Monte Carlo (MCMC)-Bayesian inversion approaches are
evaluated by applying them to CLM4 at selected sites with
different climate and soil conditions. The unknowns to be
estimated include surface and subsurface runoff generation
parameters and vadose zone soil water parameters. We find
that using model parameters calibrated by the sampling-
based stochastic inversion approaches provides significant
improvements in the model simulations compared to using
default CLM4 parameter values, and that as more informa-
tion comes in, the predictive intervals (ranges of posterior
distributions) of the calibrated parameters become narrower.
In general, parameters that are identified to be significant
through sensitivity analyses and statistical tests are better cal-
ibrated than those with weak or nonlinear impacts on flux
or runoff observations. Temporal resolution of observations
has larger impacts on the results of inverse modeling using
heat flux data than runoff data. Soil and vegetation cover
have important impacts on parameter sensitivities, leading to
different patterns of posterior distributions of parameters at
different sites. Overall, the MCMC-Bayesian inversion ap-
proach effectively and reliably improves the simulation of
CLM under different climates and environmental conditions.
Bayesian model averaging of the posterior estimates with

different reference acceptance probabilities can smooth the
posterior distribution and provide more reliable parameter
estimates, but at the expense of wider uncertainty bounds.

1 Introduction

Inverse problems (or parameter calibrations/optimizations)
involve a general framework to derive information about a
physical object or system from measurements directly or
indirectly related to the physical object/system (Tarantola,
2005). During the past decades, numerous inversion strate-
gies, deterministic or stochastic, have been developed and ap-
plied in earth systems science including atmospheric science,
hydrology, geology, and geophysics. Three conditions (ex-
istence, uniqueness, stability of the solutions) are necessary
for a well-posed inverse problem (Hadamard, 1902). How-
ever, as solution uniqueness and stability are usually violated
in practice, some regularization is generally needed to intro-
duce mild assumptions on the solution and prevent paramet-
ric over-fitting. It is also important for an inverse approach to
be capable of quantifying and evaluating the prediction un-
certainty, particularly for complex systems, where unknown
parameters and observable variables have nonlinear and non-
unique relationships, observations are limited, or the forward
models are not perfect.

For a given inverse problem, one can choose different ap-
proaches depending on the requirements of parameter esti-
mation accuracy, computational demand, and importance of
prediction uncertainty (e.g., Hou et al., 2006; Chen et al.,
2004; Hoversten et al., 2006), which requires understanding
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of the advantages, disadvantages, and applicability of each
method. Deterministic approaches have been used to obtain
“optimal” parameter sets by evaluating the goodness of fit
between observed and model simulated response variables
(e.g., Sorooshian, 1981; Sorooshian and Dracup, 1980; Duan
et al., 1992, 1993; Sorooshian et al., 1993; Hoversten et al.,
2006). These approaches generally assume that an optimal
parameter set exists and implicitly ignore the estimation of
predictive uncertainties. However, a single optimal parame-
ter set may not exist and the uncertainties associated with
the optimal parameter sets could be large (e.g., Gupta et
al., 1998; Klepper et al., 1991; Van Straten and Keesman,
1991; Beven and Binley, 1992; Yapo et al., 1996). More-
over, a model with the optimal parameter set may provide
the best fit over the calibration period, but multiple parame-
ter sets may result in comparable misfits and are likely to be
the “true” values with certain probability, and therefore are
considered to be acceptable or equally probable parameter
sets (Van Straten and Keesman, 1991; Klepper et al., 1991).
Stochastic approaches can address these limitations by de-
scribing the input parameter and output uncertainties in a sta-
tistical manner. Generally, the input parameter space is rep-
resented in a form of multivariate probability distributions of
input parameters and must be sampled to generate multiple
realizations of the model simulations so that the prediction
range can be estimated based on the ensemble model simu-
lations (Beven and Binley, 1992; Freer et al., 1996; Kuczera
and Parent, 1998; Vrugt et al., 2003b). When multiple types
of data are available, multi-objective calibration can be used
to deal with parameter estimation uncertainty by combining
several measures of performance for data fusion (Boyle et
al., 2000; Kollat et al., 2012; Gupta et al., 1998; Vrugt et al.,
2003a). In practice, different optimization methods can also
be combined to improve the treatment of uncertainty in hy-
drologic modeling (Vrugt and Robinson, 2007; Feyen et al.,
2007; Vrugt et al., 2005).

Uncertainty in model simulations can stem from model
parameters, as well as from model inputs (e.g., atmospheric
forcing and land cover data) and model structure (e.g., the
physical parameterizations used to describe certain processes
or the numerical solvers). Uncertainty in model input data
or model structure can be reduced by improving the obser-
vation precision and taking advantage of multiple observa-
tional platforms with different error characteristics in space
and time, or better understanding of the physical processes.
Much progress has been made by the land surface modeling
community in the last two decades to deal with uncertainty
in model parameters, data, and model structure. The focus of
this study is uncertainty in model parameters.

In previous studies (Hou et al., 2012; Huang et al.,
2013), we investigated the sensitivity of surface fluxes and
runoff simulations to major hydrologic parameters in ver-
sion 4 of the Community Land Model (CLM4) by integrat-
ing CLM4 with a stochastic exploratory sensitivity analy-
sis framework at 13 flux towers from the Ameriflux net-

work and 20 watersheds from the Model Parameter Estima-
tion Experiment (MOPEX) (Huang et al., 2013) spanning a
wide range of climate, landscape, and soil conditions. We
found that the CLM4-simulated latent heat flux (LH), sen-
sible heat flux (SH), and runoff show the largest sensitiv-
ity to subsurface runoff generation parameters. These studies
demonstrated the necessity and possibility of parameter in-
version/calibration using available measurements of surface
fluxes and streamflow to invert the optimal parameter set, and
provided guidance on reduction of parameter set dimension-
ality and parameter calibration framework design for CLM4.

This study aims to demonstrate the inversion methodol-
ogy at selected sites based on the global sensitivity analy-
ses detailed in Hou et al. (2012) and Huang et al. (2013).
Among various inversion approaches, we adopt a stochastic
Bayesian inversion approach integrated with Markov-chain
Monte Carlo (MCMC) sampling. The unknowns to be esti-
mated include model parameters for surface and subsurface
runoff generation and vadose zone soil water movement. Dif-
ferent options for the inversion framework are evaluated at
the selected sites. For example, it is important to evaluate
the prior incompatibility issues in an inversion design (Hou
and Rubin, 2005). As detailed in the remaining sections of
this paper, we evaluated the impacts of prior information
(e.g., initial guesses) on the inversion results. We also com-
pared the consistency and reliability of inversion using both
monthly and daily flux observations, and compared the per-
formance of Bayesian model averaging to the individual in-
version approaches for parameter estimation. We also discuss
the issues related to data quality, data worth, and redundancy.

2 Site and data description

We perform parameter estimation at two flux tower sites and
one MOPEX basin. The MOPEX basin is in close proximity
to one of the flux tower sites to investigate model inversion
using heat flux versus runoff data. These sites/basins are cho-
sen based on previous sensitivity analyses over a larger set of
flux tower sites and MOPEX basins (Hou et al., 2012; Huang
et al., 2013) that demonstrated the feasibility and necessity of
parameter calibration at those locations and to provide rep-
resentative and contrasting climate and environmental condi-
tions within the United States for more robust conclusions.
US-ARM is located in Oklahoma and is covered by crop-
lands (Allison et al., 2005; Baer et al., 2002; Fischer et al.,
2007; Riley et al., 2009; Suyker and Verma, 2009). US-MOz
is located in Missouri and is covered by deciduous broadleaf
(Gu et al., 2012, 2006). Meteorological forcing, site infor-
mation such as soil texture, vegetation cover, and satellite-
derived phenology, as well as validation data sets, such as
water and energy fluxes, are provided by the North Amer-
ican Carbon Program (NACP) site synthesis team. The site
information is provided in Table 2 of Hou et al. (2012).
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MOPEX basin (07147800) is the Walnut River basin in
Kansas with a drainage area of 4869 m2, which is domi-
nated by silty clay loam soil and covered by about 56 % C3
grass, 22 % C4 grass, and 20 % croplands according to the
MODIS based land cover map in Ke et al. (2012). The mete-
orological forcing for the MOPEX basin was extracted from
the phase two North America Land Data Assimilation Sys-
tem (NLDAS2) forcing at an hourly time step from 1979 to
2007 (Xia et al., 2012), including precipitation, shortwave
and longwave radiation, air temperature, humidity and wind
speed at a 1/8th degree resolution derived from the 32 km
resolution 3 h North American Regional Reanalysis (NARR)
following the algorithms detailed in Cosgrove et al. (2003).
An area-average algorithm was then applied to the NLDAS2
forcing as inputs to CLM by treating the entire basin as a
single computational unit. CLM was spun up by cycling the
forcing at each site for at least five times until all the state
variables reached equilibrium before any statistics were cal-
ibrated for inversion, based on the methodology described
below.

3 Methodology

3.1 Parameterization

Observational data used in parameter estimation are observed
latent heat fluxes and runoff measurements, which are pro-
cessed and gap-filled to obtain daily and monthly averaged
data. For unknowns, we focus on the parameters that are
the most identifiable from the response variables (i.e., they
have significant, straightforward, and distinguishable influ-
ences on hydrologic processes, including soil hydrology and
runoff generation processes). The 10 hydrologic parameters
that we found to have impacts on the simulations of surface
and subsurface runoff, latent and sensible heat fluxes, and
soil moisture in CLM4 arefmax, Cs, fover, fdrai, Qdm, Sy, b,
9s, Ks, andθs. Explanations of the 10 parameters and their
prior information are shown in Table 1. Some vegetation pa-
rameters, such as leaf maximum carboxylation rate and the
slope of the stomatal conductance, are important parameters
that govern plant transpiration and modulate latent heat flux
and soil moisture. In this study, we focus on the hydrolog-
ical parameters that are more directly related to runoff and
soil moisture, and the latter has important control over la-
tent heat flux, and set the vegetation parameters using default
values. Soil texture also affects soil evaporation and fluxes.
In this study, the prior distributions for porosity, permeabil-
ity, specific yield, Clapp and Hornberger exponent, and sat-
urated soil matrix potential parameters are determined from
soil texture information based on Cosby et al. (1984).

3.2 Parameter calibration using least-square fitting
approaches

Different approaches can be used to calibrate the selected
hydrologic parameters using available observations such as
runoff and surface fluxes data. The method of least squares
is a standard approach to approximate the solution of over-
determined systems, i.e., systems specified by more equa-
tions than unknowns. One well-known approach utilizing
the least-square fitting concept is Parameter ESTimation
(PEST) (Doherty, 2008), which is a general-purpose, model-
independent, parameter estimation and model predictive un-
certainty analysis package. Here we adopt PEST to perform
single-objective least-square fitting of the observational data,
with the loss function defined as the sum square of fitted
residuals between calculated and observed runoff or latent
heat fluxes.

There is a set of tuning parameters in the PEST inverse
setup. We used the widely adopted default settings as given in
the user guide. However, simulations of heat flux and runoff
using the calibrated parameters show only small improve-
ments compared to simulations using the default parameter
values. PEST, using the least-square fitting approach, works
well for more linear systems with monotonic relationships
between unknown parameters and observable variables and
weak interactions between the unknowns. For a complicated
system, it is very likely that a single optimum set of param-
eter values does not exist and the solutions may converge
to local minima. In this case, a probabilistic description of
all possible solutions is more reasonable by assigning proper
weights (i.e., likelihoods) to all possible solutions of parame-
ter sets. In order to further explore the usefulness of the least-
square fitting approach, the PEST-calibrated parameter esti-
mates are used as one of the choices for initial guesses of
the parameters for stochastic Bayesian updating as explained
below to determine if such estimates may improve the con-
vergence rate or robustness of the inversion results.

3.3 Bayesian updating

Stochastic inversion/calibration approaches (e.g., Bayesian
inference) can be used to describe the input/output uncertain-
ties in a probabilistic manner. Bayesian inference derives the
posterior probability as a consequence of two antecedents: a
prior probability given prior information, and a “likelihood
function” derived from a probability model for the data to be
observed. Bayesian inference computes the posterior proba-
bility according to Bayes’ rule:

f (m|d,I ) ∝ f (d|m,I) × f (m|I ) , (1)

where f (m|d,I ) represents the posterior pdf (probability
density function) of parameterm, f (d|m,I) denotes the
likelihood of observingd given parameterm, andf (m|I )

is the prior pdf ofm given prior available informationI .

www.hydrol-earth-syst-sci.net/17/4995/2013/ Hydrol. Earth Syst. Sci., 17, 4995–5011, 2013



4998 Y. Sun et al.: Inverse modeling of hydrologic parameters

Table 1.Selected hydrologic parameters in CLM4 and their prior information (from Hou et al., 2012).

Index Symbol Definition Relevant process Prior information

1 fmax Max fractional saturated area, from
DEM

Surface runoff Mean value taken from the default CLM4 input data set; standard
deviation (SD)= 0.160; upper and lower bounds (0.01–0.907)
determined from the default global data set for CLM4.

2 Cs Shape parameter of the topographic
index distribution

Surface runoff Mean= 0.5 for flux towers, no SD information, upper and lower
bound
0.01 and 0.9.

3 fover Decay factor (m−1) that represents
the distribution of surface runoff
with depth

Surface runoff Hard coded to be 0.5 in CLM4.
Mean= 0.5; upper and lower bounds: 0.1–5.

4 fdrai Decay factor (m−1) that represents
the distribution of subsurface runoff
with depth

Subsurface runoff Mean= 2.5; upper and lower bounds: 0.1–5.

5 qdrai,max
(Qdm)

Max subsurface drainage
(kg m−2 s−1)

Subsurface runoff Hard coded to be 5.5× 10−3 kg m−2 s−1 but typically should vary
between 1× 10−6 and 1× 10−2 in hydrologic applications. Tuning
range is 1× 10−6 to 1× 10−1 as suggested by NCAR.

6 Sy Average specific yield Groundwater dynamics Hard coded to be 0.2.
Based on the dominant soil type of the site. Converted to coarser soil
texture classes using the USGS soil texture triangle. Mean= 0.02 for
clay, 0.07 for sandy clay, 0.18 for silt, 0.27 for coarse sand; bounds
are±50 % of the mean for the given soil texture.

7 b Clapp and Hornberger exponent Soil water Based on the dominant soil type of the site. Used equations from
8 9s Saturated soil matrix potential (mm) Soil water Cosby et al. (1984). Mean values and SDs are from Table 5 in Cosby
9 Ks Hydraulic conductivity (mm s−1) Soil water et al. (1984), except for SD of9s, which is from Table 4 in Cosby

10 θs Porosity Soil water et al. (1984).

* Reproduced with permission from American Geophysical Union.

We assume that the forward models (e.g., CLM4) are be-
ing characterized byd∗

ij = gij (m) + εij , wherem represents
the vector of model parameters,dij = gij () is the forward
model,εij is the difference (i.e., residual) between the model
dij and observationd∗

ij , i = 1,. . . ,K; j = 1,. . . ,Ni , K being
the number of data types andNi being the number of obser-
vations for theith data type. The residuals include both mea-
surement errors in observations (e.g., heat fluxes) and mod-
eling errors due to model parameters. As discussed above,
model errors due to forcing data and model structural uncer-
tainty are not addressed in this study. However, we used forc-
ing data developed and adopted by the community (NACP
and NLDAS2) that reduce some uncertainty by using mul-
tiple observational data sets with adjustments to account for
local factors such as topography.

With the underlying assumptions thatεij is normally dis-
tributed with varianceσ 2

ij , and the distributions are indepen-
dent, the likelihood function can be represented as (Hou et
al., 2006)

fD|M,6,I

(
d∗

|m,σ,I
)
=

K∏
i=1

Ni∏
j=1[

1
√

2πσij

exp

{
−

1

2σ 2
ij

[
d∗

ij − gij (m)
]2
}]

. (2)

The posterior distributions of the input parameters are the
products of the priors and the likelihood functions. As more
information comes in, Bayes’ rule can be applied iteratively,
that is, after observing some evidence, the resulting posterior
probability can be treated as a prior probability, and a new
posterior probability is computed from the new evidence.

3.4 Sampling methods

An efficient sampling approach is important for the success
of Bayesian inversion, especially when the forward modeling
computational demand is high, the parameter dimensional-
ity is high, or the parameters are weakly identifiable. In this
study, the Metropolis–Hasting sampling method is used to
draw samples from the joint posterior distribution functions
(Hastings, 1970; Hou, 2008; Metropolis et al., 1953). The
procedure is as follows.

1. Initialize a random vectorm from the prior distribu-
tionsm

(0)
i , i = 1, . . .,p, wherep is the number of pa-

rameters.

2. Generate a random variablem∗

i , i = 1, . . .,p from the
proposal distributions, and calculate the following ra-
tio (note the probabilities in the formula are calculated
using Eq. 2):

α = min

(
pra,

prob(m∗

i |m
(1)
1 ,m

(1)
2 , . . .,m

(1)
i−1,m

(1)
i+1,m

(1)
i+2, . . .,m

(1)
p )

prob(m(0)
i |m

(0)
1 ,m

(0)
2 , . . .,m

(0)
i−1,m

(0)
i+1,m

(0)
i+2, . . .,m

(0)
p )

)
, (3)
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wherepra is reference acceptance probability.

3. Generate a random valueu uniformly from interval
(0,1).

4. If α > u, let m(1)
i = m∗

i ; otherwise, letm(1)
i = m

(0)
i .

Repeating steps (b) to (d) by replacing index (k) with
index (k + 1), we can obtain many samples as follows:{
(m

(k)
i ) : i = 1, . . .,p,k = 0,1, . . .,n

}
, wheren is the num-

ber of sample sets. From the procedure, we can see that the
valuem

(k)
i only depends on the current state ofm, but not

the previous states; therefore, these samples form a Markov
Chain. The summary statistics of the posterior samples dur-
ing the burn-in period (e.g., the last 400 sample sets) can be
used to check the convergence with a tolerance relative error
(e.g., 0.001), and posterior distributions can be derived from
the samples.

3.5 Inversion setup

3.5.1 Choices of initial values (default, mean, PEST
estimates)

Initial values have little impact on precision and accuracy of
a robust optimization algorithm, but affect the convergence
speed. In order to increase the efficiency of inverse model-
ing, we compared choices of initial values including the de-
fault parameter values in CLM4, the mean values between
the prior bounds, as well as the PEST estimates calibrated
using observational data at each study site. The default and
mean values are based on prior information in Table 1. Tests
show that the convergence speed of the MCMC-Bayesian
calibration is not affected by the choices of initial values,
although the PEST estimates slightly reduce the discrepan-
cies between calculated and observed responses compared to
using the default parameter values for CLM4 model calcula-
tions.

3.5.2 Choices of proposal distribution widths
(automatic versus multi-chain comparison)

The convergence speed (i.e., the number of steps needed
to obtain consistent posterior statistics of the unknown pa-
rameters) and accuracy of parameter estimation is associated
with several tuning parameters of the inversion setup. Pro-
posal distribution width, an important tuning parameter of
the MCMC algorithm, controls the searching precision and
speed. We compared different widths, i.e., 1/2, 1/4, 1/8, and
1/16, relative to the prior bounds of the unknown parame-
ters. The widths correspond to the 99 % confidence interval
of Gaussian proposal distributions. Optimized convergence
speed and stable results can be achieved with a proposal
width of 1/8 relative to the prior bounds. To compare the
performances of different tuning parameters, and to reduce

the time of convergence, we take advantage of high perfor-
mance computing resources to conduct multi-chain calibra-
tions simultaneously.

3.5.3 Reference acceptance probability

In this study, we also evaluated the effects of using differ-
ent acceptance probabilities for newly generated parameter
samples in the MCMC process. We named the criterion as
reference acceptance probability, a trade-off between con-
vergence speed and accuracy of parameter estimates. If the
acceptance probability of new sample sets is greater than the
product of reference acceptance probability and the accep-
tance probability of prior sample, we accept the new sample.
Specifically, four reference acceptance probabilities, i.e., 1.0,
0.95, 0.9, 0.5, are adopted to set the multi-model for inverse
modeling of CLM. Probabilistic model averaging can then be
used to integrate the different sets of parameter predictions,
where the weights are not determined arbitrarily, but rather
based on the posterior probabilities of all the models shar-
ing the same unknowns and observational data in the inverse
setup. The integrated results might have larger spread but the
estimates are generally more unbiased.

3.6 Sensitivity to data frequency, observation type,
and site conditions

Daily and monthly data (runoff and heat flux) are both used
in parameter calibration, and the performances are compared
to study the impact of data temporal resolution on parame-
ter inference. Compared to monthly data, daily data include
higher-frequency characteristics of temporal variations in the
observations; however, adjacent observations tend to have
more information redundancy and data quality is an issue.
A stochastic inversion approach usually provides parameter
calibrations with lower uncertainty (more “precise”) as more
and more data are used, but measurement errors could lead to
over-fitting of errors and therefore biased estimates. Through
comparison, we can identify the most appropriate observing
timescale for calibration to improve CLM4 simulations.

Different model responses associated with different com-
ponents of CLM have different sensitivities to the unknown
parameters. We conduct MCMC-Bayesian inversion at the
US-ARM site and at the nearby MOPEX basin (basin ID:
07147800). Although a basin is usually not homogeneous in
climate and land cover, the two sites are the closest in ge-
ographical proximity among all the Ameriflux first priority
and MOPEX sites, and they have similar climate and land
surface conditions. By comparing the inversion results using
observed heat flux and runoff, we can evaluate the impacts of
using different types of observations on parameter inference
in CLM.

Calibrations are also done at flux tower sites (US-ARM
vs. US-MOz) with different soil and vegetation conditions
to study the impacts of land surface conditions on parameter
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 798 
Figure 1.Posterior distribution of the parameters with four different reference acceptance 799 

probabilities (pra) using monthly heat flux data at the US-ARM site.  800 
Fig. 1.Posterior distribution of the parameters with four different reference acceptance probabilities (pra) using monthly heat flux data at the
US-ARM site.

inference of CLM. Soil, climate, and vegetation conditions
control water and energy fluxes, such as infiltration, evapo-
ration, and surface radiation; therefore, they can affect the
overall parameter identifiability and inversion results. Cali-
bration results can also be significantly affected by the qual-
ity/accuracy of the observational and forcing data, as well as
the model’s structural design and parameterization.

4 Results of full-set parameter inversion

4.1 Parameter inversion at flux tower sites using heat
flux observations

4.1.1 Posterior distributions of input parameters and
simulated heat flux from use of monthly data

Using monthly heat flux data from the 2003–2006 period at
the US-ARM site, we conducted inversion of ten CLM pa-
rameters with four reference acceptance probabilities. Fig-
ure 1 shows the prior and posterior distributions of the pa-
rameters, where the prior distributions are derived from prior
information, and the posterior distributions are derived based
on the last 200 samples of inverse modeling. Note that
three parametersQdm, 9s, andKs vary by several orders of
magnitude, and are log10-transformed. Posterior distributions
with different reference acceptance probabilities are gener-
ally consistent, except for those parameters that are less iden-
tifiable due to nonlinearity and non-uniqueness issues. Our
previous study (Hou et al., 2012) showed thatfover, fmax,
Ks, andθs have weak impacts on model simulations at the
US-ARM site. Therefore, the posterior distributions of these
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 801 
Figure 2. Simulated heat fluxes using the posterior estimates of parameters with monthly 802 

observations at the US-ARM site.   803 
Fig. 2.Simulated heat fluxes using the posterior estimates of param-
eters with monthly observations at the US-ARM site.

parameters are wide and non-informative as expected. This
demonstrates the necessity of performing parameter screen-
ing such that the inverse problems can be less ill-posed. As
shown in Eq. (3), a low reference acceptance probabilitypra
means that the rejection standard and searching ranges are
relaxed. As more potential estimates are identified and ac-
cepted, the bounds of posterior distributions increase, and
multi-modal behaviors occur, especially forθs. The poste-
rior means/modes of the estimated parameters shifted farther
from or closer to the prior means, particularly forfoverandθs.

Figure 2 shows the simulated monthly mean heat fluxes
using posterior estimates of parameters with four reference
acceptance probabilities using monthly observations at the
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 804 
Figure 3. Posterior distribution of the parameters with four reference acceptance probabilities 805 

using monthly heat flux data at the US-MOz site.  806 
Fig. 3.Posterior distribution of the parameters with four reference acceptance probabilities using monthly heat flux data at the US-MOz site.

US-ARM site. The black line shows the monthly mean heat
fluxes obtained from observations of the 2003–2006 period,
and the red line shows the calculated monthly mean heat
fluxes using default parameters based on prior information.
Simulations using default parameter values overestimate the
heat fluxes in summer (from May to September), and under-
estimate in winter at the US-ARM site. When the reference
probabilities are 1.0, 0.95, and 0.9, the posterior estimates
of parameters all significantly improve the heat flux simula-
tion in summer, and the posterior model probabilities (i.e.,
the product of Gaussian probabilities of misfits between cal-
culated and observed responses) are 0.730, 0.730, and 0.728
respectively, which are greater than 0.636 for the default pa-
rameter values. Note that the Gaussian probability of the de-
fault or a posterior parameter set is calculated using Eq. (2).
The estimates with reference acceptance probability of 0.5
noticeably deviate from other inversion estimates, and tend
to result in underestimates of simulated heat fluxes in sum-
mer. None of the parameter estimates is able to yield much
better fits during winter, which might be due to errors in the
observed heat fluxes, errors in the CLM forcing data, and/or
under-representation of the complicated physical processes
using the current parameterization schemes.

Similarly, inversion was also performed using monthly
heat flux data from the 2004–2007 period at the US-MOz
site with different soil and vegetation cover from US-ARM
site. Figure 3 shows the posterior distributions of ten parame-
ters with four reference acceptance probabilities. They show
similar patterns for different reference acceptance probabil-
ities, except for the parameterb. Even when the reference
acceptance probability is 0.5, the inversion yields reasonable
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 807 
Figure 4. Simulated heat fluxes using the posterior estimates of parameters at the US-MOz site.  808 
Fig. 4.Simulated heat fluxes using the posterior estimates of param-
eters at the US-MOz site.

parameter estimates for most parameters except forb and9s.
The relaxed rejection standard also leads to multi-modal, ex-
tended posterior distribution bounds, and more potential pa-
rameter estimates. It is noted that the posterior distribution of
fmax, Cs, fdrai, b, and9s are around the median values of the
prior bounds.

Figure 4 shows the calculated monthly mean heat fluxes
using the posterior parameter estimates from monthly ob-
servation at the US-MOz site. It is obvious that the de-
fault simulation underestimates the heat flux over all seasons.
From January to June, all posterior estimates with differ-
ent reference acceptance probabilities can significantly im-
prove the simulation of heat flux, except for some small
underestimations in April, May, and June. From July to
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 809 
Figure 5. Posterior distribution of the parameters with four reference acceptance probabilities 810 

using daily heat flux data at the US-ARM site.  811 

Fig. 5.Posterior distribution of the parameters with four reference acceptance probabilities using daily heat flux data at the US-ARM site.

December, the posterior estimates with reference acceptance
probabilities of 1.0 and 0.5 are similar and close to obser-
vations, while the other two overestimate the heat flux a lit-
tle in July and August. As a whole, all estimates of the in-
verse modeling can improve the simulation of heat flux over
all seasons, and the posterior model probabilities are 0.893,
0.889, 0.886, and 0.892 respectively, which are greater than
0.876 of the default simulation. Differences in the posterior
distributions with different reference acceptance probabili-
ties are small.

4.1.2 Posterior distributions of input parameters and
simulated heat flux from use of daily data

Figure 5 shows the posterior distribution of model pa-
rameters with four reference acceptance probabilities using
daily heat flux data from the 2003–2006 period at the US-
ARM site. The posterior distributions disperse over the prior
bounds for most parameters. Among the four sets of poste-
rior distributions, reference acceptance probability of 1.0 and
0.95 identify similar bounds, while the other two sets yield
different results, particularly forfmax, fover, Qdm, andKs.
Moreover, multi-modal distributions occur for most parame-
ters when the rejection standard is relaxed.

Figure 6 shows the calculated monthly mean heat fluxes
using the posterior estimates of parameters from daily ob-
servations at the US-ARM site. The posterior estimates of
parameters also improve the heat flux in summer. The ac-
ceptance probabilities of the simulations with four parameter
sets are 0.636, 0.618, 0.584, and 0.593 respectively, which
are all greater than 0.579 of the default simulation.
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 812 
Figure 6. Simulated heat fluxes using the posterior estimates of parameters with daily 813 

observations at the US-ARM site.  814 
Fig. 6.Simulated heat fluxes using the posterior estimates of param-
eters with daily observations at the US-ARM site.

The posterior distributions of the parameters with the four
reference acceptance probabilities using daily heat flux data
from the 2004–2007 period at the US-MOz site show that
the posterior distributions are more consistent forCs, fover,
Qdm, Sy, and9s, but dispersed forb, Ks andθs. When the
rejection standard is relaxed, the posterior bounds can be-
come much wider, especially forfdrai, Qdm, b, Ks and θs.
In winter, all simulations of heat flux using the posterior es-
timates are close to observations. In summer, posterior esti-
mates with reference acceptance probabilities of 1.0 and 0.95
significantly improve the heat flux simulation.
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 815 
Figure 7. Posterior distribution of the parameters with four reference acceptance probabilities 816 

using monthly runoff data at the MOPEX basin.  817 
Fig. 7.Posterior distribution of the parameters with four reference acceptance probabilities using monthly runoff data at the MOPEX basin.

4.2 Parameter inversion at MOPEX sites using runoff
observations

Runoff observations are also used in the inverse modeling
of CLM. Figure 7 shows the posterior distribution of the
parameters with four reference acceptance probabilities us-
ing monthly runoff data from the 2002–2005 period at the
MOPEX basin close to US-ARM. Posterior distributions
with strict reference acceptance probabilities (e.g., 1.0, 0.95
and 0.9) have consistent patterns for most parameters, except
for b, Ks, andθs. It is interesting to see thatfmax is identically
estimated by inversions with different reference acceptance
probabilities. When the rejection standards are relaxed, the
bounds of posterior distributions of most parameters become
wider, and multi-modal patterns occur.

Figure 8 shows the calculated monthly mean runoff using
the posterior estimates of parameters from monthly obser-
vations at the MOPEX basin. The default simulation barely
shows any variability of runoff. The posterior estimates sig-
nificantly improve the runoff simulations in all seasons, al-
beit larger variability than observations is noted from July to
October. Further analysis (Fig. 15) shows large peaks in the
observed runoff in June and July, which the CLM4 model
simulations cannot match well by adjusting model parameter
values. This suggests some systematic biases in the model
parameterizations that cannot be fully addressed by param-
eter calibration. However, we cannot exclude the possibility
of errors in either the external forcing or observational heat
fluxes. For example, the atmospheric forcing data are calcu-
lated over the 1/8th degree grid, which may underestimate
rainfall intensity for heavy precipitation events, leading to
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 818 
Figure 8. Simulated runoff using the posterior estimates of parameters at the MOPEX basin.  819 
Fig. 8.Simulated runoff using the posterior estimates of parameters
at the MOPEX basin.

underestimation of runoff peaks in the summer and accumu-
lation of soil moisture for runoff generation in subsequent
periods.

The acceptance probabilities are 0.846, 0.767, 0.758, and
0.737, all greater than 0.707 of the default runoff simula-
tion. Among the four sets of simulations based on inversion,
more stringent sample rejection criterion results in a better
match between the simulated responses with observations.
Because hydrological parameters are more sensitive to hy-
drological processes, this conclusion is not surprising for in-
version with runoff. In cases using heat fluxes for calibration,
we also found that the RMSEs of flux simulations using the
posterior estimates with the reference acceptance probability
of 1.0 are better than others. It is worth mentioning that for
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observational data that are more directly related to the pro-
cesses influenced by the model parameters, a more stringent
rejection criterion can help to improve calibration accuracy
and precision. For indirect information, a relaxed criterion is
helpful to avoid biased estimates.

For comparison with inversion using monthly runoff data,
we also performed inversion using daily runoff data from
the 2002–2005 period at the MOPEX basin. The posterior
distributions with different reference acceptance probabili-
ties disperse over the prior bounds, except forSy. The cal-
culated monthly mean runoff values using the posterior esti-
mates of parameters from daily observations are reasonable.
Compared to using monthly runoff data, the big fluctuations
disappear when using daily runoff. Posterior estimates with
reference acceptance probabilities of 1.0 and 0.95 can signif-
icantly improve the runoff simulation over all seasons, but
underestimate the runoff in summer, and overestimate the
runoff in winter.

5 Results of subset parameter inversion

Our global sensitivity analyses across 13 flux towers and 20
MOPEX basins (Hou et al., 2012; Huang et al., 2013) sug-
gest that simulated LH and runoff are most sensitive to three
subsurface parameters:fdrai, Qdm, andSy. Our full-set pa-
rameter inversion shows that the posteriors for the most sen-
sitive parameters are more consistent than the unidentifiable
parameters, which is expected. Because the other parameters
are less identifiable, the inverse problem will be less ill-posed
by fixing the trivial parameters. In this section, we test the
feasibility of only inverting a subset of identifiable parame-
ters to determine if similar or improved model skill may be
achieved compared to using the full-set parameter inversion
results. We first conducted the inversion with a reduced set of
parameters using monthly observation at the two flux tower
sites and the MOPEX basin. Only the most identifiable pa-
rameters are calibrated, the other parameters are fixed as the
default values in CLM4.

Figure 9 shows the posterior distribution of the reduced set
of parameters at the US-MOz site. Compared with the results
of ten parameters (see Fig. 3), the medians of the posterior
distribution offdrai andQdm are smaller, the width of the
posterior bounds offdrai andSy is unchanged, while that of
Qdm expands.

Figure 10 shows the calculated monthly mean heat flux
using posterior estimates of parameters at the US-MOz site.
The simulations using posterior estimates of the reduced pa-
rameter set significantly improve the heat flux simulation
over all seasons, and are similar to the results of inversion
with ten parameters.

Inversion at the US-ARM site also shows that in general,
the posterior bounds start to narrow, and the multi-modal pat-
terns disappear, compared to the inversion results with the
full-set of parameters. Using posterior estimates of the re-
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 820 
Figure 9. Posterior distribution of the reduced parameter set from previous sensitivity analysis at 821 

the US-MOz site, with a reference acceptance probability of 1.0. 822 
Fig. 9.Posterior distribution of the reduced parameter set from pre-
vious sensitivity analysis at the US-MOz site.  
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 823 
Figure 10. Simulated heat fluxes using the posterior estimates of parameters at the US-MOz site.  824 

Fig. 10. Simulated heat fluxes using the posterior estimates of pa-
rameters at the US-MOz site.

duced parameter set can significantly improve the latent heat
flux simulations compared to the results using the full-set of
parameters, especially from October to December, and from
January to May. Results from US-ARM and US-MOz are
consistent, so only one set of figures is shown.

Figure 11 shows the posterior distribution of the reduced
parameters at the MOPEX basin. Compared with the results
of ten parameters (see Fig. 7), the medians of posterior dis-
tribution of fdrai andQdm are smaller, while that ofSy does
not change, and the widths of posterior distribution of all pa-
rameters stay the same.

Figure 12 shows the calculated monthly mean runoff us-
ing posterior estimates of parameters at the MOPEX basin.
Inversion with reduced parameters improves the runoff sim-
ulation, which is similar to the posterior simulation with ten
parameters, while the simulation with the default parameter
is far away from observation.
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 825 
Figure 11. Posterior distribution of the reduced parameter set from previous sensitivity analysis 826 

at the MOPEX basin, with a reference acceptance probability of 1.0.  827 
Fig. 11. Posterior distribution of the reduced parameter set from
previous sensitivity analysis at the MOPEX basin.

Overall, inverse modeling with a reduced set of parame-
ters identified from previous sensitivity analysis yield com-
parable predictions obtained from the full-set parameter in-
version, and since the inverse problems become less ill-posed
with fewer unknowns, the convergence of inverse modeling
is faster and the resulting posteriors are more consistent with-
out multi-modal patterns. However, the simulations of heat
flux at the US-MOz and runoff at the MOPEX basin are com-
parable between the inversion for the reduced and full set of
parameters. Theoretically, one may expect improvement us-
ing the reduced parameter set because the inversion becomes
less ill-posed, but in practice, getting a faster convergence of
the solution may be the main advantage, which is important
especially when calibrating parameters for computationally
intensive models.

6 Discussion

6.1 Impacts of temporal resolution of heat flux
observation on inverse modeling

Both monthly and daily heat flux data have been used in the
inverse modeling at selected flux tower sites. Using monthly
observation data, the inversion with reference acceptance
probabilities (except forpra of 0.5 at US-ARM) is able to
identify proper parameter estimates to improve heat flux sim-
ulation. Using daily observation data, inversion improves the
heat flux simulation only with reference acceptance proba-
bilities of 1.0 and 0.95, indicating that using data of higher
temporal resolution might need a relatively more stringent
acceptance criterion (i.e., higherpra). Comparing Figs. 1 and
5, inversion using daily instead of monthly observations fa-
vors values offover, Qdm, 9s towards the lower bounds at
the US-ARM site. At the US-MOz site, inversion using daily
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 828 
Figure 12. Simulated runoff using the posterior estimates of parameters at the MOPEX basin.  829 

Fig. 12.Simulated runoff using the posterior estimates of parame-
ters at the MOPEX basin.

observation also favors values offover andQdm towards the
lower bounds. Hence, finer temporal resolution of observa-
tion data favors smallerfover andQdm. For specific sites, it
may also lead to changes of other parameters.

Regarding inversion using runoff data, we also found that
finer temporal resolution of runoff observations leads to more
dispersion of the posterior distributions of most parame-
ters, except forfover, Sy andθs. Using monthly observation
data, inversions with all reference acceptance probabilities
are able to improve monthly mean runoff simulations over
all seasons. However using daily observation data, inversion
improves runoff simulation only with reference acceptance
probabilities of 1.0 and 0.95.

Overall, finer temporal resolution of observation data leads
to more dispersion of the posterior distributions and increases
the risk of using a relaxed rejection standard. These are likely
related to increased measurement errors, data redundancy,
and over-fitting with higher temporal frequency observations.

It is worth pointing out that temporal patterns in obser-
vational data may affect the performance of inversion. For
example, the smaller seasonal variations of LH at US-ARM
present unfavorable conditions for calibrations compared to
US-MOz. At US-ARM, precipitation has a larger seasonal
cycle with relatively dry winters and wet summers. Because
annual rainfall is lower, LH is more limited by soil mois-
ture availability. In contrast, US-MOz receives more rainfall
throughout the year so LH is more controlled by solar ra-
diation and hence peaks in July. Because US-ARM is more
moisture limited, LH is more sensitive to model parameteri-
zation of soil hydrology. The inability of the model to capture
the correct timing of the peak LH despite parameter calibra-
tion suggests that there may be structural limitations of the
parameterizations used in CLM4 that cannot be adequately
addressed by inverse modeling of uncertain parameters.
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 830 

Figure 13. Posterior distribution of the parameters through Bayesian model averaging at the US-831 

ARM site.  832 

Fig. 13.Posterior distribution of the parameters through Bayesian model averaging at the US-ARM site.

6.2 Impacts of soil and vegetation cover on inverse
modeling

Compared to US-MOz, inverse modeling at the US-ARM
site identifies smallerQdm, and greaterfover andθs. In ad-
dition, the bounds of posterior distribution identified by the
inversion show more consistency across different reference
acceptance probabilities forfover, fdrai, Qdm, b, and9s at
US-ARM than US-MOz, especially with monthly heat flux
data. At US-MOz, the bounds of posterior distribution are
mainly consistent forfmax, fover, Qdm, Sy, and θs. These
inversion results are consistent with the sensitivity analysis
performed by Hou et al. (2012), which shows larger sensitiv-
ity to the respective parameters at the two sites related to the
soil and vegetation properties. The best estimated parameters
are different at sites with different climate, land use, and soil
conditions; hence soil and vegetation cover may inform the
selection of sensitive parameters that can be used in reduced
parameter sets for inverse modeling. It is therefore necessary
to analyze parameter sensitivity and identifiability across the
flux tower sites and MOPEX basins and classify them into
different groups/classes with similar climate and soil condi-
tions, and then evaluate parameter transferability within each
class or between classes through inverse modeling studies.

6.3 Impacts of reference acceptance probability

In this study, we set the reference acceptance probability
in the inverse modeling to relax rejection standard to allow
more freedom in searching for optimal parameter estimates.
However, relaxing the rejection standard leads to broadening
of the bounds of posterior distribution and multi-modal be-

haviors. That is, the posterior estimates tend to be more “ac-
curate” but less “precise”, and the corresponding inversion
process usually takes longer to converge.

6.4 Impacts of different types of observations on inverse
modeling

Inverse modeling using heat flux at US-ARM and runoff at
the MOPEX basin, which is located close to US-ARM, pro-
vides an opportunity to assess the impacts of data type on
inverse modeling. Note that a basin is not homogeneous in
climate and land cover, and there are differences in spatial
scales and heterogeneity between processes that influence the
flux tower site and the MOPEX basin. Nevertheless, they are
geographically close and have comparable climate and soil
conditions, so it is possible to resolve the impacts of using
different data types of observations for calibration. Compar-
ing Figs. 1 and 7, the posterior distributions that optimize the
simulations of heat flux can differ from those that optimize
the simulations of runoff. Since the calibrated model param-
eters are directly related to the soil’s hydrological processes
including surface and subsurface runoff, it is not surprising
that model inversion leads to more significant improvements
in runoff (Fig. 8) than heat flux (Fig. 2) compared to simu-
lations that use the default parameter values. It is also possi-
ble that the default parameters that control hydrological pro-
cesses may be more poorly defined in CLM in general or for
the particular sites being evaluated so that there is more room
for improvements. The simulations of heat flux can never-
theless be improved by inverting hydrologic parameters be-
cause surface heat flux is influenced by soil moisture, which
is closely related to runoff processes. The improvement in
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 833 
Figure 14. Posterior distribution of the parameters through Bayesian model averaging at the 834 

MOPEX basin. 835 

836 

Fig. 14.Posterior distribution of the parameters through Bayesian model averaging at the MOPEX basin.

simulations of heat flux is particularly more noticeable at
US-MOz than at US-ARM, where structural uncertainty may
have larger effects due to its stronger dependence of heat
fluxes on soil moisture availability. In addition, being a crop-
land site, LH at US-ARM, may be influenced by other factors
such as crop management that are not well represented in the
model.

Although inverse modeling leads to larger improvements
in the runoff simulations compared to the simulations using
the default parameter values, the runoff simulations with the
posterior estimates still deviate quite significantly from the
observed runoff in late summer and fall. This indicates pos-
sible model biases in runoff due to model structural errors
in the hydrologic parameterizations or the quality and spatial
resolution of the forcing data discussed earlier.

The LH flux can be measured by flux tower, which is rep-
resentative of more local conditions, while runoff is a com-
posite response of a drainage basin of a large area. These pro-
vide complementary information for model calibration. We
did not perform an integrated inversion because energy flux
observations are available only at the flux tower sites (US-
ARM and US-MOz), and runoff data are only available at the
MOPEX basins, each representing the best available observa-
tions at each scale, respectively. Therefore, in this study, we
focused on evaluating the potential of improving CLM sim-
ulations using the best available observations at appropriate
scales. However, our study clearly demonstrated the poten-
tial of multi-objective calibration, which will be attempted in
future studies.

6.5 Improvements through Bayesian model averaging

For each reference acceptance probability for the MCMC-
Bayesian inversion, one can obtain a set of posterior distri-
butions of the unknowns. Bayesian model averaging is used
to integrate the different sets of predictions by weighting the
posteriors according to their posterior model probability.

By integrating inversion results of different reference ac-
ceptance probabilities, Bayesian model averaging produces
smoother posterior distributions. Figure 13 shows the poste-
rior distributions of the parameters through Bayesian model
averaging at the US-ARM site. The black lines represent the
prior distributions based on prior information. The red and
blue curves represent the posterior distributions of the param-
eters using monthly and daily heat flux observations, respec-
tively. These two sets of posterior distributions are similar to
each other for most parameters, except forfover. Daily heat
flux favors smallerCs, fover, Qdm, 9s, and greaterfmax, Ks,
θs. The posterior distributions using monthly and daily ob-
servations at the US-MOz site are also similar, but daily heat
flux favors smallerCs, fover, fdrai, Qdm, Sy, 9s andθs, and
greaterfmax andKs.

Figure 14 shows the posterior distribution of the param-
eters through Bayesian model averaging at the MOPEX
basin. The posterior distributions using monthly and daily
runoff observations are also similar. Daily observation favors
smallerθs and greaterSy, b andKs. It is noted that the differ-
ences between the posterior distributions from monthly and
daily data are even smaller from inversions using runoff com-
pared to inversions using heat flux, especially forfdrai and
Qdm. This may be related to the characteristic timescales of
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 838 
Figure 15. Comparison among the observations, default and optimal simulations of (A) monthly 839 
and (B) daily runoff, during the inversion (2002-2005) and validation (2000-2001 and 2006-840 
2008) periods at the MOPEX basin. Only the last two years of the daily data are plotted for better 841 
illustration. The RMSEs are calculated for the validation periods. 842 

(B) 

Fig. 15. Comparison among the observations, default and optimal
simulations of(A) monthly and(B) daily runoff, during the inver-
sion (2002–2005) and validation (2000–2001 and 2006–2008) peri-
ods at the MOPEX basin. The RMSEs are calculated for the valida-
tion periods.

the physical processes. Surface heat flux may have less day-
to-day variability (hence larger data redundancy) compared
to runoff, which responds more directly to precipitation that
has larger temporal variability than temperature during the
wet season. These differences could be site and season de-
pendent so analyses over a larger number of sites can provide
further insights on the sensitivity of model inversion to data
temporal frequency.

Model integration represents a compromise of all possi-
bilities of the inversion setup. In general, it results in “safer”
(i.e., more likely to be unbiased) estimates but lower resolu-
tion (i.e., wider posterior distributions).

6.6 Model validation

In the above analyses, we compared observed and model cal-
ibrated responses to check whether smaller misfits can be
achieved through the calibration process, and to evaluate the
different calibration power of runoff versus heat flux obser-
vations, monthly versus daily data, and different tuning pa-
rameters. In an inverse study, it is important to validate the
inversion approach. It is straightforward to validate the re-
sults when true values of the unknown input parameters are
available. Otherwise, people may design “synthetic” models

by assuming the “true” parameter values are available, then
“generate” the corresponding “true” responses, which are
then used for testing the inversion approach. An alternative
way of validation is to separate the data set to training (for
calibrating the parameters) and testing periods, assuming the
parameters are intrinsic to the system and not time-varying.
Fig. 15a and b show the observations as well as model sim-
ulated monthly and daily runoff calculated using default and
optimal parameter values. The inversion (training) time pe-
riod is 2002–2005, and validation periods are 2000–2001
and 2006–2008. The RMSEs are calculated for the valida-
tion periods only. We found that RMSEs are reduced more
for monthly data than for daily data. Sub-monthly varia-
tions involve more internal/external factors and processes
that are more complicated. It is harder to capture the higher
frequency components of the output variability. In general,
runoff calculations using optimal parameters from the train-
ing period can significantly improve the model misfits during
the testing periods, and the major patterns of inter-annual and
seasonal variability are well captured.

7 Conclusions

In this study, we demonstrated the possibility of inverting
hydrologic parameters using surface flux and runoff obser-
vations in CLM4. Calibrating model parameters using the
deterministic least-square fitting method provides little im-
provement in simulating heat flux and runoff, but using the
calibrated values as initial guesses in the MCMC-Bayesian
calibration reduces the discrepancies between simulated and
observed responses, however the convergence rate is unaf-
fected by the choice of initial guesses.

Focusing on the MCMC-Bayesian inversion method, we
conducted inverse modeling at two flux tower sites and one
MOPEX basin. We also discussed the impacts of relaxing the
rejection standard, data temporal resolution, data types, and
soil and vegetation on parameter inference. Informed by our
previous sensitivity analysis, we also performed inversion
with reduced parameter dimensionality. Moreover, Bayesian
model averaging is adopted to integrate the posterior esti-
mates with different reference acceptance probabilities. The
major conclusions are as follows.

1. Inversion results at the flux tower and MOPEX sites
using monthly and daily surface flux and runoff obser-
vations show that the MCMC-Bayesian inversion ap-
proach in general can improve the simulation of CLM
under different climates and environmental conditions.

2. Temporal resolution of observations has clear impacts
on the results of inverse modeling using heat flux data,
but the impacts are smaller using runoff data. Due to
data redundancy and quality, finer temporal resolution
of observations may yield biased estimates and multi-
modal posterior distributions.
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3. Significant improvements can be achieved to better
match the observed heat flux and runoff by using the
estimated parameters compared to using the default
parameter values. The improvement is more obvious
for runoff because the calibrated parameters are di-
rectly related to runoff processes, and also because de-
fault parameter values yield runoff simulations that de-
viate far from observations. However, improvements
in heat flux can also be quite significant especially in
areas (e.g., forest) with strong energy and water con-
straints. Soil and vegetation cover have important im-
pacts on parameter sensitivities, leading to different
posterior distributions of parameters at different sites.

4. Reducing the parameter set can make the inverse prob-
lem less ill-posed. Numerically, it also speeds up
the convergence. In this study, inverse modeling with
the reduced parameter set favors parameter estimates
closer to the lower bounds than using the full set of
parameters.

5. Bayesian model averaging that integrates the posterior
estimates with different reference acceptance probabil-
ities can smooth the posterior distribution and provide
more reliable parameter estimates, but at the expense
of wider uncertainty bounds.

Overall, the MCMC-Bayesian inversion approach is
found to provide effective and reliable estimates of
model parameters at the site and watershed level to
improve CLM simulations of surface flux and runoff.
To apply the method for inversion over a region or
globally, there are a number of challenges, including
computational requirements and availability and qual-
ity of observation data. The analyses presented in this
study should be extended to a larger number of sites
with a wider range of climate, hydrologic, and vege-
tation/soil conditions to determine if and how model
parameters may be transferrable based on site condi-
tions to larger areas or river basins. Exploring model
inversion at the river basin level rather than site level
using combinations of local flux measurements, area
averaged flux data (e.g., derived from satellite), and
basin total runoff, each with their own uncertainty es-
timates, may provide an alternative strategy for cali-
brating model parameter values for each river basin.
To reduce the computational demand, we will also test
the performance of the MCMC-Bayesian inversion ap-
proach using surrogates (i.e., approximated relation-
ships between inputs and output responses) as alter-
natives to the CLM4 numerical simulator.
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