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Abstract. This study demonstrates the possibility of in- different reference acceptance probabilities can smooth the
verting hydrologic parameters using surface flux and runoffposterior distribution and provide more reliable parameter
observations in version 4 of the Community Land Model estimates, but at the expense of wider uncertainty bounds.
(CLM4). Previous studies showed that surface flux and

runoff calculations are sensitive to major hydrologic param-

eters in CLM4 over different watersheds, and illustrated the

necessity and possibility of parameter calibration. Both de-1  Introduction

terministic least-square fitting and stochastic Markov-chain

Monte Carlo (MCMC)-Bayesian inversion approaches arelnverse problems (or parameter calibrations/optimizations)
evaluated by applying them to CLM4 at selected sites withinvolve a general framework to derive information about a
different climate and soil conditions. The unknowns to be Physical object or system from measurements directly or
estimated include surface and subsurface runoff generatiofidirectly related to the physical object/system (Tarantola,
parameters and vadose zone soil water parameters. We firdP?05). During the past decades, numerous inversion strate-
that using model parameters calibrated by the samplinggies, deterministic or stochastic, have been developed and ap-
based stochastic inversion approaches provides significar&"ed in earth systems science including atmospheric science,
improvements in the model simulations compared to usingydrology, geology, and geophysics. Three conditions (ex-
default CLM4 parameter values, and that as more informadstence, uniqueness, stability of the solutions) are necessary
tion comes in, the predictive intervals (ranges of posteriorfor @ well-posed inverse problem (Hadamard, 1902). How-
distributions) of the calibrated parameters become narrowe€Ver, as solution uniqueness and stability are usually violated
In general, parameters that are identified to be significantn Practice, some regularization is generally needed to intro-
through sensitivity analyses and statistical tests are better cafiuce mild assumptions on the solution and prevent paramet-
ibrated than those with weak or nonlinear impacts on flux'ic over-fitting. Itis also important for an inverse approach to
or runoff observations. Temporal resolution of observationsPe capable of quantifying and evaluating the prediction un-
has larger impacts on the results of inverse modeling usingertainty, particularly for complex systems, where unknown
heat flux data than runoff data. Soil and vegetation coverParameters and observable variables have nonlinear and non-
have important impacts on parameter sensitivities, leading tginique relationships, observations are limited, or the forward
different patterns of posterior distributions of parameters athodels are not perfect.

different sites. Overall, the MCMC-Bayesian inversion ap- For a given inverse problem, one can choose different ap-
proach effectively and reliably improves the simulation of Proaches depending on the requirements of parameter esti-
CLM under different climates and environmental conditions. Mation accuracy, computational demand, and importance of

Bayesian model averaging of the posterior estimates witfPrediction uncertainty (e.g., Hou et al,, 2006; Chen et al.,
2004; Hoversten et al., 2006), which requires understanding
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of the advantages, disadvantages, and applicability of eactvork and 20 watersheds from the Model Parameter Estima-
method. Deterministic approaches have been used to obtaition Experiment (MOPEX) (Huang et al., 2013) spanning a
“optimal” parameter sets by evaluating the goodness of fitwide range of climate, landscape, and soil conditions. We
between observed and model simulated response variabldeund that the CLM4-simulated latent heat flux (LH), sen-
(e.g., Sorooshian, 1981; Sorooshian and Dracup, 1980; Duasible heat flux (SH), and runoff show the largest sensitiv-
et al., 1992, 1993; Sorooshian et al., 1993; Hoversten et ality to subsurface runoff generation parameters. These studies
2006). These approaches generally assume that an optimdemonstrated the necessity and possibility of parameter in-
parameter set exists and implicitly ignore the estimation ofversion/calibration using available measurements of surface
predictive uncertainties. However, a single optimal parame{luxes and streamflow to invert the optimal parameter set, and
ter set may not exist and the uncertainties associated witlprovided guidance on reduction of parameter set dimension-
the optimal parameter sets could be large (e.g., Gupta edlity and parameter calibration framework design for CLM4.
al., 1998; Klepper et al., 1991; Van Straten and Keesman, This study aims to demonstrate the inversion methodol-
1991; Beven and Binley, 1992; Yapo et al., 1996). More-ogy at selected sites based on the global sensitivity analy-
over, a model with the optimal parameter set may provideses detailed in Hou et al. (2012) and Huang et al. (2013).
the best fit over the calibration period, but multiple parame-Among various inversion approaches, we adopt a stochastic
ter sets may result in comparable misfits and are likely to beBayesian inversion approach integrated with Markov-chain
the “true” values with certain probability, and therefore are Monte Carlo (MCMC) sampling. The unknowns to be esti-
considered to be acceptable or equally probable parametenated include model parameters for surface and subsurface
sets (Van Straten and Keesman, 1991; Klepper et al., 1991yunoff generation and vadose zone soil water movement. Dif-
Stochastic approaches can address these limitations by déerent options for the inversion framework are evaluated at
scribing the input parameter and output uncertainties in a stathe selected sites. For example, it is important to evaluate
tistical manner. Generally, the input parameter space is repthe prior incompatibility issues in an inversion design (Hou
resented in a form of multivariate probability distributions of and Rubin, 2005). As detailed in the remaining sections of
input parameters and must be sampled to generate multiplthis paper, we evaluated the impacts of prior information
realizations of the model simulations so that the prediction(e.g., initial guesses) on the inversion results. We also com-
range can be estimated based on the ensemble model simpared the consistency and reliability of inversion using both
lations (Beven and Binley, 1992; Freer et al., 1996; Kuczeramonthly and daily flux observations, and compared the per-
and Parent, 1998; Vrugt et al., 2003b). When multiple typesformance of Bayesian model averaging to the individual in-
of data are available, multi-objective calibration can be usedversion approaches for parameter estimation. We also discuss
to deal with parameter estimation uncertainty by combiningthe issues related to data quality, data worth, and redundancy.
several measures of performance for data fusion (Boyle et

al., 2000; Kollat et al., 2012; Gupta et al., 1998; Vrugt et al., ) o

2003a). In practice, different optimization methods can also? Sité and data description
be combined to improve the treatment of uncertainty in hy-
drologic modeling (Vrugt and Robinson, 2007; Feyen et al.,

2007; Vrugt et al., 2005). to one of the flux tower sites to investigate model inversion

Uncertainty in model simulations can stem from model . ; .
: .using heat flux versus runoff data. These sites/basins are cho-
parameters, as well as from model inputs (e.g., atmospheric

. Sen based on previous sensitivity analyses over a larger set of
forcing and land cover data) and model structure (e.g., the%qu tower sitesand MOPEX bas)i/ns (H)cgu etal. 2012'gHuang

physical parameterizations used to describe certain process%%al_, 2013) that demonstrated the feasibility and necessity of

or the numerical solvers). Uncertainty in model input data oo : .
or model structure can be reduced by improving the Obser_parameter calibration at those locations and to provide rep-

. . X . resentative and contrasting climate and environmental condi-
vation precision and taking advantage of multiple Obs’erva'tions within the United States for more robust conclusions
tional platforms with different error characteristics in space US-ARM is located in Oklahoma and is covered by crop—.
and time, or better understanding of the physical ProCesSes, nds (Allison et al., 2005; Baer et al., 2002; Fischer et al.
Much progress has been made by the land sgrface mOd.eImQOOT Riley et al. 2609' SL,Jyker and Vérma é009). US-MOZ’
community in the last two decades to deal with uncertamtyi located in Missouri and is covered by deciduous broadleaf
in model parameters, data, and model structure. The focus %y et al. 2012 2006). Meteorological forcing, site infor-
th'ISnSturde)\lli'cs,uusnC;S;'g;y Erllig]uOdeetl Z?rarznct)alt;rS.Huan ot al mation such as soil texture, vegetation cover, and satellite-

P : ; Lo ’ 9 ';jderived phenology, as well as validation data sets, such as
2013), we investigated the sensitivity of surface fluxes an Water and energy fluxes, are provided by the North Amer-

runoff simulations to major hydrologic parameters in ver- . . ) .
. . ) ican Carbon Program (NACP) site synthesis team. The site
sion 4 of the Community Land Model (CLM4) by integrat information is provided in Table 2 of Hou et al. (2012).

ing CLM4 with a stochastic exploratory sensitivity analy-
sis framework at 13 flux towers from the Ameriflux net-

We perform parameter estimation at two flux tower sites and
one MOPEX basin. The MOPEX basin is in close proximity
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MOPEX basin (07147800) is the Walnut River basin in 3.2 Parameter calibration using least-square fitting
Kansas with a drainage area of 4869 mwhich is domi- approaches
nated by silty clay loam soil and covered by about 56 % C3
grass, 22 % C4 grass, and 20 % croplands according to thPifferent approaches can be used to calibrate the selected
MODIS based land cover map in Ke et al. (2012). The mete-hydrologic parameters using available observations such as
orological forcing for the MOPEX basin was extracted from runoff and surface fluxes data. The method of least squares
the phase two North America Land Data Assimilation Sys-is @ standard approach to approximate the solution of over-
tem (NLDAS?2) forcing at an hourly time step from 1979 to determined systems, i.e., systems specified by more equa-
2007 (Xia et al., 2012), including precipitation, shortwave tions than unknowns. One well-known approach utilizing
and longwave radiation, air temperature, humidity and windthe least-square fitting concept is Parameter ESTimation
speed at a 1/8th degree resolution derived from the 32 km{PEST) (Doherty, 2008), which is a general-purpose, model-
resolution 3 h North American Regional Reanalysis (NARR) independent, parameter estimation and model predictive un-
following the algorithms detailed in Cosgrove et al. (2003). certainty analysis package. Here we adopt PEST to perform
An area-average algorithm was then applied to the NLDAS2single-objective least-square fitting of the observational data,
forcing as inputs to CLM by treating the entire basin as aWith the loss function defined as the sum square of fitted
Sing|e Computationa| unit. CLM was spun up by Cyc“ng the residuals between calculated and observed runoff or latent
forcing at each site for at least five times until all the stateheat fluxes.
variables reached equilibrium before any statistics were cal- There is a set of tuning parameters in the PEST inverse

ibrated for inversion, based on the methodology described€tup. We used the widely adopted default settings as givenin
below. the user guide. However, simulations of heat flux and runoff
using the calibrated parameters show only small improve-
ments compared to simulations using the default parameter
3 Methodology values. PEST, using the least-square fitting approach, works
well for more linear systems with monotonic relationships
between unknown parameters and observable variables and
v(\éeak interactions between the unknowns. For a complicated

Observational data used in parameter estimation are observe o . . .
system, it is very likely that a single optimum set of param-

latent heat fluxes and runoff measurements, which are pro- . .
ter values does not exist and the solutions may converge

cessed and gap-filled to obtain daily and monthly averagecf o . o e
o local minima. In this case, a probabilistic description of
data. For unknowns, we focus on the parameters that are

the most identifiable from the response variables (i.e., the All possible solutions is more reasonable by assigning proper

have significant, straightforward, and distinguishable influ- eights (i.e., likelihoods) to all possible solutions of parame-

ences on hvdrologic processes. includina soil hvdrolo anc}ersets. In order to further explore the usefulness of the least-
Y gicp ’ 9 y 9y square fitting approach, the PEST-calibrated parameter esti-

runoff generation processes). The 10 hydrologic parameters ; -
: . . Mmates are used as one of the choices for initial guesses of

that we found to have impacts on the simulations of surfac . ) . ;
e parameters for stochastic Bayesian updating as explained

and subsurface runoff, latent and sensible heat fluxes, an ST . .
soil moisture in CLMA4 arefax. Cs, fover, fara Ocimn Sy b elow to determine if such estimates may improve the con-
max s Joven Jdrah dm By yergence rate or robustness of the inversion results.

Y5, Ks, andfs. Explanations of the 10 parameters and their
prior information are shown in Table 1. Some vegetation pa-3 3 Bayesian updating
rameters, such as leaf maximum carboxylation rate and the

slope of the stomatal conductance, are important parameterStochastic inversion/calibration approaches (e.g., Bayesian
that govern plant transpiration and modulate latent heat fluxnference) can be used to describe the input/output uncertain-
and soil moisture. In this study, we focus on the hydrolog- ties in a probabilistic manner. Bayesian inference derives the
ical parameters that are more directly related to runoff andyosterior probability as a consequence of two antecedents: a
soil moisture, and the latter has important control over la-prior probability given prior information, and a “likelihood
tent heat flux, and set the vegetation parameters using defaulinction” derived from a probability model for the data to be

values. Soil texture also affects soil evaporation and fluxesgbserved. Bayesian inference computes the posterior proba-
In this study, the prior distributions for porosity, permeabil- bility according to Bayes'’ rule:

ity, specific yield, Clapp and Hornberger exponent, and sat-
urated soil matrix potential parameters are determined from/ (m|d., I) o f (d|m, 1) x f (m|I), (1)
soil texture information based on Cosby et al. (1984).

3.1 Parameterization

where f (m|d, I) represents the posterior pdf (probability
density function) of parameten, f (d|m,I) denotes the
likelihood of observingd given parametem, and f (m|I)

is the prior pdf ofim given prior available informatio.
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Table 1. Selected hydrologic parameters in CLM4 and their prior information (from Hou et al., 2012).

Index  Symbol Definition Relevant process Prior information
1 fmax Max fractional saturated area, from Surface runoff Mean value taken from the default CLM4 input data set; standard
DEM deviation (SD)=0.160; upper and lower bounds (0.01-0.907)
determined from the default global data set for CLM4.
2 Cs Shape parameter of the topographicSurface runoff Meagr-0.5 for flux towers, no SD information, upper and lower
index distribution bound
0.01 and 0.9.
3 fover Decay factor (rﬁl) that represents  Surface runoff Hard coded to be 0.5 in CLM4.
the distribution of surface runoff Mean=0.5; upper and lower bounds: 0.1-5.
with depth
4 forai Decay factor (1) that represents  Subsurface runoff Meas 2.5; upper and lower bounds: 0.1-5.
the distribution of subsurface runoff
with depth
5 gdrai,max Max subsurface drainage Subsurface runoff Hard coded to be 5803 kg m2s~1 but typically should vary
(Qdm) (kgm2s71) between 1x 1078 and 1x 102 in hydrologic applications. Tuning
range is 1x 106 to 1 x 10~1 as suggested by NCAR.
6 Sy Average specific yield Groundwater dynamics  Hard coded to be 0.2.
Based on the dominant soil type of the site. Converted to coarser soil
texture classes using the USGS soil texture triangle. Me@u®2 for
clay, 0.07 for sandy clay, 0.18 for silt, 0.27 for coarse sand; bounds
are+50 % of the mean for the given soil texture.
7 b Clapp and Hornberger exponent Soil water Based on the dominant soil type of the site. Used equations from
8 Wg Saturated soil matrix potential (mm)  Soil water Cosby et al. (1984). Mean values and SDs are from Table 5 in Cosby
9 Ks Hydraulic conductivity (mm sl Soil water et al. (1984), except for SD oFs, which is from Table 4 in Cosby
10 6s Porosity Soil water etal. (1984).

* Reproduced with permission from American Geophysical Union.

We assume that the forward models (e.g., CLM4) are be-The posterior distributions of the input parameters are the
ing characterized byi*j = gij (m) + &;;, wherem represents  products of the priors and the likelihood functions. As more
the vector of model parameteid,; = g;; () is the forward information comes in, Bayes' rule can be applied iteratively,
model,g;; is the difference (i.e., residual) between the modelthat is, after observing some evidence, the resulting posterior
d;; and observatiorzlf/., i=1,...K;j=1,..N;, K being probability can be treated as a prior probability, and a new
the number of data types amd being the number of obser- posterior probability is computed from the new evidence.
vations for the'th data type. The residuals include both mea-
surement errors in observations (e.g., heat fluxes) and mod3-4 Sampling methods
eling errors due to model parameters. As discussed above,

model errors due to forcing data and model structural uncerfb‘n efficient sampling approach is important for the success

tainty are not addressed in this study. However, we used forc(-)f Bayesian inversion, especially when the forward modeling

ing data developed and adopted by the community (NACP_computational demand is high, the parameter dimensional-

and NLDAS?) that reduce some uncertainty by using mul-1y is high, or the parameters are Wea_kly identifiaple. In this
tiple observational data sets with adjustments to account foFtUdy’ the Metropohs—l—!agmg sam_pllng m_eth_od 'S US?d to
local factors such as topography. draw _samples from the joint posterior Q|str|butlon functions

With the underlying assumptions that is normally dis- (Hastlggs, .1970; Il—l|ou, 2008; Metropolis et al., 1953). The
tributed with varianceriz., and the distributions are indepen- procedure 1S as follows.

dent, the likelihood function can be represented as (Hou et 1. Initialize a random vectom from the prior distribu-
(

al., 2006) tionSmio),i =1,..., p, wherep is the number of pa-
K N rameters.
fomz, (@m0, 1) = ]_[H 2. Generate a random variable',i = 1,..., p from the
i=1j=1 proposal distributions, and calculate the following ra-
1 1., 2 tio (note the probabilities in the formula are calculated
———ex ——[d..— ~~(m)] 2 - :
Nz P 207 L 8ij (2) using Eq. 2):
. prob(mflm(l),m(l),...,mg ,mfl) ,mfl) ,....,m(,l))
"‘=m'”<”'a’ proumgﬂnmlgﬂ).ngon...,mgeil,m;*ﬂ,,n??i....,m’;9>> -G
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wherepy, is reference acceptance probability. the time of convergence, we take advantage of high perfor-
mance computing resources to conduct multi-chain calibra-
3. Generate a random value uniformly from interval  tions simultaneously.
(0,1).
3.5.3 Reference acceptance probability
4. If a > u, letm'® = m*; otherwise, letn'® = m®.

In this study, we also evaluated the effects of using differ-
Repeating steps (b) to (d) by replacing inde®) (ith ent acceptance probabilities for newly generated parameter
index (+1), we can obtain many samples as follows: samples in the MCMC process. We named the criterion as

(mlﬁ")) :i=1,...,p,k=0,1,....n{, wheren is the num-  reference acceptance probability, a trade-off between con-
ber of sample sets. From the procedure, we can see that th€rgence speed and accuracy of parameter estimates. If the
value m® only depends on the current staterof but not acceptance probability of new sample sets is greater than the

the pre\i/ious states; therefore, these samples form a MarkoerOdUCt of reference acceptance probability and the accep-

Chain. The summary statistics of the posterior samples durgance probability of prior sample, we accept the new sample.

ing the burn-in period (e.g., the last 400 sample sets) can bgpecifically, four reference acceptance prqbabilities, i._e., 1.0,
used to check the convergence with a tolerance relative erro -95, 0.9, 0.5, are adopted to set the multi-model for inverse

(e.g., 0.001), and posterior distributions can be derived fror'ande"ng.J of CLM. Probgbilistic model averaging can th.en be
the samples. used to integrate the different sets of parameter predictions,

where the weights are not determined arbitrarily, but rather
based on the posterior probabilities of all the models shar-
ing the same unknowns and observational data in the inverse

3.5.1 Choices of initial values (default, mean, PEST setup. The integrated results might have larger spread but the
estimates) estimates are generally more unbiased.

3.5 Inversion setup

Initial values have little impact on precision and accuracy of 3.6 ~ Sensitivity to data frequency, observation type,

a robust optimization algorithm, but affect the convergence and site conditions

speed. In order to increase the efficiency of inverse model-

ing, we compared choices of initial values including the de-Daily and monthly data (runoff and heat flux) are both used
fault parameter values in CLM4, the mean values betweern parameter calibration, and the performances are compared
the prior bounds, as well as the PEST estimates calibratetP study the impact of data temporal resolution on parame-
using observational data at each study site. The default anter inference. Compared to monthly data, daily data include
mean values are based on prior information in Table 1. Test§ligher-frequency characteristics of temporal variations in the
show that the convergence speed of the MCMC-BayesiarPbservations; however, adjacent observations tend to have
calibration is not affected by the choices of initial values, more information redundancy and data quality is an issue.
although the PEST estimates slightly reduce the discrepan® stochastic inversion approach usually provides parameter
cies between calculated and observed responses comparedaalibrations with lower uncertainty (more “precise”) as more
using the default parameter values for CLM4 model calcula-and more data are used, but measurement errors could lead to

tions. over-fitting of errors and therefore biased estimates. Through
comparison, we can identify the most appropriate observing

3.5.2 Choices of proposal distribution widths timescale for calibration to improve CLM4 simulations.
(automatic versus multi-chain comparison) Different model responses associated with different com-

ponents of CLM have different sensitivities to the unknown
The convergence speed (i.e., the number of steps needgshrameters. We conduct MCMC-Bayesian inversion at the
to obtain consistent posterior statistics of the unknown pa-US-ARM site and at the nearby MOPEX basin (basin ID:
rameters) and accuracy of parameter estimation is associatéi¥147800). Although a basin is usually not homogeneous in
with several tuning parameters of the inversion setup. Pro¢limate and land cover, the two sites are the closest in ge-
posal distribution width, an important tuning parameter of ographical proximity among all the Ameriflux first priority
the MCMC algorithm, controls the searching precision andand MOPEX sites, and they have similar climate and land
speed. We compared different widths, i.e., 1/2, 1/4, 1/8, andsurface conditions. By comparing the inversion results using
1/16, relative to the prior bounds of the unknown parame-observed heat flux and runoff, we can evaluate the impacts of
ters. The widths correspond to the 99 % confidence intervalising different types of observations on parameter inference
of Gaussian proposal distributions. Optimized convergencen CLM.
speed and stable results can be achieved with a proposal Calibrations are also done at flux tower sites (US-ARM
width of 1/8 relative to the prior bounds. To compare the vs. US-MOz) with different soil and vegetation conditions
performances of different tuning parameters, and to reducéo study the impacts of land surface conditions on parameter

www.hydrol-earth-syst-sci.net/17/4995/2013/ Hydrol. Earth Syst. Sci., 17, 49%11, 2013
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Fig. 1. Posterior distribution of the parameters with four different reference acceptance probabijiass{ng monthly heat flux data at the
US-ARM site.

inference of CLM. Soil, climate, and vegetation conditions 8o ——default (RMSE=18.60)
control water and energy fluxes, such as infiltration, evapo-
ration, and surface radiation; therefore, they can affect the
overall parameter identifiability and inversion results. Cali- ~ ¢°
bration results can also be significantly affected by the qual- ~ so
ity/accuracy of the observational and forcing data, as well as§ .
the model’s structural design and parameterization. =

—

= observation

—P_=1.0 (RMSE=15.63)
P =0.95 (RMSE=15.57)
P_=0.9 (RMSE=15.67)

—P _=0.5 (RMSE=19.12)

70

4 Results of full-set parameter inversion

4.1 Parameter inversion at flux tower sites using heat
flux observations

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

4.1.1 Posterior distributions of input parameters and  Fig. 2. Simulated heat fluxes using the posterior estimates of param-
simulated heat flux from use of monthly data eters with monthly observations at the US-ARM site.

Using monthly heat flux data from the 2003—2006 period at

the US-ARM site, we conducted inversion of ten CLM pa-

rameters with four reference acceptance probabilities. Figparameters are wide and non-informative as expected. This
ure 1 shows the prior and posterior distributions of the pa-demonstrates the necessity of performing parameter screen-
rameters, where the prior distributions are derived from prioring such that the inverse problems can be less ill-posed. As
information, and the posterior distributions are derived basedhown in Eqg. 8), a low reference acceptance probabifity

on the last 200 samples of inverse modeling. Note thatmeans that the rejection standard and searching ranges are
three parameter@qm, Vs, and K vary by several orders of relaxed. As more potential estimates are identified and ac-
magnitude, and are lagrtransformed. Posterior distributions cepted, the bounds of posterior distributions increase, and
with different reference acceptance probabilities are genermulti-modal behaviors occur, especially féy. The poste-

ally consistent, except for those parameters that are less idemior means/modes of the estimated parameters shifted farther
tifiable due to nonlinearity and non-uniqueness issues. Oufrom or closer to the prior means, particularly fter andds.
previous study (Hou et al., 2012) showed thfgfer, fmax Figure 2 shows the simulated monthly mean heat fluxes
Ks, andfs have weak impacts on model simulations at the using posterior estimates of parameters with four reference
US-ARM site. Therefore, the posterior distributions of theseacceptance probabilities using monthly observations at the
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Fig. 3. Posterior distribution of the parameters with four reference acceptance probabilities using monthly heat flux data at the US-MOz site.

US-ARM site. The black line shows the monthly mean heat 140 ——default (RMSE=36.69)
fluxes obtained from observations of the 2003—-2006 period, . ——observation
and the red line shows the calculated monthly mean heat il g L ENIEE20.30)
fluxes using default parameters based on prior information. 100 iigziéﬁgiﬁ;‘?)
Simulations using default parameter values overestimate the—~ _p::O_S (RMSE=20.71)
heat fluxes in summer (from May to September), and under-z
estimate in winter at the US-ARM site. When the reference =
probabilities are 1.0, 0.95, and 0.9, the posterior estimates™
of parameters all significantly improve the heat flux simula- 40
tion in summer, and the posterior model probabilities (i.e.,
the product of Gaussian probabilities of misfits between cal-
culated and observed responses) are 0.730, 0.730,and 0.7z 0
respectively, which are greater than 0.636 for the default pa-
rameter values. Note that the Gaussian probability of the derjg 4 simulated heat fluxes using the posterior estimates of param-
fault or a posterior parameter set is calculated using Ed. (2)eters at the US-MOz site.
The estimates with reference acceptance probability of 0.5
noticeably deviate from other inversion estimates, and tend
to result in underestimates of simulated heat fluxes in sum-
mer. None of the parameter estimates is able to yield muctparameter estimates for most parameters exceptdodWs.
better fits during winter, which might be due to errors in the The relaxed rejection standard also leads to multi-modal, ex-
observed heat fluxes, errors in the CLM forcing data, and/otended posterior distribution bounds, and more potential pa-
under-representation of the Comp|icated physica| processer@meter estimates. It is noted that the posterior distribution of
using the current parameterization schemes. Jfmax Cs, farai» b, andWs are around the median values of the
Similarly, inversion was also performed using monthly Prior bounds.
heat flux data from the 2004—2007 period at the US-MOz Figure 4 shows the calculated monthly mean heat fluxes
site with different soil and vegetation cover from US-ARM Using the posterior parameter estimates from monthly ob-
site. Figure 3 shows the posterior distributions of ten parameservation at the US-MOz site. It is obvious that the de-
ters with four reference acceptance probabilities. They showfault simulation underestimates the heat flux over all seasons.
similar patterns for different reference acceptance probabilFrom January to June, all posterior estimates with differ-
ities, except for the parametér Even when the reference ent reference acceptance probabilities can significantly im-
acceptance probability is 0.5, the inversion yields reasonabl®rove the simulation of heat flux, except for some small
underestimations in April, May, and June. From July to
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Fig. 5. Posterior distribution of the parameters with four reference acceptance probabilities using daily heat flux data at the US-ARM site.

December, the posterior estimates with reference acceptanc 8o —— default (RMSE=29.84)
probabilities of 1.0 and 0.5 are similar and close to obser- ;
vations, while the other two overestimate the heat flux a lit-
tle in July and August. As a whole, all estimates of the in-
verse modeling can improve the simulation of heat flux over & so
all seasons, and the posterior model probabilities are 0.893% 20
0.889, 0.886, and 0.892 respectively, which are greater tharX
0.876 of the default simulation. Differences in the posterior

= observation

—P_=1.0 (RMSE=24.57)
P _=0.95 (RMSE=25.33)
P _=0.9 (RMSE=28.69)

—P _=0.5 (RMSE=28.25)

60

30

distributions with different reference acceptance probabili- 2
ties are small. "
4.1.2 Posterior distributions of input parameters and 0
simulated heat flux from use of daily data Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

. . C Fig. 6. Simulated heat fluxes using the posterior estimates of param-
Figure 5 shows the posterior distribution of model pa eters with daily observations at the US-ARM site.

rameters with four reference acceptance probabilities using
daily heat flux data from the 2003—2006 period at the US-
ARM site. The posterior distributions disperse over the prior - The posterior distributions of the parameters with the four
bounds for most parameters. Among the four sets of postereference acceptance probabilities using daily heat flux data
rior distributions, reference acceptance probability of 1.0 andkrom the 2004-2007 period at the US-MOz site show that
0.95 identify similar bounds, while the other two sets yield tne posterior distributions are more consistentd@gy fover,
different results, particularly f0fmax fover Qam: andKs. g s, andWs, but dispersed fob, Ks and6s. When the
Moreover, multi-modal distributions occur for most parame- rgjection standard is relaxed, the posterior bounds can be-
ters when the rejection standard is relaxed. come much wider, especially fofyai, Qdm, b, Ks and s.
Figure 6 shows the calculated monthly mean heat fluxegp winter, all simulations of heat flux using the posterior es-
using the posterior estimates of parameters from daily obtimates are close to observations. In summer, posterior esti-
servations at the US-ARM site. The posterior estimates ofmates with reference acceptance probabilities of 1.0 and 0.95
parameters also improve the heat flux in summer. The acsjgnificantly improve the heat flux simulation.
ceptance probabilities of the simulations with four parameter
sets are 0.636, 0.618, 0.584, and 0.593 respectively, which
are all greater than 0.579 of the default simulation.
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Fig. 7. Posterior distribution of the parameters with four reference acceptance probabilities using monthly runoff data at the MOPEX basin.

4.2 Parameter inversion at MOPEX sites using runoff 2.5 —default (RMSE=1.12)
observations —observation
—P_=1.0 (RMSE=0.55)
Pm:0495 (RMSE=0.69)
P_=0.9 (RMSE=0.71)
—P_=0.5 (RMSE=0.82)

Runoff observations are also used in the inverse modelings
of CLM. Figure 7 shows the posterior distribution of the §
parameters with four reference acceptance probabilities us-2
ing monthly runoff data from the 2002-2005 period at the g
MOPEX basin close to US-ARM. Posterior distributions
with strict reference acceptance probabilities (e.g., 1.0, 0.95
and 0.9) have consistent patterns for most parameters, excef
for b, Ks, andds. Itis interesting to see thgtnaxis identically
estimated by inversions with different reference acceptance Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
probabilities. When the rejection standards are relaxed, the
bounds of posterior distributions of most parameters becomé&ig- 8. Simulated runoff using the posterior estimates of parameters
wider, and multi-modal patterns occur. at the MOPEX basin.

Figure 8 shows the calculated monthly mean runoff using
the posterior estimates of parameters from monthly obser-
vations at the MOPEX basin. The default simulation barely underestimation of runoff peaks in the summer and accumu-
shows any variability of runoff. The posterior estimates sig- lation of soil moisture for runoff generation in subsequent
nificantly improve the runoff simulations in all seasons, al- periods.
beit larger variability than observations is noted from July to  The acceptance probabilities are 0.846, 0.767, 0.758, and
October. Further analysis (Fig. 15) shows large peaks in th®.737, all greater than 0.707 of the default runoff simula-
observed runoff in June and July, which the CLM4 model tion. Among the four sets of simulations based on inversion,
simulations cannot match well by adjusting model parametemore stringent sample rejection criterion results in a better
values. This suggests some systematic biases in the modelatch between the simulated responses with observations.
parameterizations that cannot be fully addressed by paranBecause hydrological parameters are more sensitive to hy-
eter calibration. However, we cannot exclude the possibilitydrological processes, this conclusion is not surprising for in-
of errors in either the external forcing or observational heatversion with runoff. In cases using heat fluxes for calibration,
fluxes. For example, the atmospheric forcing data are calcuwe also found that the RMSEs of flux simulations using the
lated over the 1/8th degree grid, which may underestimateosterior estimates with the reference acceptance probability
rainfall intensity for heavy precipitation events, leading to of 1.0 are better than others. It is worth mentioning that for

Total
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observational data that are more directly related to the pro- 4 S —
cesses influenced by the model parameters, a more stringer... | ggg;ggﬁ?;ggzﬁon |
rejection criterion can help to improve calibration accuracy 2
and precision. For indirect information, a relaxed criterion is 0 ; > : .
helpful to avoid biased estimates. £ (m?)
For comparison with inversion using monthly runoff data, 4 — .
we also performed inversion using daily runoff data from _
the 2002—-2005 period at the MOPEX basin. The posterior & & /\/\
distributions with different reference acceptance probabili-
. . : =6 -5 -4 -3 -2 -1
ties disperse over the prior bounds, exceptSprThe cal- Q,. log, (kg m> s)
culated monthly mean runoff values using the posterior esti- 40 . ; i
mates of parameters from daily observations are reasonable
. . . ‘:a 20k
Compared to using monthly runoff data, the big fluctuations g,
disappear when using daily runoff. Posterior estimates with

reference acceptance probabilities of 1.0 and 0.95 can signif- ~ 005 01015 02025 03 035

icantly improve the runoff simulation over all seasons, but
underestimate the runoff in summer, and overestimate thgig. 9. Posterior distribution of the reduced parameter set from pre-
runoff in winter. vious sensitivity analysis at the US-MOz site.

y

140
5 Results of subset parameter inversion —default (RMSE=36.69)

120 = observation
—P_=1.0 (RMSE=21.56)

Our global sensitivity analyses across 13 flux towers and 20
MOPEX basins (Hou et al., 2012; Huang et al., 2013) sug-
gest that simulated LH and runoff are most sensitive to three
subsurface parameterfirai, Qdm, andsSy. Our full-set pa-
rameter inversion shows that the posteriors for the most sen-=
sitive parameters are more consistent than the unidentifiable
parameters, which is expected. Because the other parametel
are less identifiable, the inverse problem will be less ill-posed 20
by fixing the trivial parameters. In this section, we test the
feasibility of only inverting a subset of identifiable parame- Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
ters to determine if similar or improved model skill may be
achieved compared to using the full-set parameter inversiorrig. 10. Simulated heat fluxes using the posterior estimates of pa-
results. We first conducted the inversion with a reduced set ofameters at the US-MOz site.
parameters using monthly observation at the two flux tower
sites and the MOPEX basin. Only the most identifiable pa- L .

uced parameter set can significantly improve the latent heat

rameters are calibrated, the other parameters are fixed as t I%x simulations compared to the results using the full-set of
default values in CLM4. P 9

Figure 9 shows the posterior distribution of the reduced sef arameters, especially from October to December, and from

of parameters at the US-MOz site. Compared with the resulg@nuary to May. Results from US-ARM and US-MOz are
consistent, so only one set of figures is shown.

of ten parameters (see Fig. 3), the medians of the posterior Figure 11 shows the posterior distribution of the reduced

distribution of fyraj and Qgm are smaller, the width of the ) .
. _ . . parameters at the MOPEX basin. Compared with the results
posterior bounds ofarai andSy is unchanged, while that of of ten parameters (see Fig. 7), the medians of posterior dis-

Qdm expands. L :
Figure 10 shows the calculated monthly mean heat fluxirioution of farai and Qam are smaller, while that ofy does

: . . . not change, and the widths of posterior distribution of all pa-
using posterior estimates of parameters at the US-MOz site,
rameters stay the same.

The simulations using posterior estimates of the reduced pa-"_.
gp P Figure 12 shows the calculated monthly mean runoff us-

rameter set significantly improve the heat flux simulation . . . .
over all seasons, and are similar to the results of inversio Ing posterior estimates of parameters at the MOPEX basin.

with ten parameters. I]nversmn with reduced parameters improves the runoff sim-

Inversion at the US-ARM site also shows that in general ulation, which is similar to the posterior simulation with ten
the posterior bounds start to narrow, and the multi-modal pat’Parameters, while the simulation with the defauilt parameter
terns disappear, compared to the inversion results with thé® far away from observation.

full-set of parameters. Using posterior estimates of the re-
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Fig. 12. Simulated runoff using the posterior estimates of parame-
y ters at the MOPEX basin.

Fig. 11. Posterior distribution of the reduced parameter set from

previous sensitivity analysis at the MOPEX basin. observation also favors values fiyer and Qgm towards the

lower bounds. Hence, finer temporal resolution of observa-

) ] ) tion data favors smallefyver and Qqm. For specific sites, it
Overall, inverse modeling with a reduced set of parame-may also lead to changes of other parameters.

ters identifiec_i from previ_ous sensitivity analysis yield COM-  Regarding inversion using runoff data, we also found that
parable predictions obtained from the full-set parameter in-finer temporal resolution of runoff observations leads to more
version, and since the inverse problems become less '"'pose&ispersion of the posterior distributions of most parame-
with fewer unknowns, the convergence of inverse modelingters, except forfoven, Sy andds. Using monthly observation

is faster and the resulting posteriors are more consistentwithdata, inversions with all reference acceptance probabilities

out multi-modal patterns. However, the simulati_ons of heaty e aple to improve monthly mean runoff simulations over
flux at the US-MOz and runoff at the MOPEX basin are com- 5 seasons. However using daily observation data, inversion

parable between the inversion for the reduced and full set Ofmproves runoff simulation only with reference acceptance

parameters. Theoretically, one may expect improvement USprobabilities of 1.0 and 0.95.

ing the reduced parameter set because the inversion becomesgyera|l, finer temporal resolution of observation data leads

less ill-posed, but in practice, getting a faster convergence of, more dispersion of the posterior distributions and increases

the solution may be the main advantage, which is importaniyg risk of using a relaxed rejection standard. These are likely
especially when calibrating parameters for computationallyyg|ated to increased measurement errors, data redundancy,

intensive models. and over-fitting with higher temporal frequency observations.
It is worth pointing out that temporal patterns in obser-
vational data may affect the performance of inversion. For
example, the smaller seasonal variations of LH at US-ARM
present unfavorable conditions for calibrations compared to
US-MOz. At US-ARM, precipitation has a larger seasonal
cycle with relatively dry winters and wet summers. Because
. annual rainfall is lower, LH is more limited by soil mois-

inverse modeling at selected flux tower sites. Using monthl;/ature availability. In contrast, US-MOz receives more rainfall

. ) . . throughout the year so LH is more controlled by solar ra-
observation data, the inversion with reference acceptanc%-jiation and hence peaks in Julv. Because US-ARM is more
probabilities (except fopa of 0.5 at US-ARM) is able to P Y-

; i . ) . moisture limited, LH is more sensitive to model parameteri-
identify proper parameter estimates to improve heat flux sim-

ulation. Using daily observation data, inversion improves theZatlon of soil hydrology. The inability of the model to capture

heat flux simulation only with reference acceptance proba—the correct timing of the peak LH despite parameter calibra-

bilities of 1.0 and 0.95, indicating that using data of highertlon sugge.sts -that there may be structural limitations of the

. ; . . parameterizations used in CLM4 that cannot be adequately
temporal resolution might need a relatively more stringent : ; .

o . ; . addressed by inverse modeling of uncertain parameters.

acceptance criterion (i.e., highgg). Comparing Figs. 1 and
5, inversion using daily instead of monthly observations fa-
vors values offover, Qam, Ws towards the lower bounds at
the US-ARM site. At the US-MOz site, inversion using daily

6 Discussion

6.1 Impacts of temporal resolution of heat flux
observation on inverse modeling
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Fig. 13.Posterior distribution of the parameters through Bayesian model averaging at the US-ARM site.

6.2 Impacts of soil and vegetation cover on inverse haviors. That is, the posterior estimates tend to be more “ac-
modeling curate” but less “precise”, and the corresponding inversion
process usually takes longer to converge.
Compared to US-MOz, inverse modeling at the US-ARM
site identifies smalleQgym, and greaterfover andbs. In ad- 6.4 Impacts of different types of observations on inverse
dition, the bounds of posterior distribution identified by the modeling
inversion show more consistency across different reference
acceptance probabilities fofover, fdrais Qdm, b, and s at Inverse modeling using heat flux at US-ARM and runoff at
US-ARM than US-MOz, especially with monthly heat flux the MOPEX basin, which is located close to US-ARM, pro-
data. At US-MOz, the bounds of posterior distribution are vides an opportunity to assess the impacts of data type on
mainly consistent forfmax, fover Qdm, Sy, and6s. These  inverse modeling. Note that a basin is not homogeneous in
inversion results are consistent with the sensitivity analysisclimate and land cover, and there are differences in spatial
performed by Hou et al. (2012), which shows larger sensitiv-scales and heterogeneity between processes that influence the
ity to the respective parameters at the two sites related to th#ux tower site and the MOPEX basin. Nevertheless, they are
soil and vegetation properties. The best estimated parametegeographically close and have comparable climate and soil
are different at sites with different climate, land use, and soilconditions, so it is possible to resolve the impacts of using
conditions; hence soil and vegetation cover may inform thedifferent data types of observations for calibration. Compar-
selection of sensitive parameters that can be used in reducedg Figs. 1 and 7, the posterior distributions that optimize the
parameter sets for inverse modeling. It is therefore necessargimulations of heat flux can differ from those that optimize
to analyze parameter sensitivity and identifiability across thethe simulations of runoff. Since the calibrated model param-
flux tower sites and MOPEX basins and classify them intoeters are directly related to the soil’'s hydrological processes
different groups/classes with similar climate and soil condi- including surface and subsurface runoff, it is not surprising
tions, and then evaluate parameter transferability within eaclihat model inversion leads to more significant improvements
class or between classes through inverse modeling studies.in runoff (Fig. 8) than heat flux (Fig. 2) compared to simu-
lations that use the default parameter values. It is also possi-
6.3 Impacts of reference acceptance probability ble that the default parameters that control hydrological pro-
cesses may be more poorly defined in CLM in general or for
In this study, we set the reference acceptance probabilitghe particular sites being evaluated so that there is more room
in the inverse modeling to relax rejection standard to allowfor improvements. The simulations of heat flux can never-
more freedom in searching for optimal parameter estimatestheless be improved by inverting hydrologic parameters be-
However, relaxing the rejection standard leads to broadeningause surface heat flux is influenced by soil moisture, which
of the bounds of posterior distribution and multi-modal be- is closely related to runoff processes. The improvement in
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Fig. 14.Posterior distribution of the parameters through Bayesian model averaging at the MOPEX basin.

simulations of heat flux is particularly more noticeable at 6.5 Improvements through Bayesian model averaging
US-MOz than at US-ARM, where structural uncertainty may
have larger effects due to its stronger dependence of heat
fluxes on soil moisture availability. In addition, being a crop- For each reference acceptance probability for the MCMC-
land site, LH at US-ARM, may be influenced by other factors Bayesian inversion, one can obtain a set of posterior distri-
such as crop management that are not well represented in tHations of the unknowns. Bayesian model averaging is used
model. to integrate the different sets of predictions by weighting the
Although inverse modeling leads to larger improvementsposteriors according to their posterior model probability.
in the runoff simulations compared to the simulations using By integrating inversion results of different reference ac-
the default parameter values, the runoff simulations with theceptance probabilities, Bayesian model averaging produces
posterior estimates still deviate quite significantly from the smoother posterior distributions. Figure 13 shows the poste-
observed runoff in late summer and fall. This indicates pos-rior distributions of the parameters through Bayesian model
sible model biases in runoff due to model structural errorsaveraging at the US-ARM site. The black lines represent the
in the hydrologic parameterizations or the quality and spatialPrior distributions based on prior information. The red and
resolution of the forcing data discussed earlier. blue curves represent the posterior distributions of the param-
The LH flux can be measured by flux tower, which is rep- €ters using monthly and daily heat flux observations, respec-
resentative of more local conditions, while runoff is a com- tively. These two sets of posterior distributions are similar to
posite response of a drainage basin of a large area. These préach other for most parameters, except figlr. Daily heat
vide complementary information for model calibration. We flux favors smalleCs, fover, Qdm, Ws, and greatelfmax, Ks,
did not perform an integrated inversion because energy flu¥s. The posterior distributions using monthly and daily ob-
observations are available 0n|y at the flux tower sites (US.SGTV&tiOI’]S at the US-MOz site are also similar, but daily heat
ARM and US-MOz), and runoff data are only available at the flux favors smalleiCs, fover, fdrai, Qdm, Sy, Ws andos, and
MOPEX basins, each representing the best available observ&reaterfmax and K.
tions at each scale, respectively. Therefore, in this study, we Figure 14 shows the posterior distribution of the param-
focused on evaluating the potential of improving CLM sim- €ters through Bayesian model averaging at the MOPEX
ulations using the best available observations at appropriateasin. The posterior distributions using monthly and daily
scales. However, our study C|ear|y demonstrated the poterflanff observations are also similar. Dally observation favors
tial of multi-objective calibration, which will be attempted in Smallers and greatesy, b andKs. Itis noted that the differ-
future studies. ences between the posterior distributions from monthly and
daily data are even smaller from inversions using runoff com-
pared to inversions using heat flux, especially faf; and
Qdm- This may be related to the characteristic timescales of
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6 —observation by assuming the “true” parameter values are available, then
. @) :Ziemf:u‘jj::h;‘;“;j;;"“) “generate” the corresponding “true” responses, which are
' then used for testing the inversion approach. An alternative
way of validation is to separate the data set to training (for
calibrating the parameters) and testing periods, assuming the
parameters are intrinsic to the system and not time-varying.
Fig. 15a and b show the observations as well as model sim-
ulated monthly and daily runoff calculated using default and
optimal parameter values. The inversion (training) time pe-
riod is 2002—-2005, and validation periods are 2000-2001
and 2006—2008. The RMSEs are calculated for the valida-
3 ] tion periods only. We found that RMSEs are reduced more
30 for monthly data than for daily data. Sub-monthly varia-
e ®) — observation tions involve more internal/external factors and processes
::2’;;‘;“"" that are more complicated. It is harder to capture the higher
frequency components of the output variability. In general,
runoff calculations using optimal parameters from the train-
ing period can significantly improve the model misfits during
the testing periods, and the major patterns of inter-annual and
L seasonal variability are well captured.
- In this study, we demonstrated the possibility of inverting
Fig. 15. Comparison among the observations, default and optimalhydrologic parameters using surface flux and runoff obser-
simulations of(A) monthly and(B) daily runoff, during the inver-  vations in CLM4. Calibrating model parameters using the
sion (2002—2005) and validation (2000-2001 and 2006—2008) perideterministic least-square fitting method provides little im-
ods at the MOPEX basin. The RMSEs are calculated for the validajprovement in simulating heat flux and runoff, but using the
tion periods. calibrated values as initial guesses in the MCMC-Bayesian

calibration reduces the discrepancies between simulated and

) observed responses, however the convergence rate is unaf-
the physical processes. Surface heat flux may have less dayeacted by the choice of initial guesses.

to-day variability (hence larger data redundancy) compared Focusing on the MCMC-Bayesian inversion method, we
to runoff, which responds more directly to precipitation that conducted inverse modeling at two flux tower sites and one
has larger temporal variability than temperature during themjopEX basin. We also discussed the impacts of relaxing the
wet season. These differences could be site and season d@jection standard, data temporal resolution, data types, and
pendent so analyses over a larger number of sites can providgj| and vegetation on parameter inference. Informed by our
further insights on the sensitivity of model inversion to data previous sensitivity analysis, we also performed inversion
temporal frequency. with reduced parameter dimensionality. Moreover, Bayesian
Model integration represents a compromise of all possi-model averaging is adopted to integrate the posterior esti-

tion (i.e., wider posterior distributions).

Total Runoff (mm/d)

)

Total Runoff (mm/d)
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1. Inversion results at the flux tower and MOPEX sites

6.6 Model validation using monthly and daily surface flux and runoff obser-
vations show that the MCMC-Bayesian inversion ap-
In the above analyses, we compared observed and model cal-  proach in general can improve the simulation of CLM

ibrated responses to check whether smaller misfits can be  under different climates and environmental conditions.
achieved through the calibration process, and to evaluate the _ . _
different calibration power of runoff versus heat flux obser- 2. Temporal resolution of observations has clear impacts

vations, monthly versus daily data, and different tuning pa- on the results of inverse modeling using heat flux data,
rameters. In an inverse study, it is important to validate the but the impacts are smaller using runoff data. Due to
inversion approach. It is straightforward to validate the re- data redundancy and quality, finer temporal resolution
sults when true values of the unknown input parameters are ~ Of observations may yield biased estimates and multi-
available. Otherwise, people may design “synthetic” models modal posterior distributions.
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