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Abstract. In order to increase the accuracy of serial- neuro-fuzzy system also benefits filtering the noisy dynam-
propagated long-range multi-step-ahead (MSA) prediction,ics in model inputs and enhancing the simulation and forecast
which has high practical value but also great implemen-ability for the complex hydro-system.

tary difficulty because of huge error accumulation, a novel
wavelet neural network hybrid model — CDW-NN — combin-
ing continuous and discrete wavelet transforms (CWT and )
DWT) and neural networks (NNs), is designed as the MSAL Introduction
predictor for the effective long-term forecast of hydrologi-
cal signals. By the application of 12 types of hybrid and
pure models in estuarine 1096-day river stages forecastin
the different forecast performances and the superiorities o
CDW-NN model with corresponding driving mechanisms are
discussed. One type of CDW-NN model, CDW-NF, which

The hydrological signal forecast, especially a long-term fore-
ast, is important for the study and guidance of water re-
Source management. Nevertheless, the hydrological signals
are highly complex nonlinear systems and have severe vari-
ations in time and space, which make accurate forecasts dif-

uses neuro-fuzzy as the forecast submodel, has been prové'ﬁfhlt' szlarallaly, th de hydrﬁ Iog|c:;1l tlme'dsene:[ts were prtehdlcted
to be the most effective MSA predictor for the prominent ac- Wwith models based on physical considerations or other nu-

curacy enhancement during the overall 1096-day Iong-tern{“erical theories, such as the LR (linear regressive) _analysis
forecasts. The special superiority of CDW-NF model lies in methods (Salas et al., 1980) based on the stochastic theory,

5 . : _.the grey models (Deng, 1992) based on the grey information
the CWT-based methodology, which determines the 15 daiheory, the chaos models (Jayawardena and Lai, 1994: Islam

and 28-day prior data series as model inputs by revealin . L .
- . e . : nd Sivakumar, 2002) based on the local similarity of signals,
th f t short-t t I t -
e significant short-time periodicities involved in es uarine . fuzzy prediction models (Jang, 1993: Jang et al., 1997

river stage signals. Comparing the conventional single-step-
ahead-based long-term forecast models, the CWT-based h zhen, 2005) basgd on the .f.uzzy theory, the TAR (thresh-
?Id auto-regression), BL (bilinear time series), and SVM

brid models broaden the prediction range in each forecas ¢ ¢ hi dels (T 1990- Li d
step from 1 day to 15 days, and thus reduce the overall fore—ss.lJppor vec Ogorgg? Zlne) rtnol ezsogoong’ q ’ tk|10ng a?.
casting iteration steps from 1096 steps to 74 steps and fi= vapragasm, , £0u et al, ) Dased on the nonin-
nally create significant decrease of error accumulations. I ar time-series analysis, the ANN (artificial neural network)

- S models (Raman and Sunlikumar, 1995; Yu et al., 2008; Yang
ddition, binat f the advant f DWT method and
addiion, combinafion ot fhe advantages o method an et al., 2009) based on the black-box theory, and the NNB
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(nearest neighbour bootstrapping) regressive models (Wangrior is always selected as one of the inputs because of the
et al., 2001) based on the nonparametric prediction theoryusually high lag-1 autocorrelation (Kisi, 2008, 2011; Zhou
However, these models were generally not successful enougét al., 2008). This selection principle denotes a type of com-
in producing accurate predictions due to some inaccurate inimonly used single-step-ahead (SSA) prediction (Parlos et al.,
tial conditions, parameterisation schemes of sub-scale phe2000), in which each single forecasting step of the Marko-
nomena, and limited spatial resolution (Olson et al., 1995). vian property-based model can only predict the next 1-day
Many hybrid models have been proposed as predictorglatum (Fig. 1a). However, the SSA prediction may not pro-
to improve the accuracy of hydrological time-series fore- vide enough information, especially in the situation in which
casts, such as the wavelet artificial neural network (ANN)itis desirable to understand the behaviour of multiple stepsin
model (Anctil and Tape, 2004; Krishna et al., 2011; Nayak etthe future, such as signal processing and time-series predic-
al., 2013), the periodic ANN (PANN) model (Wang et al., tion. Given this issue, the serial-propagated multi-step-ahead
2006), the chaotic ANN model (Karunasinghe and Liong, (MSA) prediction (Fig. 1b), which attempts to make predic-
2006), the hybrid fuzzy-ANN model (Nayak et al., 2007), the tions several time steps into the future without the availability
wavelet-based grey model (Chou, 2007), the wavelet-basedf output measurements, has attracted an increasing number
NF (neuro-fuzzy) model (Partal and Kisi, 2007; Engin et of scientific studies (Su et al., 1992; Schenker and Agarwal,
al., 2007; El-Shafie et al., 2007), the non-supervised ANN-1995; Coulibaly et al., 2000; Gao et al., 2002; Chang et al.,
EA (evolutionary algorithms) model (Cao and Park, 2007; 2007; Yong et al., 2010; Chang et al., 2012). However, the
Chang et al., 2007), the fuzzy-SVM model (Hua et al., 2008),MSA predictors, especially the long-range MSA predictors,
the wavelet-based multi-layer perceptron model (Kisi, 2008),are difficult to develop, because the lack of measurements
the wavelet-regression (WR) model (Kisi, 2011), and thein the prediction horizon necessitates the recursive use of
wavelet-based fuzzy logic model (Ozger et al., 2012). TheseSSA predictors to reach the end point on the horizon. Even
hybrid models have shown different advantages for accuratesmall SSA prediction errors at the beginning of the horizon
predictions due to their capabilities of utilising present in- accumulate and propagate, often resulting in a poor predic-
formation effectively. Among these hybrid models, the neu-tion accuracy. Over the last 20 yr, the MSA predictor design
ral network (NN) models, such as the NF (neuro-fuzzy) andto increase the MSA prediction accuracy has received much
ANN, are the most popularly utilised sub-models for signal attention, and different types of neural networks have been
forecast due to their capabilities of effectively learning com- used successfully for some short-range MSA predictions (Su
plex and nonlinear relationships (Maier et al., 2010). Theet al., 1992; Parlos et al., 2000; Chang et al., 2007).
ANN model has been commonly used in hydrological sig- As mentioned above, the crucial and most difficult point
nal forecasts by a number of researchers (French etal., 1992 a “true” long-term forecast of hydrological signal (Yu
Jain et al., 1999; ASCE, 2000; Cigizoglu, 2005; Marzano etet al., 2013) is the development of effective models to re-
al., 2006; Zou et al., 2010). The NF model has been intro-duce the error accumulation and increase the accuracy of
duced and successfully used in the hydrological sciences ithe long-range serial-propagated MSA prediction. In view of
recent years (Nayak et al., 2004, 2005; Kisi, 2005; Chang andhis, the present study designed a novel hybrid model CDW-
Chang, 2006). In addition, the wavelet transform, as a strondNN, combining continuous and discrete wavelet transforms
mathematical tool in providing the good local representationand neural networks, as the MSA predictor for effective long-
of a signal in both the time and frequency domains, has beterm forecast of hydrological signals by broadening the pre-
come a useful method for analysing variations, periodicities,diction range in each forecast step and reducing the total it-
and trends in time series (Daubechies, 1994; Torrence andration steps in the long-term forecasting process. In the re-
Compo, 1998; Coulibaly and Burn, 2004; Partal and Kucuk,mainder of this paper, the long-term forecast methodologies
2006). Among the various types of wavelet transforms, theof the MSA predictor CDW-NN are presented. In the next
discrete wavelet transform (DWT) is popularly used as thesection, the details of daily river stage data series in differ-
data preprocessing method in a hybrid model to decomposent hydro-stations in Yangtze River estuary, China, are pre-
the original signal inputs due to its capabilities of effectively sented, and the CDW-NN hybrid models are applied to the
classifying a hydro-meteorological time series into distinct long-term forecasts of different river stage signals. The re-
time and frequency domains (Smith et al., 1998; Kim andsults are discussed by comparing with the performances of
Valdes, 2003; Labat, 2005). other pure and hybrid models in the subsequent section, and
Because of the common Markovian property (Bolch et finally conclusions are drawn.
al., 2006) embedded in the hydro-meteorological time series,
most recent pure and hybrid models use data series at dif-
ferent previous time points as model inputs to forecast the
original data series at the current time point. For daily time
series, the data series from 1 day prior to a few days prior are
usually used as model inputs, namely using data sé&ries
S;—2, ... as inputs, to forecasy. The data series at 1 day
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x(1) —» Forecast x(1)~x(?): Observed data time series.

@ x(t:-l) : model > . . .
x(1) —» W(t+1)~y(t+n): Predicted data time series.
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Fig. 1. Architectures of the conventional single-step-ahead (SSA)
ahead (MSA) forecagb) (1000 dpi, 88 mmx 21 mm).
2 Methodologies

2.1 Continuous wavelet transform (CWT) and
discrete wavelet transform (DWT)

Wavelet transform is a mathematical tool that allows the de-

composition of the signaf(¢) in terms of elementary con-
tributions called wavelets (Sadowskey, 1996; Labat et al.
2005). For the time series(r) € L2(R) or finite energy sig-
nal, the CWT of the signaf (¢) with the analysing wavelet

is the convolution off (z) with a set of dilated and translated
wavelets:

)
Wi(a, b) = (£(1), gap(D)) = \/;t / £
R

t—>b

4

1)

)dt,a,beR,a>0,
a

whereg(¢) is the complex conjugate function ¢fz), a the
dilation (scale or frequency) parametethe translation (po-
sition or time) parameterR the domain of real numbers,

foréapand the SSA-based long-range serial-propagated multi-step-

wavelet power spectrumP(. P is given as (Torrence and
Compo, 1998)

2
P =0%P, ’C“T(p) (4)
whereo? is the variance of data serieﬁﬁ(p) the inverse of
chi-squared cumulative distribution with degrees of free-
'dom at the requested confidence level p, andp the distri-
bution fraction. For the lag-1 autocorrelatior(l) <0.1P,
is the white noise spectrum, and fefl) > 0.1, P, is the
red noise spectrum. For the Morlet wavel&}, is given as
Eq. (5), andb is given as Eg. (6). In this study, a significance
level of 0.005 was selected (e.)g22(99.5 %) =10.597).

_ 2
P, = 1-r) 5)
1+ r(1)2 - 2r(2) cos( £
N8t \?

The continuous wavelet (Eqg. 1) is often discrete in real appli-

ands: the time interval of the data series. In this paper, thecatiQHS- Whem =af, b=kboa}, ao>1,bo € R, c’:_lndk and;
time interval of the data series equals 1.0 day, and the popare integer numbers, the DWT ¢fz) can be written as

ularly used Morlet wavelet is selected as(Mallat, 1989;

Daubechies, 1994; Torrence and Compo, 1998). The MorleW(j, k) =
wavelet, which is a complex wavelet consisting of a plane

wave modulated by a Gaussian function, is defined by
¢(t) — 7.[—1/461'600[ e(—t2/2)’

()

wherewy is the non-dimensional frequency (usually taken to
be 6 to satisfy the admissibility condition) (Farge, 1992).

The global wavelet power spectrum is defined as the powePumerically,

density at different timescalg which is calculated by

N

% Z |Wp(a, b)

b=1

2
E, )

©)

where N is the length of the data. The signal’'s periodicity

can be indicated at the timescale at which the wave crest

i/f(z)a(agfz—kbo) dr. @)

Based on the commonly used Mallat algorithm for calculat-
ing discrete wavelet coefficients, the most common and sim-
plest choice for the parametesg and bg is 2 and 1 time
steps, respectively, and the Daubechies wavelet, which has no
explicit mathematical expressions and can be calculated only
is commonly used in the DWT (Mallat, 1989;
Daubechies, 1994; Partal and Kucuk, 2006; Kisi, 2011). For
a discrete time serieg (r) occurring at different times

(e.g. integer time steps are used herein), the DWT can be
defined as

N—

=

1

Wil == 3 [0 (271 -x), ®)

t

of wavelet power spectrum is observed. The significance ofvhereN is the number of discrete time steps, afd(j, k) is
the global wavelet power spectrum is tested using a whitethe wavelet coefficient for the discrete wavelet of seate?/
or red noise model by comparing with the theoretical globaland timeb =2/ k.

www.hydrol-earth-syst-sci.net/17/4981/2013/

Hydrol. Earth Syst. Sci., 17, 4981993 2013



4984 J.-S. Yang et al.: Multi-step-ahead predictor design for effective long-term forecast of hydrological signals

Input Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Output
Ay X1 Xy
X1 < l
A; 1; lfi f
3OS
Xy < T T
B, X1 X

Fig. 2. Schematic diagram of a typical five-layer ANFIS structure (1000 dpi, 860188 mm).

2.2 Neuro-fuzzy (NF) and BP-ANN 1994; Kisi, 2011), is used to adjust the weights of the ANN
model, and the tangent sigmoid and linear activation func-
tions are used for the hidden and output node(s), respec-

The popular neural network (NN) model neuro-fuzzy, based}ively. Same as the NF model structure determination, since

on a adaptive neuro-fuzzy inference system (ANFIS) (Jang e here is no theory yet to determine how many hidden layer

al., 1997; Partal and Kisi, 2007), is utilised as the sub-mode des in th ded . :
for the different hydro-meteorological signals forecasts in roges In the B.P_ANN are needed to approxmate any given
function, the hidden layer node number in BP-ANN is com-

this paper. The ANFIS’ first mtroduced_ by Jang (1993), 'S.monly determined by the trial-and-error approach (Nayak et
a universal approximator and, as such, is capable of approxi- : .
. . . al., 2013). Since each type of ANN model in the presented
mating any real continuous function on a compact set to aMYase study has two input layer nodes, the trial and error pro-
degree of accuracy. The ANFIS is functionally equivalent to y P Y ’ P

the Sugeno first-order fuzzy model (Jang et al., 1997; Drakeﬁ?a dd duerﬁ Iztaé:snc\;\gg]n%r:r?bzlridaerg ilr?c):lferars]ggeu mtlgallg ,\/v;iit?\dat;i
2000), and its typical architecture with five learning layers is Y P P

- ) o . .~ size of 1 in each trial. By many trials, the optimal BP-ANN
shown in Fig. 2. The crucial point in determining the opti- . . ) '
. . ._structure is determined by selecting the hidden layer node
mal NF model structure is the selection of transfer functlonnumber with the best model training efficiency and simulat-
and rule numbers in Layer 1 of ANFIS architecture (Engin 9 Y

et al., 2007). Gauss and Bell functions are two commonlyIng performance.
used functions, and the least two rule numbers of each node
in Layer 1 are necessary (Jang et al., 1997). Since there is né-3  Architecture of the long-term forecasting based on
theory yet about the suitable selection for any case, the op-  the MSA predictor CDW-NN
timal NF model structure is usually determined by many tri-
als (i.e. trying different transfer functions and different rule In order to reduce the error accumulation and increase the
numbers). Because more rule numbers may increase mor@ccuracy of the long-range serial-propagated MSA predic-
complexity and calculation difficulty of the ANFIS, the rule tion, the present study designs a novel hybrid model CDW-
numbers from 2 to 5 with a step size of 1 in each trial areNN, combining CWT, DWT, and NN, as the MSA pre-
used in testing the optimal NF model structure in the pre-dictor for effective long-term forecast of hydrological sig-
sented case study. The significant advantage of the NF modelals. The architecture of CDW-NN hybrid model is shown
depends on the hybrid learning algorithm in ANFIS, which in Fig. 3. Firstly, for the original given daily data series
combines gradient descent, back-propagation, and the least{1) ~ x(¢), the CWT method is utilised to reveal its short-
squares method and can rapidly train and adapt the ANFISterm periodicities, i.e. the periods @l ~ ai days in Fig. 3
Each learning epoch of the ANFIS is composed of a forward(al <a2 < ... ai). Meanwhile, the decomposition of the
pass and a backward pass, and more information for neuroariginal signal DWT is carried out to get new data series
fuzzy and ANFIS can be found in Jang’s papers (Jang, 1993TD(1) ~ TD(¢), which is constructed by selecting and com-
Jang et al., 1997). bining optimal DWT decomposition components. Then, by
Another popular NN model, BP-ANN (back-propagation combining the CWT and DWT results, the new TD series at
artificial neural networks), is utilised in our case to com- al~ai days ahead (TD( al)~TD(zr —ai)) are selected
pare the forecast performance with the NF model. Basedis the NN model inputs for model training to forecast the
on the back-propagation algorithm, a common three-layedatum x(¢). According to the serial-propagated prediction
feed-forward type of BP-ANN is considered; the Levenberg—principle, using TD{—al+1)~TD(t —ai + 1) as model
Marquardt methodology, which is more powerful than con- inputs can predict the first future day datyiia + 1), and us-
ventional gradient descent techniques (Hagan and Menhajng TD(t) ~ TD(¢t — ai + al) as inputs can prediets + al).
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Fig. 3. Architecture of the novel CDW-NN hybrid model (1000 dpi, 132 mridl mm).
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Fig. 4. Location map of the hydrological stations (1000 dpi, 148 saB¥ mm).

Here, the first batch of outpuigr + 1)~ y(z +al) are pre-  observed and collected from estuarine Santiao Port hydro-

dicted from the first forecasting step, and then can be usedbgic station (31.721N, 121.698 E) and Qinglong Port

as new observations for the second step DWT decomposhydrologic station (31.862N, 121.239 E), located about

ing and NN forecasting to predict the second batch of out-19.0 and 70.0km, respectively, upstream from Chinese

putsy(t +al+ 1)~ y(r + 2al). Just as the 1-day prediction Yangtze River entrance into the East China Sea (Fig. 4). The

from each SSA forecast involved in conventional MSA fore- daily river stage data series at each station are obtained based

cast, the day number of predictions in the output of eachon the average value of high-tide levels at two time points

CDW-NN forecasting step i81. So, after about/al steps  each day. The first 10 yr of river stage data (3652 days) are

of forecasting process, the final long-term prediction seriesused for training and establishing hybrid models (23652

y(t + 1)~ y(¢ +n) can be obtained. in Fig. 3). The remaining 3 yr of river stage data (1096 days)
are used for testing the long-term forecasting performance of
hybrid models (i.en = 1096 in Fig. 3).

3 Application

3.2 Short-term periodic features of estuarine daily river

3.1 Studied area and data g
stage series by CWT

The high-tide level data at two time points each day dur-
ing 13yr (4748 days) covering 1998-2010, supported byThe Morlet wavelet transform coefficients of the training
the Water Resources Department of Jiangsu Province, werdata series at relatively fine timescales (from 1-day to 50-day

www.hydrol-earth-syst-sci.net/17/4981/2013/ Hydrol. Earth Syst. Sci., 17, 4981993 2013
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Fig. 5. Real parts of the Morlet wavelet transform coefficients at Santiao st@)@nd Qinglong statiofc), and their global wavelet power
spectrums and corresponding confidence tests using white noise nllodé)sbased on the 3652-day river stage data during 1998—-2007
(2000 dpi, 139 mnx 111 mm).

scales) are calculated by MATLAB language. The real partsnamely at 12-day and 23-day timescales, and both of their
of Morlet wavelet transform coefficients at Santiao sta- global wavelet power spectrums are prominent at the 99.5%
tion (Fig. 5a) and Qinglong station (Fig. 5¢) clearly indi- confidence level. The QPO of estuarine daily river stage at a
cate the distribution conditions of the river stage signalsfine timescale is often nested in a broad timescale. At the
at different timescales. The solid isograms indicate posi-12-day timescale, the average changing periodidty ¢f
tive wavelet coefficients and a relatively high river stage pe-river stage time series (i.e. the average cycle days between
riod, and the dashed isograms indicate negative coefficienteach two time domains with positive wavelet coefficients) is
and a relatively low period. Further calculating the global 15 days obtained by calculating and averaging the day num-
wavelet power spectrums and the corresponding theoreticders of each two neighbouring high and low river stage peri-
power spectrums using white noise model, the significanceods. At the 23-day scale, the averdfeés 28 days. At Qin-
of wavelet power densities of daily river stage series at differ-glong station, the Morlet wavelet transform coefficients of
ent timescales at Santiao and Qinglong stations is calculatedaily river stage series generate obvious two QPOs at 12-
and shown in Fig. 5b and d. day and 22-day timescales, of which the correspondisg
Results show that the Morlet wavelet transform coeffi- are 15 days and 28 days, the same as that at Santiao station,
cients of daily river stage series at Santiao station generand both of their global wavelet power spectrums are promi-
ate obvious two kinds of quasi-periodic oscillations (QPOs),nent at the 99.5 % confidence level. Based on the prominent

Hydrol. Earth Syst. Sci., 17, 49814993 2013 www.hydrol-earth-syst-sci.net/17/4981/2013/
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Table 1. Squared correlation coefficient®4) between each discrete wavelet component series at 15 days and 28 days-pfiérand
t — 28) and original river stage data series on the current 83y (

Discrete wavelet R2 with S, at Santiao station R2 with S, at Qinglong station
components in 10 Single-factor Single-factor Double-factor Single-factor Single-factor Double-factor
resolution levels analysis at- 15 analysis at — 28 analysis analysis at- 15 analysis at — 28 analysis

atr — 15 andr — 28 atr — 15 andr — 28
A10 0.005 0.005 0.005 0.012 0.012 0.012
Dq 0.000 0.000 0.000 0.000 0.000 0.000
Dy 0.003 0.002 0.006 0.000 0.000 0.001
D3 0.430 0.309 0.501 0.399 0.299 0.468
Dy 0.067 0.144 0.228 0.052 0.147 0.221
Dsg 0.009 0.000 0.009 0.008 0.000 0.009
Dg 0.003 0.000 0.007 0.003 0.000 0.006
D7 0.016 0.008 0.019 0.016 0.008 0.019
Dg 0.102 0.085 0.111 0.135 0.112 0.146
Dg 0.006 0.005 0.007 0.008 0.006 0.013
D1g 0.007 0.006 0.007 0.000 0.000 0.001
S=A10+) D; 0.549 0.510 0.672 0.555 0.558 0.674
TD=D3+ Dg+ Dg 0.576 0.539 0.681 0.557 0.564 0.699

short-term periodic features of estuarine daily river stagethe double-factor analysis. Instead of using each DWT com-
time series, estuarine daily river stages at 15 days prior angronent individually as the model input, employment of the
28 days prior are determined to simulate and forecast thedded suitable DWT components is more useful and can
river stage at the current day (i€l anda2 in Fig. 3 equal 15 highly increase the forecast performance. Based on the re-
and 28, respectively). vealed dominant DWT components of different hydrological
series, the new series (TD) obtained by adding D4 and
3.3 Decomposition of daily river stage time series and Dg at 15 days and 28 days prior are selected as two NN model
optimal DWT components combination inputs for the daily river stage forecast at both Santiao and
Qinglong stations. Comparing the lagged TD series with the
The decomposition process of DWT consists of a numberdagged original seriesSj, the lagged new series (TD) show
of filtering steps following the Mallat algorithm. The origi- slightly higher correlations at both 15-day and 28-day delay
nal signal of training data series is first decomposed into arfime nodes withS,, which indicate that the new TD series
approximation 41) and details D1), and theA; is then bro-  keeps the main information of the original signal dynamics
ken down into many lower resolution components and in spite of the filtering of many other weakly correlated in-
D;). The details are the low-scale high-frequency compo-formation by DWT.
nents of the signal, while the approximations are the high-
scale low-frequency components. The higher scales consi®®.4 CDW-NN model training and long-term forecasting
of the extended version of a wavelet, and the correspond- of daily river stage signals
ing coefficients refer to the slowly changing coarse features
of low-frequency components. The lower scales present thé\ccording to the above CWT and DWT results, two new
condensed wavelet and follow the rapidly changing detailsdaily series TD(1)» TD(+ — 28) and TD(14) TD(r — 15)
(high-frequency components) of the signal (Mallat, 1989). extracted from the training data series are used as the NN
In our case, 10 decomposition componeuttsy D1—D10) Of model inputs to simulate and forecast the original series
the original daily river stage signals (1998-2007) in 10 reso-x(29)~ x(¢). Program codes were written in MATLAB lan-
lution levels are calculated by MATLAB language, and then guage for training the neuro-fuzzy and BP-ANN submodels
are used to analyse the optimum input factors in the hybridand determining their optimal model structures. At Santiao
models. station, by many trials the optimal CDW-NF hybrid model
The squared correlation coefficient8?) between each structure is determined as CDW-NF (5-Bell), which denotes
discrete wavelet componenti{y, D1—D19) at 15 days and the Bell-type transfer function and five rules for each in-
28 days prior{— 15 andr — 28) and the original time series put in the layer one of ANFIS, and the optimal CDW-ANN
at timez (S;) are computed and presented in Table 1. By thehybrid model structure is determined as CDW-ANN(2-3-
single-factor and double-factor analysis, at both Santiao and.), which denotes two input layer nodes, three hidden layer
Qinglong stations, th®3, D4 and Dg components at 15 days nodes and one output layer node in the BP-ANN submodel.
and 28 days prior show the prominently highet with S; At Qinglong station the optimal CDW-NF(4-Gauss) model
than the other DWT components, especially significant inand the optimal CDW-ANN(2-4-1) model are obtained. After
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Fig. 6. Observed and predicted values of the daily river stages from 2008 to 2010 using the CDW-ANN hybrid model and CDW-NF hybrid
model at Santiao statidia, b) and Qinglong statioiic, d) (1000 dpi, 136 mnx 105 mm).

the training processes of NN submodels, two TD series 1. . )
TD(t — 27)~TD(t — 13) and TD( —14)~TD(;) are used MAE = - Z'Y iobserved— Yiestimatd (10)
as model inputs to forecast the future 15-day river stage i=1

seriesy(r + 1)~ y(1 4 15) (i.e. the first forecasting step in \heren is the number of data sets, afid is the daily river
Fig. 3). Then the predicted 15-day river stage series argage.
treated by DWT and used as the new inputs to forecast the The forecast performances of CDW-NF and CDW-ANN
next 15-day river stage in the next forecasting step. Be-models at Santiao and Qinglong stations are shown in Fig. 6.
cause each single forecasting step using CDW-NN modeResults show that the CDW-NF models perform the signif-
obtains 15-day predictions, the total 1096-day future rivericantly better correlations between the observed and pre-
stage values from 2008 to 2010 are predicted after 74 stepgjcted river stage data during 2008-2010 with the higher
of forecasting. R? of 0.284 and 0.173 at Santiao and Qinglong stations, re-
The root mean square errors (RMSEs), mean absolute ekpectively, while the CDW-ANN with the lowek? of 0.020
rors (MAEs) and correlation coefficient] statistics are  and 0.030 at Santiao and Qinglong stations, respectively.
used to evaluate the model performance of simulation andrhe CDW-ANN hybrid model shows better forecast perfor-

prediction. The RMSE and MAE are defined as mances during the first year than that in the last two years.
1 n
RMSE = ; Z (Yiobserved— Yiestimatéz, (9)
i=1
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Table 2. Comparison among the performances of 12 types of river stage forecasting models in respect to root mean square errors (RMSES),
mean absolute errors (MAES) adsquare (22) in the training and test periods.

Model Santiao station Qinglong station
Training period Test period Training period Test period
RMSE MAE  R? RMSE MAE  R? RMSE MAE  R? RMSE MAE  R?
CDW-NF 0.314 0.250 0.702 0.476 0.381 0.284 0.310 0.245 0.698 0.457 0.372 0.173
CDW-ANN 0.318 0.254 0.696 0.774 0.635 0.020 0.313 0.247 0.692 0.527 0.430 0.030
CDW-LR 0.325 0.261 0.681 0.562 0.463 0.012 0.322 0.255 0.674 0.499 0.410 0.014
CW-NF 0.316 0.250 0.697 0.623 0.494 0.033 0.302 0.283 0.713 0.570 0.459 0.009
CW-ANN 0.322 0.255 0.687 0.702 0.568 0.000 0.309 0.244 0.701 0.505 0.409 0.002
CW-LR 0.329 0.262 0.672 0.565 0.463 0.005 0.309 0.244 0.699 0.487 0.397 0.011
DW-NF 0.211 0.166 0.865 0.574 0.475 0.039 0.211 0.169 0.860 0.471 0.384 0.081
DW-ANN 0.214 0.168 0.861 0.568 0.468 0.037 0.214 0.171 0.857 0.474 0.386 0.066
DW-LR 0.225 0.177 0.848 0.554 0.454 0.036 0.226 0.181 0.839 0.492 0.400 0.053
Neuro-fuzzy  0.263 0.198 0.791 0.558 0.454 0.009 0.227 0.168 0.838 0.499 0.404 0.012
BP-ANN 0.271 0.203 0.780 0.557 0.451 0.016 0.226 0.168 0.839 0.497 0.402 0.009
LR 0.284 0.216 0.757 0.559 0.456 0.013 0.242 0.180 0.815 0.498 0.403 0.012
4 Discussion DW-R, DW-ANN and DW-NF hybrid models utilise the op-
timum decomposition components combinations {I1xand

4.1 Forecast performance comparison among TD,_>»), determined by DWT, as model inputs to forecast
CDW-NN models and the other 10 types of S;. With respect to the pure LR, BP-ANN and neuro-fuzzy
hybrid and pure models models, the original daily river stage series at 1 day prior

o o and 2 days prior§;—1 and S,_,) are used as model inputs
Similar to the establishing process of CDW-NN models, the, tqrecasts,. By the model training processes, the opti-
hybrid CDW-LR model is established by combining CWT, 5| pw.NF structures for Santiao and Qinglong stations
DWT and a linear regression (LR) model. Using the train- e determined as DW-NF(5-Gauss) and DW-NF(5-Bell), re-
ing data series, the simulating equations of the CDW-LRghatively: the optimal DW-ANN structures for Santiao and
models at Santiao station and Qinglong station are Obta'”eﬁinglong stations are DW-ANN(2-5-1) and DW-ANN(2-7-
and shown as Egs. (11) and (12), respectively. Without the}) - regpectively; the optimal pure NF model structures for
DWT treatment, three other CWT-based (CW-) models aregyniiag and Qinglong stations are determined as NF(5-Bell)
established by using the_ original daily river stage series abing NF(2-Gauss), respectively; and the optimal pure BP-
15 days_and 28 days prioS,(15 an.d St—zs) as model in- ANN model structures for Santiao and Qinglong stations
p_uts to simulates;. By the model trgmmg processes, the_op— are BP-ANN(2-3-1) and BP-ANN(2-5-1), respectively. The
timal CW—NF structures for Santiao and Qinglong stationsp\w.| R models for Santiao and Qinglong stations are ob-
are d«_etermmed as CW-NF(5-Bell) and CW-NF(2-Gauss), ré+ained and shown as Eqs. (15) and (16), respectively, and the
spectively; the optimal CW-ANN structures for Santiao and , e | R models for Santiao and Qinglong stations are shown
Qinglong stations are CW-ANN(2-3-1) and CW-ANN(2-1- . Egs. (17) and (18), respectively.
1), respectively; and the CW-LR models for Santiao and Qin- ’

glong stations are shown as Egs. (13) and (14), respectivelyS: = —0.973TD—2 + 1.818 TD—1 + 3.966 (15)
= —-0.971TD_ 1.826TD— 4, 1
S, = 0.454TD,_5 + 0.533TD,_15 + 3.966 (11) i’ 82165 D-2 J; 1284; D 10—;61005 Elgi
S, = 0.496 TD_pg + 0.487TD_15 + 4.004 (12) S’ - _0'397;_2 + 1~234Sz—1 + 0.649 7
S; = 0.428S;_pg + 0.493S,_15 + 0.315 (13) = -2+ L i—1+ 0. (18)
S, = 0.473S,_5g + 0.4605,_15 + 0.266 (14) As shown in Table 2, the training and forecasting perfor-
l‘ —_ . l‘_ . t_ .

mances of 12 types of hybrid and pure models are compared
As mentioned in Fig. 1, many conventional studies on MSAwith each other in respect to the RMSE, MAE aR€istatis-
predictor design focused on the methodology of recursivetics. Due to the high lag-1 and lag-2 autocorrelations in the
use of SSA predictors (i.e. generally usi§g.1 and S;_» hydrological time series, in the training periods the six types
as model inputs to forecast). In view of this, six types of conventional SSA-based long-term forecast models per-
of conventional SSA-based long-term forecast hybrid andform better than the six types of CWT-based models with
pure models are established for comparing with the CWT-the higherk? and smaller RMSE and MAE. Nevertheless, in
based hybrid models. Among the six types of models, thethe test periods, without the observation data as model inputs
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Fig. 7. Forecast performances in respect to the correlation coefficigntef(12 types of hybrid models during the 1096-day river stages
forecasting at Santiao stati¢a) and Qinglong statiofb) (1000 dpi, 132 mnx 46 mm).

in each forecasting step, the CDW-NF hybrid model shows In view of the above discussion, the CDW-NF hybrid
the most significant performances among all the 12 modelsmodel is proven to be the most effective MSA predictor for
especially at Santiao station. In addition, due to the promi-the long-term forecasts of estuarine daily river stage signals.
nent ability of the decomposition approach DWT in filtering In addition, the CDW-ANN hybrid model can be taken as
weakly correlated details from original signal, each DWT- the second selection for the short-term and mid-term fore-
based hybrid model performs better than the correspondingasts of estuarine daily river stage signals because of its
model without DWT both in the training and test periods.  high performance during the first year forecast process. It
should be noted that the methodology of accurate MSA pre-
4.2 Driving mechanism of the advantages of COW-NN  dictor design by reducing iteration steps and error accumu-
models in long-range MSA predictions lation is innovated in this study by revealing the short-time
. o periodic features of estuarine river stage dynamics, which
Prediction performance details in respect & for the g mainly caused by the half-month periodicity involved in
12 types of hybrid and pure models at different forecast-yhe astronomical tidal fluctuation in river estuary. With re-
ing steps during the overall 1096-day river stage forecastln%pect to other kinds of hydro-meteorological signals, which

are calculated and shown in Fig. 7. According to the serial-,ye non-significant short-term periodic features, other types
propagated MSA prediction theory, the error accumulations¢ gig0rithms and models for reducing error accumulation

increases with the iteratioln _step increase in a long-term fore;, long-term forecasting steps need to be further studied in
cast. Therefore, the prediction performances of all 12 typeyre research. In addition, although the novel CDW-NF
of models have overall decreasing trends with the increaspy brig model succeeds in prominently increasing the long-

ing of predicted data length from 1 day to 1096 days. Never-range MSA prediction accuracy &?, RMSE and MAE, the

theless, during approximately the first 200-600 days of riverg,erq|| relatively poor performances of most of models in

stage forecasting, all six types of CWT-based models pery,q «re” jong-term forecast lead to the difficulties in the

formed better than the other six types of SSA-based mody o rate peak value estimation. Thus, the improvement of

els. In particular, both at Santiao and Qinglong stations theygqelling capabilities in hydro-signal's peak value estima-
CDW-NF models show the significantly better performancesiiyn, and physical process revealed by developing more ad-
than the other models during the overall 3yr (1096 days),,5nced algorithms still needs further research.

river stage forecasting steps. The main explanations are that

the CWT-based models reduce the overall forecasting itera-

tion steps to 74 steps by using the 15-day prior data series Conclusions

as the first model input, while the conventional SSA-based

models needs 1096 steps by using 1-day prior data series &tudies on the long-term forecast of hydrological signals

the first model input. The prominent decrease of forecastindhave high practical value. However, the accurate long-range

steps consequently brings significant reduction of error acMSA predictor design is very difficult, especially in conven-

cumulation in the long-range MSA prediction. In addition, tional SSA-based MSA predictions because of the huge error

the combination of the advantages of the DWT method andaccumulation in the serial-propagated long-term forecast. In

neuro-fuzzy system also benefits weakening the noisy dythis study, we design a novel hybrid model CDW-NN, com-

namics of the model inputs and enhancing the simulation andbining continuous and discrete wavelet transforms and neural

forecast ability for the complex hydro-system. networks, as the MSA predictor for effective long-term fore-
casts of hydrological signals. By the application of CDW-NN
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