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Abstract. In order to increase the accuracy of serial-
propagated long-range multi-step-ahead (MSA) prediction,
which has high practical value but also great implemen-
tary difficulty because of huge error accumulation, a novel
wavelet neural network hybrid model – CDW-NN – combin-
ing continuous and discrete wavelet transforms (CWT and
DWT) and neural networks (NNs), is designed as the MSA
predictor for the effective long-term forecast of hydrologi-
cal signals. By the application of 12 types of hybrid and
pure models in estuarine 1096-day river stages forecasting,
the different forecast performances and the superiorities of
CDW-NN model with corresponding driving mechanisms are
discussed. One type of CDW-NN model, CDW-NF, which
uses neuro-fuzzy as the forecast submodel, has been proven
to be the most effective MSA predictor for the prominent ac-
curacy enhancement during the overall 1096-day long-term
forecasts. The special superiority of CDW-NF model lies in
the CWT-based methodology, which determines the 15-day
and 28-day prior data series as model inputs by revealing
the significant short-time periodicities involved in estuarine
river stage signals. Comparing the conventional single-step-
ahead-based long-term forecast models, the CWT-based hy-
brid models broaden the prediction range in each forecast
step from 1 day to 15 days, and thus reduce the overall fore-
casting iteration steps from 1096 steps to 74 steps and fi-
nally create significant decrease of error accumulations. In
addition, combination of the advantages of DWT method and

neuro-fuzzy system also benefits filtering the noisy dynam-
ics in model inputs and enhancing the simulation and forecast
ability for the complex hydro-system.

1 Introduction

The hydrological signal forecast, especially a long-term fore-
cast, is important for the study and guidance of water re-
source management. Nevertheless, the hydrological signals
are highly complex nonlinear systems and have severe vari-
ations in time and space, which make accurate forecasts dif-
ficult. Generally, the hydrological time series were predicted
with models based on physical considerations or other nu-
merical theories, such as the LR (linear regressive) analysis
methods (Salas et al., 1980) based on the stochastic theory,
the grey models (Deng, 1992) based on the grey information
theory, the chaos models (Jayawardena and Lai, 1994; Islam
and Sivakumar, 2002) based on the local similarity of signals,
the fuzzy prediction models (Jang, 1993; Jang et al., 1997;
Chen, 2005) based on the fuzzy theory, the TAR (thresh-
old auto-regression), BL (bilinear time series), and SVM
(support vector machine) models (Tong, 1990; Liong and
Sivapragasm, 2002; Zou et al., 2010) based on the nonlin-
ear time-series analysis, the ANN (artificial neural network)
models (Raman and Sunlikumar, 1995; Yu et al., 2008; Yang
et al., 2009) based on the black-box theory, and the NNB
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(nearest neighbour bootstrapping) regressive models (Wang
et al., 2001) based on the nonparametric prediction theory.
However, these models were generally not successful enough
in producing accurate predictions due to some inaccurate ini-
tial conditions, parameterisation schemes of sub-scale phe-
nomena, and limited spatial resolution (Olson et al., 1995).

Many hybrid models have been proposed as predictors
to improve the accuracy of hydrological time-series fore-
casts, such as the wavelet artificial neural network (ANN)
model (Anctil and Tape, 2004; Krishna et al., 2011; Nayak et
al., 2013), the periodic ANN (PANN) model (Wang et al.,
2006), the chaotic ANN model (Karunasinghe and Liong,
2006), the hybrid fuzzy-ANN model (Nayak et al., 2007), the
wavelet-based grey model (Chou, 2007), the wavelet-based
NF (neuro-fuzzy) model (Partal and Kisi, 2007; Engin et
al., 2007; El-Shafie et al., 2007), the non-supervised ANN-
EA (evolutionary algorithms) model (Cao and Park, 2007;
Chang et al., 2007), the fuzzy-SVM model (Hua et al., 2008),
the wavelet-based multi-layer perceptron model (Kisi, 2008),
the wavelet-regression (WR) model (Kisi, 2011), and the
wavelet-based fuzzy logic model (Ozger et al., 2012). These
hybrid models have shown different advantages for accurate
predictions due to their capabilities of utilising present in-
formation effectively. Among these hybrid models, the neu-
ral network (NN) models, such as the NF (neuro-fuzzy) and
ANN, are the most popularly utilised sub-models for signal
forecast due to their capabilities of effectively learning com-
plex and nonlinear relationships (Maier et al., 2010). The
ANN model has been commonly used in hydrological sig-
nal forecasts by a number of researchers (French et al., 1992;
Jain et al., 1999; ASCE, 2000; Cigizoglu, 2005; Marzano et
al., 2006; Zou et al., 2010). The NF model has been intro-
duced and successfully used in the hydrological sciences in
recent years (Nayak et al., 2004, 2005; Kisi, 2005; Chang and
Chang, 2006). In addition, the wavelet transform, as a strong
mathematical tool in providing the good local representation
of a signal in both the time and frequency domains, has be-
come a useful method for analysing variations, periodicities,
and trends in time series (Daubechies, 1994; Torrence and
Compo, 1998; Coulibaly and Burn, 2004; Partal and Kucuk,
2006). Among the various types of wavelet transforms, the
discrete wavelet transform (DWT) is popularly used as the
data preprocessing method in a hybrid model to decompose
the original signal inputs due to its capabilities of effectively
classifying a hydro-meteorological time series into distinct
time and frequency domains (Smith et al., 1998; Kim and
Valdes, 2003; Labat, 2005).

Because of the common Markovian property (Bolch et
al., 2006) embedded in the hydro-meteorological time series,
most recent pure and hybrid models use data series at dif-
ferent previous time points as model inputs to forecast the
original data series at the current time point. For daily time
series, the data series from 1 day prior to a few days prior are
usually used as model inputs, namely using data seriesSt−1,
St−2, . . . as inputs, to forecastSt . The data series at 1 day

prior is always selected as one of the inputs because of the
usually high lag-1 autocorrelation (Kisi, 2008, 2011; Zhou
et al., 2008). This selection principle denotes a type of com-
monly used single-step-ahead (SSA) prediction (Parlos et al.,
2000), in which each single forecasting step of the Marko-
vian property-based model can only predict the next 1-day
datum (Fig. 1a). However, the SSA prediction may not pro-
vide enough information, especially in the situation in which
it is desirable to understand the behaviour of multiple steps in
the future, such as signal processing and time-series predic-
tion. Given this issue, the serial-propagated multi-step-ahead
(MSA) prediction (Fig. 1b), which attempts to make predic-
tions several time steps into the future without the availability
of output measurements, has attracted an increasing number
of scientific studies (Su et al., 1992; Schenker and Agarwal,
1995; Coulibaly et al., 2000; Gao et al., 2002; Chang et al.,
2007; Yong et al., 2010; Chang et al., 2012). However, the
MSA predictors, especially the long-range MSA predictors,
are difficult to develop, because the lack of measurements
in the prediction horizon necessitates the recursive use of
SSA predictors to reach the end point on the horizon. Even
small SSA prediction errors at the beginning of the horizon
accumulate and propagate, often resulting in a poor predic-
tion accuracy. Over the last 20 yr, the MSA predictor design
to increase the MSA prediction accuracy has received much
attention, and different types of neural networks have been
used successfully for some short-range MSA predictions (Su
et al., 1992; Parlos et al., 2000; Chang et al., 2007).

As mentioned above, the crucial and most difficult point
in a “true” long-term forecast of hydrological signal (Yu
et al., 2013) is the development of effective models to re-
duce the error accumulation and increase the accuracy of
the long-range serial-propagated MSA prediction. In view of
this, the present study designed a novel hybrid model CDW-
NN, combining continuous and discrete wavelet transforms
and neural networks, as the MSA predictor for effective long-
term forecast of hydrological signals by broadening the pre-
diction range in each forecast step and reducing the total it-
eration steps in the long-term forecasting process. In the re-
mainder of this paper, the long-term forecast methodologies
of the MSA predictor CDW-NN are presented. In the next
section, the details of daily river stage data series in differ-
ent hydro-stations in Yangtze River estuary, China, are pre-
sented, and the CDW-NN hybrid models are applied to the
long-term forecasts of different river stage signals. The re-
sults are discussed by comparing with the performances of
other pure and hybrid models in the subsequent section, and
finally conclusions are drawn.
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Fig. 1. Architectures of the conventional single-step-ahead (SSA) forecast(a) and the SSA-based long-range serial-propagated multi-step-
ahead (MSA) forecast(b) (1000 dpi, 88 mm× 21 mm).

2 Methodologies

2.1 Continuous wavelet transform (CWT) and
discrete wavelet transform (DWT)

Wavelet transform is a mathematical tool that allows the de-
composition of the signalf (t) in terms of elementary con-
tributions called wavelets (Sadowskey, 1996; Labat et al.,
2005). For the time seriesf (t) ∈ L2(R) or finite energy sig-
nal, the CWT of the signalf (t) with the analysing waveletφ
is the convolution off (t) with a set of dilated and translated
wavelets:

Wf (a, b) = 〈f (t), ϕa,b(t)〉 =

√
δt

a

∫
R

f (t)

ϕ

(
t − b

a

)
dt, a, b ∈ R, a > 0, (1)

whereφ(t) is the complex conjugate function ofφ(t), a the
dilation (scale or frequency) parameter,b the translation (po-
sition or time) parameter,R the domain of real numbers,
andδt the time interval of the data series. In this paper, the
time interval of the data series equals 1.0 day, and the pop-
ularly used Morlet wavelet is selected asφ (Mallat, 1989;
Daubechies, 1994; Torrence and Compo, 1998). The Morlet
wavelet, which is a complex wavelet consisting of a plane
wave modulated by a Gaussian function, is defined by

φ(t) = π−1/4eiω0t e
(
−t2/2

)
, (2)

whereω0 is the non-dimensional frequency (usually taken to
be 6 to satisfy the admissibility condition) (Farge, 1992).

The global wavelet power spectrum is defined as the power
density at different timescalea, which is calculated by

Ea =
1

N

N∑
b=1

∣∣Wf (a, b)
∣∣2 , (3)

whereN is the length of the data. The signal’s periodicity
can be indicated at the timescale at which the wave crest
of wavelet power spectrum is observed. The significance of
the global wavelet power spectrum is tested using a white
or red noise model by comparing with the theoretical global

wavelet power spectrum (P ). P is given as (Torrence and
Compo, 1998)

P = σ 2Pa

x2
v (p)

v
, (4)

whereσ 2 is the variance of data series,x2
v (p) the inverse of

chi-squared cumulative distribution withv degrees of free-
dom at the requested confidence level 1− p, andp the distri-
bution fraction. For the lag-1 autocorrelation,r(1) < 0.1Pa

is the white noise spectrum, and forr(1)> 0.1, Pa is the
red noise spectrum. For the Morlet wavelet,Pa is given as
Eq. (5), andv is given as Eq. (6). In this study, a significance
level of 0.005 was selected (e.g.χ2

2 (99.5 %) = 10.597).

Pa =
1 − r(1)2

1 + r(1)2 − 2r(1) cos
(

2π δt
1.033a

) (5)

v = 2

√
1 +

(
N δt

2.32a

)2

(6)

The continuous wavelet (Eq. 1) is often discrete in real appli-
cations. Whena =a

j

0, b = k b0a
j

0, a0 > 1,b0 ∈ R, andk andj

are integer numbers, the DWT off (t) can be written as

Wf (j, k) =
1√
a

j

0

∫
R

f (t)φ
(
a

−j

0 t − k b0

)
dt. (7)

Based on the commonly used Mallat algorithm for calculat-
ing discrete wavelet coefficients, the most common and sim-
plest choice for the parametersa0 and b0 is 2 and 1 time
steps, respectively, and the Daubechies wavelet, which has no
explicit mathematical expressions and can be calculated only
numerically, is commonly used in the DWT (Mallat, 1989;
Daubechies, 1994; Partal and Kucuk, 2006; Kisi, 2011). For
a discrete time seriesf (t) occurring at different timest
(e.g. integer time steps are used herein), the DWT can be
defined as

Wf (j, k) =
1

√
2j

N−1∑
t=0

f (t)φ
(
2−j t − k

)
, (8)

whereN is the number of discrete time steps, andWf (j, k) is
the wavelet coefficient for the discrete wavelet of scalea = 2j

and timeb = 2j k.
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Fig. 2.Schematic diagram of a typical five-layer ANFIS structure (1000 dpi, 86 mm× 32 mm).

2.2 Neuro-fuzzy (NF) and BP-ANN

The popular neural network (NN) model neuro-fuzzy, based
on a adaptive neuro-fuzzy inference system (ANFIS) (Jang et
al., 1997; Partal and Kisi, 2007), is utilised as the sub-model
for the different hydro-meteorological signals forecasts in
this paper. The ANFIS, first introduced by Jang (1993), is
a universal approximator and, as such, is capable of approxi-
mating any real continuous function on a compact set to any
degree of accuracy. The ANFIS is functionally equivalent to
the Sugeno first-order fuzzy model (Jang et al., 1997; Drake,
2000), and its typical architecture with five learning layers is
shown in Fig. 2. The crucial point in determining the opti-
mal NF model structure is the selection of transfer function
and rule numbers in Layer 1 of ANFIS architecture (Engin
et al., 2007). Gauss and Bell functions are two commonly
used functions, and the least two rule numbers of each node
in Layer 1 are necessary (Jang et al., 1997). Since there is no
theory yet about the suitable selection for any case, the op-
timal NF model structure is usually determined by many tri-
als (i.e. trying different transfer functions and different rule
numbers). Because more rule numbers may increase more
complexity and calculation difficulty of the ANFIS, the rule
numbers from 2 to 5 with a step size of 1 in each trial are
used in testing the optimal NF model structure in the pre-
sented case study. The significant advantage of the NF model
depends on the hybrid learning algorithm in ANFIS, which
combines gradient descent, back-propagation, and the least-
squares method and can rapidly train and adapt the ANFIS.
Each learning epoch of the ANFIS is composed of a forward
pass and a backward pass, and more information for neuro-
fuzzy and ANFIS can be found in Jang’s papers (Jang, 1993;
Jang et al., 1997).

Another popular NN model, BP-ANN (back-propagation
artificial neural networks), is utilised in our case to com-
pare the forecast performance with the NF model. Based
on the back-propagation algorithm, a common three-layer
feed-forward type of BP-ANN is considered; the Levenberg–
Marquardt methodology, which is more powerful than con-
ventional gradient descent techniques (Hagan and Menhaj,

1994; Kisi, 2011), is used to adjust the weights of the ANN
model, and the tangent sigmoid and linear activation func-
tions are used for the hidden and output node(s), respec-
tively. Same as the NF model structure determination, since
there is no theory yet to determine how many hidden layer
nodes in the BP-ANN are needed to approximate any given
function, the hidden layer node number in BP-ANN is com-
monly determined by the trial-and-error approach (Nayak et
al., 2013). Since each type of ANN model in the presented
case study has two input layer nodes, the trial and error pro-
cedure starts with one hidden layer node initially, and the
hidden layer node numbers are increased up to 10 with a step
size of 1 in each trial. By many trials, the optimal BP-ANN
structure is determined by selecting the hidden layer node
number with the best model training efficiency and simulat-
ing performance.

2.3 Architecture of the long-term forecasting based on
the MSA predictor CDW-NN

In order to reduce the error accumulation and increase the
accuracy of the long-range serial-propagated MSA predic-
tion, the present study designs a novel hybrid model CDW-
NN, combining CWT, DWT, and NN, as the MSA pre-
dictor for effective long-term forecast of hydrological sig-
nals. The architecture of CDW-NN hybrid model is shown
in Fig. 3. Firstly, for the original given daily data series
x(1) ∼ x(t), the CWT method is utilised to reveal its short-
term periodicities, i.e. the periods ata1∼ ai days in Fig. 3
(a1< a2< . . . a i). Meanwhile, the decomposition of the
original signal DWT is carried out to get new data series
TD(1)∼ TD(t), which is constructed by selecting and com-
bining optimal DWT decomposition components. Then, by
combining the CWT and DWT results, the new TD series at
a1∼ a i days ahead (TD(t − a1)∼ TD(t − a i)) are selected
as the NN model inputs for model training to forecast the
datumx(t). According to the serial-propagated prediction
principle, using TD(t − a1+1)∼ TD(t − a i + 1) as model
inputs can predict the first future day datumy(t + 1), and us-
ing TD(t) ∼ TD(t − a i + a1) as inputs can predicty(t + a1).

Hydrol. Earth Syst. Sci., 17, 4981–4993, 2013 www.hydrol-earth-syst-sci.net/17/4981/2013/
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Fig. 3.Architecture of the novel CDW-NN hybrid model (1000 dpi, 132 mm× 71 mm).

Fig. 4.Location map of the hydrological stations (1000 dpi, 148 mm× 54 mm).

Here, the first batch of outputsy(t + 1)∼ y(t + a1) are pre-
dicted from the first forecasting step, and then can be used
as new observations for the second step DWT decompos-
ing and NN forecasting to predict the second batch of out-
putsy(t + a1+ 1)∼ y(t + 2a1). Just as the 1-day prediction
from each SSA forecast involved in conventional MSA fore-
cast, the day number of predictions in the output of each
CDW-NN forecasting step isa1. So, after aboutn/a1 steps
of forecasting process, the final long-term prediction series
y(t + 1)∼ y(t + n) can be obtained.

3 Application

3.1 Studied area and data

The high-tide level data at two time points each day dur-
ing 13 yr (4748 days) covering 1998–2010, supported by
the Water Resources Department of Jiangsu Province, were

observed and collected from estuarine Santiao Port hydro-
logic station (31.721◦ N, 121.698◦ E) and Qinglong Port
hydrologic station (31.862◦ N, 121.239◦ E), located about
19.0 and 70.0 km, respectively, upstream from Chinese
Yangtze River entrance into the East China Sea (Fig. 4). The
daily river stage data series at each station are obtained based
on the average value of high-tide levels at two time points
each day. The first 10 yr of river stage data (3652 days) are
used for training and establishing hybrid models (i.e.t = 3652
in Fig. 3). The remaining 3 yr of river stage data (1096 days)
are used for testing the long-term forecasting performance of
hybrid models (i.e.n = 1096 in Fig. 3).

3.2 Short-term periodic features of estuarine daily river
stage series by CWT

The Morlet wavelet transform coefficients of the training
data series at relatively fine timescales (from 1-day to 50-day

www.hydrol-earth-syst-sci.net/17/4981/2013/ Hydrol. Earth Syst. Sci., 17, 4981–4993, 2013
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Fig. 5.Real parts of the Morlet wavelet transform coefficients at Santiao station(a) and Qinglong station(c), and their global wavelet power
spectrums and corresponding confidence tests using white noise models(b, d), based on the 3652-day river stage data during 1998–2007
(1000 dpi, 139 mm× 111 mm).

scales) are calculated by MATLAB language. The real parts
of Morlet wavelet transform coefficients at Santiao sta-
tion (Fig. 5a) and Qinglong station (Fig. 5c) clearly indi-
cate the distribution conditions of the river stage signals
at different timescales. The solid isograms indicate posi-
tive wavelet coefficients and a relatively high river stage pe-
riod, and the dashed isograms indicate negative coefficients
and a relatively low period. Further calculating the global
wavelet power spectrums and the corresponding theoretical
power spectrums using white noise model, the significance
of wavelet power densities of daily river stage series at differ-
ent timescales at Santiao and Qinglong stations is calculated
and shown in Fig. 5b and d.

Results show that the Morlet wavelet transform coeffi-
cients of daily river stage series at Santiao station gener-
ate obvious two kinds of quasi-periodic oscillations (QPOs),

namely at 12-day and 23-day timescales, and both of their
global wavelet power spectrums are prominent at the 99.5 %
confidence level. The QPO of estuarine daily river stage at a
fine timescale is often nested in a broad timescale. At the
12-day timescale, the average changing periodicity (T ) of
river stage time series (i.e. the average cycle days between
each two time domains with positive wavelet coefficients) is
15 days obtained by calculating and averaging the day num-
bers of each two neighbouring high and low river stage peri-
ods. At the 23-day scale, the averageT is 28 days. At Qin-
glong station, the Morlet wavelet transform coefficients of
daily river stage series generate obvious two QPOs at 12-
day and 22-day timescales, of which the correspondingT s
are 15 days and 28 days, the same as that at Santiao station,
and both of their global wavelet power spectrums are promi-
nent at the 99.5 % confidence level. Based on the prominent

Hydrol. Earth Syst. Sci., 17, 4981–4993, 2013 www.hydrol-earth-syst-sci.net/17/4981/2013/
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Table 1. Squared correlation coefficients (R2) between each discrete wavelet component series at 15 days and 28 days prior (t − 15 and
t − 28) and original river stage data series on the current day (St ).

Discrete wavelet R2 with St at Santiao station R2 with St at Qinglong station

components in 10 Single-factor Single-factor Double-factor Single-factor Single-factor Double-factor
resolution levels analysis att − 15 analysis att − 28 analysis analysis att − 15 analysis att − 28 analysis

at t − 15 andt − 28 att − 15 andt − 28

A10 0.005 0.005 0.005 0.012 0.012 0.012
D1 0.000 0.000 0.000 0.000 0.000 0.000
D2 0.003 0.002 0.006 0.000 0.000 0.001
D3 0.430 0.309 0.501 0.399 0.299 0.468
D4 0.067 0.144 0.228 0.052 0.147 0.221
D5 0.009 0.000 0.009 0.008 0.000 0.009
D6 0.003 0.000 0.007 0.003 0.000 0.006
D7 0.016 0.008 0.019 0.016 0.008 0.019
D8 0.102 0.085 0.111 0.135 0.112 0.146
D9 0.006 0.005 0.007 0.008 0.006 0.013
D10 0.007 0.006 0.007 0.000 0.000 0.001
S =A10+

∑
Di 0.549 0.510 0.672 0.555 0.558 0.674

T D =D3 + D4 + D8 0.576 0.539 0.681 0.557 0.564 0.699

short-term periodic features of estuarine daily river stage
time series, estuarine daily river stages at 15 days prior and
28 days prior are determined to simulate and forecast the
river stage at the current day (i.e.a1 anda2 in Fig. 3 equal 15
and 28, respectively).

3.3 Decomposition of daily river stage time series and
optimal DWT components combination

The decomposition process of DWT consists of a number
of filtering steps following the Mallat algorithm. The origi-
nal signal of training data series is first decomposed into an
approximation (A1) and details (D1), and theA1 is then bro-
ken down into many lower resolution components (Ai and
Di). The details are the low-scale high-frequency compo-
nents of the signal, while the approximations are the high-
scale low-frequency components. The higher scales consist
of the extended version of a wavelet, and the correspond-
ing coefficients refer to the slowly changing coarse features
of low-frequency components. The lower scales present the
condensed wavelet and follow the rapidly changing details
(high-frequency components) of the signal (Mallat, 1989).
In our case, 10 decomposition components (A10, D1–D10) of
the original daily river stage signals (1998–2007) in 10 reso-
lution levels are calculated by MATLAB language, and then
are used to analyse the optimum input factors in the hybrid
models.

The squared correlation coefficients (R2) between each
discrete wavelet component (A10, D1–D10) at 15 days and
28 days prior (t − 15 andt − 28) and the original time series
at timet (St ) are computed and presented in Table 1. By the
single-factor and double-factor analysis, at both Santiao and
Qinglong stations, theD3, D4 andD8 components at 15 days
and 28 days prior show the prominently higherR2 with St

than the other DWT components, especially significant in

the double-factor analysis. Instead of using each DWT com-
ponent individually as the model input, employment of the
added suitable DWT components is more useful and can
highly increase the forecast performance. Based on the re-
vealed dominant DWT components of different hydrological
series, the new series (TD) obtained by addingD3, D4 and
D8 at 15 days and 28 days prior are selected as two NN model
inputs for the daily river stage forecast at both Santiao and
Qinglong stations. Comparing the lagged TD series with the
lagged original series (S), the lagged new series (TD) show
slightly higher correlations at both 15-day and 28-day delay
time nodes withSt , which indicate that the new TD series
keeps the main information of the original signal dynamics
in spite of the filtering of many other weakly correlated in-
formation by DWT.

3.4 CDW-NN model training and long-term forecasting
of daily river stage signals

According to the above CWT and DWT results, two new
daily series TD(1)∼ TD(t − 28) and TD(14)∼ TD(t − 15)
extracted from the training data series are used as the NN
model inputs to simulate and forecast the original series
x(29)∼ x(t). Program codes were written in MATLAB lan-
guage for training the neuro-fuzzy and BP-ANN submodels
and determining their optimal model structures. At Santiao
station, by many trials the optimal CDW-NF hybrid model
structure is determined as CDW-NF (5-Bell), which denotes
the Bell-type transfer function and five rules for each in-
put in the layer one of ANFIS, and the optimal CDW-ANN
hybrid model structure is determined as CDW-ANN(2-3-
1), which denotes two input layer nodes, three hidden layer
nodes and one output layer node in the BP-ANN submodel.
At Qinglong station the optimal CDW-NF(4-Gauss) model
and the optimal CDW-ANN(2-4-1) model are obtained. After

www.hydrol-earth-syst-sci.net/17/4981/2013/ Hydrol. Earth Syst. Sci., 17, 4981–4993, 2013
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Fig. 6. Observed and predicted values of the daily river stages from 2008 to 2010 using the CDW-ANN hybrid model and CDW-NF hybrid
model at Santiao station(a, b) and Qinglong station(c, d) (1000 dpi, 136 mm× 105 mm).

the training processes of NN submodels, two TD series
TD(t − 27)∼ TD(t − 13) and TD(t − 14)∼ TD(t) are used
as model inputs to forecast the future 15-day river stage
seriesy(t + 1)∼ y(t + 15) (i.e. the first forecasting step in
Fig. 3). Then the predicted 15-day river stage series are
treated by DWT and used as the new inputs to forecast the
next 15-day river stage in the next forecasting step. Be-
cause each single forecasting step using CDW-NN model
obtains 15-day predictions, the total 1096-day future river
stage values from 2008 to 2010 are predicted after 74 steps
of forecasting.

The root mean square errors (RMSEs), mean absolute er-
rors (MAEs) and correlation coefficient (R) statistics are
used to evaluate the model performance of simulation and
prediction. The RMSE and MAE are defined as

RMSE =

√√√√1

n

n∑
i=1

(Y iobserved− Y iestimate)
2, (9)

MAE =
1

n

n∑
i=1

|Y iobserved− Y iestimate| , (10)

wheren is the number of data sets, andY i is the daily river
stage.

The forecast performances of CDW-NF and CDW-ANN
models at Santiao and Qinglong stations are shown in Fig. 6.
Results show that the CDW-NF models perform the signif-
icantly better correlations between the observed and pre-
dicted river stage data during 2008–2010 with the higher
R2 of 0.284 and 0.173 at Santiao and Qinglong stations, re-
spectively, while the CDW-ANN with the lowerR2 of 0.020
and 0.030 at Santiao and Qinglong stations, respectively.
The CDW-ANN hybrid model shows better forecast perfor-
mances during the first year than that in the last two years.
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Table 2.Comparison among the performances of 12 types of river stage forecasting models in respect to root mean square errors (RMSEs),
mean absolute errors (MAEs) andR square (R2) in the training and test periods.

Model Santiao station Qinglong station

Training period Test period Training period Test period

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

CDW-NF 0.314 0.250 0.702 0.476 0.381 0.284 0.310 0.245 0.698 0.457 0.372 0.173
CDW-ANN 0.318 0.254 0.696 0.774 0.635 0.020 0.313 0.247 0.692 0.527 0.430 0.030
CDW-LR 0.325 0.261 0.681 0.562 0.463 0.012 0.322 0.255 0.674 0.499 0.410 0.014
CW-NF 0.316 0.250 0.697 0.623 0.494 0.033 0.302 0.283 0.713 0.570 0.459 0.009
CW-ANN 0.322 0.255 0.687 0.702 0.568 0.000 0.309 0.244 0.701 0.505 0.409 0.002
CW-LR 0.329 0.262 0.672 0.565 0.463 0.005 0.309 0.244 0.699 0.487 0.397 0.011
DW-NF 0.211 0.166 0.865 0.574 0.475 0.039 0.211 0.169 0.860 0.471 0.384 0.081
DW-ANN 0.214 0.168 0.861 0.568 0.468 0.037 0.214 0.171 0.857 0.474 0.386 0.066
DW-LR 0.225 0.177 0.848 0.554 0.454 0.036 0.226 0.181 0.839 0.492 0.400 0.053
Neuro-fuzzy 0.263 0.198 0.791 0.558 0.454 0.009 0.227 0.168 0.838 0.499 0.404 0.012
BP-ANN 0.271 0.203 0.780 0.557 0.451 0.016 0.226 0.168 0.839 0.497 0.402 0.009
LR 0.284 0.216 0.757 0.559 0.456 0.013 0.242 0.180 0.815 0.498 0.403 0.012

4 Discussion

4.1 Forecast performance comparison among
CDW-NN models and the other 10 types of
hybrid and pure models

Similar to the establishing process of CDW-NN models, the
hybrid CDW-LR model is established by combining CWT,
DWT and a linear regression (LR) model. Using the train-
ing data series, the simulating equations of the CDW-LR
models at Santiao station and Qinglong station are obtained
and shown as Eqs. (11) and (12), respectively. Without the
DWT treatment, three other CWT-based (CW-) models are
established by using the original daily river stage series at
15 days and 28 days prior (St−15 andSt−28) as model in-
puts to simulateSt . By the model training processes, the op-
timal CW-NF structures for Santiao and Qinglong stations
are determined as CW-NF(5-Bell) and CW-NF(2-Gauss), re-
spectively; the optimal CW-ANN structures for Santiao and
Qinglong stations are CW-ANN(2-3-1) and CW-ANN(2-1-
1), respectively; and the CW-LR models for Santiao and Qin-
glong stations are shown as Eqs. (13) and (14), respectively.

St = 0.454TDt−28 + 0.533TDt−15 + 3.966 (11)

St = 0.496TDt−28 + 0.487TDt−15 + 4.004 (12)

St = 0.428St−28 + 0.493St−15 + 0.315 (13)

St = 0.473St−28 + 0.460St−15 + 0.266 (14)

As mentioned in Fig. 1, many conventional studies on MSA
predictor design focused on the methodology of recursive
use of SSA predictors (i.e. generally usingSt−1 and St−2
as model inputs to forecastSt ). In view of this, six types
of conventional SSA-based long-term forecast hybrid and
pure models are established for comparing with the CWT-
based hybrid models. Among the six types of models, the

DW-R, DW-ANN and DW-NF hybrid models utilise the op-
timum decomposition components combinations (TDt−1 and
TDt−2), determined by DWT, as model inputs to forecast
St . With respect to the pure LR, BP-ANN and neuro-fuzzy
models, the original daily river stage series at 1 day prior
and 2 days prior (St−1 andSt−2) are used as model inputs
to forecastSt . By the model training processes, the opti-
mal DW-NF structures for Santiao and Qinglong stations
are determined as DW-NF(5-Gauss) and DW-NF(5-Bell), re-
spectively; the optimal DW-ANN structures for Santiao and
Qinglong stations are DW-ANN(2-5-1) and DW-ANN(2-7-
1), respectively; the optimal pure NF model structures for
Santiao and Qinglong stations are determined as NF(5-Bell)
and NF(2-Gauss), respectively; and the optimal pure BP-
ANN model structures for Santiao and Qinglong stations
are BP-ANN(2-3-1) and BP-ANN(2-5-1), respectively. The
DW-LR models for Santiao and Qinglong stations are ob-
tained and shown as Eqs. (15) and (16), respectively, and the
pure LR models for Santiao and Qinglong stations are shown
as Eqs. (17) and (18), respectively.

St = −0.973TDt−2 + 1.818TDt−1 + 3.966 (15)

St = −0.971TDt−2 + 1.826TDt−1 + 4.005 (16)

St = −0.316St−2 + 1.124St−1 + 0.761 (17)

St = −0.397St−2 + 1.234St−1 + 0.649 (18)

As shown in Table 2, the training and forecasting perfor-
mances of 12 types of hybrid and pure models are compared
with each other in respect to the RMSE, MAE andR2 statis-
tics. Due to the high lag-1 and lag-2 autocorrelations in the
hydrological time series, in the training periods the six types
of conventional SSA-based long-term forecast models per-
form better than the six types of CWT-based models with
the higherR2 and smaller RMSE and MAE. Nevertheless, in
the test periods, without the observation data as model inputs
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Fig. 7. Forecast performances in respect to the correlation coefficients (R) of 12 types of hybrid models during the 1096-day river stages
forecasting at Santiao station(a) and Qinglong station(b) (1000 dpi, 132 mm× 46 mm).

in each forecasting step, the CDW-NF hybrid model shows
the most significant performances among all the 12 models,
especially at Santiao station. In addition, due to the promi-
nent ability of the decomposition approach DWT in filtering
weakly correlated details from original signal, each DWT-
based hybrid model performs better than the corresponding
model without DWT both in the training and test periods.

4.2 Driving mechanism of the advantages of CDW-NN
models in long-range MSA predictions

Prediction performance details in respect toR for the
12 types of hybrid and pure models at different forecast-
ing steps during the overall 1096-day river stage forecasting
are calculated and shown in Fig. 7. According to the serial-
propagated MSA prediction theory, the error accumulation
increases with the iteration step increase in a long-term fore-
cast. Therefore, the prediction performances of all 12 types
of models have overall decreasing trends with the increas-
ing of predicted data length from 1 day to 1096 days. Never-
theless, during approximately the first 200–600 days of river
stage forecasting, all six types of CWT-based models per-
formed better than the other six types of SSA-based mod-
els. In particular, both at Santiao and Qinglong stations the
CDW-NF models show the significantly better performances
than the other models during the overall 3 yr (1096 days)
river stage forecasting steps. The main explanations are that
the CWT-based models reduce the overall forecasting itera-
tion steps to 74 steps by using the 15-day prior data series
as the first model input, while the conventional SSA-based
models needs 1096 steps by using 1-day prior data series as
the first model input. The prominent decrease of forecasting
steps consequently brings significant reduction of error ac-
cumulation in the long-range MSA prediction. In addition,
the combination of the advantages of the DWT method and
neuro-fuzzy system also benefits weakening the noisy dy-
namics of the model inputs and enhancing the simulation and
forecast ability for the complex hydro-system.

In view of the above discussion, the CDW-NF hybrid
model is proven to be the most effective MSA predictor for
the long-term forecasts of estuarine daily river stage signals.
In addition, the CDW-ANN hybrid model can be taken as
the second selection for the short-term and mid-term fore-
casts of estuarine daily river stage signals because of its
high performance during the first year forecast process. It
should be noted that the methodology of accurate MSA pre-
dictor design by reducing iteration steps and error accumu-
lation is innovated in this study by revealing the short-time
periodic features of estuarine river stage dynamics, which
is mainly caused by the half-month periodicity involved in
the astronomical tidal fluctuation in river estuary. With re-
spect to other kinds of hydro-meteorological signals, which
have non-significant short-term periodic features, other types
of algorithms and models for reducing error accumulation
in long-term forecasting steps need to be further studied in
future research. In addition, although the novel CDW-NF
hybrid model succeeds in prominently increasing the long-
range MSA prediction accuracy inR2, RMSE and MAE, the
overall relatively poor performances of most of models in
the “true” long-term forecast lead to the difficulties in the
accurate peak value estimation. Thus, the improvement of
modelling capabilities in hydro-signal’s peak value estima-
tion and physical process revealed by developing more ad-
vanced algorithms still needs further research.

5 Conclusions

Studies on the long-term forecast of hydrological signals
have high practical value. However, the accurate long-range
MSA predictor design is very difficult, especially in conven-
tional SSA-based MSA predictions because of the huge error
accumulation in the serial-propagated long-term forecast. In
this study, we design a novel hybrid model CDW-NN, com-
bining continuous and discrete wavelet transforms and neural
networks, as the MSA predictor for effective long-term fore-
casts of hydrological signals. By the application of CDW-NN
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hybrid models and the other 10 types of hybrid and pure
models in estuarine daily river stage series long-term fore-
casts, the 1096-day estuarine river stage data are forecasted,
and the superiorities of CDW-NN models with correspond-
ing driving mechanisms are proven as follows.

1. Comparing the conventional SSA-based models, the
CWT-based hybrid models broaden the prediction
range in each forecast step from conventional 1 day
to now 15 days and reduce the overall forecasting it-
eration steps from conventional 1096 steps to now
74 steps by using the 15-day and 28-day prior data se-
ries as model inputs, which is determined by revealing
the hydro-signal’s significant short-time periodicities
using CWT. The prominent reduction of forecast steps
has created significant decrease of error accumulations
and increase of long-term forecast performances in the
CWT-based hybrid models.

2. Among the CWT-based models, one type of CDW-
NN model, CDW-NF, has been proven to be the most
effective MSA predictor for the prominent accuracy
enhancement during the overall 1096-day long-term
forecasts of estuarine hydro-signals. The other type of
CDW-NN model, CDW-ANN, has been proven to be
the second selection for short-term and mid-term fore-
casts of estuarine hydro-signals. The main explanation
is the combination of the advantages of the CWT and
DWT methods and neuro-fuzzy system in reducing the
error accumulation, filtering weakly correlated details
from original signal and weakening the noisy dynam-
ics of the model inputs, and enhancing the simulation
and forecast ability for the complex hydro-system.

3. It should be noted that because the successful appli-
cation of the novel CDW-NF model in hydro-signals
long-term forecasts largely depends on the significant
short-term periodicities involved in estuarine hydro-
signals, some other innovative algorithms and mod-
els still need to be further studied in future research
for other kinds of hydro-meteorological signals with-
out significant short-term periodic features.
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