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Abstract. The process whereby the spatially distributed
runoff (generated through saturation/infiltration excesses,
subsurface flow, etc.) travels over the hillslope and river net-
work and becomes streamflow is generally referred to as
“routing”. In short, routing is a runoff-to-streamflow process,
and the streamflow in rivers is the response to runoff inte-
grated in both time and space. Here we develop a method-
ology to invert the routing process, i.e., to derive the spa-
tially distributed runoff from streamflow (e.g., measured at
gauge stations) by inverting an arbitrary linear routing model
using fixed interval smoothing. We refer to this streamflow-
to-runoff process as “inverse routing”. Inversion experiments
are performed using both synthetically generated and real
streamflow measurements over the Ohio River basin. Re-
sults show that inverse routing can effectively reproduce the
spatial field of runoff and its temporal dynamics from suf-
ficiently dense gauge measurements, and the inversion per-
formance can also be strongly affected by low gauge density
and poor data quality.

The runoff field is the only component in the terrestrial
water budget that cannot be directly measured, and all pre-
vious studies used streamflow measurements in its place.
Consequently, such studies are limited to scales where the
spatial and temporal difference between the two can be ig-
nored. Inverse routing provides a more sophisticated tool
than traditional methods to bridge this gap and infer fine-
scale (in both time and space) details of runoff from aggre-
gated measurements. Improved handling of this final gap in
terrestrial water budget analysis may potentially help us to
use space-borne altimetry-based surface water measurements
for cross-validating, cross-correcting, and assimilation with
other space-borne water cycle observations.

1 Introduction

Runoff is a very important component in the terrestrial
water budget (precipitation, evapotranspiration, runoff, and
soil/snow water storage) in terms of both its magnitude and
temporal variability (Hagemann and Dumenil, 1998; Pan et
al., 2012). And runoff is also the only component in the ter-
restrial water budget that cannot be measured directly at the
time and location it occurs. When precipitation is measured
by rain gauges, radars, or satellite sensors, the measured
value is validated at the same time and location it rains or
snows, and so is evapotranspiration by towers/satellites and
soil moisture by probes/microwave sensors. But so far there
seems to be no way of measuring the spatial field of runoff
as it occurs. Therefore, previous studies used the stream-
flow measurements in place of runoff (Sahoo et al., 2011;
Sheffield et al., 2009). However, as streamflow can be mea-
sured at river gauges and will be measured at large scales by
space-borne altimetry sensors through Manning’s equation
(Alsdorf and Lettenmaier, 2003), for example, the planned
Surface Water and Ocean Topography (SWOT) mission (Als-
dorf et al., 2011), it is not fully equivalent to runoff. So all
such studies are limited to the situations/scales where the
temporal and spatial difference between the two can be ei-
ther ignored or somehow accounted for. For example, the
river travel time may be ignored at long-term timescales. Hy-
drologically, streamflow differs from runoff by one process
called “routing”.

The process by which the spatially distributed runoff gen-
erated through various mechanisms (e.g., saturation excess,
infiltration excess, and subsurface flow) travels over the hill-
slope and river network and becomes streamflow is referred
to as routing. During the routing process, the streamflow at
a particular location in the river channel is a collective result
of runoff from different locations and times. In other words,
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the streamflow is the response to the runoff field integrated in
both time and space. Routing essentially provides a runoff-
to-streamflow conversion, and it is a quite well studied pro-
cess in hydrology. Routing models have been developed to
parameterize this runoff-to-streamflow process and predict
the streamflow at desired gauging locations given rainfall or
runoff inputs (Brutsaert, 1994; Lohmann et al., 1998).

Now the question for our study is how to bridge the gap
between streamflow and runoff in both time and space, i.e. to
derive the spatial fields of runoff from streamflow measure-
ments at gauging points, such that our water budget analysis
or any related studies are no longer limited by the gap be-
tween the two. Obviously, this requires us to invert the rout-
ing process and invent a way to realize the streamflow-to-
runoff conversion. We refer to such a streamflow-to-runoff
process as “inverse routing”. Note that solving inverse prob-
lems is nothing new in hydrology. For example, inverse
problems are frequently studied in groundwater hydrology
for parameter estimation purposes (McLaughlin and Town-
ley, 1996). While the general methods for solving inverse
problems are no different from any other optimal estima-
tion problems like data assimilation (McLaughlin, 2002; Re-
ichle, 2008), different problems may require very differ-
ent methodological considerations. For example, parameter-
estimation-related inverse problems usually solve for static
(time-invariant) unknowns. Thus complicated and computa-
tionally intensive methods may be used to invert subtly be-
haved nonlinear models with non-Gaussian errors. The in-
verse routing problem needs to solve for dynamic fields of
runoff repeatedly in time, and thus it requires a higher com-
putational efficiency. Also, the streamflow values are always
correlated in time as a result of the time integration nature
of the routing process, and that implies the unknown runoff
fields across multiple time steps need to be solved together,
which dramatically increases the size of the estimation prob-
lem (number of simultaneous unknowns).

For these above reasons, we look for a linear routing model
to invert such that the most efficient methods for linear sys-
tems like Kalman filters/smoothers (Anderson and Moore,
1979; Kalman, 1960) can be applied. Also, inverse routing
is not the only way to estimate runoff – hydrological models
infer it from rainfall and other inputs, and the basin-specific
discharge has always been calculated from gauge measure-
ments and water balance relationship between gauge basins
and their contributing sub-basins (though the fine-scale vari-
ability below sub-basins is ignored). So the potential contri-
bution from inverse routing should also be evaluated in terms
of its “added value” to the traditional methods.

In Sect. 2, we will first introduce the routing model to use
and show how to invert it using a special type of data as-
similation technique called fixed interval smoothing. Then
in Sect. 3 an inverse routing experiment will be performed
using synthetically generated runoff/streamflow data where
the inversion errors and related performance issues can be
investigated against the synthetic truth. Later in Sect. 3 an

inverse routing experiment will be performed using real river
gauge measurements from the United States Geological Sur-
vey (USGS) to evaluate the inversion performance in real
world applications. And finally the various limitations of in-
verse routing will be studied in Sect. 4.

2 Methodology

2.1 A linear routing model

Here we choose the University of Washington (UW) routing
model (Lohmann et al., 1996, 1998), which is a relatively
simple linear routing model developed for coupling with land
surface models (LSMs), and it has been calibrated, imple-
mented and validated in many large-scale streamflow studies
(Mitchell et al., 2004; Nijssen et al., 1997). The inputs to the
UW routing model are runoff fields defined on a rectangular
computing grid – the format used by most LSMs. The UW
model routes the runoff water in two stages: first the runoff
water drains from within the grid pixel (over the hillslope) to
a conceptual “outlet” of the pixel following a known unit hy-
drograph function (UHF)u(t), and the pixel outflowo(t) is
the convolution between the UHFu(t) and pixel runoffr(t):

o(t) =

t∫
0

r(t − τ)u(τ)dτ . (1)

Then the water travels in channels between pixels following
the 1-D diffusive wave equation:

∂q

∂t
= D

∂2q

∂x2
− C

∂q

∂x
. (2)

Hereq = q(x, t) is the streamflow generated by the pixel out-
flow o(t) at distancex downstream from the pixel.C andD

are referred to as channel wave velocity and diffusivity pa-
rameters following our upstream literature (Lohmann et al.,
1996, 1998). Note that a more precise name forC is in fact
the wave celerity (Beven, 1979), which better distinguishes
it from the fluid velocity measured in river channels. The 1-
D diffusive wave equation is a standard advection–diffusion
equation for transport, and it is always linear as long as nei-
therC norD is a function ofq. In other words, the wave ve-
locity C and diffusivityD can change in both time (t) (e.g.,
from summer to winter) and space (x) (e.g., from flat areas
to mountains) as long as the values can be prescribed and
are independent ofq. Retention effects (e.g., lakes and reser-
voirs) are not considered. The equation is solved analytically
using the convolution between the impulse response function
(IRF) and pixel outflow:

q(x, t) =

t∫
0

o(t − τ)i(x,τ )dτ , (3)
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i(x, t) =
x

2t
√

πtD
exp

(
−

(Ct − x)2

4Dt

)
, (4)

where i(x, t) is called the IRF. Note that mathematically
UHF is identical to IRF in their functional roles, and the two
convolutions can be combined because the convolution oper-
ations here are associative. Define a combined IRFh(x, t) as
the convolution betweenu(t) andi(x, t):

h(x, t) =

t∫
0

u(t − τ)i(x,τ )dτ . (5)

The combined IRFh(x, t) is the “overall” hydrograph func-
tion in response to a unit runoff input from one pixel. And
the two-stage routing is solved at once usingh(x, t):

q(x, t) =

t∫
0

r(t − τ)h(x,τ )dτ . (6)

At a given gauge locationg, we calculate the streamflow
valueQ(g, t) by integrating (summing up) the contributions
from all upstream pixels (i.e., the entire sub-basin that drains
to g, noted as basin(g)):

Q(g, t) =

∑
basin(g)

q(x, t) =

∑
basin(g)

t∫
0

r(t − τ)h(x,τ )dτ . (7)

Equation (7) fully defines the integration of runoff field in
space and time into the streamflow at a gauge location. As
the routing model always runs in discretized time steps, the
integration Eq. (7) is implemented as summations:

Q(g, t) =

∑
basin(g)

q(x, t) =

∑
basin(g)

t∑
τ=0

r(t − τ)h(x,τ ). (8)

The UW routing model is fully contained in Eq. (8), and, in
short, the streamflow at a gauge point is nothing but the sum
of runoff from all contributing pixels in all possible lag times
weighted by the overall IRF. This routing model is linear and
simple, though the number of runoff inputs for streamflow
calculation is very large, making the inverse problem chal-
lenging.

2.2 Inversion through fixed interval smoothing

In dynamic system analysis and related estimation theories,
the prediction model is mostly written in a “state space”
form: the observations are written as a function of input states
in a vector/matrix form with some model error termε like
y = Hx + ε. Now we rewrite Eq. (8) in this form. Say we
havem gauge locations andn runoff computing pixels in the
study area, and we define the streamflow observation vector
yt and runoff state vectorxt as the collection of allm gauge

measurementsQ1,Q2, . . . ,Qm and runoff states in alln pix-
elsr1, r2, . . . , rn at timet :

yt =


Q1
Q2
...

Qm


t

andxt =


r1
r2
...

rn


t

. (9)

As a result of the time integration in Eq. (8), the calcula-
tion of yt requires not onlyxt but also runoff fields at pre-
vious time stepsxt−1,xt−2, . . . ,xt−k. Physically, all the lag
times within the longest travel time to the gauges should be
included (i.e., until the last bit of runoff from the farthest
pixel in the basin passes the most downstream gauge). Say
the maximum travel time isk+1 time steps, and the observa-
tion equation is

yt = H0xt + H1xt−1 + ·· ·+ Hkxt−k + εt . (10)

H0, H1, . . ., Hk are the measurement operator matrices for
different lag times and each has the sizem×n. The entries in
the operator reflect how much of the runoff from one specific
pixel contributes to one specific gauge at a specific lag time.
All of them are calculated from the combined IRFh(x, t)

according to the downstream travel distance and lag time.
Again, because of the time integration, direct inversion of

Eq. (10) is impossible and incomplete because streamflow at
future time steps also contains information about the runoff
at current time step, and the time series of streamflow are
highly correlated. This means the inverse estimation must be
done for multiple time steps at once, and observation and
state vectors need to be “augmented” to include multiple time
steps. Writing Eq. (10) for alls + 1 time steps in the time
interval[t − s, t], we have

yt = H0xt+ H1xt−1+ ·· ·+ Hkxt−k +εt

yt−1 = H0xt−1+ H1xt−2+ ·· ·+ Hkxt−k−1 +εt−1
...

. . .
. . .

. . .
...

yt−s = H0xt−s+ H1xt−s−1+ ·· ·+ Hkxt−s−k +εt−s

(11)

And define the time-augmented streamflow/runoff/error vec-
tors as

y′
t =


yt

yt−1
...

yt−s

 , x′
t =


xt

xt−1
...

xt−s

 , andε′
t =


εt

εt−1
...

εt−s

 , (12)

wherey′
t has the sizem(s + 1) andx′

t has the sizen(s + 1).
Then we can write the augmented observation equation as

y′
t = H′x′

t + L ′x′

t−k + ε′
t . (13)
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In the above, the augmented observation operator matrixH′

is

H′
=



H0 · · · Hk

. . .
. . .

H0 · · · Hk

. . .
...

H0

 . (14)

H′ is mostly empty except the upper diagonal belt is filled
with H0,H1, . . . ,Hk, and it has the sizem(s +1)×n(s +1).
The augmented observation equation has one extra term
compared to the un-augmented one:x′

t−k multiplied by L ′,
which is

L ′
=



0
. . .

Hk

...
. . .

H1 · · · Hk

 . (15)

L ′ has the same size asH′: m(s+1)×n(s+1). It is empty for
the firstm(s +1−k) rows andn(s +1−k) columns, and the
remainingmk × nk block at the lower right corner is filled
with H1, H2, . . . ,Hk in the lower diagonal. The extra term
L ′x′

t−k provides the routing model the initial conditions – the
water stored in river channels contributed by runoff in thek

time steps prior to timet−s (i.e., interval[t−s−k, t−s−1]).
The time interval of augmentation needs to be larger than

the maximum travel time (i.e.,s+1 > k+1). This is because
the streamflow measured at the outlet of the basink + 1 time
steps later still contains information about the runoff gener-
ated at the most upstream pixel of the basin at the current
time step. To enable the inversion to use all possible stream-
flow information from all gauges to update the most upstream
pixel, there must bes + 1 > k + 1.

Now we can apply the Kalman-type methods for the in-
version. Since we always have a fewer number of gauges
than runoff pixels (i.e.,m < n), the inverse problem is under-
constrained. Therefore, an initial guess of runoff fields, noted
asx̂

′

t , is usually needed to represent the prior information we
have on this variable. This initial guess could just be a uni-
form field of long-term mean runoff (or simply zeros), which
is referred to as the “null” initial guess, or LSM estimates
forced with some baseline rainfall (better choice) if possi-
ble. Note that the “null” initial guess is equivalent to having
no initial guess at all. Given the initial guessx̂

′

t and stream-
flow measurementsy′

t , the Kalman filter equation gives an
updated estimatêx′′

t as

x̂
′′

t = x̂
′

t + K t (y
′
t − H′x̂

′

t − L ′x̂
′

t−k). (16)

And the Kalman gainK t is calculated as

K t = PtH′T
(
H′PtH′T

+ Rt

)−1
. (17)

K t has the sizen(s + 1) × m(s + 1), andPt is the error co-
variance matrix of the initial guess of runoff and has the size
n(s + 1) × n(s + 1). Pt can simply be a diagonal matrix of
the long-term mean runoff error variance, or with diagonal
entries proportional to the squared runoff if the initial guess
is not uniform.Rt is the error covariance matrix of the gauge
measurements and has the sizem(s + 1) × m(s + 1). Rt can
be looked up from river gauge documentations or empirically
estimated from instrumentation type, flow rate, channel mor-
phology, etc. However, here we want to force the updated
runoff field to reproduce the streamflow observed at all the
gauges exactly, i.e., to make the updated runoff fieldx̂

′′

t to
satisfy Eq. (13) with no errors:

y′
t = H′x̂

′′

t + L ′x′

t−k. (18)

This exact match is achieved by treating the gauge measure-
ments as error-free (i.e.,Rt ≡ 0), and Eq. (16) will push all
the streamflow errors in the initial guessy′

t − H′x̂
′

t − L ′x̂
′

t−k

back to the runoff guess and effectively force Eq. (18) to
be exactly satisfied. Caution is needed here that treating the
gauge measurements as perfect does not mean we believe
there are no errors in them. There are definitely errors, and
such treatment is merely a way to force the exact reproduc-
tion of streamflow, and all of the gauge errors will be carried
into the inverted runoff. Also, such a setting maximizes the
correction Eq. (16) can impose onto the initial runoff guess
(Pan and Wood, 2010). This is a same measure as taken by
the constrained data assimilation procedures (Pan and Wood,
2006; Pan et al., 2012). Now the Kalman gain becomes

K t = PtH′T
(
H′PtH′T

)−1
. (19)

Note that the above update procedures are no different than a
regular data assimilation whenRt is not particularly chosen.
And in fact, many studies have been devoted to the assimi-
lation of streamflow or water altimetry measurements (An-
dreadis et al., 2007; Biancamaria et al., 2011; Durand et al.,
2008). We would like to call the runoff estimation with the
particular setting ofRt ≡ 0 as “inverse routing”, in order to
differentiate it from the general practice of streamflow assim-
ilation. Also, since the inversion involves multiple time steps,
the procedure is no longer a filtering operation but a smooth-
ing operation or, more precisely, as + 1 step fixed interval
smoothing.

During the Kalman gain calculation in Eq. (19), the ma-
trix H′PtH′T to invert has the sizem(s + 1) × m(s + 1). As
matrix inversion has its computational complexity grow cu-
bically against matrix size, the interval sizes+1 and num-
ber of gaugesm to use cannot be too large. Per discussion
on the time augmentation,s + 1 has to be larger thank + 1.
Note that even withs + 1 > k + 1, updating the runoff in the
lastk + 1 time steps in the[t − s, t] smoothing interval (i.e.,
[t − k, t]) still requires streamflow information beyond time
t . This means the inverted runoff in the lastk + 1 steps does
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Fig. 1. The Ohio River basin (shaded area) and 75 USGS river
gauges in use.

not receive all possible streamflow information. To elimi-
nate such an “edge effect” of fixed interval smoothing, the
smoothing will be done interval by interval sequentially, and
consecutive intervals will overlap byk + 1 steps. In other
words, only the firsts − k steps in thes + 1 smoothing in-
terval are usable, and the lastk + 1 steps will be re-updated
in the next smoothing interval.

3 Inverse routing experiments

3.1 Study area and general setups

We choose the Ohio River basin in United States for the
inversion experiments. Figure 1 shows the definition of the
Ohio River basin, which also includes the Tennessee River
in the south and covers an area of 490 600 km2. Rivers in the
area are very well monitored by the United States Geologi-
cal Survey (USGS), and we select 75 USGS river gauge sta-
tions out of all available ones (i.e.,m = 75). Gauge stations
that are too close to each other were selectively removed to
reduce redundancy. The computing grid for the UW rout-
ing model is set up at 0.125◦ and the flow network on this
grid is derived from 30 arcsec digital elevation model (DEM)
data, as shown in Fig. 2. The computing grid consists of 3681
0.125◦ pixels (i.e.,n = 3681). All routing model parameters
are identical to those used in the National Land Data Assim-
ilation (NLDAS) project (Lohmann et al., 2004, Mitchell et
al., 2004) over the same area, where the same routing model
has been calibrated and validated against USGS-observed
streamflow. The channel wave velocityC = 1.4 m s−1 and
diffusivity D = 0 m2 s−1 are constant all over the basin. The
time step of the routing model is 1 day, and because the
0.125◦ pixel is small enough for any runoff to flow out of the
pixel within 1 day, the outflow UHFu(t) = 1 whent = 1 and
u(t) = 0 whent > 1. The resulted runoff water travel time to
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Fig. 2.Flow paths over the 0.125◦ grid and runoff travel time to the
basin outlet.

the basin outlet can be found in Fig. 2, and the maximum
travel time is 16 days (i.e.,k + 1 = 16). The study period is
the entire year (365 days) of 2009.

Two types of inversion experiments will be performed
where the streamflow (y′

t in Eq. 16) to be inverted is gen-
erated differently:

1. Inversion experiment with synthetically generated
streamflow, or in shortsynthetic experiment.

In this experiment, we assume the “true” values of runoff
and streamflow are known, and the synthetically “true”
streamflow values will be inverted (i.e., be assimilated into
the initial guess of runoff) (̂x′

t in Eq. 16). Then errors in the
inverted runoff (̂x′′

t in Eq. 16), and initial guess as well, will
be calculated against the synthetically “true” runoff. To do
this, the synthetically “true” runoff fields will first be cre-
ated by running the variable infiltration capacity (VIC) LSM
(Liang et al., 1994, 1996) forced with the 0.125◦ NLDAS me-
teorological data set (Cosgrove et al., 2003). NLDAS rainfall
combines hourly WSR-88D radar analyses and daily gauge
reports (∼13 000 per day) and is considered the best avail-
able surface forcing over United States. Given the NLDAS-
derived “true” runoff, the synthetically “true” streamflow is
created using the UW routing model. Then with an initial
guess of runoff, the inversion is performed, and the errors are
calculated against the NLDAS-derived synthetic truth. The
benefit of a synthetic experiment is that the performance of
the inversion method can be well evaluated using the syn-
thetic truth. Also, as the model-derived streamflow is assim-
ilated, the complications caused by errors/biases in the rout-
ing model are avoided.

2. Inversion experiment with real streamflow measure-
ments, or in shortreal experiment.

This experiment differs from the synthetic one only in that
the real USGS streamflow measurements will be inverted.
All routing models have errors, and errors arise from sim-
plifying assumptions of the model, imperfect model param-
eters, model inputs, and so on. Figure 3 shows the compari-
son between the NLDAS-derived synthetic “true” streamflow

www.hydrol-earth-syst-sci.net/17/4577/2013/ Hydrol. Earth Syst. Sci., 17, 4577–4588, 2013
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Fig. 3.Streamflow predictions from the routing model using the synthetically “true” NLDAS rainfall (green line) versus USGS measurements
(black dots) over four gauge stations. The USGS gauge station number and drainage area are noted in the panel title.

and actual measurements from USGS at four gauge stations
with drainage area ranging from 160 511 km2 (Fig. 3a) to
2928 km2 (Fig. 3d). As the routing model reasonably repro-
duces the gauge measurements, both timing and magnitude
errors can be seen, especially for larger sub-basins. Such er-
rors will corrupt the performance of inverse routing, and the
performance assessment from the synthetic experiment will
be discounted when real gauge measurements are used. The
purpose of the real experiment is to find out how much the
performance degradation is and how that affects the useful-
ness of inverse routing. Besides routing model errors, LSM
and its parameters/input data also have errors, and that makes
the NLDAS-derived runoff not really a “truth”. In the real
experiment, errors will still be calculated against NLDAS-
derived runoff, even though the latter is no longer a “truth”.

In both the synthetic and real experiments, the smoothing
interval for the inversion is 70 days (i.e.,s + 1 = 70). The
routing model spins up during the first 16 days of 2009 to
provide initial conditions for later routing, and the inversion
starts on day 17 of 2009.

3.2 Experiment with synthetically generated
streamflow

Here we further consider two different ways of creating the
initial guess of runoff (̂x′

t in Eq. 16). The first is the “null”
initial guess mentioned in the methodology section. This is
to assume we have no alternative source of runoff informa-
tion at all, and the initial guess is simply a uniform field of
constant value for all the time steps. Here we set it to a long-
term mean value of 1.474 mm day−1. Figure 4 presents the

inversion results for day 75 of 2009 using the null initial
guess of runoff. The inverted runoff field shown in Fig. 4c
shows a very similar spatial pattern to the NLDAS-derived
synthetic truth in Fig. 4b. The two rainfall/runoff belts in
the synthetic truth, one of which goes through the north-
eastern and northwestern tips of the basin and the other in
the southern half (mostly over Tennessee River), have been
well recovered in the inverted runoff. Note that the initial
guess has no spatial variability at all (Fig. 4a). The empty
area between the two belts is also fairly well cleared in
the inverted runoff. The inversion increment (Fig. 4d), i.e.,
the difference between the inverted and the initial guess or
x̂

′′

t −x̂
′

t = K t (y
′
t−H′x̂

′

t−L ′x̂
′

t−k) as in Eq. (16), shows where
the runoff water has been added to or removed from the ini-
tial guess. The spatial pattern in the inverted runoff is mildly
patchy, and the shape of patches follows the boundaries of
sub-basins that drain to the input gauge locations. Besides
the sub-basin shaped patchiness, banding along the equal
travel time contours (Fig. 2) also exists within sub-basins
because it is impossible for the inversion to distinguish the
water arriving at the same time but from different points on
the band of equal travel time. The close similarity between
the inverted and synthetic truth indicates that the inversion
procedure developed here is potentially able to recover the
runoff patterns without any prior information, provided that
sufficient streamflow data are available within the area. In-
version results for 4 more randomly selected days (day 37,
107, 177, and 317 of 2009) are shown in Fig. 5. In this fig-
ure, the inversion recovers a very reasonable spatial pattern
for all days, with some days (e.g., day 317) performing better
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Fig. 4. Runoff estimates for day 75 of 2009 from the synthetic
experiment using the null initial guess of runoff (constant field of
1.474 mm day−1): (a) initial guess,(b) synthetic truth,(c) inverted
fields, and(d) the difference between the inverted and initial guess
(i.e., inversion increment during the smoothing update).

than others (e.g., day 177). In other words, the inversion also
recovers a reasonable timing of the runoff. Figure 5 (bot-
tom row) also shows the 7-day mean antecedent precipita-
tion for those 4 days, and most of the spatial patterns in the
antecedent precipitation are reasonably reflected in the in-
verted runoff fields. The inversion problem from streamflow
to runoff is extremely under-constrained here (m = 75 ver-
susn = 3681), and such results suggest the inversion method
has a very strong capability. The ability to work under null
initial guess (i.e., no initial guess at all) has a critical mean-
ing for our study. This is because in this case the streamflow
measurements are the only input to the estimation problem
and that means the runoff fields derived from the observed
streamflow are also a purely “observationally based” quan-
tity with no influence from an LSM.

Another way to create the initial guess is to use the LSM
to calculate runoff from some baseline rainfall inputs that are
considered always available for all locations and all times.
This is supposedly a better initial guess than the null guess.
It should provide a better assessment of the inverse routing
than the null initial guess experiment since it is not real-
istic that we know nothing about the rainfall all the time.
Here we force VIC LSM with the satellite rainfall product
TRMM Multi-satellite Precipitation Analysis (TMPA) ver-
sion 3B42RT (Huffman et al., 2007) to obtain an initial guess
of runoff. TMPA is available globally between 60◦ S and
60◦ N every 3 h at 0.25◦ resolution. Though much less ac-
curate than the ground-based NLDAS, it relies only on satel-
lites and thus is available almost everywhere. The 0.25◦ data
are interpolated to 0.125◦ in order to force VIC simulations
at 0.125◦ (Pan et al., 2010). Figure 6 shows the inversion re-
sults using the TMPA-derived initial guess of runoff for the
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Fig. 5. Synthetic truth (NLDAS-derived) runoff, inverted runoff,
and 7-day antecedent precipitation (NLDAS) for another 4 days
(day 37, 107, 177, and 317 of 2009) from synthetic experi-
ment using the null initial guess of runoff (constant field of
1.474 mm day−1).
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Fig. 6.The same runoff plots as Fig. 4 from the synthetic experiment
using the TMPA-derived runoff field as initial guess.

same day 75 of 2009 as in Fig. 4. The inverted runoff here
is similar to the null guess case in Fig. 4 but with a slightly
better definition of the rainfall/runoff plumes. The transition
from wet to dry areas is also smoother (i.e., less gauge basin-
shaped patchiness). This suggests a good initial guess that
can reasonably represent the spatial and temporal dynam-
ics of rainfall will help improve the quality of the inverted
runoff.

Figure 7 shows the time series of basin mean bias and
root mean squared errors from the synthetic experiment with
TMPA-derived runoff as the initial guess. In Fig. 7a, the
inverted runoff (red line) shows a consistently and signif-
icantly lower basin mean bias than the TMPA-derived ini-
tial guess (blue line). The time average of absolute bias is
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Fig. 7. Time series of basin mean bias(a) and root mean squared errors(b) from the synthetic experiment using TMPA-derived runoff
as initial guess. Blue lines are for the initial guess of runoff (TMPA-derived) and red lines for the inverted runoff. All error measures are
calculated against NLDAS-derived synthetic truth runoff.
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Fig. 8. Time series of streamflow estimates from the inversion experiment using TMPA-derived runoff as initial guess at four USGS gauge
stations. Thick green lines are for the synthetic truth (NLDAS-derived), blue for the initial guess (TMPA-derived), and red for the streamflow
reconstructed from the inverted runoff.

0.145 mm day−1 for the inverted runoff and 0.553 mm day−1

for the initial guess, and the relative bias reduction is about
74 %. However, smaller bias in the basin mean does not nec-
essarily imply small errors in the pixel-to-pixel comparisons
since positive and negative errors on the same map can aver-
age out. Figure 7b shows the time series of basin mean root
mean squared errors (RMSEs), and the inverted runoff still
has a consistently lower RMSE than the initial guess but to a
lesser degree. The time average of RMSE is 1.283 mm day−1

for the inverted runoff and 1.962 mm day−1 for the initial
guess (about 35 % RMSE reduction).

Figure 8 shows the time series of streamflow calculated
from the synthetic truth runoff (NLDAS-derived), initial
guess runoff (TMPA-derived), and inverted runoff for the
same four USGS gauge stations as in Fig. 3. The difference
between the synthetic truth (thick green line) and initial guess
(blue line) of streamflow (i.e.,y′

t −H′x̂
′

t −L ′x̂
′

t−k in Eq. 16)
is referred to as “innovation” in data assimilation literature,
and it basically drives the update of the initial guess. For all
the stations shown here, the innovation (difference between
thick green and blue lines) is considerably large compared
to the magnitude of streamflow itself, suggesting that the in-
version delivers a significant amount of information to the
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Fig. 9. Synthetic truth (NLDAS-derived) and inverted runoff fields
for 4 days (day 37, 107, 177, and 317 of 2009, same as Fig. 5) from
the real experiment using TMPA-derived runoff field as initial guess
and real USGS gauge measurements.

inverted runoff. Note that the streamflow time series recon-
structed from the inverted runoff (red line) lies exactly on top
of the synthetic truth (thick green line) nearly all the time.
This verifies the fact that our setting ofRt ≡ 0 will force
the inverted runoff to reproduce the input streamflow exactly
(Eq. 18). Perfect reproduction of input streamflow is an im-
portant purpose of our inversion design, and it distinguishes
the “inversion” from the streamflow data assimilation in a
general sense. There are a few occasions, for example, during
the few days before day 350 of 2009 at USGS gauge sta-
tion 03216600 (Fig. 8a), where the inverted runoff leads to a
slightly higher streamflow than the synthetic truth. This is be-
cause the inversion update may, under some rare occasions,
produce negative runoff values, and such negative values are
reset to zero.

3.3 Experiment with real streamflow measurements

The real experiment using USGS gauge measurements is
carried out only with the TMPA-derived runoff as the ini-
tial guess. Some of 75 USGS gauge stations used here have
missing data, but a vast majority (67 stations) of them are
fairly complete for the year 2009 (available more than 95 %
of the time). Figure 9 shows the inverted runoff fields ver-
sus the NLDAS-derived synthetic truth (no longer treated as
a “truth” here though) for the same 4 days as in Fig. 5. Here
the inverted runoff fields have larger discrepancies against
the NLDAS-derived values than those in the synthetic exper-
iment (Fig. 5). The inverted runoff can capture some large
spatial features in the NLDAS-derived map, but a lot of de-
tailed spatial features differ from the NLDAS-driven syn-
thetic truth. Figure 10 plots the same time series of basin
mean bias and RMSE as Fig. 7. In Fig. 10a, the inverted
runoff (red line) still shows a consistently lower basin mean
bias than the initial guess (blue line), though not as signif-
icant as in Fig. 7. The time average of the absolute bias is
reduced from the 0.553 mm day−1 for the initial guess to
0.392 mm day−1 for the inverted runoff. The relative bias
reduction is 29 % (compared to 74 % in the synthetic ex-
periment in Fig. 7). The basin mean RMSE (Fig. 10b) for

the inverted runoff (red line) has lower peaks than the ini-
tial guess (red line) but is often higher than the initial guess
elsewhere. The time average of RMSE is 1.970 mm day−1,
and this is even slightly higher than the TMPA-derived initial
guess (1.962 mm day−1). This suggests it is more difficult to
make significant improvement to the initial guess using real
gauge measurements, especially when the initial guess is al-
ready very reasonable. Large biases can be easily corrected,
but small spatial details are much more difficult to recover.

Many factors contribute to this degraded inversion per-
formance in the real experiment. Generally speaking, it is
because of the routing model errors (Fig. 3). For example,
model assumptions like runoff water flows in 0.125◦ digi-
tized stream channels can be a reason, and model parameters
(constant wave velocity/diffusivity everywhere) are far from
perfect as well. Another very important reason is that many
water regulation structures (dams, reservoirs, etc.) operate in
this area, and the USGS-measured streamflow is not the nat-
ural flow. Moreover, while the inversion treats the streamflow
inputs as perfect observations, the USGS measurements are
never perfect, and errors exist in both the instruments and the
stage-flow regressions. Such errors are entirely carried into
the inverted runoff because of this treatment. Figure 3 also
shows that the NLDAS-derived streamflow compares better
to the USGS measurements at gauges of smaller drainage
basins (Fig. 3c, d) than large ones (Fig. 3a, b). A possible
reason is that smaller basins are less affected by flow regu-
lations. Unfortunately, dam/reservoir operations are mostly
nonlinear (i.e., to cut flood peak or retain water for dry sea-
son release), and the best way to reduce their impact is to
perform streamflow naturalization (Wurbs, 2006) separately
before the inversion or to avoid using gauges of heavily regu-
lated large basins. Finally, NLDAS and VIC LSM have errors
too, and the synthetic truth being compared is not an exact
truth.

4 Limitations of inverse streamflow routing

Some limitations of the inverse routing method have been
discussed. For example, a well-performing forward routing
model is an absolute prerequisite for the inverse routing to
work. Also, no inversion or data assimilation techniques can
create new information from nothing. That means the in-
verted runoff fields will not contain any more information
(derived or direct) than what is already in the inputs, i.e., the
streamflow observations (all those within the same contribut-
ing basin and maximum travel time) and the physical knowl-
edge (routing equations/parameters) we have on how the wa-
ter may flow. The inversion serves only to “infer” fine-scale
details from aggregated measurements and not to “create”
fine-scale information. That said, the inversion will degrade
and fail as all these inputs degrade, for example, gauges too
sparse, observations too sporadic, large errors in gauge mea-
surements, errors in routing parameters, etc. The inversion
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Fig. 11. Degradation of inversion performance as measured by
growing time-averaged absolute bias (upper row) and RMSE (lower
row) in the inverted runoff from the synthetic experiment using
TMPA-derived runoff as initial guess. The degradation test is car-
ried out with respect to four sensitivity factors: fewer gauges (first
column), missing gauge observations (second column), gauge ob-
servation errors (log standard deviation of lognormal errors, third
column), and wave velocity errors in the routing model (standard
deviation of normal errors, fourth column). The absolute bias and
RMSE in the inverted runoff without errors/missing data and in the
initial guess are shown as solid and dashed lines.

experiments in the previous section are conducted over a
heavily gauged basin with good-quality data, and those find-
ings may not apply to many other places.

Now we study how the performance of inverse routing will
degrade by repeating the synthetic experiment using TMPA-
derived runoff as initial guess (Figs. 6 and 7) and adding er-
rors and missing data to various inputs. The same two perfor-
mance metrics, the time-averaged absolute bias and RMSE
in the inverted runoff, are evaluated, and the degradation is
tested with respect to four factors: (1) number of gauges
available (from full 75 down to 4); (2) amount of missing
streamflow observations, as measured by the missing per-
centage (0–100 %); (3) gauge observation errors, as mea-

sured by the log standard deviation of lognormal errors (0–
30 %); and (4) wave velocity errors in the routing model,
as measured by the standard deviation of normal errors (0–
2 m s−1). All the errors added are uncorrelated in time or
space. Figure 11 shows how the bias and RMSE grow as
more errors and missing data are added. In the case of fewer
gauges and missing observations (Fig. 11a, b, e, f), both
the bias and RMSE grow slowly at first, then faster, and
finally approach the level of initial guess (dashed lines in
Fig. 11) as the availability is reduced to zero. Note that per-
formance worse than the initial guess means that the inver-
sion is completely useless. Errors (lognormal) in gauge ob-
servations have a large impact on the runoff RMSE (Fig. 11g)
– 20 % lognormal errors can consume all the potential RMSE
improvement while the bias is less affected (Fig. 11c). The
wave velocity errors in the routing model also matter but
to a lesser extent (Fig. 11d, h), and this parameter can usu-
ally be well estimated through careful calibrations. No joint
sensitivity test is carried out although multiple factors will
exacerbate the performance degradation. The above findings
suggest that some reasonable gauge density (e.g., more than
10 gauges per 106 km2) and data quality (e.g., lower than
25 % errors) are required for the inverse routing to provide
improvements to TMPA-derived runoff fields. Such require-
ments may be lowered at places where TMPA performs less
well. For example, TMPA is much less well calibrated in
Africa than in United States because the rain gauge data there
are very sparse.

5 Conclusions

We propose the concept of inverse routing as the process to
estimate the spatial fields of runoff from point measurements
of streamflow and develop the methodology to achieve it by
inverting a linear routing model using fixed interval smooth-
ing. In theory, the inversion method introduced here applies
to any linear routing models.
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The synthetic experiment shows that the inversion method
is able to reproduce reasonably the spatial and temporal
dynamics of the synthetically true runoff fields from point
measurements of streamflow without any meaningful initial
guess provided that sufficient gauge data exist. Besides the
routing model and its parameters, the only input required
by the inversion is streamflow. So inverse routing is always
possible as long as sufficiently dense streamflow data are
available. If a reasonable initial guess of runoff exists (e.g.,
from LSM), such an initial guess can help improve the qual-
ity of the inverted runoff.

The real experiment illustrates how the inversion perfor-
mance will degrade when real river gauge measurements are
used. The difference between the real and synthetic stream-
flow data is basically caused by the routing model errors.
Such errors could be due to imperfect model design or pa-
rameters, but a large part is due to the human regulation of
flow – an effect unaccounted for in the routing model. In
short, the inverse routing can work well only if the (forward)
routing model works well, and that requires efforts in routing
model calibration, streamflow naturalization, etc.

The limitations of inverse routing arise primarily from two
aspects – (1) the performance of the forward routing model
and its failure to account for nonlinear flow behavior like
retention, and (2) gauge data availability and quality. Low
gauge density and poor data quality can strongly affect the
usefulness of inverse routing.

Inverse routing may be performed to infer runoff at any
fine scales where the routing model is parameterized, though
the quality of fine-scale information so derived is determined
by the density and quality of input gauge data. Historically,
runoff has not been an observationally based variable, and
streamflow measurements are used in its place and such stud-
ies are limited to the occasions where the mismatch between
the two in time and space can be ignored. Now inverse rout-
ing provides a more sophisticated tool than traditional meth-
ods to resolve the scale mismatch and infer fine-scale de-
tails (in both time and space) of runoff from aggregated mea-
surements. Improved handling of this final gap in terrestrial
water budget analysis may potentially help us to use space-
borne altimetry-based surface water measurements for cross-
validating and cross-correcting other space-borne water cy-
cle observations. For example, given the strong tie between
the rainfall and runoff, as shown in Fig. 5, runoff fields in-
verted from the future SWOT mission can be used to iden-
tify and correct missing or overestimated precipitation es-
timates from the Global Precipitation Measurement (GPM)
mission (Tapiador et al., 2012) through the water balance
relationship and with the help of a hydrological model to
resolve the rainfall-to-runoff process. It also makes it more
convenient to assimilate the surface water measurements into
other water cycle observations without worries about scale
mismatch. The inverse routing is also a good tool to disag-
gregate streamflow information in time and space and pro-
vide more continuous and better river information for water

resources management. Without satellite altimetry measure-
ments, runoff fields derived from ground river gauges can
help us study the long-term terrestrial water budget at a much
higher spatial and temporal resolution.
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