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Abstract. Accurate estimation of hydrological losses is re-
quired for making vital decisions in design applications that
are based on design rainfall models and rainfall–runoff mod-
els. The use of representative single values of hydrological
losses, despite their wide variability, is common practice, es-
pecially in Australian studies. This practice leads to issues
such as over or under estimation of design floods. The prob-
ability distribution method is potentially a better technique
to describe losses. However, a lack of understanding of how
losses are distributed can limit the use of this technique.
This paper aims to identify a probability distribution function
that can successfully describe hydrological losses of a catch-
ment of interest. The paper explains the systematic process of
identifying probability distribution functions, the problems
faced during the distribution fitting process and a new gen-
eralised method to test the adequacy of fitted distributions.
The goodness-of-fit of the fitted distributions are examined
using the Anderson–Darling test and the Q–Q plot method
and the errors associated with quantile estimation are quan-
tified by estimating the bias and mean square error (MSE).
A two-parameter gamma distribution was identified as one
that successfully describes initial loss (IL) data for the se-
lected catchments. Further, non-parametric standardised dis-
tributions that describe both IL and continuing loss data are
also identified. This paper will provide a significant contribu-
tion to the Australian Rainfall and Runoff (ARR) guidelines
that are currently being updated, by improving understanding
of hydrological losses in South Australian catchments. More
importantly, this study provides new knowledge on how IL
in a catchment is characterised.

1 Introduction

Hydrological losses have wide temporal and spatial variabil-
ity, but are important inputs to rainfall–runoff (RR) mod-
els. In Australia, despite their variability, current practice
(IEAust., 1987) often adopts representative single values of
losses as input parameter for design applications. According
to Australian Rainfall and Runoff (ARR), South Australian
(SA) catchments are categorised as humid, and initial loss
(IL) and continuing loss (CL) values for the catchments in
this zone are 10 mm and 2.5 mm h−1 in winter; and 25 mm
and 4 mm h−1 in summer (IEAust., 1987, Book 2, p. 47).
The use of single representative loss values introduces large
errors into event based RR model predictions (Ilahee and
Imteaz, 2009).

Considering the random nature of hydrological losses,
probabilistic modelling has been suggested as a better ap-
proach to overcome the problems associated with models that
use single representative values of input parameters (Rahman
et al., 2000; Loveridge et al., 2012; Hill et al., 2012; Rahman
et al., 2002a; Nathan et al., 2003; Kuczera et al., 2006b). A
joint probability approach (JPA) that incorporates probabilis-
tic behaviours of the input variables can improve RR simu-
lations (Golian et al., 2012), and thus improve estimation of
major flood flows that are required for the design and op-
eration of large water infrastructure (Haddad et al., 2010a;
Rahman et al., 2000, 2002b; Nathan et al., 2003; Kuczera et
al., 2006a). In addition, JPAs support more accurate design
flood estimations (Haddad and Rahman, 2005; Caballero et
al., 2011), streamflow forecasting (Wang et al., 2011) and
runoff-yield accounting (Liang et al., 2008). The most com-
mon parameters included in JPAs include initial soil moisture
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Table 1.Distributions tested for Australian catchments.

Recommended Recommended
Distribution Catchments tested for IL for CL

Four–parameter beta 10 Victorian catchments Yes No
distribution (Rahman et al., 2002a)

15 Queensland catchments Yes No
(Tularam and Ilahee, 2007)
4 Victorian catchments Yes Yes
(Ishak and Rahman, 2006)

Exponential 4 Victorian catchments No Yes
(Ishak and Rahman, 2006)

Two–parameter 4 Victorian catchments No Yes
gamma (Ishak and Rahman, 2006)

5 NSW catchments Yes Yes
(El-Kafagee and Rahman, 2011)

content, rainfall duration and intensity, and surface runoff
(Golian et al., 2012; Singh et al., 2012; Wang et al., 2011;
Liang et al., 2008). However, it is useful to incorporate the
joint response of initial losses and total losses into rainfall
runoff simulation to improve model accuracy, as the losses
have wide variability (Haddad and Rahman, 2005). Although
there has been significant research in Australia on the devel-
opment and application of the JPAs for design flood estima-
tion (Haddad and Rahman, 2005), there are limited probabil-
ity distributions identified for hydrological losses. Therefore,
the probability distributions of the loss parameters of inter-
est need to be identified. Table 1 summarises the distribution
functions of those found to be suitable for some Australian
catchments. However, none of the recommended distribu-
tions were able to adequately describe the loss data of SA
catchments. For hydrological analysis, regionalised meth-
ods provide more accurate estimation than generalised meth-
ods. Therefore, it is essential to identify suitable probability
distributions for particular regions. As there are no studies
available of South Australian loss estimation, this study will
provide important information for South Australian-based
hydrological modelling.

Although probabilistic methods are more attractive ways
of dealing with random losses, the process of identifying
probability functions needs to overcome a number of issues.
For example, researchers have to identify the suitable prob-
ability function among a large number of theoretical distri-
butions. Goodness-of-fit tests have to be used for this pur-
pose and commonly used goodness-of-fit tests do not accu-
rately support all the distributions (Romeu, 2003; Lugannani
and Rice, 1980). Even the modern computer programs (e.g.
EasyFit) that are used to identify probability distributions,
use approximation methods that will cause errors in the end
results. This paper highlights the issues of the commonly
used Anderson–Darling test, when applied to the well-known

two-parameter gamma distribution. It is therefore necessary
to have a generalised statistical goodness-of-fit test that can
be accurately used for most of the distribution functions.

The distribution of losses can be estimated by either
parametric or non–parametric methods. In the parametric
method, parameters are estimated by equating theoretical
moments of the distribution (location, scale and shape) to
sample estimated moments such as mean, standard deviation
and skewness. Method of moments (MOM), maximum like-
lihood (ML) and probability weighted moments (PWM) are
commonly used methods to estimate sample estimated mo-
ments of a random variable (Trefry et al., 2004; Haktanir et
al., 2010). Non-parametric methods, on the other hand do not
require a distributional assumption. Non-parametric methods
are accurate, uniform, and in particular can provide improved
estimates of the distribution tail (Adamowski, 1989).

Non-parametric distributions of loss values are available
for certain Australian catchments. For example, IL and CL
values of 22 selected Victorian catchments were expressed
as a proportion of the median loss value (Nathan et al.,
2003). A similar approach was used for 48 rural catchments
in Queensland (Ilahee, 2005) and for five catchments in the
Darling Ranges in Western Australia (Waugh, 1991). Distri-
butions of the standardised losses of these three studies were
found to be largely consistent. This indicates that the shape of
the standardised distribution (by median) is the same despite
the data being derived from very different hydro–climatic re-
gions from across Australia (Hill, 2010). Therefore, if the
median loss rate can be estimated accurately then the stan-
dardised distribution can be applied to estimate the distribu-
tion of losses for any given catchment. In this study, a similar
non-parametric method was tested for modelling hydrologi-
cal losses of selected SA catchments.

The paper demonstrates extraction of IL and CL data
for four selected SA catchments using time series of flow
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Fig. 1.Location map of the study area.

and rainfall data and selection of suitable distribution func-
tion for the extracted data using both parametric and non–
parametric methods. In the parametric method, Monte Carlo
simulation is conducted to assess performance of the loss es-
timators by using bias and mean square error, and the re-
sults are validated by using two independent test catchments.
The paper introduces a generalised statistical test combined
with the Anderson–Darling and Kolmogorov–Smirnov (K–
S) tests for testing goodness-of-fit of a fitted distribution to
hydrological loss data. Subsequently, this new method is val-
idated using the two-parameter gamma distribution. The non-
parametric method used in this study involves standardising
losses with the median value and investigating the trend in
standardised data.

2 Catchment selection and data

The characteristics considered in selecting the catchments
for this study are catchment regulation, size, land-use type
and record lengths for available rainfall and streamflow data.
The selected catchments were unregulated and had no ma-
jor land-use changes during the period of their gauge record

lengths. As the selected catchments were within the small
to medium size range, it can be assumed that the tempo-
ral patterns of the pluviograph data provide representative
temporal patterns for the whole catchment (Ilahee, 2005).
The definition of small to medium size catchments is arbi-
trary and is considered to have an upper limit of 1000 km2

in area (Haddad et al., 2010b). The record length of data
should be at least 10 years for adequate empirical analy-
sis (Boni et al., 2007; Jingyi and Hall, 2004; Kumar and
Chatterjee, 2005). The four selected catchments for the anal-
ysis – Scott Bottom (A5030502), Mt Pleasant (A5040512),
Yaldara (A5050502) and Penrice (A5050517) – and two se-
lected catchments for the validation – Rhynie (A5060500)
and Spalding (A5070501) – all satisfied these conditions. A
location map of the selected catchments is given in Fig. 1
and summary details of the geographic, climatic and mete-
orological data for each catchment are provided in Table 2.
The catchment rainfall and streamflow data were collected
from the Department of Environment, Water and Natural Re-
sources (DEWNR), South Australia. The four selected sta-
tions – A5030502, A5040512, A5050502 and A5050517 –
having high quality data for 37, 35, 47 and 30 yr, respectively.

Number of rainfall and runoff events selected for this study
is presented in Table 3.

3 Methodology

3.1 Loss calculation

For each of the selected catchments, rainfall events that pro-
duce a reasonable amount of runoff were extracted for this
study using the HYDSTRA (KISTERS, 2008) program. In
this study, the threshold runoff is selected as 0.01 mm h−1.
The IL, which is defined as the amount of rainfall that occurs
before the start of runoff, was calculated using Eq. (1).

IL =

∑n

i=1
Ii, (1)

wheren is the duration in hours from the start of the storm
burst to the start of the surface runoff (rainfall excess) andIi

is rainfall in mm in theith hour.
Measured streamflow data at a gauged station usually

comprises quickflow (QF) (rainfall excess) and baseflow
(BF) components. For hydrological loss estimations, only the
QF is of interest. Therefore, the BF needs to be separated
from the original total streamflow data prior to loss calcula-
tion. Nathan and McMahon (1990) compared the Lyne and
Hollick method of BF separation with several other rigor-
ous algorithms and concluded that it was simple to use, yet
produced as good results as the alternatives. Hence, in this
study, the Lyne and Hollick algorithm, which is in-built in
the HYDSTRA (KISTERS, 2008) program, was used for BF
separation.

The total rainfall (TR) resulting from a rainfall event can
be expressed by Eq. (2) and hence this can be rearranged as in
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Table 2.Geographical, climatic and meteorological data of the study catchments.

Scott Bottom Mt Pleasant Yaldara Penrice
Characteristics (A5030502) (A5040512) (A5050502) (A5050517)

River Scott Creek Torrens North Para North Para

Area (km2) 27 26 384 118

Annual Rainfall (mm) 69–74 80–103 93–102 63–67

Elevation at gauging
station (m)

205 415 145 285

Evaporation
(mm day−1)

1.38 1.69 1.69 1.69

Table 3.Selected rainfall events.

Rainfall No. of
Catchments period considered events selected

Scott Bottom (A5030502) 1991–2010 200
Mt Pleasant (A5040512) 1989–2011 227
Yaldara (A5050502) 1985–2011 200
Penrice (A5050517) 1986–2011 185
Rhynie (A5060500) 1985–2011 208
Spalding (A5070501) 1992–2011 142

Eq. (3) to calculate the CL, which is defined as the average
loss in mm h−1 over the remaining duration of the rainfall
event.

TR = IL + CL × 1t + QF (2)

CL =
TR− IL − QF

1t
, (3)

where TR, IL and QF are in mm, CL is in mm h−1 andt is
the time (in h) elapsed between the start of the surface runoff
and the end of the rainfall event.

3.2 Parametric method for describing IL

In the parametric approach, distribution parameters are esti-
mated by equating sample estimated moments of a random
variable to moments of a known theoretical distribution. In
this study, the observed IL data series,X(1),. . . ,X(n) is the
sample of a random variable of interest. Identification of a
theoretical distribution that can reasonably describe the ob-
served loss data was conducted using Anderson–Darling and
Q–Q plot methods which are described in the following.

Anderson–Darling (A–D) test

In the Anderson–Darling test procedure, the fit of an ob-
served cumulative distribution function to an expected cumu-
lative distribution function is compared. If the estimated A–D

test statistic at the 95 % confidence level is greater than the
critical value of the selected distribution function, the distri-
bution function is accepted as a suitable candidate to describe
the observed data.

In general, critical values of the A–D test statistic de-
pend on the specific distribution being tested. However, ta-
bles and formulae of critical values for many distributions
are not currently available (Romeu, 2003). Additionally, for
some distributions, such as the two-parameter gamma distri-
bution, finding the critical value of the A–D statistic is very
complicated (Lugannani and Rice, 1980). Currently, formu-
lae of critical values are available for the normal, log-normal,
exponential and Weibull distributions (Romeu, 2003). The
A–D test that is implemented in several modern computer
programs such as “EasyFit” (MathWave Technologies) of-
ten uses the same critical values for every distribution. These
critical values are calculated using the approximation for-
mula, and depend on the sample size only. Therefore, in this
study the A–D test is carried out for only three distributions:
normal, exponential and Weibull. For the other distributions,
the Q–Q plot was used as an alternative comparison method.

Q–Q plots

The Q–Q plots provide a graphical assessment of “goodness-
of-fit” and indicate whether or not the selected sample could
have come from the selected target distribution. In this study,
Q–Q plots were drawn for the observed IL and CL data series
to test whether the data series are derived from seven selected
theoretical distributions, namely normal, log-normal, Pareto,
Weibull, gamma and exponential for which Q–Q plots can be
drawn using the SPSS statistical software.

In a Q–Q plot, if one or both of the axes is based on a the-
oretical distribution with a continuous cumulative distribu-
tion function (CDF), all quantiles are uniquely defined and
can be obtained by inverting the CDF (Ledolter and Hogg,
2010). However, for the observed data with an unknown dis-
tribution, the quantile estimations for constructing the Q–Q
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Fig. 2. Flowchart for data fitting, simulation and evaluation. Nobs
– number of observations; Nsim – number of simulations; MSE –
mean square error.

plots need to be done using an appropriate plotting position
formula. The plotting position formula used in this study is
given in Eq. (4).

i − 0.5

n
= f (qi), (4)

wheren is the sample size,i is rank of an observation in
the sample organised in an ascending order andf (qi) is the
quantile of the observed data.

The x axis of the Q–Q plots consists of order statis-
tics, x(1) ≤ x(2) ≤. . .≤ x(n) with a theoretical CDF,
F(x) = P (X ≤ x). The y axis of the Q–Q plots consists of
quantiles of observed data.

After constructing the Q–Q plots, the theoretical distribu-
tion that provides a reasonable fit can be selected. The se-
lected distribution then needs to be further investigated to as-
sess possible estimation errors.

The Q–Q plot analyses confirms that, of the five distribu-
tions investigated, the gamma distribution is the most appro-
priate to describe the observed loss data. Hence, the method-
ology of the parametric modelling is now described with par-
ticular reference to the gamma distribution. The sequential
steps involved in the parametric modelling are presented in
Fig. 2.

3.2.1 Fitting and testing the gamma distribution

Gamma distribution

For a two–parameter continuous probability distribution
function (PDF) with a shape parameter (k) and a scale pa-
rameter (θ), while the shape parameter can be denoted by

α = k, an inverse scale parameter can be denoted byβ = 1/θ

(Freund and Johnson, 2010).
The PDF of the gamma distribution is given in Eq. (5) and

the gamma function0(α) is given in Eq. (6).

f (x) =
1

0(α)βα
xα−1e−x/β , (5)

where 0≤ x ≤ ∞, and parametersα > 0 andβ > 0.

0(α) =

∞∫
0

xα−1e−xdx (6)

0(α) is a generalised factorial that can be shown as
0(α) = (α − 1)!, if α is a positive integer. The gamma func-
tion for the arguments (α) between 0 and 1 can be found from
standard mathematical tables.

Inverse gamma distribution

The inverse gamma distribution is a two-parameter family
of continuous probability distributions on the positive real
line, which is the distribution of the reciprocal of a variable
that follows gamma distribution. The inverse gamma distri-
bution’s PDF is given in Eq. (7).

f (x;α,β) =
βα

0(α)
(x)−α−1exp

(
−

β

x

)
, (7)

wherex > 0 andα andβ are the shape and scale parameters,
respectively.

Parameter estimation

Once the distribution is selected, the next step is to esti-
mate its parameters. The most commonly used methods for
determining parameters of a PDF include Method of Mo-
ments (MOM), Maximum Likelihood (ML) and Probabil-
ity Weighted Moments (PWM). In this study, MOM was
adopted to estimate parameters because of its simplicity and
ease of use. Estimation of distribution parameters involves
equating theoretical moments of the distribution to the sam-
ple estimated moments. For the gamma distribution, the first
two theoretical moments are given in Eqs. (8) and (9) (Freund
and Johnson, 2010).

µ = αβ (8)

σ 2
= αβ2 (9)

Replacingµ andσ 2 in Eqs. (8) and (9) by sample estimated
σ 2 and s2, the estimates of the gamma parameters are given
in Eqs. (10) and (11).

α̂ =
x2

s2
(10)
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Table 4. Anderson–Darling statistics for normal, exponential and
Weibull distributions.

Distribution p Value A–D2 95% crit-
ical value

Normal IL 0.02430
CL 0.00034

163.84
240.25

166.97
242.25

Exponential IL 0.00156
CL 0.00005

272.25
445.21

272.90
446.27

Weibull IL 0.00143
CL 0.00001

784.00
900.00

793.91
911.38

β̂ =
s2

x
(11)

3.2.2 Simulating data

Although the true distribution of loss data is not known, it is
still interesting to understand the errors associated with the
estimated quantiles, when data are derived from a gamma
distribution. Hence, in this study, the estimated gamma dis-
tribution using the observed data series was assumed to be the
true distribution, and quantiles estimated from the observed
data were assumed to be the true quantiles in estimating bias
and MSE associated with the estimated quantiles. The esti-
mated quantiles in this study correspond to non–exceedance
probabilities of 0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
and 0.999. Probability values of 0 and 1 were intentionally
avoided to eliminate mathematical errors when applying the
gamma inverse function. With the use of a uniform random
number generator (discussed in the next section), 500 simu-
lated gamma samples of losses of the same size as the ob-
served series were generated. For each of the generated sam-
ples, quantiles at 10 selected non-exceedance probabilities
were calculated. Hence, the simulated quantile estimation in-
volved (1) calculating gamma parameters for each of the 500
simulated series, (2) applying a gamma inverse function for
the series in step 1 to obtain simulated loss quantiles at each
selected non–exceedance probability, and (3) estimating 500
simulated loss quantiles for each non–exceedance probabil-
ity. The sequences of these steps are shown in Fig. 2.

Random number generation

A reliable source of random numbers, and a means of trans-
forming them into prescribed distributions, is essential for
the success of the simulation approach. Generated random
numbers,x, should belong to a domain,xε [xmin, xmax], in
such a way that the frequency of occurrence (or probabil-
ity density) will depend upon the value ofx in a prescribed
functional formf (x) (Saucier, 2000). Among the various
techniques available for generating random numbers, most of
the methods presume that a supply of uniformly distributed

random numbers are in the half–closed unit interval [0, 1)
(Saucier 2000). The methods for random number genera-
tion include inverse transformation, composition, convolu-
tion, acceptance–rejection, sampling and data–driven tech-
niques, techniques based on number theory and Monte Carlo
simulation (Saucier, 2000). If the inverse form of a distribu-
tion function(F−1) is not available, then the inverse transfor-
mation technique is not feasible and other techniques need to
be considered. However, in this study, the inverse transforma-
tion technique can be used because the inverse gamma func-
tion is available. Also, the inverse transformation is a simple,
efficient and commonly used technique (Saucier, 2000).

3.2.3 Evaluating quantiles

As mentioned earlier, the estimated quantiles were evaluated
by comparing bias and MSE estimated using 500 simulated
samples. In addition, probability plots were constructed to
determine the validity of the gamma distribution for describ-
ing the loss data.

Bias

The bias (or bias function) of an estimator is the difference
between expected value of the estimator and the true value of
the parameter being estimated, and is given in Eq. (12).

Bias= E[θ̂ − θ] = E[θ̂ ] − θ, (12)

whereE[] denotes the expected value over the distribution
P(x/θ) (Lebanon, 2010).P(x/θ) is a probability distribu-
tion for observed datax, with parameterθ .

Mean square error (MSE)

The MSE is a measure of the variance of error in the quantile
estimator and is used to give an overall measure of accuracy.
The MSE thus assesses the quality of an estimator in terms
of its variation and unbiasedness. The MSE of an estimator
is given in Eq. (13).

E(‖θ̂ = θ‖
2) = E

(
d∑

j=1

(
θ̂j − θj

)2
)

=

[
bias(θ̂)

]2
+ var(θ̂) (13)

Confidence interval (CI)

In this study, the level of confidence is set as 95 %, which
reflects a significance level of 0.05. For the gamma distri-
bution, exact confidence intervals are difficult to construct
and the available methods for finding confidence interval of
the gamma distribution are very complex (Fay and Feuer,
1997; Banneheka, 2012). Therefore, in this study, a sim-
ple approximation was undertaken to determine the CI. The
upper confidence level (UCL) and lower confidence level
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Fig. 3.Gamma Q–Q plots for the observed IL data.

(LCL) were calculated as UCL =f (xu) and LCL =f (xl) re-
spectively, wherexu = 0.95n, xl = 0.05n andn is the sample
size. As the study generated 500 simulated series,n = 500.

3.3 Generalised method to test the gamma distribution

As mentioned in Sect. 3.2, goodness-of-fit tests such as the
A–D test can only be used for limited distributions. This is
also the case for the K–S test. However if the observed data
transform to the CDF of the candidate distribution, the orig-
inal data set can be tested as a candidate distribution using
the A–D or K–S using the method described below. This
method is particularly suitable for distributions that have in-
verse functions and for distributions whose parameters can-
not be generalised. In this study, this method is introduced
based on the two-parameter gamma distribution. However it
can also be modified for other distributions as well.

The theory for the introduced method is as follows.

– Consider the set of loss data asX1, X2,. . .Xn

– Fit the data set to the two-parameter gamma distribu-
tion and compute parametersα andβ

– Calculate

– α̂ andβ̂

– using the maximum likelihood method

– Make the hypothesis thatH0: X1, X2, . . . , Xn are
drawn fromf (x|α̂, β̂)

– ComputeYi =F
(
Xi |α̂, β̂

)
– wherei = 1,2. . . ,n andF(X|α, β) is the CDF given by

Eq. (14):

F(X|α,β) =

x∫
0

f (y|α,β)dy. (14)

– The theorem is that ifH0 is true thenYi are indepen-
dent and uniformly distributed on [0,1]

– Compute the empirical distribution ofY1, Y2, . . . , Yn

as given in Eq. (15)

Gn(x) =
1

n

n∑
1

I (Yi ≤ x), 0 ≤ x ≤ 1 (15)

– This is compared with the true distributionGn(x) = x

In the Kolmogorov–Smirnov test, let the component
max|Gn(x) − G(x)| = max|Gn(x) –x|, 0≤ x ≤ 1. This is
simple to calculate as this maximum occurs atx =Y1, Y2, . . . ,
Yn.

www.hydrol-earth-syst-sci.net/17/4541/2013/ Hydrol. Earth Syst. Sci., 17, 4541–4553, 2013
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Fig. 4.Probability plots of the study catchments.

Therefore, the max is

max|Gn(Yi) − Yi |,1 ≤ i ≤ n. (16)

In the Anderson–Darling test,

S =

n∑
k=1

2k − 1

n

[
ln(G(Yk)) − ln(1− G(Y(n+1−k)))

]
, (17)

whereY1 ≤ Y2 ≤. . .≤ Yn.
Therefore, S =

∑n
k=1

2k−1
n

[
lnyk − ln(1− Yn+1−k)

]
,

which again is simple to calculate.
The advantage of this theory is that as the observed data

setX1,X2,. . . ,Xn are transposed toY1,Y2,. . . ,Yn, theY series
has to be tested for uniform distribution. In most of the avail-
able goodness-of-fit tests, critical values andp values are
available for the uniform distribution, therefore the test can
be carried out accurately. If theY series follows a uniform
distribution, then theX series should be from the gamma
distribution.

This method can also be adapted for other distributions, in
which case parameters of the particular distribution should
be determined. Then, the CDF of the particular distribution
should be determined and the resultingY series can then be
tested for uniform distribution.

3.4 Validating the selected distribution

In order to demonstrate the applicability of the se-
lected distribution to other parts of SA, the recommended

two-parameter gamma distribution was tested for two test
catchments, which follow the same criteria described in
Sect. 2. The two test catchments, A5060500 and A5070501,
both belong to the SA wet/humid region, according to ARR.
Probability plots, bias and MSE estimates, and the intro-
duced goodness-of-fit tests were investigated for these two
test catchments.

3.5 Non–parametric method

A non–parametric method, as the name implies, has no de-
pendency on parameters. Non–parametric plots were drawn
for all the catchments with they axis as the standard storm IL
and CL (fraction of the median) and thex axis as the propor-
tion of the sample value exceeded (%). The plots were also
compared with similar studies carried out for other parts of
Australia.

4 Results and discussion

4.1 Parametric method

One objective of this study is to identify a suitable parametric
distribution that can describe IL and CL data of the selected
SA catchments. The A–D test was carried out to investigate
whether the IL and CL data follow the normal, exponential
or Weibull distributions. The A–D test statistics are presented
in Table 4.

Hydrol. Earth Syst. Sci., 17, 4541–4553, 2013 www.hydrol-earth-syst-sci.net/17/4541/2013/



S. H. P. W. Gamage et al.: Probability distributions for explaining hydrological losses 4549

Fig. 5. Bias and MSE for simulated samples for catchments(a)
A5040512,(b) A5030502,(c) A5050502 and(d) A5050517.

As all thep values of the A–D tests are less than 0.05,
and A–D2 is less than the critical value, the null hypothesis
(samples follow the above mentioned distribution) can be re-
jected. Therefore, the IL and CL data are not well fitted by
normal, exponential or Weibull distributions.

Instead, the two–parameter gamma distribution was se-
lected from six theoretical distributions using Q–Q plots.
Figure 3 shows the gamma Q–Q plots for the observed IL
data for the four selected catchments. Parameters of the
gamma distribution that were calculated for the observed set
of IL data are presented in Table 5.

In all four catchments, the higher values of the losses
(> 30 mm) deviate more from they = x line. This means that
extreme loss values, which are less than 5 % of the total num-
ber of IL values deviate from the gamma distribution. It is
necessary to determine how much these extreme values de-
viate from the gamma distribution and this will be explained
by using probability plots, later in this discussion.

Although the observed CL data were also checked for the
same distributions, none of the Q–Q plots for the four catch-
ments followed they = x line.

The IL quantiles that were calculated for the selected non–
exceedance probabilities are presented in Table 6. In Table 6,
the values of Sim (x) were calculated using a 95 % confi-
dence interval. The last column of the table, which provides
the range of IL values, was generated considering both the

observed and simulated data. These ranges with their non–
exceedance probabilities are useful for design applications.

Probability plots (PDFs for the observed, fitted and simu-
lated IL data for each catchment) were used to demonstrate
that the data simulated using the two–parameter gamma dis-
tribution match well with the observed data. The probabil-
ity plots for the selected catchment are shown in Fig. 4 with
a randomly selected simulated sample. Evaluating the fitted
curves and observed data, it can be concluded that the IL data
follow the two–parameter gamma distribution very well. In
addition, these probability plots show that the simulated and
the observed data are very close. Although there is a devi-
ation of fitted, observed and simulated series in their high
values, the difference is very small.

As mentioned earlier, the Q–Q plots indicate that extreme
loss values do not closely follow gamma distribution as other
data values. However, the probability plots indicate that the
gap between the fitted (theoretical line) and simulated values
is very small. Therefore the two–parameter gamma distribu-
tion is not limited to low and medium ranges of loss values,
but can also be used to represent the high values. In addition,
the error caused by the quantile estimation and simulation
should also be quantified. Although the probability plots pro-
vide certain estimation of the error associated with the sim-
ulation, the errors have been further quantified using other
methods, namely bias and MSE of the estimator.

The bias and MSE for the four selected catchments are
presented in Fig. 5. Because all the values are close to
zero, it can be concluded that the IL simulated using a two-
parameter gamma distribution is accurate and very close to
observed data. However, the values of bias and MSE can
change slightly according to the different selected simulated
samples.

After comparing a number of samples (observed data se-
ries with different randomly selected simulated data series), it
was observed that the bias and MSE are comparatively lower
in low non-exceedance probabilities. The bias and MSE have
a relatively wide range in the higher non–exceedance proba-
bilities relative to low non–exceedance probabilities. Despite
this, the bias and MSE values are always close to zero. There-
fore it can be assumed that the range of IL, and its probabil-
ity of occurrence as shown in Table 6, can be used in design
applications. However those values should only be used for
hydrologically similar catchments.

In addition, the theorem introduced in Sect. 3.3 was also
used to test the selected two-parameter gamma distribution.
The observed IL data sets of all four catchments were trans-
posed to the CDF of the gamma distribution and the result-
ing data series then tested to determine if it is from the uni-
form distribution. From the A–D and K–S tests, it was found
that the distribution of the transposed series followed the
uniform distribution for all four catchments. Therefore, this
test also confirmed that the observed IL data of the selected
catchments can be described by the two-parameter gamma
distribution.
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Fig. 6.Probability plots for the test catchments.

Fig. 7. IL and CL standardised by median values.

4.2 Two-parameter gamma distribution for other SA
catchments

In order to demonstrate that the two-parameter gamma distri-
bution can be used to explain the IL of other SA wet/humid
catchments, the observed IL data series of test catchments
A5060500 and A5070501 were fitted to the two-parameter
gamma distribution. Figure 6 shows the probability plots
for these test catchments. When fitting the two-parameter
gamma distribution, the gamma parameters (k andθ) were
taken as the average values given in Table 5. The bias for
the catchments A5060500 and A5070501 were estimated as
−0.01946 and−0.02223 and the MSE of the catchments
were calculated as 0.000597 and 0.000706, respectively. The
probability plots presented in Fig. 6, indicate that the ob-
served IL of these test catchments follow the two-parameter
gamma distribution. Also, the bias and MSE values be-
ing closer to zero further support this conclusion. Finally,
by testing the observed IL data series using the introduced
goodness-of-fit test, it can be stated that the two-parameter
gamma distribution is suitable for SA wet/humid catchments.
However, it should be noted that this study has not examined
the dry catchments that exist in the SA region and therefore
these could be the subject of future investigations.

4.3 Non-parametric method

A non–parametric method of describing losses was also de-
veloped. The non–parametric method used in this study in-
volves standardising both IL and CL with their median val-
ues. Median values have been used for standardisation in
similar studies conducted in other parts of Australia includ-
ing southeastern Australian catchments (Hill, 1996), Queens-
land catchments (Ilahee 2005) and southwestern Australian
catchments (Waugh, 1991). Using the median values for the
standardisation in this study allows the distributions of losses
across the different catchments to be directly compared, as
shown in Fig. 7. Figure 7a shows the distribution of standard-
ised IL while Fig. 7b shows the distribution of standardised
CL for both study and test catchments. Figure 7a and b indi-
cates that both IL and CL have consistency when standard-
ised by median values. The shapes of the non-parametric dis-
tributions presented in this study are consistent with similar
studies conducted for other regions of Australia (Nathan and
Weinmann, 2004; Ilahee, 2005; Nathan et al., 2003; Waugh,
1991). In particular, Nathan et al. (2003) show that the shape
of the standardised IL distribution does not change with loca-
tion. Thus despite the data being derived from very different
hydro-climatic regions across Australia, the results clearly
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Table 5.Estimated gamma distribution parameters.

Station No. A5040512 A5030502 A5050502 A5050517 Average

Shape parameter (k) 1.798 2.714 2.015 1.450 1.99
Scale parameter (θ) 0.142 0.153 0.137 0.094 0.131

Table 6.Estimated IL quantiles for selected non-exceedance probabilities.

P(x) A5030502 A5030502 A5040512 A5040512 A5050502 A5050502 A5050517 A5050517 Range

obs(x) sim(x) LCL-UCL obs(x) sim(x) LCL-UCL obs(x) sim(x) LCL-UCL obs(x) sim(x) LCL-UCL

0.01 2.53 1.52–3.50 0.85 0.46–1.21 1.39 0.78–2.11 0.56 0.46–0.96 1–3
0.1 6.53 4.49–7.90 3.24 3.03–5.31 4.48 3.43–5.92 2.94 2.02–3.29 3–7
0.2 9.15 7.70–10.01 5.11 4.09–5.67 6.73 6.17–7.92 5.12 4.07–5.71 5–9
0.3 11.46 10.00–12.65 6.88 6.05–9.27 8.79 8.02–9.81 7.31 6.24–7.89 7–11
0.4 13.72 13.66–16.00 8.71 7.67–11.87 10.87 10.79–11.82 9.64 7.56–9.92 9–14
0.5 16.10 15.03–16.90 10.69 9.64–11.34 13.10 14.01–16.92 12.26 9.16–13.01 11–16
0.6 18.73 17.67–19.61 12.96 11.90–13.82 15.61 15.53–20.32 15.32 11.21–16.92 13–19
0.7 21.86 20.80–23.59 15.73 14.66–17.09 18.64 20.56–25.01 19.12 14.00–21.72 16–22
0.8 25.93 25.88–27.01 19.42 17.34–21.03 22.65 25.57–33.21 24.29 19.17–26.37 19–26
0.9 32.34 29.31–33.46 25.40 23.32–28.71 29.07 29.01–33.21 32.85 30.72–37.84 25–33

0.99 51.34 45.37–58.32 43.87 40.77–50.92 48.57 40.59–55.92 59.99 49.90–72.13 44–60

show that while the magnitude of losses may vary between
different catchments, the shape of the distribution does not.

In addition, it can be concluded that the variation of IL and
CL values across the four catchments are higher for the pro-
portion of sample exceedance that are less than 10 %. This
variation is higher for the CL than the IL values. In this study,
the standardised CL varied from 2 to 45, and IL values var-
ied from 0 to 8 while in other similar studies (Nathan and
Weinmann, 2004; Ilahee, 2005; Nathan et al., 2003; Waugh,
1991) CL varied from 1 to 14 and IL varied from 0 to 8
(Nathan and Weinmann, 2004; Ilahee, 2005; Nathan et al.,
2003; Waugh, 1991). A major limitation of this method is
that the distribution is highly dependent on the median value
and for this a large sample size is required.

5 Conclusions

This paper investigates both parametric and non–parametric
methods to describe hydrological losses. The two–parameter
gamma distribution was successfully fitted for observed IL
data. For each catchment, the parameters were estimated and
the IL values were simulated from the two–parameter gamma
distribution. The simulated data compare very well with the
observed data, with some tendency to overestimate the oc-
currence of higher losses. The parameters and CDF of the
gamma distribution can be used to find the frequency dis-
tribution and can be used to estimate the probability of oc-
currence of IL in design applications. The problems asso-
ciated with the existing goodness-of-fit tests were also dis-
cussed and new goodness-of-fit test theory was introduced.
Although the new theory described in this paper is based on

the two-parameter gamma distribution, it can easily be de-
veloped for other distributions. In addition, this method can
be used for any set of hydrological data, to test whether or
not the data can be fitted to a particular distribution. How-
ever, for the CL component, none of the parametric distribu-
tions seems to fit the observed data satisfactorily. The non–
parametric method tested, which is the standardised distri-
bution of both IL and CL over median values, exhibits a
remarkable degree of consistency with other studies. These
standardised values can therefore be used in design appli-
cations. The presented work contributes to ongoing research
on losses in Australia for updatingAustralian Rainfall Runoff
(ARR) – A Guide for Flood Estimation in Australia. Appli-
cability of the introduced methods for different hydrological
regions is a potential area for further research.
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