Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 17, issue 11
Hydrol. Earth Syst. Sci., 17, 4349–4366, 2013
https://doi.org/10.5194/hess-17-4349-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 17, 4349–4366, 2013
https://doi.org/10.5194/hess-17-4349-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Nov 2013

Research article | 04 Nov 2013

Estimating hydraulic conductivity of internal drainage for layered soils in situ

S. S. W. Mavimbela and L. D. van Rensburg S. S. W. Mavimbela and L. D. van Rensburg
  • University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa

Abstract. The soil hydraulic conductivity (K function) of three layered soils cultivated at Paradys Experimental Farm, near Bloemfontein (South Africa), was determined from in situ drainage experiments and analytical models. Pre-ponded monoliths, isolated from weather and lateral drainage, were prepared in triplicate on representative sites of the Tukulu, Sepane and Swartland soil forms. The first two soils are also referred to as Cutanic Luvisols and the third as Cutanic Cambisol. Soil water content (SWC) was measured during a 1200 h drainage experiment. In addition soil physical and textural data as well as saturated hydraulic conductivity (Ks) were derived. Undisturbed soil core samples of 105 mm with a height of 77 mm from soil horizons were used to measure soil water retention curves (SWRCs). Parameterization of SWRC was through the Brooks and Corey model. Kosugi and van Genuchten models were used to determine SWRC parameters and fitted with a RMSE of less 2%. The SWRC was also used to estimate matric suctions for in situ drainage SWC following observations that laboratory and in situ SWRCs were similar at near saturation. In situ K function for horizons and the equivalent homogeneous profiles were determined. Model predictions based on SWRC overestimated horizons K function by more than three orders of magnitude. The van Genuchten–Mualem model was an exception for certain soil horizons. Overestimates were reduced by one or more orders of magnitude when inverse parameter estimation was applied directly to drainage SWC with HYDRUS-1D code. Best fits (R2 ≥ 0.90) were from Brooks and Corey, and van Genuchten–Mualem models. The latter also predicted the profiles' effective K function for the three soils, and the in situ based function was fitted with R2 ≥ 0.98 irrespective of soil type. It was concluded that the inverse parameter estimation with HYDRUS-1D improved models' K function estimates for the studied layered soils.

Publications Copernicus
Download
Citation