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Abstract. Statistical downscaling is widely used to over-
come the scale gap between predictors from numerical
weather prediction models or global circulation models and
predictands like local precipitation, required for example for
medium-term operational forecasts or climate change impact
studies. The predictors are considered over a given spatial
domain which is rarely optimised with respect to the target
predictand location. In this study, an extended version of the
growing rectangular domain algorithm is proposed to provide
an ensemble of near-optimum predictor domains for a statis-
tical downscaling method. This algorithm is applied to find
five-member ensembles of near-optimum geopotential pre-
dictor domains for an analogue downscaling method for 608
individual target zones covering France. Results first show
that very similar downscaling performances based on the
continuous ranked probability score (CRPS) can be achieved
by different predictor domains for any specific target zone,
demonstrating the need for considering alternative domains
in this context of high equifinality. A second result is the
large diversity of optimised predictor domains over the coun-
try that questions the commonly made hypothesis of a com-
mon predictor domain for large areas. The domain centres are
mainly distributed following the geographical location of the
target location, but there are apparent differences between the
windward and the lee side of mountain ridges. Moreover, do-
mains for target zones located in southeastern France are cen-
tred more east and south than the ones for target locations on
the same longitude. The size of the optimised domains tends
to be larger in the southeastern part of the country, while do-
mains with a very small meridional extent can be found in an
east–west band around 47◦ N. Sensitivity experiments finally
show that results are rather insensitive to the starting point

of the optimisation algorithm except for zones located in the
transition area north of this east–west band. Results also ap-
pear generally robust with respect to the archive length con-
sidered for the analogue method, except for zones with high
interannual variability like in the Cévennes area. This study
paves the way for defining regions with homogeneous geopo-
tential predictor domains for precipitation downscaling over
France, and therefore de facto ensuring the spatial coherence
required for hydrological applications.

1 Introduction

For both, climate change impact studies and operational hy-
drological forecasts, precipitation information on the scale of
small subcatchments is needed. Numerical weather predic-
tion (NWP) models and general circulation models (GCMs)
provide relevant information about the atmospheric large-
scale circulation but have too coarse a resolution to be di-
rectly used in impact models like hydrological models or
for precipitation forecasts on the scale of small subcatch-
ments. A downscaling step is therefore required, and this
can be done dynamically using regional climate models and
limited-area models or using statistical methods that make
use of statistical relationships between large-scale predictors
and local-scale predictands.

Requirements for hydrological use of predictands specif-
ically include the spatial coherence of precipitation fields
– i.e. a realistic spatial distribution of precipitation at any
time step – over potentially large basins. Indeed, the gen-
eration of floods is, for example, particularly sensitive to
the spatial distribution of precipitation over the catchment
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considered. While dynamical downscaling methods naturally
provide such a sought-after spatial coherence, this is not nec-
essarily the case for statistical methods.

This paper proposes some development on how to en-
sure such a spatial coherence in precipitation by optimising
the predictor domains of an analogue downscaling method
for different individual target locations over France and
analysing the spatial variability of results. This work will
help in identifying regions with homogeneous geopotential
predictor domains for precipitation, over which the spatial
coherence would be de facto ensured by the selection of com-
mon analogue dates.

1.1 Statistical downscaling methods

In statistical downscaling, a relationship between large-scale
predictors provided by GCMs and local-scale predictands is
established. There are three major groups of statistical down-
scaling methods used in a climate change context: model out-
put statistics (MOS) (e.g.Chandler, 2002; Friederichs and
Hense, 2007; Vidal and Wade, 2008; Lavaysse et al., 2012),
perfect prognosis (PP) (e.g.Timbal et al., 2003; Boé et al.,
2006; Hertig et al., 2012) and weather generators (e.g.Vrac
et al., 2007; Chen et al., 2010; Bellone et al., 2000). A review
of methods and their strengths and weaknesses to produce
relevant input for impact models can be found inMaraun
et al. (2010). Both PP and MOS methods are also applied
for operational precipitation forecast (e.g.Marty et al., 2008,
2012, 2013; Voisin et al., 2010; Nam et al., 2011; Liu and
Coulibaly, 2011; Muluye, 2011).

A number of statistical downscaling studies with vari-
ous methods have been performed over France over the
last few years, but mainly for specific regions like the
French Mediterranean (e.g.Quintana Seguí et al., 2010,
2011; Lavaysse et al., 2012; Kallache et al., 2011; Carreau
and Vrac, 2011; Nuissier et al., 2011; Beaulant et al., 2011),
western France (e.g.Timbal et al., 2003), the French Alps
(e.g.Martin et al., 1997) or the Seine Basin (e.g.Boé et al.,
2006). Until the present study, only a few of them had been
performed at the country scale (Boé and Terray, 2008; Boé
et al., 2009).

The downscaling method used in this work follows an ana-
logue approach. It belongs to the PP methods, and is based
on the idea introduced byLorenz(1969) in weather forecast-
ing that similar causes have similar effects; that is, similar
predictor fields lead to similar predictand values. Nowadays
numerous variants using different types of predictor fields
and distance measures are in use. They range from weather-
typing-based methods based on principal components of
mean sea level pressure fields (Boé et al., 2006) to MOS-like
techniques based on precipitation field analogues (Hamill
and Whitaker, 2006; Turco et al., 2011). A description of
the theory of probabilistic forecasts with analogues can be
found in Hamill and Whitaker(2006). Analogue methods
have been applied in different regions of the world with

very diverse climates, e.g. Switzerland (Horton et al., 2012),
Australia (Timbal and McAvaney, 2001), central Sweden
(Wetterhall et al., 2005), Punjab (India) (Raje and Mujumdar,
2011), southeast USA (Zhang and Georgakakos, 2012), the
Alpine region (Themeßl et al., 2011), and northeast Spain
(Ibarra-Berastegi et al., 2011).

1.2 Predictor domains: optimisation

The predictor variables used for statistical downscaling and
the predictor domains have to be chosen carefully. The pre-
dictor variables should have predictive skill for the quan-
tity to predict – in this case, precipitation. These predictors
should be quantities that are reliably simulated by NWPs and
GCMs, and ideally they should be related to the processes
leading to precipitation, and for climate change applications
this relationship should persist in a changing climate (Wilby
et al., 1998).

In most downscaling studies, no optimisation of the pre-
dictor domains has been performed, and only a few of them
have tested even a handful of different domains (Timbal and
McAvaney, 2001; Timbal et al., 2003; Gutiérrez et al., 2013).
Timbal and McAvaney(2001) especially found that choosing
an informative predictor domain is an important issue for the
analogue selection.Ben Daoud(2010) found that some pre-
dictors like temperature or moisture variables have their main
influence close to the target location, and therefore a small
predictor domain close to the target location is likely to be
sufficient. The predictor domains for the shape of the geopo-
tential field are usually larger, and their optimum location
depends on the meteorological situations that lead to precip-
itation at the target location.

Various algorithms may be used to optimise predictor do-
mains. Ideally all predictor variables, predictor domains and
other parameters should be optimised together and predic-
tor domains of any size and shape should be possible. This
was done bySauter and Venema(2011) for an artificial neu-
ral network downscaling method and one target location in
the Rhineland (Germany). Large computer resources were
needed to do so because the search space is huge. A global
optimisation of the analogue method was done byHorton
(2012) for some stations in the Swiss Alps using genetic al-
gorithms, with substantial computational costs as well.

This work focuses on optimising the predictor domain of
one variable: the geopotential height. Restricting the parame-
ters to be optimised allows for optimising domains for a large
number of target zones separately and for exploration of
the near-optimum domains for each target zone rather than
searching for a unique optimum following the equifinality
thesis (Beven, 2006).

1.3 Predictor domains: spatial variability

When analogue methods are applied, only one predictor
domain for all target locations is generally used (see, e.g.
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Timbal et al., 2003), because this ensures that the same ana-
logue date will be selected for the whole region, and this nat-
urally leads to spatial coherence of the precipitation field as
long as individual fields and no summary measures are used.
But for large target regions like France or large catchments
with diverse precipitation climates like the Rhône Basin,
this will likely result in a lower skill for smaller subcatch-
ments.Bontron(2004) optimised the geopotential predictor
domains for individual groups of precipitation stations lo-
cated in France and northern Italy and compared the perfor-
mance with those optimised for all groups together. For the
groups near the barycentre of all groups, the difference in
skill was small, but for groups far from the barycentre the
skill was clearly better using the individually optimised pre-
dictor domains. Furthermore, he suggested to use the same
predictor domain for groups situated not more than 250 km
apart from each other and not separated by a major “climato-
logical barrier”.

This work considers a large number of individual target
locations over France in order to assess the spatial variability
in locally optimised domains, in terms of both location and
shape. The use of several near-optimum domains furthermore
allows for assessment of the diversity of domains associated
with very similar performance for single target locations.

1.4 Objectives and outline of the paper

The first objective of this paper is to present an extended ver-
sion of the growing rectangular domain algorithm for opti-
mising the predictor domains used by a statistical downscal-
ing method. Such an algorithm may be used to find an en-
semble of near-optimum predictor domains for any statistical
downscaling method and consequently to address the issue of
equifinality raised when trying to perform a numerical opti-
misation based on some summary skill score.

The second objective of the paper is to answer the follow-
ing question: is the assumption made for example byTimbal
et al.(2003) andBoé and Terray(2008) of a common predic-
tor domain for large regions in France actually valid? To this
aim, the extended version of the growing rectangular domain
algorithm is applied to derive an ensemble of near-optimum
geopotential predictor domains for 608 target zones covering
the whole of France. The downscaling method considered for
this application is an analogue method that has a long history
of development with various applications, like hydrological
forecasts (Ben Daoud et al., 2011b) or historical flood recon-
struction (Auffray et al., 2011). However, it is applied here
for the first time to the whole of France.

The methods used for downscaling and optimisation are
described in Sect.2, and results are described in Sect.3.
Section4 presents some sensitivity tests that have been per-
formed to check the robustness of findings with respect to
(1) the archive length, (2) the version of the optimisation
algorithm and (3) the optimisation starting point. Critical

methodological choices are discussed in Sect.5, and conclu-
sions are given in Sect.6.

2 Data and methods

2.1 Data

2.1.1 Reanalyses

The predictor domain optimisation is done using two
archives of reanalysis data. ERA-40 data (Uppala et al.,
2005) at 2.5◦ resolution were selected as the large-scale
archive against other global reanalyses because of the trade-
off between archive length and data assimilation technique,
following Ben Daoud et al.(2011b, a). The archive length
is critical (1) for including as many diverse analogue sit-
uations as possible, (2) for studying the sensitivity on the
archive length (see Sect.4.3) and (3) for having a completely
independent (i.e. not used either for optimising domains or
as an archive) time period left for validation using a rig-
orous split-sample approach as defined byKlemeš(1986).
The NCEP/NCAR reanalysis (Kalnay et al., 1996) has a
longer archive, but ERA-40 made use of the more advanced
three-dimensional variational data assimilation.Ben Daoud
et al. (2009) compared ERA-40 and NCEP/NCAR reanal-
ysis as sources for large-scale predictors for the downscal-
ing method used here and found a slightly higher skill using
ERA-40. ERA-Interim (Dee et al., 2011) uses an even more
advanced data assimilation technique and has a higher spa-
tial resolution, leading to a better temporal consistency and a
better representation of the hydrological cycle (seeDee et al.,
2011), but has still a shorter archive than ERA-40. Prelim-
inary tests byBen Daoud(2010) with a 1.125◦ version of
ERA-40 and a simpler variant of the downscaling method
(seeBontron and Obled, 2005) showed only very small im-
provements in skill and quite similar optimised domains with
the higher resolution archive. Moreover, a higher resolution
large-scale archive would increase both the equifinality issue
and the computation time. Furthermore, some hypotheses,
notably on the predictor domains for temperature, vertical
velocity and humidity (see Sect.2.2), may not be appropri-
ate anymore. Lastly, using ERA-40 data ensures consistency
with the local-scale archive as this global reanalysis has been
used as a first guess by the Safran system for computing ver-
tical profiles of near-surface variables.

Safran (French near-surface reanalysis) data (Vidal et al.,
2010) are used as predictands for the local daily precipita-
tion, which is the target variable addressed by the downscal-
ing. The Safran reanalysis data are defined on 608 climato-
logically homogeneous zones covering France. Inside these
zones the meteorological variables are supposed to depend
only on altitude. These zones are used as elementary units in
this work and are shown in Fig.1. The algorithm used for the
Safran analysis as well as its validation and application over
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Fig. 1.The 608 climatologically homogeneous zones defined in the
Safran data. The case study zones used in this study are coloured.
The three zones situated in the Rhône catchment are Saône (212,
dark green), Arve (317, light red) and Ardèche (442, dark red). The
seven zones located at the geographical limits of the country are
shown with other colours.

France are described byQuintana-Seguí et al.(2008). A de-
tailed validation of this 50 yr atmospheric reanalysis over
France has been carried out byVidal et al. (2010). Of par-
ticular interest to this study, they found that the reanalysis
uncertainty on precipitation is both very low and relatively
constant over the 1958–2008 period when considering both
dependent and independent validation data. The bias calcu-
lated with 83 high-quality independent validation stations is
smaller than 0.1 mm day−1, and the root-mean-square error
is around 2.5 mm day−1 (Vidal et al., 2010).

The common archive period for the two reanalysis data
archives is from 1 August 1958 to 31 July 2002. The pe-
riod 1 August 1982–31 July 2002 is used to optimise the
geopotential predictor domains except for in the sensitivity
test on archive length, where the whole common archive is
used. This is discussed later in Sect.5.

2.1.2 Case study zones

The domain optimisation was performed for all 608 zones
in the Safran data set, but detailed sensitivity tests focused
on three case study zones. All three selected zones are part
of the Rhône catchment, but have different precipitation cli-
mates as shown in Fig.2. This has implications on the spatial
coherence, since different parts of the catchment receive pre-
cipitation in different meteorological situations, and this may
lead to different informative spatial predictor domains and
therefore different analogue dates. Furthermore, in Sect.3.1
results are shown for zones located at the geographical lim-
its of the country. Maps showing the skill of the downscal-
ing method using a unitary-sized domain at all possible loca-
tions, so-called relevance maps, for these zones were used in
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Fig. 2. Monthly mean precipitation, 1 August 1958–31 July 2002,
from the Safran data for the three case study zones Saône, Arve and
Ardèche.

a preliminary analysis to define the edges of the search do-
main. These zones at the geographical limits of the country
as well as the case study zones are coloured in Fig.1.

The case study zone calledSaône(212) is located in the
Burgundy region, in the Saône River valley. The terrain is
rather flat and the zone is mainly influenced by the wester-
lies. The precipitation is uniformly distributed over the whole
year. The second zone, namedArve (317), is located in the
upper Arve catchment near Mont Blanc. The precipitation
has a yearly cycle with a maximum in winter and a mini-
mum in summer and early autumn. The third case study zone,
namedArdèche(442), is located in the upper Ardèche catch-
ment in the Cévennes area, and has a precipitation maximum
in October with a high inter-annual variability (see Fig. 4 in
Vidal et al., 2010). The precipitation maximum in autumn re-
sults from heavy precipitation events that are frequently ob-
served in the Cévennes region during this season (see, e.g.
Ricard et al., 2012).

2.2 Downscaling method

The downscaling method used here is an analogue approach
that has already a long history of development in weather
forecasting context, and some developments are underway to
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Table 1. Predictors and their corresponding pressure levels, times, similarity criterion and number of situations selected in the given step
used by the downscaling method.

Predictor Pressure level[hPa] and time[UTC] Similarity Number of
criterion analogues

Temperature 925 at 12:00D + 1, 600 at 12:00D E.d.1 2000∗

Geopotential 1000 at 12:00D, 500 at 00:00D + 1 TWS2 170
Vertical velocity 850 at 06:00, 12:00, 18:00D and 00:00D + 1 E.d.1 70
Humidity (TCW× Rh) 850 at 12:00D and 00:00D + 1 E.d.1 25

∗ depending on the length of the archive: 100× number of years in the archive (44 yr→ 4400, 20 yr→ 2000, . . . ).1 E.d., Euclidean
distance;2 TWS, the Teweles and Wobus shape criteria (Teweles and Wobus, 1954).

apply it in a climate change context.Duband(1981) was the
first who applied the analogue method in France.Guilbaud
and Obled(1998) introduced the analogue selection on grid-
ded geopotential fields with the Teweles and Wobus shape
criteria (Teweles and Wobus, 1954). Obled et al.(2002) cal-
ibrated the method for 50 French, Spanish and Italian catch-
ments.Bontron and Obled(2005) introduced the use of re-
analysis data as a historical archive – the NCEP/NCAR re-
analysis (Kalnay et al., 1996) – instead of interpolated ra-
diosonde data, and added local humidity to the predictor vari-
ables.Ben Daoud et al.(2011a, b) then introduced the tem-
perature and the vertical velocity predictor variables.

This downscaling algorithm developed byBen Daoud
et al. (2011a) and applied here performs a four-step se-
lection on temperature, geopotential heights, vertical veloc-
ity and humidity, respectively, to identify analogue dates in
the archive. The predictor variables, similarity criterion and
the number of analogue situations selected after each step
are summarised in Table1. The main characteristics of the
method are summarised below; for details, seeBen Daoud
(2010), who identified the optimum combinations of vari-
ables and times for the Seine and Saône river basins. The
number of analogue dates retained after step 2, 3 and 4 were
again taken fromBen Daoud(2010). The precipitation value
for dayD corresponds to the precipitation accumulated be-
tween 06:00 UTC dayD and 06:00 UTC dayD + 1.

The first step is a selection on temperature at 925 hPa at
12:00 UTC dayD + 1 and 600 hPa at 12:00 UTC dayD. The
pressure levels and corresponding times were optimised by
Ben Daoud et al.(2011a). The predictor domain is the ERA-
40 grid point closest to the target location, which is reason-
able as temperature can be seen as a proxy for the thermo-
dynamical properties of the air on the local scale. A similar
choice was made byHanssen-Bauer et al.(2003). The sim-
ilarity criteria is the Euclidean distance with equal weights
for the two pressure levels. As shown byTimbal et al.(2008)
and Hanssen-Bauer et al.(2003), including a temperature
variable as a predictor is especially important in a climate
change context since different temperatures may occur in
a given season and the amount of water the atmosphere
can hold depends on temperature. The number of analogue

situations selected in step 1 depends on the length of the
archive; it is 100× number of years in the archive – for ex-
ample 2000 analogue situations for a 20 yr archive, as is used
for the optimisation of the predictor domains for geopoten-
tial. This approximates the 4-month season length used by
Bontron(2004) and the 2900 daysBen Daoud(2010) used
with a 30 yr archive. The four days before and after the tar-
get date are excluded to avoid the selection of days within
possibly the same low-pressure system.

The second step is a selection on geopotential at 1000 hPa
at 12:00 UTC dayD and 500 hPa at 00:00 UTC dayD + 1.
The similarity criteria used is the Teweles and Wobus crite-
ria S1 (Teweles and Wobus, 1954), called TWS in the fol-
lowing, which measures the similarity between the zonal-
and meridional gradients expressed as the difference between
each point of the predictor domain and all other points with
the same longitude or latitude. Therefore the TWS measures
the similarity of the shape of the fields.Guilbaud and Obled
(1998) found that the TWS leads to better downscaling per-
formance than the Euclidean distance for the geopotential
predictor. This criterion has been widely used in various ana-
logue methods (e.g.Wetterhall et al., 2005; Wetterhall et al.,
2007; Teutschbein et al., 2011; Horton et al., 2012; Brigode
et al., 2012) and weather-type classification (e.g.Garavaglia
et al., 2010). Again equal weights are given for the two pres-
sure levels. The same predictor domain is used for the two
pressure levels. For this step the predictor domains are op-
timised using the method described later in Sect.2.5. The
170 most similar days regarding geopotential shape out of
the 2000 with the most similar temperature are selected.
Geopotential- or pressure fields are often used as predictors
because they are well simulated by the GCMs and contain in-
formation about the atmospheric dynamics like flow strength
and direction or divergence (Wilby and Wigley, 2000).

The third step is a selection on vertical velocity at 850 hPa
at 06:00, 12:00 and 18:00 UTC dayD and 00:00 UTC day
D + 1. The similarity criterion is Euclidean distance, and
the predictor domain is the nearest ERA-40 grid cell. Equal
weights are given to the different times. Upward motion is
necessary for the formation of clouds and precipitation. With
a model resolution of 2.5◦ this predictor can only account
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for large-scale upward motion due to dynamical reasons, and
not for upward motion due to local convection or orography.
Ben Daoud et al.(2011a) found some additional skill for the
first two forecast days and fewer false alarms with the verti-
cal velocity added as a predictor. The most similar 70 days
out of the 170 days remaining after step 2 are selected.

The fourth step is a selection on humidity, more precisely
the product of the total column water (TCW) and relative hu-
midity at 850 hPa (RH) at 12:00 UTC dayD and 00:00 UTC
day D + 1. This compound variable was found to be more
informative than other simple indicators byBontron(2004).
The similarity criteria is Euclidean distance and the predic-
tor domain is the nearest ERA-40 grid cell. The most simi-
lar 25 days out of the 70 days remaining after step three are
selected.

The predictor variables, their pressure levels and hours,
and the number of analogues to select after each step were
taken fromBen Daoud(2010), where they were selected for
the Seine and Saône basins. It has also to be noted that iden-
tical combinations of variables, pressure levels and hours in
steps 2 and 4 had also been selected byBontron and Obled
(2005) for application at various locations in southeastern
France.

2.3 Performance criterion

The skill of the downscaling method is assessed with the
continuous ranked probability score (CRPS) (Brown, 1974;
Matheson and Winkler, 1976). The CRPS is widely used for
the verification of probabilistic atmospheric or hydrological
forecasts (see, e.g.Hagedorn et al., 2008; Demargne et al.,
2010; Aspelien et al., 2011). It is defined as follows:

CRPS=

∞∫
−∞

[
F(x) − H 0

xobs
(x)

]2
dx, (1)

whereF(x) is the forecasted cumulative distribution function
of the variablex, x0

obs the observed value andH 0
xobs

(x) the
Heaviside function ofx − x0

obs. The properties of the CRPS
are as described inHersbach(2000). The CRPS is sensitive to
the entire range of the parameter, and no predefined classes
are required; it is equal to the mean absolute error (MAE)
in the case of a deterministic forecast, and it can be inter-
preted as an integral over all possible Brier scores. In order to
compare results from different zones, the continuous ranked
probability skill score (CRPSS) with the climatology as a ref-
erence forecast is used:

CRPSS= 1 −
〈CRPS〉

〈CRPSclim〉
, (2)

where〈 〉 denotes the time average and the CRPSclim is cal-
culated over the 1 August 1982–31 July 2002 period – except
for the 44 yr experiments, where the whole archive period is
considered – using precipitation data from±60 days around

the target day from different years in order to take seasonality
into account.

2.4 Relevance maps

A relevance map represents the forecast skill for each grid
cell of the predictor data set. Relevance maps were used, for
example, byBontron(2004) andHorton et al.(2012) to se-
lect the most predictive pressure level and time step for the
geopotential predictor. Relevance maps are obtained by fix-
ing every parameter except the location of a unitary-sized
spatial domain (2× 2 ERA-40 grid points, 2.5◦ resolution)
that moves across the whole map (Horton et al., 2012). Us-
ing the TWS 2× 2 grid points is the smallest possible do-
main since the TWS is based on the calculation of gradients,
i.e. differences between two grid points. By iterating the po-
sition of this small domain, the CRPS score corresponding to
every location is obtained. Relevance maps thus allow for one
to see where the synoptic circulation information is relevant
to explain observed or analysed precipitation time series. It is
expected that the best predictor locations are consistent with
the meteorological characteristics that are responsible for the
region’s weather. The predictor’s best locations are therefore
expected to be different for sub-catchments or stations influ-
enced by different meteorological phenomena (Horton et al.,
2012).

Relevance maps are used in this study (1) to illustrate the
different atmospheric influences for zones in different parts
of the country (Sect.3.1), (2) to compare the optimised do-
mains with the regions of high skill in the relevance maps
(Sect.3.2.2) and (3) to have an additional starting point for
experiments on the sensitivity of the optimisation algorithm
(Sect.4.1).

2.5 Optimisation method

Geopotential was chosen for optimisation because it is the
most important predictor in the downscaling method used,
and the size and location of the predictor domain is supposed
to depend more strongly on the typical weather pattern caus-
ing precipitation in the target area than for the other predictor
variables. The predictor domain optimised here is a domain
common to both geopotential levels described in Table1.

The selected optimisation method is based on the idea of
growing rectangular domains as applied byBontron(2004)
andBen Daoud(2010). The basic version starts from a given
2× 2 grid point domain (here the nearest one to the target
zone), calculates a score (here the CRPS) and then expands
the domain in four directions by adding one grid point east,
west, north or south. For these four resulting domains the
CRPS is calculated and the domain with the smallest CRPS
is selected. This selected domain is then used as a starting
domain in the next step. This is done until the score is not im-
proved during four consecutive steps or the edge of the search
domain is reached. This method is very fast, but explores
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only a very small subset of the space of predictor domains,
and therefore it is likely that some relevant domains are not
tested.

For this work an extended version of this method was de-
veloped: five domains, instead of a single one, are retained
and expanded in each step. With this method a larger number
of domains are explored, and the five best domains found in
this procedure are returned, thus providing an indication of
variability around optimal domains. The equifinality thesis
(Beven, 2006) postulates that very similar skill score values
can be obtained with different parameter sets, and that it is
therefore beneficial to search for a number of very good per-
forming parameter sets rather than for the best one.

Like in the basic version, the search is started from a given
2× 2 grid point domain, here the nearest one to the target
zone where not indicated differently. After calculating the
CRPS this domain is expanded in four directions by adding
one grid point east, west, north or south, and calculating the
CRPS for each of them. For the second step all four domains
from the previous step are expanded. This gives 16 domains,
but only 10 actually different ones, so 10 new domains are
explored. From these 10 domains in the second step, the
5 best are selected to be expanded in the next step. Theo-
retically there are up to 20 domains (5× 4) to explore from
step 3 on, but there is some redundancy or some domains
have already been explored in a previous step, and as such
between 13 and 18 actually new ones were found. In the end
the five best domains found during the whole procedure, in
general stemming from different steps, are returned.

Brigode et al.(2012) optimised the predictor domains for
a rainfall-based weather pattern classification and therefore
tested domains of three different sizes for every possible
location similar to the relevance map calculation. This is
a complementary approach to the one used in this work since
they assumed a domain size and shape and then tested where
to centre it. In the present work, a starting point is fixed,
which defines a location that has to be included in the final
domain, and then domains of different size and shapes but
all containing the starting point are tested. An approach sim-
ilar to the one adopted byBrigode et al.(2012) was chosen
by Obled et al.(2002) for a previous version of the analogue
method used here. They first tested domains of six differ-
ent sizes centred over the target location and then shifted the
best one to find the best location.Sauter and Venema(2011)
optimised the predictor domains for an artificial neural net-
work for all predictor variables together, allowing for three-
dimensional and disjointed predictor domains. In contrast to
our study, they did the optimisation for only one target loca-
tion, and even for this one location they stated that the com-
putational costs were very high. It needs to be noted that the
approach selected here does not allow for exploration of non-
rectangular domains suggested by the examination of rele-
vance maps (see Sect.3.1) and that may lead to better skill
values. Allowing for this type of domains would, however,
involve much higher computational costs.

3 Results

In the following sections, results are shown on the differ-
ent regions of influence as mapped with relevance maps in
Sect.3.1, the size and location of the optimised predictor do-
mains (Sect.3.2) and the downscaling skill of the method
using the optimised domains during the optimisation period
(Sect.3.2.1). In Sect.4 sensitivity experiments on the choice
of the starting point of the optimisation, the choice of the ba-
sic or extended optimisation method and the archive length
are shown.

The downscaling and optimisation methods are imple-
mented in Fortran 2003 using the NetCDF Fortran90 li-
brary (Pincus and Rew, 2011) for data input and output. The
subsequent analysis and figures are done using the R soft-
ware environment (R Development Core Team, 2012) with
packages ncdf (Pierce, 2011), ggplot2 (Wickham, 2009), re-
shape2 (Wickham, 2007), RColorBrewer (Neuwirth, 2011;
Harrower and Brewer, 2003), sp (Pebesma and Bivand, 2005;
Bivand et al., 2008), zoo (Zeileis and Grothendieck, 2005)
and gridExtra (Auguie, 2012).

3.1 Different regions of influence

The relevance maps for different Safran zones located at
the geographical limits of France and in the Rhône Basin
(cf. Fig. 1) and calculated from the 20 yr archive are com-
pared in Fig.3. This figure also contains the corresponding
optimised domains that will be discussed later in Sect.3.2.2.
First the magnitude of the skill differs between the relevance
maps for different zones. The highest skill is found for zones
that are mainly exposed to the westerlies (127, 557, 317).
Furthermore, there is a clear difference in the spatial pat-
tern between different zones. The zones in western, north-
ern and northeastern France (001, 074, 127, 557, 317) have
their region of maximum skill located west or southwest of
the zone. Their regions of high skill are larger in zonal direc-
tion than in meridional direction and are cyclonically curved.
They are exposed to the westerlies and receive precipitation
mainly from frontal systems. A similar shape was found by
Horton et al.(2012) for the Marécottes station in Switzer-
land, located close to the Arve zone (317). The zones in
southeastern France have their region of maximum skill lo-
cated south or southeast of the zone (493, 596, 442, 615).
Indeed, the heavy precipitation events in this region are asso-
ciated with southerly or southeasterly flow (e.g.Ricard et al.,
2012). Their regions of highest skill are more north–south
oriented, with high-skill regions extending westward at the
southern end and eastward and northwestward at the north-
ern end. What all relevance maps have in common is a local
minimum of skill surrounded by regions with higher skill.
This is due to the use of the TWS criterion that is sensitive
to the gradients of the geopotential fields and their anoma-
lies on days with precipitation. The region of low skill corre-
sponds to the location of a minimum in the mean geopotential
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Fig. 3. Relevance maps truncated at CRPSS = 0 (areas with higher skill than the climatology) and optimised domains for nine zonesidentified
in Fig. 1 using the 20 yr archive. The best domain found is drawn in red followed by the orange, yellow, green and blue one. The zone
location is indicated by a red dot.

vestigated the score variations for different seasons. Sea-
sonal relevance maps were obtained by averaging the CRPSS
over different seasons instead of the whole year. In order
to have enough data for each season the score was calcu-
lated for the whole 44 yr archive. Relevance maps for the
Ardèche case study zone for different seasons are shown in
Fig. 4. The highest skill can be found for the winter season
followed by autumn. The location of the maximum of skill
southeast to south-southeast from the Ardèche target zone
corresponds well with the south-southeasterly flow found by
Duffourg and Ducrocq (2011) for heavy precipitation events
in the Cévennes region. In spring and summer the skill is
lower due to convective precipitation which is more difficult
to predict based only on large scale fields. This is a common
feature for the three case study zones (not shown). Interest-
ingly the shape of the region with high skill is very similar
between the seasons which was not expected for the Ardèche
zone due to the specific flow condition that leads to the au-

tumn precipitation maximum in this zone (cf. Fig. 2). Further
investigation could look at relevance maps for days with dif-
ferent precipitation thresholds, but this is beyond the scope
of this paper.

3.2 Optimised predictor domains

In this section we will show results on the optimised do-
mains. The downscaling skill measured with the CRPSS for
all 608 zones in France is shown first. The near-optimum
domains found for the case study zones are then presented,
before looking at summary characteristics for all 608 zones
in France.

3.2.1 Downscaling skill

Figure 5 (left) shows the CRPSS calculated over the 20 yr
optimisation period (1 Aug. 1982 - 31 Jul. 2002) for the
best domain found for each of the 608 climatologically ho-

Fig. 3.Relevance maps truncated at CRPSS = 0 (areas with higher skill than the climatology) and optimised domains for nine zones identified
in Fig. 1 using the 20 yr archive. The best domain found is drawn in red, followed then by those in orange, yellow, green and blue. The zone
location is indicated by a red dot.

anomaly fields for rainy days (not shown). The largest gradi-
ents are situated around this minimum, which makes these
regions more relevant using a similarity measure based on
gradients.

Given the high seasonality with the precipitation max-
imum in autumn for the Ardèche case study zone (442)
(cf. Fig. 2) due to specific atmospheric flow conditions, we
investigated the score variations for different seasons. Sea-
sonal relevance maps were obtained by averaging the CRPSS
over different seasons instead of the whole year. In order to
have enough data for each season, the score was calculated
for the whole 44 yr archive. Relevance maps for the Ardèche
case study zone for different seasons are shown in Fig.4. The
highest skill can be found for the winter season, followed by
autumn. The location of the maximum of skill southeast to
south-southeast from the Ardèche target zone corresponds
well with the south-southeasterly flow found byDuffourg
and Ducrocq(2011) for heavy precipitation events in the
Cévennes region. In spring and summer the skill is lower due
to convective precipitation, which is more difficult to predict
based only on large-scale fields. This is a common feature

for the three case study zones (not shown). Interestingly the
shape of the region with high skill is very similar between the
seasons, which was not expected for the Ardèche zone due to
the specific flow condition that leads to the autumn precipita-
tion maximum in this zone (cf. Fig.2). Further investigation
could look at relevance maps for days with different precipi-
tation thresholds, but this is beyond the scope of this paper.

3.2 Optimised predictor domains

In this section we will show results on the optimised do-
mains. The downscaling skill measured with the CRPSS for
all 608 zones in France is shown first. The near-optimum do-
mains found for the case study zones are then presented, be-
fore looking at summary characteristics for all 608 zones in
France.

3.2.1 Downscaling skill

Figure5 (left panel) shows the CRPSS calculated over the
20 yr optimisation period (1 August 1982–31 July 2002) for
the best domain found for each of the 608 climatologically
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Fig. 5.Left panel: CRPSS obtained with the best domain found during optimisation. Right panel: CRPSS obtained with a domain optimised
for average precipitation over France. Dark purple corresponds to a higher (that is, better) skill score, while light blue corresponds to lower
skill.

homogeneous zones in France. The zones are coloured
according to the CRPSS value obtained. Unsurprisingly, the
CRPSS shows a spatial distribution similar to the one of the
mean precipitation (Vidal et al., 2010). The more precipi-
tation a region receives, the higher the CRPSS. The high-
est skill, between 0.30 and 0.35, is found on the windward
side (west side in this case) of the Alps, the Massif Central
and the Vosges, and along the Atlantic coast. Poorer skill,
around 0.2, can be found on the lee side of mountains and
around the Mediterranean coast. Quite interestingly, the dif-
ference in skill measured with the CRPSS between the best
and the fifth-best domain found is never larger than 0.01. So
the difference in skill between different optimised domains
for the same zone are about one order of magnitude smaller

than the differences in skill between different zones, which
makes all five domains equally plausible. Additionally, the
skill difference does not show any apparent spatial structure.

In order to compare these CRPSS values with some ref-
erence values, a set of common geopotential predictor do-
mains were optimised using the average precipitation time
series over France. The starting point as well as the predictor
domains for the other predictor variables were chosen to be
close to the centroid of the country. The right-hand side of
Fig. 5 shows the CRPSS obtained for each zone with the best
of the common predictor domains found. The mean CRPSS
over the whole country is 0.24, compared to 0.26 for the indi-
vidually optimised domains. Optimising the domains locally
corresponds to improvements ranging from 0.45 to 77 % for
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specific locations. The largest differences can be seen close
to the country borders, in southeastern France and especially
on Corsica, i.e. in areas with very specific regions of influ-
ence (see Fig.3).

3.2.2 Case study zones

As shown in Fig.3, the optimised domains tend to include
the most relevant area depicted by the relevance maps for
the case study zones. They differ reasonably between dif-
ferent locations and inside the ensemble for a given zone.
For the majority of the zones (074, 127, 493, 557, 615, 317)
the aspect ratio of the optimised domains varies little inside
the five-domain ensemble, while there are larger variations
of this property for the zones 001, 596 and 442. These large
differences in aspect ratio do not lead to larger differences
in skill as mentioned above. This exemplifies the equifinality
issue mentioned in Sect.2.5.

3.2.3 Domain characteristics at the scale of France

Figure6a shows the mean location of the centre of the op-
timised domains for each of the 608 zones using a 2-D
colour scheme for bivariate maps introduced byTeuling et al.
(2011). Here the two variables that are combined are the lon-
gitude and the latitude of the domain centre. Thus the colours
correspond to the mean location of the domain centres of the
five best domains for each target zone. The domain centres
for the best domains are mainly distributed following the lo-
cation of the target zone, but in general the mean domain
centre is situated south of the target zone. Nevertheless there
are some deviations from this general pattern. For zones on
the east side of the Massif Central, the centres of the opti-
mised domains are located clearly more east than the ones for
zones on the west side of the massif. The same feature can be
seen at other mountain ridges, for example the Vosges moun-
tain range. Furthermore the domain centres for the zones in
southeastern France are located more east than north of this
area. In some regions such as, for example, Champagne in
the northeast of the country (approximate Lambert coordi-
natesX = 700,Y = 2400), we can see that many zones have
their average optimised domain centre at approximately the
same location. In contrast, for the Cévennes and the southern
Alps regions, the average domain centres differ more often
between neighbouring zones.

Figure6b shows the maximum difference in domain cen-
tre location between two domains in the five best domain en-
semble in degrees longitude and latitude. For the majority of
the zones the domain centre location is a very stable prop-
erty (green colour), especially in latitude direction, where
differences of more than 2◦ are rare. So, in general, the cen-
tre points of the five near-optimum domains for a zone are
close to each other. Zones with larger differences, up to 8◦ in
longitude, are located in the southeastern part of the country
at the slopes of the Alpes and the Massif Central.

Figure7a shows the mean size in degrees longitude and
latitude of the optimised domains for each zone. Again the
2-D colour scheme is used, with the mean domain length in
zonal direction and the mean domain length in meridional
direction being the two variables. Small optimised domains
(green) can be found in Brittany (150, 2400), Champagne
(750, 2500), Lorraine (850, 2450), Poitou–Charentes (300,
2200) and in some parts of Normandy (300, 2500). Opti-
mised domains with small extent in longitude direction but
somewhat larger extent in latitude direction (blue) can be
found along the Mediterranean coast and in the northernmost
part of the country. Domains with small extent in the lat-
itude direction and larger extent in the longitude direction
(yellow) form an east–west-oriented band in the middle of
the country (around 2250 kmY Lambert). Medium-sized do-
mains (grey, brown) are found north of this band (500–900,
2350), in the southwest of the country and on the west side of
Corsica (1150, 1700). The largest domains (purple, red, dark
blue) tend to be situated in the southeastern part of France,
except near the coast. The most prominent feature in this map
is the area in the middle, where the optimised domains are
very small in the meridional direction, while being reason-
ably stretched zonally.

The domain sizes used in other downscaling studies were
compared to the domain sizes found in this study.Bontron
(2004), Ben Daoud(2010), Timbal and McAvaney(2001),
Boé et al. (2006) and Guilbaud and Obled(1998) used
predictor domains with sizes of 20–25◦ longitude and 10–
15◦ latitude, which corresponds to upper-medium-sized do-
mains found in this study.Timbal and McAvaney(2001) (for
daily minimum and maximum temperatures) tested some-
what smaller and much larger domains as well, but found
the one of 20× 12◦ to perform best. The domains tested by
Brigode et al.(2012) correspond to small- to medium-sized
ones found in this study.Timbal et al.(2003) (for daily mini-
mum and maximum temperatures) used a domain somewhat
larger in north–south direction. Larger domains were used by
Boé and Terray(2008), Hanssen-Bauer et al.(2003), Matulla
et al.(2008) andObled et al.(2002).

Figure7b shows the ratio of domain size range in the five-
domain ensemble, defined as follows:

ratio =
max(X) − min(X)

mean(X)
, (3)

whereX is the extent of the domains in degrees longitude or
latitude. A size ratio of 0 means that all five domains have
equal extent. A size ratio of 1 means that the difference in
extent between the largest and the smallest domain is equal
to the mean extent. On average the size ratio is larger in the
longitude direction than in the latitude direction. The figure
is quite patchy, with individual zones showing large ratios in
one or both dimensions. In the north of the country and along
the Mediterranean coast, these individual zones have large
ratios in longitude or both dimensions. The zones 001 and
596 shown in Fig.3 are examples of such zones. The zones
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Fig. 9. Optimised predictor domains for three case study zones using the extended optimisation method with five domains (first row) or the
basic optimisation method with one domain (second row). Therelevance maps for each zone are shown with a colour scale underneath the
predictor domains.

domains found have the same extent in meridional direction.
For the Ardèche zone five completely different domains are
found with the different archive lengths. This is probably
related to the high inter-annual variability in the target re-

gion (see Fig. 4 in Vidal et al., 2010). A slight reduction of
skill over these 20 yr (0.282 to 0.275) can be observed for
the Ardèche zone when considering the domains optimised
over 44 yr. Additionally, the skill computed over the 44 yr

Fig. 8. Optimised predictor domains for three case study zones and different starting domains for the optimisation. First row, start at the
nearest elementary domain; second row, start from the most relevant elementary domain from the relevance map. The relevance maps for
each zone are shown with a colour scale underneath the predictor domains.

with the largest domain size range in the latitude direction
are situated in the southern half of the country, except near
the Mediterranean coast.

4 Sensitivity experiments

For the optimisation study, options were selected concern-
ing the choice of the algorithm, the starting point and the
archive length. In this section we take a detailed look at the
impact of these choices on the optimised domains for the
three case study zones by comparing with results for alter-
native choices.

4.1 Starting domain for optimisation

The growing rectangular domain algorithm requires the def-
inition of a starting domain for the optimisation. This is true
for other algorithms as well, but since the growing rectangu-
lar domain algorithm only adds grid cell rows or columns in
each step and never subtracts any, the starting domain will
automatically be included in the final domain (see Sect.2.5).
Therefore the choice of the starting domain can influence the
predictor domains found and a poorly chosen starting point
may lead to less skillful predictor domains.

One reasonable assumption is that the best predictor do-
main will comprise the large-scale grid cell closest to the tar-
get location, as is done here or inObled et al.(2002). Another
possibility is to start at the most relevant elementary domain,
as obtained through a relevance map as done byBontron
(2004) andBen Daoud(2010), to make sure that the most
relevant location is included in the final predictor domain.

The drawback of the second approach is that the computa-
tional costs for the relevance maps are high if performed for
over 600 target locations. Roughly 2.8 million CRPS calcula-
tions per zone are, for example, needed for a 40◦

× 60◦ sized
relevance map with a 20 yr archive. Therefore the relevance
maps were computed only for the case study zones, and for
these zones the optimised domains obtained with the two dif-
ferent starting domains are compared.

The first line of Fig.8 shows the five best domains found
with the optimisation procedure starting at the nearest el-
ementary domain, with a 20 yr archive. In the second line
the same procedure is used, but the optimisation was started
from the most relevant elementary domain as found with the
relevance map. Comparing them we can see for the Arve
zone and the Ardèche zone that exactly the same five do-
mains are found even if the two starting domains are differ-
ent. For the Saône zone, five different domains are found,
with lower meridional extent and systematically higher zonal
extent when starting from the most relevant elementary do-
main. The domains found starting from the most relevant el-
ementary domain have higher CRPSS.

4.2 Optimisation method

Results obtained with the basic growing rectangular domain
algorithm and the extended one developed here are compared
for the case study zones. Figure9 shows the optimised do-
main found with the extended algorithm (first row) and the
ones found with the basic algorithm. For the Arve zone the
best domain is the same for the two algorithms. For the Saône
zone and the Ardèche zone the domain found with the basic
algorithm is the second-best found with the extended version.
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Fig. 9. Optimised predictor domains for three case study zones using the extended optimisation method with five domains (first row) or the
basic optimisation method with one domain (second row). Therelevance maps for each zone are shown with a colour scale underneath the
predictor domains.

domains found have the same extent in meridional direction.
For the Ardèche zone five completely different domains are
found with the different archive lengths. This is probably
related to the high inter-annual variability in the target re-

gion (see Fig. 4 in Vidal et al., 2010). A slight reduction of
skill over these 20 yr (0.282 to 0.275) can be observed for
the Ardèche zone when considering the domains optimised
over 44 yr. Additionally, the skill computed over the 44 yr

Fig. 9. Optimised predictor domains for three case study zones using the extended optimisation method with five domains (first row) or the
basic optimisation method with one domain (second row). The relevance maps for each zone are shown with a colour scale underneath the
predictor domains.
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Fig. 10. Optimised predictor domains for three case study zones using 20 years (first row) and 44 years (second row) archive for optimisation.
The relevance maps for each zone and each archive length are shown with a colour scale underneath the predictor domains.

is slightly lower (0.305 to 0.310) for the domains optimised
over 20 yr compared to the ones optimised over 44 yr.

Additionally, the relevance maps obtained with different
archive lengths show the same structure and the same loca-
tion of maximum values but the absolute values are slightly
higher with the longer archive. On relevance maps obtained
with a 10 yr archive (not shown) the same overall structure is
still visible but with a decrease in CRPSS of approximately
one-third.

5 Discussion

5.1 Choice of the archive period

For successful statistical downscaling it is necessary to have
long data sets of predictors and predictands for building and
validating the model (Timbal and McAvaney, 2001). The
archive length and optimisation period chosen for statistical
downscaling development depends strongly on the data that
are available and the validation strategy. Bontron (2004) and
Ben Daoud (2010) left only five years of their archive for val-
idation. Ben Daoud (2010) for example excluded the years
1978, 1983, 1988, 1993 and 1998 from the 1972–2002 op-
timisation period. The specific years were chosen to resem-
ble the 1972–2002 climate as closely as possible, in order to
validate the method for forecast purposes, i.e. in the same
climate. Timbal et al. (2003) found that using more than 20
yr of the reanalysis archive does not further reduce the er-
ror in the reconstructed time series of minimum and maxi-
mum temperature as long as the more recent part of the data

is used, indicating that the quality of the observation data
in terms of homogeneity and the reliability of the reanalysis
plays an important role too. A 20 yr recent period has been
considered here for optimising the predictor domains in or-
der to (1) leave out enough data for future validation and (2)
retain a period with the highest number of observations en-
tering the ERA-40 reanalysis system (Uppala et al., 2005).
Section 4.3 above provides some preliminary analysis of the
sensitivity to the archive length.

5.2 Optimisation starting point

The starting point for optimisation was chosen to be the near-
est elementary domain to the target zone. The optimisation
method used requires that this elementary domain is included
in the final domains. As seen above using an alternative start-
ing point at the most relevant elementary domain instead of
the nearest one results in the same domains for two of the
case study zones but in different ones for the third one, where
more skillful domains, 3 % larger CRPSS, were found start-
ing at the most relevant elementary domain. In Fig. 7a a sud-
den change in domain size can be seen around 47.5◦ N with
the domains north of this line having slightly larger domains
in meridional direction. The Saône case study zone happens
to be situated north of this line and the experiment with the
most relevant elementary domain as a starting point, more
southwest in this case, showed that the optimised domains
differ for this case study zone. The domains found starting
the optimisation from the most relevant elementary domain
are indeed very similar to those found for zones south of the

Fig. 10.Optimised predictor domains for three case study zones using 20 yr (first row) and 44 yr (second row) archives for optimisation. The
relevance maps for each zone and each archive length are shown with a colour scale underneath the predictor domains.

This shows that for some zones the extended algorithm finds
domains with slightly better CRPSS, together with an indi-
cation of variability between near-optimum ones.

4.3 Archive length

Figure10shows the optimised domains found with the 20 yr
archive (1 August 1982–31 July 2002, first row) and 44 yr
archive (1 August 1958–31 July 2002, second row). For the
Saône zone (first column) the domains found with different

archive lengths differ, but the second-best domains found are
the same, and the best domain found with the 44 yr archive
is the same as the fifth best found with the 20 yr archive. For
the Arve zone (second column) the differences between the
best domains found with the two archive lengths are small.
The best domain found with the 20 yr archive is one grid cell
larger in the west than the one found with the 44 yr archive,
and was found to be fifth best with the 44 yr archive. All
top-five domains found have the same extent in meridional
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direction. For the Ardèche zone, five completely different
domains are found with the different archive lengths. This is
probably related to the high inter-annual variability in the tar-
get region (see Fig. 4 inVidal et al., 2010). A slight reduction
of skill over these 20 yr (0.282 to 0.275) can be observed for
the Ardèche zone when considering the domains optimised
over 44 yr. Additionally, the skill computed over the 44 yr
is slightly lower (0.305 to 0.310) for the domains optimised
over 20 yr compared to the ones optimised over 44 yr.

Additionally, the relevance maps obtained with differ-
ent archive lengths show the same structure and the same
location of maximum values, but the absolute values are
slightly higher with the longer archive. On relevance maps
obtained with a 10 yr archive (not shown) the same overall
structure is still visible, but with a decrease in CRPSS of ap-
proximately one-third.

5 Discussion

5.1 Choice of the archive period

For successful statistical downscaling it is necessary to have
long data sets of predictors and predictands for building and
validating the model (Timbal and McAvaney, 2001). The
archive length and optimisation period chosen for statistical
downscaling development depend strongly on the data that
are available and the validation strategy.Bontron(2004) and
Ben Daoud(2010) left only five years of their archive for val-
idation. Ben Daoud(2010) for example excluded the years
1978, 1983, 1988, 1993 and 1998 from the 1972–2002 op-
timisation period. The specific years were chosen to resem-
ble the 1972–2002 climate as closely as possible in order to
validate the method for forecast purposes, i.e. in the same cli-
mate.Timbal et al.(2003) found that using more than 20 yr of
the reanalysis archive does not further reduce the error in the
reconstructed time series of minimum and maximum tem-
perature as long as the more recent part of the data is used,
indicating that the quality of the observation data in terms
of homogeneity and the reliability of the reanalysis plays an
important role too. A 20 yr recent period has been consid-
ered here for optimising the predictor domains in order to
(1) leave out enough data for future validation and (2) retain
a period with the highest number of observations entering the
ERA-40 reanalysis system (Uppala et al., 2005). Section4.3
above provides some preliminary analysis of the sensitivity
to the archive length.

5.2 Optimisation starting point

The starting point for optimisation was chosen to be the near-
est elementary domain to the target zone. The optimisation
method used requires that this elementary domain is included
in the final domains. As seen above, using an alternative start-
ing point at the most relevant elementary domain instead of
the nearest one results in the same domains for two of the

case study zones but in different ones for the third one, where
more skillful domains, 3 % higher CRPSS, were found start-
ing at the most relevant elementary domain. In Fig.7a a sud-
den change in domain size can be seen around 47.5◦ N, with
the domains north of this line having slightly larger domains
in meridional direction. The Saône case study zone happens
to be situated north of this line, and the experiment with the
most relevant elementary domain as a starting point, more
southwest in this case, showed that the optimised domains
differ for this case study zone. The domains found starting
the optimisation from the most relevant elementary domain
are indeed very similar to those found for zones south of the
Saône case study zone (not shown). Thus the sudden change
in the domain sizes in Fig.7a is likely to be a result of the
starting point choice.

6 Conclusions

6.1 An algorithm to provide near-optimum predictor
domains

An extended version of the growing rectangular domain al-
gorithm has been described and applied for deriving ensem-
bles of five near-optimum geopotential predictor domains for
608 individual target zones covering France. This algorithm
allowed for us to find that different predictor domains may
lead to very similar performances for the analogue downscal-
ing method considered here. It exemplifies the equifinality
issue in statistical downscaling that has been recognised in
many other research domains (Beven, 2006). The equifinality
is a consequence of a single-objective optimisation approach;
that is, the use of a single-valued objective function. Indeed,
the CRPSS used in this study as the objective function gives
only an overall skill of the method. Consequently, for a given
target location, some near-optimum domains may perform
better than others – for example, for days with specific cir-
culation patterns. This algorithm is potentially applicable in
other contexts. This study has already shown that it could be
applied at different target locations, but one may also think
of considering another predictand, such as minimum or max-
imum temperature (Gutiérrez et al., 2013), or optimising the
spatial domain of other predictors. As a result, this algorithm
could be perfectly applied to another type of statistical down-
scaling method.

This first application of the downscaling procedure by
Ben Daoud(2010) to the whole of France together with
the use of the optimisation algorithm led here to a country-
wide assessment of predictor domains. The domains result-
ing from an optimisation with the presented algorithm in-
clude the most relevant area depicted by the relevance maps
for all three case study zones. The domains differ moder-
ately between different locations and inside the ensemble
for a given zone. In some regions, such as Brittany, we
found a larger region with the same optimised domain, while
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especially in the Rhône catchment we found high variabil-
ity in the location and even more in the size of the opti-
mised predictor domains. For the majority of the zones the
aspect ratio of their five domains is rather similar, but for
some zones, equally skillful domains with very different as-
pect ratios are found. The centres of the optimised domains
are mainly distributed following the geographical location of
the target zone but with clear differences between eastern and
western slopes of mountain ridges. The domain centres for
zones in southeastern France are located more east than north
of this area. The domain centre location is a stable property
in the five-domain ensemble except for isolated zones at the
slopes of the Alps and the Massif Central. The domain sizes
vary considerably between the zones with ensemble mean
zonal extents between 6.5 and 28.5◦ and meridional extents
between 5 and 15.5◦.

6.2 On the assumption of a common predictor domain

This work addressed the hypothesis of a common predic-
tor domain for different regions of France for statistical
downscaling of precipitation. This assumption has been in-
deed made implicitly by all previous studies over France,
e.g.Timbal et al.(2003) for western and southern France sep-
arately, andBoé and Terray(2008) for the whole of France.
Results from the optimisation of geopotential predictor do-
mains showed a large diversity of near-optimum domains
for the set of 608 climatically homogeneous zones covering
France, and therefore suggest that this assumption is ques-
tionable, at least when one seeks to obtain the most skillful
method for each individual zone. However, relatively large
zones have been found to share similar near-optimum pre-
dictor domains, and making this assumption within each of
them may lead to limited loss of skill compared to domains
optimised for individual locations. This is seemingly the case
for the Seine Basin, where only minor variations in the opti-
mised domains can be found (see Figs.6 and7), supporting
the hypothesis made byBoé et al.(2006, 2007) for a common
predictor domain over this basin.

Conversely, large river basins like the Rhône Basin include
zones with very diverse influence as exemplified by the three
case study zones located in the Saône, upper Arve and upper
Ardèche catchments (see Fig.3). The present work suggests
that the performance of any perfect prognosis downscaling
method using a common predictor domain is far from opti-
mal for individual locations in France as a consequence of
the assumption of a common predictor domain, as shown
in Fig. 5 for the analogue downscaling method used here.
This may be specifically the case for the method developed
by Boé et al.(2006), which was later extended to the whole
of France byBoé and Terray(2008), Pagé et al.(2008) and
Pagé and Terray(2010). This method has been used in many
subsequent national-scale climate change impact studies on
hydrology (see, e.g.Boé et al., 2009; Vidal et al., 2012),
and downscaled products are now disseminated through a

national climate service platform built in the DRIAS project
(Lémond et al., 2011). This issue of a common predictor do-
main thus provides some explanation for the identified biases
(Boé, 2007) and weak correlations (Boé and Terray, 2008)
in downscaled precipitation outputs for regions around the
Mediterranean coast. Indeed, as shown in Figs.6 and7, the
optimum geopotential predictor domains for these regions
are quite different from the rest of the country.

6.3 Towards predictand areas with homogeneous
predictors

The spatial coherence of the downscaled precipitation is of-
ten taken as a given when using the analogue method, but
this is only true if the same analogue dates are found for the
whole target region, which is not guaranteed if different sub-
target regions are using different predictor domains. On the
other hand, if the target region is large, like a large river basin,
a common predictor domain is likely to be suboptimal on the
local scale as the best domains differ for the subcatchments,
as shown in this study, for example, for the Rhône catchment.

Despite the simplicity of the concept, the analogue method
has a large number of parameters: the predictor variables and
their spatial and temporal domains, the similarity criteria and
the number of analogues. A global optimisation of all these
parameters together is desirable but involves high computa-
tional costs. In this work the optimisation was restricted to
the horizontal domains of the geopotential predictor but was
performed for a large number of predictand zones.

Using individual predictor domains for each zone will in
general result in different analogue dates, thereby not ensur-
ing systematically the spatial coherence it has if a common
domain is used for all predictand locations. Therefore it will
be beneficial to group zones together that can use the same
parameters, i.e. the same geopotential predictor domain. The
presented analysis will help to this end by building on the
idea of grouping zones by equal domains in the five-domain
ensemble, as equal optimised predictor domains reflect prox-
imity and similar flow exposure. To this end, for each zone,
one predictor domain from the five-domain ensemble has to
be selected such that contiguous areas with the same predic-
tor domain are formed. The smooth distribution of the do-
main centre locations together with their rather small range
should facilitate this. The domain size has a higher spa-
tial variability that could hamper the attempt of aggregat-
ing zones by same domain, but this goes along with a larger
range that may compensate it to a certain degree.
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