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Abstract. Full process description and distributed hydrolog-
ical models are very useful tools in hydrology as they can
be applied in different contexts and for a wide range of aims
such as flood and drought forecasting, water management,
and prediction of impact on the hydrologic cycle due to nat-
ural and human-induced changes. Since they must mimic a
variety of physical processes, they can be very complex and
with a high degree of parameterization. This complexity can
be increased by necessity of augmenting the number of ob-
servable state variables in order to improve model validation
or to allow data assimilation.

In this work a model, aiming at balancing the need to
reproduce the physical processes with the practical goal of
avoiding over-parameterization, is presented. The model is
designed to be implemented in different contexts with a spe-
cial focus on data-scarce environments, e.g. with no stream-
flow data.

All the main hydrological phenomena are modelled in a
distributed way. Mass and energy balance are solved explic-
itly. Land surface temperature (LST), which is particularly
suited to being extensively observed and assimilated, is an
explicit state variable.

A performance evaluation, based on both traditional and
satellite derived data, is presented with a specific reference to
the application in an Italian catchment. The model has been
firstly calibrated and validated following a standard approach
based on streamflow data. The capability of the model in re-
producing both the streamflow measurements and the land
surface temperature from satellites has been investigated.

The model has been then calibrated using satellite data
and geomorphologic characteristics of the basin in order to
test its application on a basin where standard hydrologic

observations (e.g. streamflow data) are not available. The re-
sults have been compared with those obtained by the standard
calibration strategy based on streamflow data.

1 Introduction

Continuous streamflow simulation is of fundamental impor-
tance in the support of water management decisions (e.g. best
use of water resources) and civil protection actions (e.g. flood
and drought mitigation actions) (Schlosser et al., 1997; Mid-
delkoop et al., 2001; Karsten et al., 2002; Bartholomes and
Todini, 2005). These are only some examples of the huge
variety of cases where continuous hydrological models have
been applied. The application of models to different prob-
lems resulted in the development of a number of hydrological
models, which sometimes showed very different characteris-
tics (e.g. Beven, 1997; Todini and Ciarapica, 2001; Rigon et
al., 2006).

Over recent decades computation capacity has developed
exponentially. Meanwhile, due to the progress of Earth ob-
servation techniques, a large amount of territorial informa-
tion (digital elevation models, land use, soil and vegetation
parameters) has become readily available. As result of this,
full process description and distributed hydrological mod-
elling, assisted by detailed catchment descriptions, has be-
come feasible, leading to the improvement in the understand-
ing and representation of both runoff formation and prop-
agation dynamics (Winchell et al., 1998; Giannoni et al.,
2000). Distributed modelling allows us to understand the role
played by space and time rainfall distribution (Giannoni et
al., 2003), by soil and vegetation heterogeneity, and by the
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drainage network structure (Downer et al., 2002; Giannoni et
al., 2000, 2005).

Several hydrological models are based on a detailed de-
scription of all the main hydrological processes so that they
can provide a continuous simulation in support of specific
tasks such as long-term water balances and flood forecasting.
Some examples starting from the early 1970s can be cited:
Sacramento model (Burnash et al., 1973; Burnash, 1995),
SHE (Abbott et al., 1986), RIBS (Garrote and Brass, 1995),
CASC2D (Julien et al., 1995), TOPMODEL (Beven, 1997;
Wang et al., 2006), TOPKAPI (Todini and Ciarapica, 2001),
GEOtop (Rigon et al., 2006), and MOBIDIC (Campo et al.,
2006). They can usually work in different regimes and sim-
ulate continuously the spatiotemporal evolution of the state
of the catchment. The advantages of these types of models
have been highlighted in various works (e.g. Bartholomes
and Todini, 2005; Liu et al., 2005; Castelli et al., 2009).

The use of models capable of exploiting distributed infor-
mation has consolidated, with the penalty of increasing the
number of model parameters with the associated problem of
reliably estimating them (Abbott et al., 1986; Beven, 1993;
Madsen, 2000; Anderson et al., 2006).

Because of the detailed and complete description of the
hydrological cycle, these advanced models are characterized
by an abundant number of parameters, which need a detailed
knowledge of the catchment to which they are applied. Some
of them, such as those describing soil physics and land use,
have a direct physical meaning. They can therefore be es-
timated on the basis of maps of catchment information and
geophysical cartography exploiting also the continuous im-
provement of satellite-derived information; nevertheless, the
scale of representation, the detail and the temporal updating
of information often do not match requirements for the reli-
able estimation of these parameters. Furthermore, relation-
ships between land information and model parameters are
sometimes indirect and affected by great uncertainty, nul-
lifying, in practical applications, the benefit of an accurate
process description.

The presence of many parameters, in general, allows mod-
ellers to obtain good results in the calibration phase because
of the adaptation skills of the model; however, this leads to
an increased probability of obtaining similar results with dif-
ferent parameter sets (Beven and Binley, 1992; Beven and
Freer, 2001; Savenije, 2001). This limits the possibility of
reliable parameter estimation, hampering the prediction of
the abilities of the model. There are two ways to face this is-
sue: develop a parsimonious model or increase the means of
identifying parameters from available data. The design of the
“Continuum” model is based on a combination of the above-
mentioned strategies. On the one hand, special attention is
paid to reducing, as much as possible, the parameterization
of the physical processes so that land information can be ex-
tensively used as a constraint to parameter calibration. On the
other hand, the model parsimony has to be compatible with
the necessity for a detailed description of all the terms of the

hydrological cycle. This results in an increased number of
observables in the model state variables, in order to exploit
the potential offered by today’s remote sensing (R. S.).

In the last decade many advances in satellite data develop-
ment and analysis for Earth observation have been reached.
R. S. provides inputs to the model (e.g. meteorological input,
catchment description, vegetation characterization) or obser-
vation of the state variables (e.g. soil moisture, land surface
temperature). It is therefore a concern for new models to in-
clude prognostic equations of satellite observables so that
they can be used in the calibration/validation phase, or as
constraints in a data assimilation framework (Winsemius et
al., 2006; Kumar et al., 2008).

The Continuum model aims at an equilibrium between
simplicity and rigorous physical modelling while maintain-
ing comparable performances to existing models; this is
demonstrated by a calibration and validation exercise using
standard methods and data. The reduced complexity of the
schematizations and the relatively small number of parame-
ters leads to a considerably lower calibration effort, increas-
ing model robustness and portability to data-scarce environ-
ments; along these lines this work proposes a novel calibra-
tion methodology based on remotely sensed data only.

The article is organized as follows. In chapter two the com-
ponents of the model are presented; chapter three describes
the model’s sensitivity analysis, the case study, as well as
the parameter calibration and model validation; the chapter
includes the calibration experiment carried out using only
R. S.-derived information (i.e. LST – land surface temper-
ature – data and morphological information); chapter four
contains discussion and conclusions.

2 Model description

Continuum is a continuous, distributed hydrological model
that strongly relies on a morphological approach, based on
a novel way for the drainage network component identifi-
cation (Giannoni et al., 2005). Continuum is designed to be
applied on a wide range of catchment classes, from small
(O(Area) = 101 : 102 km2) to medium (O(Area) = 103 km2)
size basins and with time resolutions lower than 24 h. Such
scales are normally modelled using data-intense models
(e.g. DHI, 2003), and application of such models to basins
with O(Area)> 103 km2 is possible (e.g. Bartholomes and
Todini, 2005), but the data demand in order to have a reliable
implementation is usually very high.

The basin is represented using a regular square mesh based
on digital elevation model (DEM); the flow directions are
identified using a D-8 approach (O’Callaghan and Mark,
1984). The drainage network is represented distinguishing
between hillslope and channelled flow with a filter defined
by the expressionASk =C whereA is the contributing area
upslope of each cell [L2] andS the modified local slope [−]
(Giannoni et al., 2000). The exponentk [−] is a function of
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Fig. 1. Sketches of vegetation retention and subsurface flow at cell scale.Sv is the capacity of the vegetation reservoir,Vmax the capacity of
the soil reservoir,V the actual water volume in the soil andct Vmax the field capacity of the soil.

the morphologic environment in which the network devel-
oped and weighs the importance between flow accumulation
and slope in determining active channelled flow (Giannoni et
al., 2000). In mature morphological environments,k can be
set equal to 1.7 (Giannoni et al., 2003) while the threshold
C can be calibrated following fractal theory (Giannoni et al.,
2005) and reproducing topographic independent information
like the so-called “blue lines”.

Infiltration and subsurface flow is described using a semi-
empirical, but quite detailed, methodology based on a modi-
fication of Horton algorithm (Bauer, 1974; Disikin and Naz-
imov, 1997) and focuses especially on exploiting land use
and climatology information, which are easily available, to
set the infiltration parameters. The energy balance is based
on the so-called “force-restore equation” (Dickinson, 1988),
which balances forcing and restoring terms, with explicit soil
surface temperature prognostic computation. The overland
runoff is distributed with differentiation between hillslope
and channel flow. Vegetation interception and water table
flow have been also schematized. The different approaches
are detailed in the following paragraphs.

2.1 Overland and channel flow

The surface flow schematization distinguishes between chan-
nel and hillslope flow. In channels the momentum equation
per unit of width is derived from the kinematic schemati-
zation (Wooding, 1965; Todini and Ciarapica, 2001) with a
nonlinear dependence between discharge and water velocity
(see Appendix A for details on the equations).

The water depth for thei-th channel cell is evaluated com-
bining the momentum equation and the mass balance equa-
tion (Liu et al., 2005):

dhi

dt
= Ii −

1

1x
· uc ·

√
tg (βi) · h1.5

i (1)

where Ii represents the input per unit of area (the sum
of runoff, saturation excess and inflow discharge from up-
stream) to the grid cell [L T−1].

On the hillslopes the overland flow has a linear equation
for the motion:

q = 1x · uh · hi (2)

whereuh parameterizes the main morphologic characteris-
tics of the hillslopes [T−1] (slope, roughness, etc.). The final
schematization is equivalent to a linear reservoir model.

The parametersuh anduc need calibration at basin scale
(i.e. one value for the entire catchment).

In both hillslopes and channels, the re-infiltration process
is accounted for: the input to thei-th cell must exceed its
infiltration capacity; otherwise, it infiltrates the soil. Exfiltra-
tion is also possible.

2.2 Vegetation interception

Interception includes the portion of rainfall that is caught
by tree leaves, grass and vegetation cover in general, and is
evaporated before it touches the ground. Ponding effects are
also included in this initial abstraction. Interception is mod-
elled by a simple empirical equation similar to the one used
by Rey (1999), Kozak et al. (2007), Zhao (2003), among oth-
ers. A maximum retention capacitySv is introduced, and it is
estimated as a function of the leaf area index (LAI) by the
relationship (Kozak et al., 2007):

Sv = 0.95 + 0.5 · LAI − 0.06 · LAI 2
[L]. (3)

The water in the reservoir with capacitySv is evaporated at
the evaporation rate derived by the latent heat flux estimation
(see Sect. 2.5) without affecting the infiltration computation;
the input is the precipitation (see Fig. 1). The advantage of
using a LAI-dependent expression is that the model takes into
account vegetation variability in space and time. LAI is usu-
ally updated every 15 days from satellite optical sensor data
(e.g. from MODIS).

2.3 Infiltration and subsurface flow

The infiltration methodology is a modification of the Horton
equation (Diskin and Nazimov, 1994; Gabellani et al., 2008)
based on physically interpretable parameters. It accounts for
soil moisture evolution even in condition of intermittent and
low-intensity rainfall (namely lower than the infiltration ca-
pacity of the soil).
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The soil is schematized as a reservoir with capacityVmax
[L], and a selective filterg(t) [L T−1] manages the inflow:

g(t) = f0 + (f1 − fo) ·
V (t)

Vmax
(4)

wheref0 is the maximum infiltration rate for completely dry
soils andf1 is the asymptotic minimum infiltration rate for
saturated soils considered as a function off0 (Mishra and
Singh, 2003):

f1 = cf f0. (5)

The method proposed by Gabellani et al. (2008) has been
further modified by introducing the field capacity of the soil,
defined as the water content that can be held by capillarity
against the force of gravity:

Vfc = ct Vmax (6)

with the parameterct ∈ [0, 1]. In this new configuration (see
Fig. 1), the dynamic mass-balance equation for the soil can
be written for each cell:

dV

dt
= g(t) − rp(t), (7)

where

rp(t) = f1
V (t) − ct Vmax

Vmax (1 − ct)
. (8)

The details of dynamic mass balance equations are described
in Appendix B.

The infiltration scheme has four parameters: the initial in-
filtration ratef0, the maximum soil retention capacityVmax,
and the parameters to define soil field capacityct and final
infiltration ratecf . The parametersf0 andVmax are related to
the soil type and land use through the curve number (CN) pa-
rameter (Risse et al., 1995). Following Gabellani et al. (2008)
they can be easily derived by soil use and soil type maps and
they vary spatially in the catchment.ct and cf are calibra-
tion parameters and are assumed to be constant for the whole
basin. In this way the pattern off1 andVfc is spatially mod-
ulated by the pattern ofVmax.

The percolation rate separates into two components: a con-
tribution to subsurface flowrHy and one to deep flowrd or
recharging water table defined as

rHy = sinα · rp(t)

rd = (1 − sinα) · rp(t) (9)

where the angleα is such thattg(α) is the downslope index
as in Hjerdt et al. (2004); sin(α) is a decomposition term that
increases with the terrain slope, reproducing the major prone-
ness of the high slope areas to subsurface flow due to gravity.
The downslope index seems to be less sensitive than local
surface slope to changes in DEM resolution, and it is able to

capture dominant controls on local drainage regimes, espe-
cially in cases where profile curvature exerts a strong control
on the drainage pattern (see Hjerdt et al., 2004 for details on
this issue).

The subsurface flow is propagated between cells following
the surface drainage network directions, and the soil mois-
ture state of each cell is updated by considering both the in-
filtration, estimated by the modified Horton method, and the
inflow from the upper cells. Therefore a cell can reach sat-
uration because of the percolation from upper cells causing
saturation excess (Dunne and Black, 1970).

2.4 Deep flow and water table

Several approaches are possible to describe the dynamics of
both the deep flow and the water table, with examples from
Darcy’s law applications to conceptual reservoir models (To-
dini and Ciarapica, 2001; Rigon et al., 2006; Campo et al.,
2006). However, it is often difficult to have the data neces-
sary for the correct implementation and parameterization of
water table dynamics (Castelli et al., 2009).

In Continuum the water table evolution is modelled with a
simplified approach that maintains a physical and distributed
description of the process. Above all we are interested in the
water table interaction with the subsurface flow and soil sur-
face and in its effects on surface flow and soil moisture spa-
tial pattern; the adopted scheme allows also the reproduction
of the baseflow far from rainfall events with a parsimonious
parameterization.

The layer of soil containing the aquifer is schematized as a
unique homogeneous layer bounded by the lower impervious
(bedrock) surface and the bottom of the root zone. The thick-
ness of this layer is expressed in terms of maximum volume
of water content of the aquifer, and it is estimated by follow-
ing Saulnier et al. (1997) using the surface slope as a proxy.
The maximum water content in every cell (i) of the basin is
given by

VWmi = VWmax ·

(
tg (αmax) − tg (αi)

tg (αmax) − tg (αmin)

)
(10)

whereVWmax is the absolute maximum water content of the
aquifer on the whole investigated area; this sets a limit that is
basically a calibration parameter (see Fig. 2). The reservoir
is fed withrd (see previous section).

The effect of porosity is considered as a multiplicative fac-
tor in the Darcy’s equation used to estimate the flux per unit
area between two contiguous cells (i andj ):

qij =
hWi − hWj

1x
· Rf · f1i, (11)

where1x is the DEM spatial resolution,f1i the final infiltra-
tion rate estimated as in Eq. (5),hW the water table level (for
details on the equation defininghW, see Appendix C) andRf
a factor that also takes care of differentiating the saturated
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Fig. 2. Sketch of water table flow. As an example two consecutive
cells have been considered. The flow is calculated using the water
table gradient between the cells.rd is the deep flow,VW the water
table actual water content,VWm the water table maximum water
content,hW the absolute level of water table,hb the absolute level
of impermeable soil layer,Rf a model parameter and1x the model
spatial resolution.

vertical and horizontal conductivity. Each cell can drain to-
wards all the neighbouring cells following the 2-D water ta-
ble gradient that depends on the elevation and on the water
content of each cell.

When the water table reaches the surface (VWi(t) =VWmi ),
the deep percolation term in Eq. (9) is inhibited, while the
conditionVW(t) ∼= 0 is a limit that can only be reached after
a very long and anomalous dry period.

2.5 Energy balance and evapotranspiration

The representation of surface mass and energy turbulent
fluxes requires the solution of a conservation equation for
mass and energy (Deardorff, 1978) driven by temperature
and moisture content. Since the vertical gradient of such vari-
ables is quite large, a high-resolution multiple layer model
would be required to estimate soil surface temperature and
moisture content with accuracy. Such an approach demands
substantial amounts of computing resources to solve the bal-
ance equations. An alternative approach makes use of com-
putationally efficient parameterization of soil heat and mois-
ture flux terms. Bhumralkar (1975) and Blackadar (1976) in-
dependently showed that the heat flux into the soil could be
parameterized by the sum of a temperature-derivative term
and the difference between ground surface and deep soil tem-
perature. Deardorff (1978) referred to this approach as the
“force-restore” method, because the forcing by net radiation

is modified by a restoring term that contains the deep soil
temperature. Since then the “force-restore” method has been
widely used in land surface modelling (e.g. Lin, 1980; Dick-
inson, 1988; Dickinson et al., 1993; Noihan and Planton,
1989; Caparrini et al., 2004). Hu and Islam (1995) demon-
strated that the “force-restore” equation is the solution of the
heat diffusion equation, with purely sinusoidal forcing as-
suming that the thermal properties are constant with depth
and the surface forcing term is also nearly independent of air
temperature and has a strong periodic behaviour in time.

The Continuum model solves a complete and explicit en-
ergy balance at the interface between soil surface and atmo-
sphere by using the “force-restore” approach for land sur-
face temperature (Dickinson, 1988). Theoretically, the con-
trol volume to which the balance is applied is the unit area
bounded vertically by the surface of the soil and the top of
the canopy, assuming the thermal capacity of this volume
is negligible. The horizontal energy fluxes are neglected. In
practice, the volume is extended to the unit cell of the nu-
merical scheme used. This approximation is a fair trade-off
between parsimony in parameterization and accuracy in the
description of the processes (Boni et al., 2001; Sini et al.,
2008).

The conservation of energy at soil surface is given by

G = Rn − H − LE (12)

whereRn is the net radiation,H the sensible heat flux, LE
the latent heat flux andG the ground flux (all [E t−1L−2]).
This latter term closes the budget, and it represents the heat
propagated by diffusion towards the deep layers of the soil.
The shortwave component ofRn is derived from radiome-
ter observations when the density of observations is appro-
priate. Otherwise, it is estimated by combining the extrater-
restrial component of the radiation computed on the basis
of Yang et al. (2001, 2006), attenuated using meteorologi-
cal variables and cloud cover (including MSG cloud cover).
The terrain parameter characterizations that influence both
direct and diffuse components of the radiation are computed
following the approach in Dozier and Frew (1990). The long-
wave components are rarely available from observations, and
they are therefore estimated using the Stefan–Boltzmann law
as a function of air temperature and humidity.

The daily cycle of LST has the implicit signature of the
energy balance. Maximum amplitudes of LST diurnal cycle
are usually reached in the presence of bare and dry soil. The
presence of moisture on the surface and in the subsurface
soil greatly moderates the daily range of LST. The vegetation
cover has a similar effect. The “force-restore” approach leads
to the following equation for LST:

dLST

dt
= 2 ·

√
πω

(
Rn − H − LE

ϕ

)
− 2π$ ·

(
LST − Tdeep

)
(13)

whereϕ [E L−2 T−1 t−(1/2)] is the effective thermal inertia
andTdeep[T] is a “restoring” deep ground temperature.Tdeep
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Fig. 3.Sketch of flux partition in the Continuum model with the integration of the single modules. Two consecutive cells are illustrated.

is evaluated by filtering data for air temperature at ground
level (Caparrini et al., 2003; Caparrini and Castelli, 2004).
ϕ is the thermal inertia, and it is a function of conductiv-
ity, density and specific heat capacity of soil, and it is even-
tually related to soil moisture. The fluxes are estimated us-
ing bulk formulations. Details about the component of the
energy balance and its parameterization are reported in Ap-
pendix D. The equation input variables are commonly ob-
served by ground-based micrometeorological networks. The
soil parameters used in the estimation of the thermal inertia,
usually constant at basin scale, can be estimated by a data as-
similation process, or related to soil type (Peters et al., 1997)
when reliable maps are available.

In Continuum the evapotranspiration ET [m s−1] is esti-
mated as

ET =
LE

ρw · λLE
(14)

whereρw [m L−3] is the water density, and ET is deducted
from the interception storageSv if not empty, otherwise from
the subsurface reservoirV (t) adding the following terms to
Eq. (B1) in Appendix:{ dSv

dt
= ET if Sv > 0

dV
dt

= ET if Sv = 0
. (15)

2.6 Model summary

In summary, Continuum is a distributed model based on
a space-filling representation of the network, directly de-
rived from a DEM. The DEM resolution coincides with the
model resolution. The mass and energy balances are solved

at cell scale referring to the schematizations of subsurface
flow, deep flow and vegetation interception. The overland and
channel flow are described by a linear and a nonlinear tank
schematization respectively.

Figure 3 offers a sketch of the Continuum structure. Two
consecutive cells are considered to highlight the interaction
between the single modules.

Continuum can work with different time steps (1tm),
generally smaller than 1 day. Time steps, in the range be-
tween 10 min to 1 h, are appropriate when the objective
is a flood simulation in small to medium catchments, and
they are consistent with commonly available meteorological
data. The overland and channel flow module works with a
time step (1ts) that is smaller than1tm, dependent on the
DEM resolution to avoid problems of numerical stability.
The mass-balance equations are integrated using the Heun
time stepping scheme (Clark and Kavetski, 2010), which is a
semi-implicit method (predictor-corrector scheme), and it is
second-order accurate. Such a choice allows a good balance
between accuracy of the solution and performance when an
appropriate time step is used (this would change in applica-
tions where the integration step is large, e.g. daily). A dif-
ferent scheme is used to solve the “force-restore” equation
where more accuracy is needed and a Runge–Kutta forth-
order method is used. Since small time steps are used, minor
effects due to the adopted time stepping scheme can be ex-
pected (Clark and Kavetski, 2010).

Six model parameters need calibration on the basis of
input–output time series:cf , ct, uh, uc, Rf , VWmax (see Ta-
ble 1). The first two parameterscf , andct mainly rule the gen-
eration of runoff and the movement of water in the different
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Table 1. Summary of the model parameters that need calibration
with their brief description.

Parameter Description

uh [s−1
] Flow motion coefficient in hillslopes

uc [m0.5 s−1
] Friction coefficient in channels

cf [−] Defines the infiltration capacity at saturation

ct [−] Defines the mean field capacity

Rf [−] Related to anisotropy between the vertical and horizontal
saturated conductivity, and to soil porosity

VWmax [mm] Maximum water capacity of the aquifer on the
whole investigated area

soil layers, whileuh anduc control the surface water mo-
tion. VWmax represents the maximum storage capacity of the
aquifer, andRf summarizes the effect of soil porosity as well
as of the ratio between vertical and horizontal saturated soil
conductivity.

3 Case study: Orba watershed

3.1 Watershed description

The model has been tested on the Orba basin located in
the southern part of the Piemonte region in the Apennines
(see Fig. 4). The Orba River originates from Mt. Reixa
(1183 m a.s.l.) in the Beigua Massif, and it flows into the
Bormida River, a tributary of the Tanaro River, before it
reaches the town of Alessandria. Three main morphological
areas can be identified: a mountain part characterized by very
steep sub-catchments with a very deep river bed, a mild part
with an average slope of 1 %, and finally the alluvial part
characterized by very small slope values. The Orba River
has mainly a torrential regime with recurrent flash floods
during the autumn and spring rainfall seasons and very low
flows during summer. The Orba mean annual flow in corre-
spondence of the confluence with Bormida River is around
20 m3 s−1 (here the drainage area is about 810 km2).

3.2 Dataset

The micrometeorological networks of Liguria and Piemonte
Italian regions provide meteorological inputs. In the Orba
basin there are 31 rain gauges, 27 thermometers, 6 hygrom-
eters, 4 radiometers (shortwave) and 4 anemometers. The
temporal resolution of the observations is 1 h. This latter
is also the temporal resolution used in the model applica-
tion (1tm = 1 h). The overland and channel flow module uses
1ts = 30 s.

Observations from two nested stage discharge gauges,
with reliable and constantly updated discharge rating curves,
are used for model calibration and validation (Fig. 4). The
Tiglieto station (75 km2) is located in the upper part of the
basin, characterized by a mountainous morphology with high

Fig. 4. Orba river location in north-west Italy. In the lower left cor-
ner is a zoom on the basin with the micro-meteorological stations.
White squares represent the level gauges with rating curve, black
squares the level gauges without rating curve.

slopes, and a high percentage of the territory is covered by
forest. The Casalcermelli station drains an area of 800 km2,
and it is placed in the final part of the basin in a quite flat
environment. This allows for the testing of the model on dif-
ferent spatial and temporal scales over the same basin.

Two different periods have been simulated: the calibra-
tion period starts from 1 June 2006 and ends on 31 Decem-
ber 2006, while the validation period starts from 1 June 2009
and ends on 31 December 2009. No significant snowfall and
accumulation were observed during both periods, allowing
the implementation of the model without the need of a mod-
ule for snow cover and snow melting simulation.

DEM and CN maps with spatial resolution equal to 100 m
are available for the basin.1x = 100 m is assumed as the
model grid size. LAI maps have been produced with tem-
poral update of 15 days as averaged values of daily maps
obtained by Meteosat Second Generation (MSG). The LAI
product is based on the information provided by the three
shortwave channels of MSG-SEVIRI (VIS 0.6 µm, NIR
0.8 µm, SWIR 1.6 µm), which are used to derive the frac-
tional vegetation cover (FVC) product (EUMETSAT, 2008).
The spatial resolution is about 0.04◦ (about 4.5 km). The time
resolution of MSG allows us to have cloud-free estimations
of LAI on the area.

3.3 Influence of the calibration parameters on
simulations

A first set of 50 simulations has been carried out to evaluate
the effects on the simulated hydrographs of the calibration
parameters shown in Table 1. The most significant are used
in the following in order to show how the parameters affect
the simulations.
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Fig. 5. Influence of the calibration parameters on hydrographs.ct andcf are the subsurface flow parameters whileuh anduc are the overland
and channel flow equation parameters.

The range of variation of the parameters has been de-
fined based on prior knowledge of the parameter meaning,
which defines their mathematical and physical range of va-
lidity (Beven and Binley, 1992; Maidment, 1992; Dingman,
2002). The ranges are reported in Table 2.

The parametersuc anduh impact the water flow on the
surface. High values of these two parameters lead to narrow
and highly peaked hydrographs.uh has influence on the gen-
eral shape of the hydrograph whileuc has an increasing in-
fluence with the increasing length of the channelled paths
(e.g. large/elongated basins). It modifies the peak flow value
as well as the peak arrival time.

The impact estimation of parametersuh anduc has been
made considering a short period of simulation (16 to 18 Au-
gust 2006) since they influence directly the overland and
channel flow. The first subplot of Fig. 5 shows thatuh has
a considerable influence on both the Tiglieto and Casalcer-
melli outlets. The peak values and the hydrograph shape have
quite a large range of variation, while peak times are not sig-
nificantly affected by this parameter.

The second subplot of Fig. 5 shows the influence ofuc. It
mainly affects the shape and the peak times on the Casalcer-
melli outlet section, while hydrographs of the Tiglieto outlet
show negligible differences. Note that Casalcermelli has a
drainage area that is one order of magnitude larger in respect
to Tiglieto.

Table 2. Range of variation of the parameters used for the calibra-
tion process and minimum parameter gradient (1Par) used for cal-
ibration with streamflow data.

Parameter Unit Min Max 1Par

ct [−] 0.15 0.65 0.01
cf [−] 0.01 0.1 0.01
uc m0.5s−1 15 60 1
uh s−1 0.0002 0.0015 0.0001
Rf [−] 0.5 50 0.5

The parameterct is related to the soil field capacity and
defines the fraction of water volume in the soil not available
for percolation and subsurface flow. It has an impact on the
dynamics of soil saturation between rain events: higher val-
ues ofct reduce the soil drying time scale especially during
the cold season, with consequently higher runoff coefficients
for single rainfall events. However, the subsurface flow tends
to vanish rapidly, because water level drops easily under the
field capacity.

The parametercf controls both the velocity of subsurface
flow and the dynamics of saturation of the single cells. Low
values ofcf (i.e. low values saturated hydraulic conductivity)
tend to cause the rapid saturation during rainfall events as-
sociated with slow subsurface flow increasing runoff produc-
tion. Higher values ofcf produce a rapid subsurface flow with
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Fig. 6. Influence of the parameterRf on hydrographs; both the outlet sections are considered. The same period is shown with different y-axis
scales to highlight the differences for both high and low flows.

saturated areas that quickly concentrate along the drainage
network.

The combination of the two soil parametersct andcf con-
trols the distribution of the volumes of soil and surface water
in space and time, and it impacts soil humidity propagation.
ct andcf influence the mass balance over long periods and
regulate the exchanges between subsurface flow and runoff.
The third and fourth panels in Fig. 5 show how they affect the
tails of the hydrographs and the values of peak flows in the
period between 7 and 10 December 2006. The effect of the
combination of these two parameters is quite complex, and
it is only partially represented in the figures. They must be
calibrated over long periods of time using, at best, external
soil information when available.

The parameterRf regulates the response of the deep flow
and mainly influences low flow regimes, while for larger
basins it also affects high discharges. In Fig. 6 the period
between 14 and 17 September 2006 is shown. The effects of
Rf on the Tiglieto outlet are negligible during the flood while
the influence on low flows is more relevant for both the outlet
sections.

Particular remarks need to be made aboutVWmax – a mea-
sure of the capacity of the basin for storing water in its
aquifer and deep soil layer.

It is not easy to define a value forVWmax that reproduces
a correct or realistic distribution of the deep soil layer wa-
ter storage throughout the basin due to the fact that this

distribution is hard to observe. Tests made using different
values ofVWmax in a physically acceptable range and starting
from the same initial condition show that the model has low
sensitivity to this parameter when the period of simulation
covers between 6–12 months. This is related to the slow tem-
poral dynamic of the water table. If data series for very long
simulations (many years) are available, the parameterVWmax
can be re-calibrated and adjusted.

In the adopted scheme the initialization of the related state
variable VW(t) is more important than its upper limit. In
fact, practice demonstrates that the definition of the water
table initial conditionVW(t = 0) evidently influences simu-
lated discharge. A reasonable initial condition produces a
rapid stabilization of the water table with dynamics driven
by the water input from upper soil layer. Two considerations
are made in order to define these: (i) in correspondence with
the drainage network, the water table is generally next to soil
surface, because it is continuously recharged by the upstream
portions of catchment; (ii) the mountainous parts of the water
table receive reduced contribution, because they drain small
areas and are characterized by high gradients, and here the
water table has lower levels. Based on these considerations,
water table initial conditions are set as follows.VW(t = 0), in
correspondence with channels, is set close toVWmax. In the
hillslopes the level ofVW(t = 0) is estimated supposing it is
inversely proportional to the downslope indexα (Hjerdt et
al., 2004).
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Fig. 7.Dot plot representation of the sensitivity analysis for the parametersuc, uh, ct, andcf .

In order to carry out a basic sensitivity analysis, we con-
sidered what appear to be the most sensitive parameters (uc,
uh, ct, cf) and a set of 2000 model runs has been gener-
ated using a Monte Carlo approach, sampling the parame-
ters from a uniform distribution bounded by the parameter
domain. The runs have been carried out on a sub-period of
the calibration period where two major flood events occurred
(July–September 2006). To show the results a dot plot rep-
resentation (Beven and Binley, 1992; Shen et al., 2012) has
been drawn using the Nash–Sutcliffe coefficient (NS) (Nash
and Sutcliffe, 1970) as skill estimator (Fig. 7). From Fig. 7
it is possible to clearly identify a behavioural domain foruh
anduc, while a lot of uncertainty in the streamflow simula-
tion due tocf andct is present. This could be due to the very
nonlinear relationship that connects these last two parameters
with streamflow.

All these simulations highlighted another important fea-
ture of the model. Because of its internal structure,similarly
to other complete hydrological models, it is possible to map
different processes (Reusser et al., 2009) and therefore dif-
ferent parts of the hydrograph, onto the parameters, so that
different parts of the hydrograph time series can be used
separately to better identify model parameter values. Further
analysis is needed to show sensitivity to spatial and temporal
resolution.

3.4 Standard calibration based on streamflow data

The model has been firstly calibrated with a standard ap-
proach based on streamflow data. The dataset collected for
the period 1 June to 31 December 2006 is particularly suit-
able for calibration under different hydrological conditions
as it contains a range of significant floods and a preceding
drought period. Runs of the model have been carried out for
the whole year 2006, but the first five months are considered
as model startup to ensure that the initial conditions do not
affect the results.

The first part of the calibration period is quite dry with an
absence of precipitation for more than two months. A very
intense and persistent event started on 16 August 2006 and
lasted about 10 h with peak rainfall intensities larger than
70 mm h−1. On 14 September 2006 another intense event
with a 24 h duration and considerable rainfall accumulation
took place.

For the calibration period we referred to empirical for-
mulations that use wind speed and air temperature data to
estimate the bulk transfer coefficient for heat and mois-
ture (Deardoff, 1968). They do not account for vegetation
variability.

Several skill estimators are considered in order to
evaluate the performance of Continuum: Nash and Sut-
cliffe (1970), Chiew and McMahon (1994), correlation
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Fig. 8.Comparison between observed and simulated hydrographs for the calibration period for Casalcermelli outlet section.

coefficient (CORR), root-mean-square error (RMSE) and
percentage error on six flood events in the period. The first
three estimators assume the value 1 if observation and sim-
ulation match 100 %, while the other estimators tend to be 0
for a perfect simulation.

VWMax has not been considered for calibration for the
reasons already explained, and it has been set to the value
VWMax = 1500 mm.

The calibration has been performed in two steps. Initially,
to reduce their range of variation, the two overland flow pa-
rameters have been calibrated on a short time period (16 to
18 August 2006). The errors on peak flow and on peak time
on both the outlet sections have been minimized. Finally, a
global calibration has been made including the three soil pa-
rametersct, cf andRf maximizing the Nash–Sutcliffe coeffi-
cient, which is one of the most commonly used skill estima-
tors in hydrology to compare observed and simulated hydro-
graphs (Legates and McCabe, 1999). This has been carried
out by varying parameter values in their range of validity fol-
lowing an iterative brute-force approach. Two iterations have
been done; the minimum gradient varies for each parameter
and it is reported in Table 2. Table 3 reports the set of param-
eters obtained by the calibration procedure.

Table 4 shows the skill estimators calculated for the en-
tire simulation; Table 5 reports the percentage errors on peak
flow (PPE) for the two outlet sections, Tiglieto and Casal-
cermelli. Figures 8 and 9 report the simulated hydrographs
compared with observations; we plot the entire simulation

Table 3.Set of parameters obtained by the calibration.

Parameter Rf [−] cf [−] ct [−] uh [s−1
] uc [m0.5 s−1

]

Calibrated value 1 0.02 0.52 5× 10−4 29

Table 4.Values of skill estimators for the whole calibration period.

Outlet section RMSE Nash and Chiew and CORR[−]

[m3 s−1
] Sutcliffe [−] McMahon[−]

Casalcermelli 1.84 0.89 0.85 0.95
Tiglieto 1.62 0.70 0.76 0.90

and the four most important events that occurred during the
calibration period. The skill estimator values synthesize the
good performance of the model for both outlets, and Figs. 8
and 9 highlight the capability of the model in reproducing the
observed hydrographs in different discharge regimes.

3.5 Validation

Validation has been carried out during the period from
1 June 2009 to 31 December 2009. During the summer only
a few precipitation events occurred with negligible ground
effects. Consistent rainfall events started in October and the
most relevant occurred in November and December. Simi-
larly to what was done for the model calibration, a warm-up
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Fig. 9.Comparison between observed and simulated hydrographs for the calibration period for Tiglieto outlet section.

Table 5.Values of percentage error for the peak flows (PPE) of the
main events that occurred during the calibration.

Event date Casalcermelli Tiglieto
PPE[%] PPE[%]

16 Aug 2006 27 7
14 Sep 2006 8 13
25 Sep 2006 −2.3 −17
23 Oct 2006 41 4
17 Nov 2006 −40 −42
9 Dec 2006 −26 2

period of five months has been considered and the simulation
started 1 January 2009.

The bulk transfer coefficient for heatCH used in the energy
balance equations is in general estimable by using empiri-
cal expressions that depend on wind speed, pressure and on
vegetation characteristics that define the neutral transfer co-
efficient CHN. The vegetation parameterization is often de-
rived by literature values, and it is considered constant in
space and time because of the difficulty of evaluation in a
real context. By using proper models that describe the vege-
tation and soil interaction with the atmosphere, it is possible
to produce a more detailedCHN estimation that takes into ac-
count the vegetation spatial distribution and its seasonal vari-
ability. In this work theCHN estimation is carried out using a
variational assimilation scheme as described in Caparrini and

Table 6.Values of skill estimators for the whole validation period.

Outlet section RMSE Nash and Chiew and CORR[−]

[m3 s−1
] Sutcliffe [−] McMahon[−]

Casalcermelli 1.06 0.91 0.89 0.96
Tiglieto 0.83 0.80 0.83 0.91

Table 7.Values of percentage error for the peak flows (PPE) of the
main events that occurred during the validation period.

Event date Casalcermelli Tiglieto
PPE[%] PPE[%]

9 Oct 2009 78 21
2 Nov 2009 48
8 Nov 2009 −12 20
30 Nov 2009 −10 −15
24 Dec 2009 −25 −11

Castelli (2004); maps ofCHN are produced every 15 days for
the entire validation period. The application of this model has
been possible for the validation period only.

3.5.1 Streamflow validation

Table 6 reports the skill estimators for the whole validation
period, while Table 7 reports the percentage errors of the
peaks of the main flood events.
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Fig. 10.Comparison between observed and simulated hydrographs for the validation period for Casalcermelli outlet section.

Skill estimators assume similar or better values during val-
idation period with respect to the calibration period; this in-
dicates the robustness of the model. Figures 10 and 11 report
the simulated hydrographs compared with observations for
the two outlet sections. As can be seen, the model reproduces
well the observed discharges. In particular, during the most
important flood events, Continuum simulates the shape of the
hydrograph, the peak flows and the peak times surprisingly
well.

In both calibration and validation periods, in few periods
the differences between observed and simulated streamflow
are not negligible; this can be due to the flash flood regime
of the catchment, where the precipitation distribution could
seriously hamper the performance of the model in reproduc-
ing the hydrograph due to input volume mismatch: this prob-
lem was highlighted in previous works facing the same chal-
lenging goal (Liu and Todini, 2002; Rigon et al., 2006, Ruiz-
Villanueva et al., 2012).

3.5.2 Land surface temperature analysis

The LSTs estimated by Continuum have been compared
with LSTs retrieved by satellite measurements. The database
of LST estimations provided by LAND SAT application
facility (SAF) of EUMETSAT has been used (EUMET-
SAT, 2009). Land surface temperature estimations are avail-
able every 15 min with a spatial resolution of about 0.04◦.
Data are available for the validation period only. The re-
trieval of LST (Freitas et al., 2010) is based on clear-sky

measurements from the MSG system in the thermal infrared
window (MSG/SEVIRI channels IR108 and IR120). The
analysis has been carried out for the period 1 June 2009 to
31 December 2009.

Due to the complex topography of the Orba basin, the LST
satellite estimates cannot be directly compared to model out-
puts because of the following problems: (i) the georeferenc-
ing of model pixels and satellite pixels, (ii) the shadowing
due to the presence of the mountains, (iii) the variation of the
satellite viewing angle for the different detected areas, and
(iv) the different spatial resolution (satellite-estimated spa-
tial resolution is about 4.5 km while model output is about
0.1 km). A land application model (F. Castelli, personal com-
munication, 2009) that projects the radiance obtained from
the model (obtained from the simulated LST) to the same ge-
ometry of the satellite observations solves these four cited is-
sues. The land application model produces a correlation ma-
trix that weights the model radiance to estimate the portion of
energy of each model pixel that contributes to the energy of
the satellite pixel. The application of the land surface model
can be formalized as

εo · LST
4
o = M ·

(
εm · LST

4
m

)
(16)

whereM is a matrix operator that weights the model output
and maps it on the same grid of satellite data,εm andεo the
model and the satellite thermal emissivity, LSTm and LSTo
the modelled and the satellite-estimated land surface temper-
atures. The model assumes a constantεm, andεo is estimated
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Fig. 11.Comparison between observed and simulated hydrographs for the validation period for Tiglieto outlet section.

Fig. 12.Comparison between satellite estimates and simulated LST.
Average LST at basin scale. The graph refers to the period from
1 June to 31 December 2009.

as the mean thermal emissivity of the two sensor channels
used for LST-SAF retrieval.

We compared the basin mean LST and the LST of three
selected pixels. The three pixels have been chosen from dif-
ferent areas of the basin to investigate the model behaviour in
different environments. One pixel is in the mountainous part
of the basin (we name it Mountain Pixel), one in the middle
part (we name it Hill Pixel) and one near the outlet section in
the flood plain (we name it Flat Pixel).

Fig. 13. Comparison between satellite estimates and simulated
LST, mountain pixel. Graph refers to the period from 1 June to
31 December 2009.

Four skill estimators have been used to evaluate the perfor-
mances of the model: the mean bias (BIAS), the root-mean-
square error (RMSE), the mean absolute error (MAE) and
the correlation coefficient (CORR).

Figures 12 to 15 report the scatter plot of satellite estimates
and simulated LST for the mean basin comparison and for the
pixel analysis.

The model slightly overestimates the LST during some pe-
riods of the warm season (Figs. 16 and 17), while it slightly
underestimates LST during the cold season, in particular
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Fig. 14. Comparison between satellite estimates and simulated
LST, hill pixel. Graph refers to the period from 1 June to
31 December 2009.

during the central hours of the day. This behaviour could be
related to a slight overestimation of the model soil thermal
inertia.

However, the general trends and diurnal cycle amplitude
are well reproduced and the skill estimators show quite a
good performance (see Table 8); BIAS, RMSE, and MAE
are quite small, while CORR is next to 1. Model errors are
in most of the cases smaller than the root-mean-square er-
ror of satellite LST estimation with respect to in situ mea-
surements, which is about 2–3◦C (Freitas et al., 2010). The
model reproduces well the trend and the daily periodicity of
LST (Figs. 16 and 17).

Figure 18 shows satellite estimates and simulated LST
plotted with the mean incoming solar radiation at basin scale
for a period of a few days. The LST is strongly related to the
radiation, and the model is able to correctly reproduce the
rapid changes in LST due to solar radiation variations.

The soil humidity is a factor that influences the thermal
inertia and, as a consequence, the LST. We noted that, for
example, the simulated LST overestimates the satellite esti-
mates during a dry period at the beginning of summer (June–
July), where Continuum produces very low values of soil
humidity at basin scale. This can be related to the fact that
AE and CORR are similar for all the target areas (Table 8),
while BIAS is higher and positive on mountain pixel where
Continuum tends to dry the soil quickly because of the per-
colation and the soil humidity propagation. This behaviour
becomes evident in Fig. 19 that depicts the RMSE map of
LST distributed in the catchment layered over the DEM re-
lief. RMSE high values tend to concentrate in mountainous
areas. Another interpretation of this result is that in such ar-
eas the variance of LST is higher due to altitude variation,
and this influences the statistics when aggregated at the MSG
pixel size. However, we can deduce that a better LST simula-
tion could be obtained by varying model parameters so as to
obtain a different soil humidity distribution. Further analysis

Fig. 15. Comparison between satellite estimates and simulated
LST, flat pixel. Graph refers to the period from 1 June to
31 December 2009.

Table 8.Comparison of satellite estimates and simulated LST. Val-
ues of the skill estimators for the period: mean bias (BIAS), root-
mean-square error (RMSE), mean absolute error (AE) and correla-
tion coefficient (CORR).

Target area RMSE BIAS MAE CORR
[
◦C] [

◦C] [
◦C] [−]

Basin 3.69 0.24 2.27 0.96
Mountain pixel 5.53 2.09 2.88 0.94
Hill pixel 2.01 0.74 2.65 0.96
Flat pixel 2.94 1.08 2.24 0.96

is needed to verify this hypothesis, and it was not carried out
in this study. It is, however, interesting to note that LST could
be actually a useful constraint in the calibration phase as dis-
cussed more in detail in the next section.

3.6 Parameter calibration using land surface
temperature and morphological data

To demonstrate the possibility of reliably implementing the
model in data-scarce environments, we performed a calibra-
tion supposing no streamflow data are available for the catch-
ment under study. While it is always possible to find us-
able surrogates of meteorological variables using satellites
or meteorological model analyses on one side and informa-
tion about morphology and land cover is globally available at
the needed resolution, on the other, it is often the case of not
having reliable streamflow data in order to perform a stan-
dard hydrologic calibration of the model. In this exercise we
used information that can be extracted by land cover maps,
DEMs and the LST satellite estimations.

The analysis is focused on the most sensitive parameters
(uc, uh, ct, cf); the other two parameters have been set equal
to the valuesVWmax= 2000 mm,Rf = 1 assuming that we
have no information in support of their identification.VWmax
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Fig. 16. Comparison between air temperature, satellite estimates and simulated LST for three periods belonging to the validation period:
from 1 June to 31 December 2009. Average LST at basin scale.

is set to an average value for the environment considered,
while Rf is set to one making the hypothesis of isotropy of
the soil characteristics.

3.6.1 Surface parameters (uh and uc)

The estimation of the overland and channel flow parame-
ters has been carried out by exploiting geomorphologic in-
formation derived by the DEM. The idea is to calibrate
the parameters against some hydrological time scales that
can be derived by geomorphological information using well-
established morphological relationships. One of the most in-
fluential parameters in that sense is the lag time (tl) of the
basin, defined as the temporal distance between the centre of
mass of the hydrograph and the centre of mass of the mean
hyetograph at basin scale.

The lag time (tl) can be derived by geomorphologic fea-
tures of the basin; we chose the formulation proposed by
the National Resources Conservation Service (Ward and
Trimble, 2003):

tlo =
L0.8

· (S + 1)0.7

1900· i0.5
f

(17)

whereL is the hydraulic length of the watershed,if the mean
slope of the basin,S a function of the curve number repre-
senting an index of the soil water storage capacity.

We generated a set of synthetic rainfall events (Eq. 7) with
constant intensity in space and time to feed the model. In this

Table 9.Characteristics of the synthetic rainfall events related with
the two surface parameters and the considered sections.

Parameter Pcum [mm] Reference Area tlo Event
section [km2

] [h] duration
[h]

uh [s−1
] 10, 20, ..., 60, 70 Tiglieto 75 4.52 4

uc [m0.5 s−1
] 10, 20, ..., 60, 70 Casalcermelli 800 11.6 10

way we generate hydrographs that mainly depend on the ge-
omorphologic characteristics of the basin. The features of the
synthetic events are reported in Table 9. They are character-
ized by increasing accumulated rainfall while their duration
is a function of the basin area. We calculated the simulated
lag time of these synthetic events for each combination of the
parameters and minimized the objective function:

O f = |tlo − tlm| (18)

wheretlo is thetl derived by the geomorphologic character-
istics of the basin andtlm is the tl obtained by the model
simulations.

The soil has been considered impermeable in order to
eliminate the nonlinearities related to the wetness condition
and to the infiltration-runoff process. The absence of infil-
tration and of dependency on humidity conditions at the be-
ginning of the event (in thetlo formulaS is set to 0) makes
the model parameters that regulate subsurface and deep flow
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Fig. 17.Same as Fig. 16 but for different sub-periods.

Fig. 18. Simulated (continuous grey line) and satellite-estimated
(grey circles) LST plotted with observed net radiation (continuous
grey black line). The graphs represent the basin-scale average val-
ues. A brief period of 6 days of June 2009 is shown.

(ct, cf , Rf andVWmax) irrelevant.L andif are derived by the
DEM.

On the basis of the analysis carried out in Sect. 3.3, it is
clear that, in upstream sections, with reduced paths in chan-
nelled network, the influence of the parameteruc is scarce;
therefore a first guess value foruc can be fixed anduh cal-
ibrated. Onceuh is calibrated,uc can be calibrated consid-
ering a downstream section. This procedure is iterated until

Table 10.Values of parametersuc anduh calibrated using geomor-
phologic data.

Parameter uc [m0.5 s−1
] uh [1 s−1

]

Av∗ (uc) Std∗∗ (uc) Av∗ (uh) Std∗∗ (uh)

29.42 1.93 4.58× 10−4 2.8× 10−5

∗ Av stands for average;∗∗ Std stands for standard deviation.

the two parameters reach stability. In the case study we re-
ferred to the two gauged stations of Orba basin: Tiglieto
(A = 75 km2) and Casalcermelli (A = 800 km2).

For eachPcum the procedure rapidly converged (Niterations
= 3).

The optimal values ofuc or uh are different for different
values ofPcum. This depends on the intrinsic characteristics
of the model, and it is coherent with reality. The average of
the optimal values and the standard deviation are calculated
and reported in Table 10.

The mean values of the parameters have been used to pro-
ceed with the calibration.

3.6.2 Subsurface parameters (ct and cf) – exploiting
LST satellite estimate

Once the surface flow parameters are estimated, it is neces-
sary to calibrate the subsurface soil parameters. To do this
the LST retrieved by satellite observations can be compared
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Fig. 19.RMSE map layered over the DEM relief. The value for each
pixel is calculated as the mean of the RMSE on the whole validation
period.

with that modelled by Continuum with the objective of min-
imizing the differences. LST is influenced by the soil char-
acteristics and by the humidity content; in Continuum the
two parametersct andcf regulate the subsurface water prop-
agations as well as the field capacity in each cell and, as a
consequence, the humidity patterns through the basin.

The mean LST at basin scale (LSTAv) has been consid-
ered, and the following score based on the BIAS between
simulated (LSTAvm) and satellite (LSTAvo) estimates has
been considered:

BIASAV =
1

Tmax

Tmax∑
i=1

(
LSTAvo,i − LSTAvm,i

)
(19)

whereTmax is the number of the considered temporal steps.
The entire validation period has been used.

The score should guarantee that, on long periods, the tem-
poral average of model LST is similar to that estimated by
satellite data.

The BIASAV minimization returns the following values
for the parameters:ct = 0.56 [−] and cf = 0.03 [−] with
BIASAV = 0.01.

The value of ct is weakly increased in respect to
streamflow-based calibration as well ascf . This means that

Table 11.Values of skill estimators for the calibration and the vali-
dation periods obtained usingct andcf calibrated basing on the LST
anduc anduh calibrated using geomorphologic data.

Outlet section Period RMSE Nash and Chiew and CORR
[m3 s−1

] Sutcliffe [−] McMahon[−] [−]

Casalcermelli 2006 1.9 0.86 0.84 0.94
2009 1.28 0.90 0.89 0.95

Tiglieto 2006 1.58 0.69 0.78 0.89
2009 0.89 0.81 0.85 0.92

to reduce the total bias of LST, larger values of field capacity
and infiltration capacity at saturation are needed.

3.6.3 Streamflow validation

The final set of parameters has been used for simulating
both calibration and validation periods, and the results are re-
ported in Table 11 in terms of skill estimator values. The per-
formance of the model in terms of streamflow reproduction
is good. The skill estimators have overall values similar in re-
spect to those reported in Tables 4 and 6; this proves that such
calibration approach produces a reliable implementation of
the model that can be replicated in data-scarce environments
where real problems in finding reliable input–output series
can be encountered.

In Figs. 20 and 21 the hydrographs obtained through the
two calibration approaches are reported for the Casalcermelli
outlet section. The flood events are really similar, while there
are more evident differences in the baseflow and in the reces-
sion periods of the hydrographs.

4 Discussion and conclusions

The article describes a distributed and continuous hydrologi-
cal model that balances the necessity for a complete descrip-
tion of hydrological cycle with a simple and versatile struc-
ture resulting in a limited number of parameters. It has been
designed for a variety of purposes: flood forecast and simula-
tion, water resource management and droughts. The model is
able to reproduce the spatial-temporal evolution of soil mois-
ture, energy fluxes, surface soil temperature and evapotran-
spiration. Moreover, it can account for seasonal vegetation
variability in terms of interception and evaporation. Deep
flow and water table evolution are modelled with a simple
scheme that reproduces the main physical characteristics of
the process and a distributed interaction between water table
and soil surface with a low level of parameterization.

The introduction of the so-called “force-restore” equation
for the surface energy balance allows the LST estimation
and makes the model feasible to exploit remote sensing data.
These latter can be used for calibration or, more appropri-
ately, in a data assimilation framework.

Referring to already tested calibration methodologies (Gi-
annoni et al., 2005; Gabellani et al., 2008) and making some
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Fig. 20. Comparison of the streamflow simulations obtained with calibration using remote sensing data (Cal. R. S.) and calibration using
streamflow data (Cal. Streamflow) for Casalcermelli outlet section for calibration period.

Fig. 21. Comparison of the streamflow simulations obtained with calibration using remote sensing data (Cal. R. S.) and calibration using
streamflow data (Cal. Streamflow) for Casalcermelli outlet section for validation period.
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basic assumptions, the calibration task can be reduced to just
six parameters at catchment scale that are then spatially dis-
tributed by means of simple assumptions on the physical pro-
cesses that they describe. Consequently, the parameter space
is really small for a distributed continuous model, and Con-
tinuum can be implemented with easily accessible data and
territorial information (digital elevation model, basic soil and
vegetation parameters).

If more detailed territorial information were available, the
parameterization methodology could be approached reduc-
ing the number of assumptions and linking the parameters
more tightly to territorial characteristics.

The sensitivity analysis has been carried out on five param-
eters: two parameters regulate the overland flow, the shape
of the hydrograph and response time; two parameters are re-
lated to the soil characteristics and affect infiltration and rela-
tive soil humidity; and one parameter takes into account soil
porosity and the ratio between vertical and horizontal satu-
rated soil conductivity. A nice separation can be found be-
tween parameters in the fact that they influence quite distinct
response of the model, with the result of further simplifying
the calibration procedure.

Standard calibration and validation based on streamflow
data have been carried out on different periods with reference
to two different outlet sections of the Orba basin. These sec-
tions represent different characteristics in terms of soil use,
slope and response time. The model produces good results in
terms of discharge for both outlet sections. Further work is
needed to introduce the modelling of the snow cover evolu-
tion and of the snowmelt in order to carry out multi-annual
simulations where data are available.

Model initialization influences the simulation for quite a
long period; in particular the definition of initial water table
level is a sensitive choice. The ideal situation is to extend as
far as possible the warm-up period, including a long period
without rainfall events. The water table initialization method-
ology here is based on a possible spatial distribution of water
table that exploits morphological constraints (Hjerdt et al.,
2004).

Further validation analysis has been carried out compar-
ing LST estimated by the model and satellite measurements
at both pixel and basin scale. The results provide evidence
that Continuum reliably models the LST dynamics at various
temporal scales, with some periods of overestimation, partic-
ularly during the warmer hours of summer. During the cold
season the modelled LST has a lower variability with respect
to the satellite estimates, but here the percentage of reliable
data is quite scarce because of the more frequent cloud cov-
ering, and this makes the comparison more uncertain.

The approach followed in the design of Continuum pro-
poses concentrating the efforts in augmenting the number of
state variables that are predicted by the model and those that
are also observables by using classical or remote instruments
of measure. Specific attention is paid to distributed variables

(e.g. LST fields) that offer very different information when
compared to integral measures (e.g. discharge time series).

The LST comparison showed potential for additional con-
straints to be used in the calibration phase or to be exploited
in a more comprehensive assimilation framework. The dis-
tributed nature of the LST in comparison to traditional cal-
ibration time series (e.g. discharge data series) can add im-
portant information for a better estimation of state variables
and parameter patterns. A demonstration of this potential is
carried out by calibrating a sub-set of the parameters refer-
ring to LST satellite estimation and to morphologic informa-
tion derived by the DEM. The results are comforting, and
the proposed methodology led to a parameter set that well
reproduces both satellite LST and streamflow observations,
the latter used only in the validation phase. LST was suc-
cessfully used to drive the calibration procedure. This was
possible thanks to the model structure and the way parame-
ters are treated and distributed in time and space. This could
have a strong application impact in environments where reli-
able streamflow data are not available, given the worldwide
availability of LST data.

Appendix A

Surface flow equations

The channeled surface flow equation that feeds into Eq. (1)
is expressed as follows:

q = uc ·
√

tg(β) · ha (A1)

whereq is the flow per unit of width [L2 t−1], uc a friction
coefficient [L(2−a) t−1], tg(β) the surface local slope in chan-
nels, andh the depth of the flow in the channel [L]. The ex-
ponenta is similar to the Manning’s equation one. In general
it varies between 1 and 5/3 (see e.g. Marchi and Rubatta,
1981). We seta = 1.5 as representative of a mean behaviour.
This choice is also consistent with the Darcy–Weisbach for-
mulation in case of turbulent flow (Chow, 1959).

tg(β) is a downstream averaged local slope, evaluated as
a mean slope of a branch of lengthd∗ downstream the actual
pixel. It is estimated for thei-th cell as

tg (βi) =
1

d∗

n∑
j=1

zi − zj

j
(A2)

wheren =d∗/1x, 1x [L] the square cell size of the dis-
cretized DEM, andzj the elevation at a distancej · 1x [L],
for the application presented in the following paragraphs
1x = 100 m and 1000< d∗ < 2000 m. This smoothed slope
reduces the impact of local DEM errors and inconsistencies.
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Appendix B

Subsurface flow equations

In the following the equations that describe the subsurface
flow mass balance are reported.

dV
dt

=r1(t) forV (t)≤ctVmax andr1(t)≤g(t)
dV
dt

=r1(t)−f1
V (t)−ct Vmax
Vmax(1−ct)

for V (t)>ctVmax andr1(t)≤g(t)
dV
dt

=f0+(f1−fo) ·
V (t)
Vmax

for V (t)≤ctVmax andr1(t)>g(t)
dV
dt

=f0+(f1−fo) ·
V (t)
Vmax

−f1
V (t)−ctVmax
Vmax(1−ct)

for V (t)>ctVmax andr1(t)>g(t)

.(B1)

The inputr1(t) is obtained by the sum of the net rain (rain de-
pleted by vegetation interception) and of the upstream over-
land flow. This allows the model to assess the re-infiltration.

The runoffr2(t) is{
r2(t) = r1(t) − g(t) for r1(t) > g(t)

r2(t) = 0 for r1(t) ≤ g(t)
. (B2)

Appendix C

Deep flow and water table equations

The water table level is computed as

hWi(t) = zi −
VWmi − VWi(t)

η
(C1)

wherezi is the elevation of thei-th cell, η the soil porosity
andVWi(t) the actual water content.

In the model, the equation is simplified assuming uniform
soil porosity so that Eq. (C1) becomes

hWi(t) = zi − VWmi + VWi(t). (C2)

Appendix D

Energy balance equations

The thermal inertia is defined by the following equation:

ϕ =

√
Csoil · Ksoil (D1)

whereCsoil [E T−1 L−3] is the soil heat capacity andKsoil
[E t−1 L−1 T−1] is the soil thermal conductivity. Both the
terms depend on the soil characteristics, and they are esti-
mated as proposed in Peters et al. (1997).Csoil andKsoil also
depend on soil saturation degreesw(e.g.sw =V (t)/Vmax in
Continuum). Consequently, they vary in time and they both
increase when soil moisture increases. Their parameteriza-
tion is relatively robust in terms of the values chosen to rep-
resent the soil characteristics, while it is fairly sensitive to the
saturation degree.

Csoil = (1 − n) · ρsoil · cpsoil + n · sw · ρwater · cwater (D2)

wheren is the soil porosity [%],ρsoil the soil density [m L−3],
cpsoil the soil specific heat [E m−1 T−1], sw the soil satura-
tion degree [−], ρwater the water density [m L−3], andcpwater
the water specific heat [E m−1 T−1].

Ksoil = Ke · (kssoil − kdsoil) + kssoil (D3)

where kssoil is the saturated soil thermal conductivity
[E L−1 T−1] and kdsoil is the dry soil thermal conductivity
[E L−1 T−1]. The Kersten number is defined as

Ke =

{
log10(sw) + 1 for sw ≥ 0.1
log10(0.1) + 1 for sw < 0.1

. (D4)

The turbulent sensible heat flux is estimated using a bulk
transfer approach based on bulk transfer formula (Deardoff,
1968):

H = ρ · cp air · CH · U · (LST − Ta) (D5)

wherecp air [E m−1 T−1] is the specific heat of air,ρ [m L−3]
the air density,CH [−] the bulk transfer coefficient for heat,
U [L t−1] the wind velocity andTa [T] the air temperature at
reference elevation.

The latent heat flux is defined as

LE = ρ · λLE · CE · U · βf ·
(
e∗

s − ea
)

· 0.622 ·
1

P
(D6)

where λLE [E m−1] is the latent heat of vaporization,
(e∗

s − ea) [m t−2 L−1] the difference in vapour pressure be-
tween the surface (at saturation) and air at reference eleva-
tion, CE [−] the bulk transfer coefficient for moisture,βf
[−] a coefficient function of the soil saturation degreesw

as described in Castelli (1995) and Dingman (2002), andP

[m t−2 L−1] the atmospheric pressure. The soil moisture in-
fluences the latent heat flux and it links actual and potential
evapotranspiration through the termβf . SinceH , Csoil and
Ksoil depend onsw, their values affect LST in a fairly com-
plex nonlinear way. The net result is that high values of soil
moisture reduce the daily variability of LST.

The bulk transfer coefficient for heat and moisture can
be estimated using empirical formulations (Deardoff, 1968)
or could be yield by other models (Caparrini and Castelli,
2004).CH [−] effectively represents the role of vegetation in
the energy balance.
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