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Abstract. As a key variable of the land-climate system soil
moisture is a main driver of streamflow and evapotranspi-
ration under certain conditions. Soil moisture furthermore
exhibits outstanding memory (persistence) characteristics.
Many studies also report distinct low frequency variations for
streamflow, which are likely related to soil moisture mem-
ory. Using data from over 100 near-natural catchments lo-
cated across Europe, we investigate in this study the con-
nection between soil moisture memory and the respective
memory of streamflow and evapotranspiration on different
time scales. For this purpose we use a simple water bal-
ance model in which dependencies of runoff (normalised by
precipitation) and evapotranspiration (normalised by radia-
tion) on soil moisture are fitted using streamflow observa-
tions. The model therefore allows us to compute the mem-
ory characteristics of soil moisture, streamflow and evapo-
transpiration on the catchment scale. We find considerable
memory in soil moisture and streamflow in many parts of the
continent, and evapotranspiration also displays some mem-
ory at monthly time scale in some catchments. We show that
the memory of streamflow and evapotranspiration jointly de-
pend on soil moisture memory and on the strength of the cou-
pling of streamflow and evapotranspiration to soil moisture.
Furthermore, we find that the coupling strengths of stream-
flow and evapotranspiration to soil moisture depend on the
shape of the fitted dependencies and on the variance of the
meteorological forcing. To better interpret the magnitude of
the respective memories across Europe, we finally provide a
new perspective on hydrological memory by relating it to the
mean duration required to recover from anomalies exceeding
a certain threshold.

1 Introduction

Many past and recent publications have pointed out the
remarkable persistence characteristics of soil moisture
(Delworth and Manabe, 1988; Vinnikov and Yeserkepova,
1990; Entin et al., 2000; Koster and Suarez, 2001; Schlosser
and Milly, 2002; Wu and Dickinson, 2004; Seneviratne et al.,
2006; Koster et al., 2010; Seneviratne and Koster, 2012).
This soil moisture persistence, hereafter referred to as “mem-
ory”, is caused by the integrative nature of soil moisture as
water storage. It has been found in observations and models,
at point scale and on continental scales. Furthermore, also for
other land-surface variables, persistence characteristics have
been reported, even if less pronounced than for soil mois-
ture. For instance streamflow exhibits distinct low frequency
variations that represent a memory resulting from a recession
behaviour of the streamflow response following a precipita-
tion event (Rodriguez-Iturbe and Valdes, 1979; Lins, 1997;
Labat, 2008; Gudmundsson et al., 2011).

Given the important role of soil moisture in the water cycle
and for land-atmosphere interactions (e.g.Seneviratne et al.,
2010, for a review), the question arises if its memory may
propagate to other quantities that are at least partly driven
by soil moisture. For example, runoff and evapotranspira-
tion may be highly dependent on soil moisture under certain
conditions (Eagleson, 1978; Koster and Milly, 1997; Koster
et al., 2004; Botter et al., 2007; Bisselink and Dolman, 2009;
Kirchner, 2009; Teuling et al., 2009), therefore soil moisture
memory may induce persistence in these quantities.

This study investigates under which conditions and to
which extent soil moisture memory may propagate to stream-
flow and/or evapotranspiration. In case of streamflow, this
question is of high importance since it is relevant for flood
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prediction and water resource management. An evapotran-
spiration memory has implications for the exchange of wa-
ter between the land and the atmosphere, as well as for
near-surface temperature because evapotranspiration is (neg-
atively) related with sensible heat flux. Following the ap-
proach proposed inOrth et al.(2013), we calibrate a sim-
ple hydrological model (Koster and Mahanama, 2012) with
streamflow measurements from 100 catchments across Eu-
rope to infer memory characteristics of soil moisture, stream-
flow and evapotranspiration. Note that soil moisture as in
the formulation of this model represents a large fraction of
the terrestrial water content that is altered by evapotranspira-
tion, precipitation and surface runoff. We identify drivers and
properties of the propagation of soil moisture memory and
investigate their dependencies on regional features. More-
over, we determine favourable climate and land-atmosphere
regimes that promote memory propagation into the climate
system. In the last part of this study, we investigate how the
memories in soil moisture, streamflow and evapotranspira-
tion change under dry and wet conditions, which is especially
relevant for the predictability of extreme events (Koster et al.,
2010; Mueller and Seneviratne, 2012).

2 Methodology

2.1 Simple water-balance model

We use a simple water-balance model adapted fromKoster
and Mahanama(2012) in this study. The revised formulation
employed here has been introduced and discussed inOrth
et al.(2013). As in that study, we run the model with a daily
time step. The model is based on the following water-balance
equation:

Sn+4t = Sn + (Pn − En − Qn)4t (1)

whereSn, the only prognostic variable of the model (in mm),
is the total terrestrial water content at the beginning of time
stepn. Between time stepn andn + 4t , the water content is
changed by the accumulated precipitationPn, evapotranspi-
rationEn, and streamflowQn (all in mm d−1), to yield an up-
dated terrestrial water contentSn+4t at the beginning of the
following time step. The employed simple model is highly
conceptual, and thatSn is composed of (i) an upper level stor-
age, which represents the total soil moisture content,wn, and
(ii) a lower level storage, which represents groundwater,gn.
Note that as the model is simple and conceptual, this distinc-
tion is an approximation. Precipitation is distributed to both
storages and to streamflow. Note that snow is not considered
in the simple water balance model. As inOrth et al.(2013),
we run the model in this study with a time step of one day
(4t = 1d).

2.1.1 Evapotranspiration

In the simple water-balance model, evapotranspiration (nor-
malised by net radiation) depends on soil moisture (scaled
with the water holding capacity) only:

λρwEn

Rn

= β0

(
wn

cs

)γ

with γ > 0 and β0 ≤ 1 (2)

whereRn denotes net radiation (in W m−2), λ is the latent
heat of vaporization (in J kg−1), ρw is the density of water
(in kg m−3) and cs is a model parameter that refers to the
water holding capacity of the soil (in mm). Another model
parameter,β0 (unitless), allows to capture the evaporative re-
sistance of the soil and the vegetation, whereas the parameter
γ (also unitless) ensures a strictly monotonically increasing

evapotranspiration ratio
λρwEn

Rn

.

2.1.2 Streamflow and runoff

We distinguish in the simple water balance model between
streamflowQn and runoff Run (note that this notation dif-
fers fromOrth et al., 2013, whereS ist used for streamflow
andQ denotes runoff). As already suggested byWood et al.
(1992), only a fraction of the precipitation can be stored in
the soil, the remainder constitutes the runoff Run; and this
partitioning depends on the soil moisture content:

Run

Pn

=

(
wn

cs

)α

with α ≥ 0 (3)

where the exponentα ensures an increasing runoff ratio
Run

Pn
with increasing soil moisture.

The StreamflowQn is computed from the simulated runoff
Run with an imposed delay, as inOrth et al.(2013):

Qn+t = Run

1

τ
e
−

t

τ (4)

whereτ refers to the delay time scale (in days) that deter-
mines the streamflowQn+t at timen + t which results from
the runoff Run at timen. Note that the water retained with
the imposed delay is stored in the groundwater storagegn,

before it enters the streamflow. The integral of
1

τ
e
−

t

τ equals

1 ast → ∞, such that all runoff is converted to streamflow.
Such a distinction between runoff and streamflow was

already suggested byMaillet (1905) and allows us to ac-
count for the traveling time of surface runoff to the stream
gauge site and the transport of subsurface runoff to the
stream. Runoff Run partly enters the streamflow directly (sur-
face runoff), and partly the groundwater storage (sub-surface
runoff), depending on the delay time scaleτ . Streamflow, on
the other hand, represents the water that leaves the system
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(Eq.1), which may stem from surface runoff or from ground-
water discharge. The total streamflow at any time step can be
computed from the previously generated runoff amounts:

Qn =

60∑
i=0

Run−i4t

e
−

i4t

τ − e
−

(i + 1)4t

τ

 (5)

As in Orth et al.(2013) we compute the streamflow from
the runoff amounts generated during the 60 preceding time
steps to account for> 99% of the runoff water. As mentioned
above, streamflow results from (i) surface runoff (in this

casei = 0 and thereforeQsurface
n = Run

1− e
−

1

τ

, and (ii)

from groundwater discharge (delayed runoff,iε[1,60]).
To investigate the connection between streamflow and

precipitation we furthermore define here the cumulative
weighted precipitation, which is the precipitation used to
compute the runoff amounts that contribute to streamflow at
timen:

P ∗
n =

60∑
i=0

Pn−i4t

e
−

i4t

τ − e
−

(i + 1)4t

τ

 (6)

2.1.3 Parameter fitting

In total 5 model parameters (cs, α, τ , β0, γ ) have to be fit-
ted to determine runoff, evapotranspiration and streamflow
of a catchment. This is done for each catchment using the
same optimization approach as inOrth et al.(2013), whereby
the optimal set of parameters is determined as the set that
yields the best fit between modelled and observed streamflow
among 25 estimated sets (representing local maxima in the
five-dimensional parameter space). This fit is evaluated as a
correlation during July, August and September of all avail-
able years to avoid an impact of snow, which is not included
in the model. As inOrth et al.(2013), we use a correlation
to determine the fit because our focus is on the simulation
of the temporal evolution of soil moisture and streamflow
rather than on their absolute amount (as the former is more
relevant to represent memory characteristics. Table1 sum-
marises the accuracies with which the parameters are fitted
(i.e. the step width for each parameter as applied in the op-
timization procedure), their upper and lower limits as well
as maxima and minima of the actual parameter values found
for the catchments considered here (see Sect.3). Note that in
contrast toOrth et al.(2013), we apply here upper limits to
the exponentsα andγ (15) and the water holding capacity
cs (2000 mm) to accelerate the optimization process and to
prevent unreasonable fitted parameter values.

2.2 Computation of slopes

To quantify the impact of soil moisture on streamflow and
ET, we use the slopes of the runoff and ET functions (Eqs.2

Table 1. Overview of model parameter accuracies, boundaries and
the range of their respective estimates.

Lower Upper Minimum Maximum
Parameter Accuracy limit limit value found value found

water holding 30 20 2000 50 890
capacity
cs (mm)

inverse 0.02 0.02 – 0.04 0.78
streamflow
recession

timescale
1

τ
(1/days)

runoff 0.2 0 15 0.2 15
exponentα

ET exponent 0.03 0 – 0.03 3.87
γ

max ET 0.03 0.03 0.99 0.24 0.99
ratioβ0

and 3) normalised with precipitation and net radiation, re-
spectively. These slopes are catchment-specific and depend
only on the soil moisture content and on the fitted param-
eters. They are computed as follows: for every daily soil
moisture value that occurs between May and September over
the whole considered time period (see Sect.3) in a particu-
lar catchment we compute the respective slopes of the nor-
malised runoff and ET functions from their derivations with
respect to soil moisture. Then we take the mean of all the
slopes to derive mean slopes for the runoff and ET function
of each catchment. These mean slopes represent the average
sensitivity of runoff and ET to soil moisture in the respective
catchments.

As described and illustrated later in Sect.4.2, the runoff
and ET function slopes are important variables for the
soil moisture-streamflow and soil moisture-ET coupling
strengths. For instance, a slope of zero implies no impact of
soil moisture, whereas a high slope implies that soil moisture
changes are readily translated into changes of streamflow or
ET.

2.3 Computation of memory

To determine the persistence of soil moisture, streamflow and
ET produced by the simple water-balance model, we cal-
culate the respective memory as an inter-annual correlation
over a particular lag (seeKoster and Suarez, 2001; Senevi-
ratne and Koster, 2012): for a given quantity, the estimates
of dayn from all years are correlated with the estimates of
dayn + tlag from all years. To derive representative memory
estimates for half-monthly periods, we compute inter-annual
correlations for this period and for the preceding and subse-
quent 30 days (as introduced byOrth and Seneviratne, 2012,
and also applied byOrth et al., 2013). For soil moisture mem-
ory, this corresponds to the following expression:
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ρ
(
wn,wn+tlag

)
=

1

tend− tstart+ 60− tlag

tend+30−tlag∑
i=tstart−30

ρ
(
wi,wi+tlag

)
(7)

wheretstart andtend refer to the respective start and end dates
of the considered half-monthly time period. Starting 30 days
prior to the beginning of the half-monthly interval and finish-
ing 30-tlag days after the end of the half-monthly period, we
obtain a number of correlations of which we take a trimmed
average (not shown in Eq.7). We avoid the 10 % highest and
10 % lowest values, as inOrth et al.(2013) to yield a rep-
resentative memory estimate for the particular half-monthly
period.

In order to study the connection between soil moisture
memory and the memory of streamflow and ET, respectively,
we consider in the following 30-day-lag memories that are
computed as described above for all quantities. To assess the
impact of the investigated time scale, we perform the same
analysis using monthly averaged data from which we com-
pute the respective 1-month-lag memories.

2.4 Computation of persistence time scales

While memory is considered as lag correlation in the previ-
ous subsection and previous studies (e.g.Koster and Suarez,
2001; Orth and Seneviratne, 2012), we relate the memories
of soil moisture, streamflow and ET in this study also to per-
sistence time scales. This is more easily interpretable and
allows us to study the respective memories under different
hydrological conditions.

For the computation of this persistence time scale we pro-
ceed as follows: (i) we define “normal” conditions at a partic-
ular day as those differing at most by one standard deviation
(computed over the values of that day from all years) from
the mean of that day over all years; (ii) we choose deviations
of 1.33 and 1.66 standard deviations from the mean as thresh-
olds for medium and strong anomalies, respectively; (iii) we
select all days of the time series between May and September
that exceed a threshold and calculate for each day the delay
until which the quantity of interest recovers to normal con-
ditions; (iv) finally, we take the mean of all the durations to
derive a mean persistence of anomalous conditions once they
have exceeded a certain threshold. Note that the time frame
of May through September (point iii above) is chosen in or-
der to avoid cold season impacts such as snow and land cover
changes. Comparing the persistence time scale to respective
memories expressed as lag correlations, we can relate these
correlations to mean recovery times from respective anoma-
lies determined by a chosen threshold.

2.5 Coupling of streamflow and evapotranspiration to
soil moisture

As this study is investigating the propagation of memory
from soil moisture to streamflow and ET, it is necessary to
assess the extent to which streamflow and ET are driven by
soil moisture. For this purpose, we introduce a measure of
the coupling strength between soil moisture and streamflow,
or soil moisture and ET, respectively. We define the coupling
strength between soil moisture and streamflow (hereafter re-
ferred to as soil moisture-streamflow coupling strength) as
their correlation,ρ (Qn,wn). Similarly, to measure the cou-
pling strength between soil moisture and ET (hereafter re-
ferred to as soil moisture-ET coupling strength), we use
ρ (En,wn).

The computation of these correlations is performed in a
similar way as in Eq. (7). Instead of correlating estimates of
a given quantity at dayn from all years with the estimates
of dayn + tlag from all years, we correlate estimates of one
quantity at dayn from all years with estimates of the other
quantity at the same dayn of all years. Similar to memory,
the coupling strengths are also computed as representative
estimates for half-monthly periods.

Using these estimates we can determine and compare the
respective coupling strengths with each other, in different
seasons, and across the various catchments (see Sect.3).

3 Data

In order to derive a spatially distributed evaluation of soil
moisture, streamflow and ET memory across Europe we ap-
ply the simple water-balance model to near-natural catch-
ments (i.e. catchments with negligible human impact) lo-
cated throughout Europe. The corresponding streamflow data
stem from a dataset compiled byStahl et al.(2010), who
collected data from the European water archive (http://grdc.
bafg.de, checked on 16 July 2012), from national ministries
and meteorological agencies, as well as from the WATCH
project (http://www.eu-watch.org, checked on 16 July 2012).

The simple model uses precipitation and radiation infor-
mation as an input. We use satellite-measured net radiation
from the NASA/GEWEX SRB project (http://eosweb.larc.
nasa.gov/PRODOCS/srb/table_srb.html, checked on 16 July
2012). The precipitation data was obtained from the E-OBS
dataset (http://eca.knmi.nl, checked on 16 July 2012), which
is an interpolation of rain gauge measurements on a regular
grid across Europe. It was developed by the ENSEMBLES
project (http://ensembles-eu.metoffice.com, checked on 16
July 2012).

Note that this study therefore uses only observationally-
based data. Given the different limitations in data availability
of streamflow, precipitation and radiation, we consider a time
period of 17 yr between 1984 and 2000.
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Figure 1: The colored large dots indicate the locations of the selected 100 catchments. The color coding indicates
the mean daily streamflow between May and September. The smaller black dots indicate the locations of the
remaining catchments of the Stahl et al. (2010) dataset, as considered for the validation of streamflow (memory)
in Section 4.1. The arrow points to the Le Saulx catchment later considered in Section 4.2.
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Fig. 1.The coloured large dots indicate the locations of the selected
100 catchments. The colour coding indicates the mean daily stream-
flow between May and September. The smaller black dots indicate
the locations of the remaining catchments of theStahl et al.(2010)
dataset, as considered for the validation of streamflow (memory) in
Sect.4.1. The arrow points to the Le Saulx catchment later consid-
ered in Sect.4.2.

3.1 Selection of catchments

Given the large number of> 400 catchments contained in the
Stahl et al.(2010) dataset, we had to select a subset for two
reasons: (i) the parameter fitting procedure (Sect.2.1.3) is
computationally demanding and (ii) in a few catchments the
fitting procedure did not work well, as seen from a low corre-
lation between modelled and observed streamflow (probably
due to impacts of snow, which is not included in the model).

Running the parameter fitting procedure with 5 instead of
25 iterations (see Sect.2.1.3) for all catchments to reduce the
computational effort (thereby increasing the risk that the re-
sulting parameter set is only a local instead of a global max-
imum in the five-dimensional parameter space), we selected
100 catchments for this study, for which the streamflow op-
timization (see Sect.2.1.3) yielded the highest correlations.
For the selected 100 catchments we then performed the pa-
rameter fitting procedure another 20 times to ensure that the
global optimum of the parameters is found. Corresponding
information on name, coordinates, river, size, altitude and
mean streamflow of the considered catchments is provided in
Appendix A. Their locations together with their mean daily
streamflow are displayed in Fig.1. The catchments are well
distributed across the continent, except for the south-east,
thus allowing an analysis of persistence across a large re-
gion. As can be inferred from Table1, the range of the fitted
parameter values is larger compared toOrth et al.(2013) as
we consider many more catchments, which are moreover dis-
tributed over a much wider area and across a broader range
of climate regimes.

4 Results

In this section, we first present an evaluation of the simple
model’s simulated streamflow and its memory in the con-
sidered catchments, followed by a case study to illustrate
the model behaviour under different hydrological conditions.
Thereafter we investigate the connection between soil mois-
ture memory on the one hand and streamflow and ET mem-
ory on the other hand, including an identification of the main
drivers for these relationships. In the last part of this sec-
tion, we present a different view on memory: we quantify its
strength as a recovery time from anomalous conditions and
investigate its variations with extreme conditions.

4.1 Evaluation of modelled streamflow

The employed water-balance model was earlier validated at
13 Swiss catchments inOrth et al.(2013), with a focus on
soil moisture memory,ρ

(
wn,wn+tlag

)
. However, the present

study also focuses on streamflow memory,ρ
(
Qn,Qn+tlag

)
,

and considers a much wider region that covers a large frac-
tion of Europe. Hence, we provide here an evaluation of the
performance of the simple water-balance model with respect
to its representation of mean streamflow andρ

(
Qn,Qn+tlag

)
at the investigated catchments. To allow an independent val-
idation, we consider monthly averages for June and October
in all catchments as these months are not part of the optimiza-
tion period in which the model is calibrated (see Sect.2.1.3).
The results are displayed in Fig.2. Note that we investigate
here the subset of catchments described in Sect.3.1 as well
as the totality of the 430 catchments of theStahl et al.(2010)
dataset. This allows us to show that the simple water balance
model displays a meaningful performance in the catchments
we disregard for the remainder of this study. Note that for
the excluded catchments we performed the parameter fitting
procedure with 5 instead of 25 iterations (see Sect.2.1.3) to
reduce the computational effort (thereby increasing the risk
that the resulting parameter set is only a local instead of a
global maximum in the five-dimensional parameter space).

Considering all 430 catchments of theStahl et al.(2010)
dataset, we find a rough agreement of the modelled mean
daily streamflow with observations in both months. The nu-
merous catchments where streamflow is underestimated (es-
pecially in June) are impacted by snow melt and melting
glaciers, which are both not accounted for in the model.
The agreement is better when only the 100 selected catch-
ments are considered. The fitted regression lines are closer
to the identity line. The match is still slightly worse in June
than in October as there are some high-altitude catchments
among the selected catchments (11 % of the catchments have
an average altitude higher than 1000 m above sea level, see
Appendix A), which may therefore be impacted by snow
melt. The relatively good fit between modelled and observed
mean daily streamflow is an interesting feature, as only
the correlation between modelled and observed streamflow

www.hydrol-earth-syst-sci.net/17/3895/2013/ Hydrol. Earth Syst. Sci., 17, 3895–3911, 2013
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Figure 2: The left plots show modeled versus observed mean daily streamflows for June (in black) and October
(in red). Note the logarithmic scale of both axes. The thick straight lines are fitted with least-squared regression,
R2 values shown on top are a result of this. The right plots show the same, only for mean monthly streamflow
memory ρ (Qn, Qn+15 days). The upper row shows results for all 441 catchments, the lower row only contains the
selected catchments.
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Fig. 2. The left plots show modelled versus observed mean daily
streamflows for June (in black) and October (in red). Note the log-
arithmic scale of both axes. The thick straight lines are fitted with
least-squared regression,R2 values shown on top are a result of
this. The right plots show the same, only for mean monthly stream-
flow memoryρ

(
Qn,Qn+15 days

)
. The upper row shows results for

all 441 catchments, the lower row only contains the selected catch-
ments.

has been used for the calibration of the model. As shown
on the right hand side of Fig.2, the streamflow memory
ρ

(
Qn,Qn+15 days

)
is well captured by the model for most

catchments, although the regression lines indicate a slight un-
derestimation of highρ

(
Qn,Qn+15 days

)
in both months. For

the same reason discussed above, the explained fraction of
variance is slightly higher in October compared to June. Note
that the explained fraction of variance,R2, is higher (0.8)
when comparingρ

(
Qn,Qn+15 days

)
of the selected catch-

ments, averaged from May–September (as used in Sects.4.3
and 4.4). The agreement between modelled and observed
ρ

(
Qn,Qn+15 days

)
is better for the selected, reduced number

of catchments than for the totality of catchments, indicating
that the quality of the modelledρ

(
Qn,Qn+15 days

)
depends

to some extent on the goodness of the streamflow optimiza-
tion. This supports our selection of a subset of catchments
(see Sect.3.1), as it shows that we can assume that the model
captures hydrological processes better (and therefore also the
persistence of the involved quantities) if the calibration al-
lows to better reproduce observed streamflow.

In order to further validate the simple water balance model
and the parameter fitting procedure, we display the fitted
water holding capacities in Fig.3. The fitted values fall in
a physically meaningful range. Furthermore, in many re-
gions we find similar water holding capacities for nearby

catchments, underlining the robustness of the parameter fit-
ting approach. Some few exceptions are probably due to the
heterogeneous nature of soil and land cover characteristics.
Additionally, there are large-scale variations; in central Ger-
many and across France the storage capacity tends to be
higher, whereas in the Alps and at the Norwegian coast we
find low water holding capacities.

4.2 Case study – Le Saulx catchment

We illustrate the model behaviour and the (modelled) rela-
tionships between soil moisture, streamflow and ET under
dry, average, and wet conditions based on a pronounced dry-
down period between April and July 1998 in the Le Saulx
catchment. We chose this catchment as example because it
is located in eastern France where land cover and meteo-
rological conditions are to some extent representative for
central Europe, and moreover because of its especially pro-
nounced 1998 dry-down. Figure4 shows in the upper part the
runoff function (normalised by precipitation) and ET func-
tion (normalised by net radiation) fitted for that catchment
based on the observed streamflow time series. As shown by
the background histogram, the soil moisture content during
April through October (snow-free season) generally ranges
between 100 and 170 mm. At these soil moisture levels, the
slope of the normalised ET function is rather constant, indi-
cating a constant sensitivity of normalised ET with respect to
soil moisture. In contrast, the slope of the normalised runoff
function increases strongly over this interval and therefore
the sensitivity of normalised runoff to soil moisture varies
with the soil moisture content. Under dry conditions the
soil moisture content occasionally decreases to about 50 mm,
which slightly increases the sensitivity of ET to soil moisture
(as seen from the slightly higher slope), and almost prevents
any runoff (as the normalised runoff function is almost zero
for soil moisture values below about 80 mm). Under wet con-
ditions the soil moisture content may rise up to over 170 mm.
Under such conditions, if the soil moisture content is still
lower than the water holding capacity of 170 mm, the runoff
is very strongly dependent on soil moisture, in contrast to
ET that shows a decreased sensitivity under wet conditions.
However, beyond soil moisture values of 170 mm all precipi-
tation is transformed into runoff and therefore the streamflow
does no longer vary with soil moisture but only with precip-
itation. Note that the soil moisture content may exceed the
water holding capacity of 170 mm as indicated by the back-
ground histogram. This is caused by a negative net radiation
forcing during winter, which induces negative ET (conden-
sation) and therefore increasing soil moisture; in some years
it takes as long as April or May to remove this moisture sur-
plus with seasonally increasing net radiation. The fact that
the increased soil moisture from condensation does not run
off is a limitation of the model design; however, this limita-
tion does not impact the model behaviour during the period
May–September which this study focuses on.
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Figure 3: Fitted water holding capacities for the selected catchments. Note the logarithmic scale of the color-
coding.
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Fig. 3. Fitted water holding capacities for the selected catchments.
Note the logarithmic scale of the colour-coding.

Keeping these relationships in mind, the lower part of
Fig. 4 displays the evolution of modelled soil moisture,
streamflow and ET during the April–July 1998 dry-down pe-
riod, together with the corresponding precipitation and net
radiation forcing. The dashed red line indicating the ob-
served streamflow evolution compares well with the mod-
elled streamflow in terms of the temporal evolution (on
which we focus, see Sect.2.1.3), pointing out a reasonable
performance of the model. The first month, April, is rather
wet (high precipitation) and cloudy (low net radiation). Con-
sequently, the streamflow is high, responds strongly to pre-
cipitation, and its evolution corresponds well with the soil
moisture evolution, underlining the high sensitivity to soil
moisture discussed above (as soil moisture is still below
the water holding capacity). In contrast to streamflow, ET
is lower, mostly driven by net radiation, and displays a low
sensitivity to changes in soil moisture. During May and June
the catchment experienced mostly sunny and dry conditions
(high net radiation), only interrupted by low to medium pre-
cipitation in late May and early June. Correspondingly the
soil dries out remarkably. The streamflow therefore decreases
to almost zero, showing almost no response to the precipita-
tion and the following slight increase of soil moisture. This
illustrates the decoupling of streamflow from soil moisture
under dry conditions. On the other hand, ET is compara-
tively high and roughly follows the strong soil moisture de-
crease and the subsequent stabilization, although net radia-
tion is still the main driver, as a maximum in net radiation
in the second half of June causes a pronounced maximum in
ET (even if soil moisture is decreasing). Finally, in July soil
moisture has decreased to very low levels such that the ET
level is lower and, more importantly, despite strong day-to-
day variations in net radiation, the ET evolution corresponds
more closely to soil moisture, but still also to net radiation
(keeping in mind that the ET time series is smoothed with a
7-day running mean).
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Figure 4: a) Fitted normalized runoff (Equation (2)) and ET (Equation (3)) functions for the Le Saulx catchment
in eastern France (indicated by an arrow in Figure 1). The background histogram shows the relative abundance
of soil moisture contents between April and October.
b) Time series of forcing (net radiation at the top, precipitation at the bottom) and according output of the
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function reaches 1 at this soil moisture content. Note that the ET time series has been smoothed to facilitate the
readability of the graph such that each value represents the average of the current day, the three preceding days
and the three following days. 33

Fig. 4. (a)Fitted normalised runoff (Eq.2) and ET (Eq.3) functions
for the Le Saulx catchment in eastern France (indicated by an arrow
in Fig. 1). The background histogram shows the relative abundance
of soil moisture contents between April and October.(b) Time se-
ries of forcing (net radiation at the top, precipitation at the bottom)
and according output of the simple model (soil moisture, stream-
flow and ET in between the forcings) from the Le Saulx catchment
during a pronounced dry-out period from April until July 1998. The
dashed red line indicates the evolution of the observed streamflow.
The fitted water holding capacity for this catchment is 170 mm, such
that the normalised streamflow function reaches 1 at this soil mois-
ture content. Note that the ET time series has been smoothed to fa-
cilitate the readability of the graph such that each value represents
the average of the current day, the three preceding days and the three
following days.

4.3 Propagation of soil moisture memory

In contrast to the previous subsections that focused on partic-
ular months, all quantities discussed in this subsection (mem-
ories, coupling strengths, variances) are computed as a mean
of all months between May and September. However, all
mechanisms identified in the following also play a role for
seasonal cycles of the memories of (modelled) soil moisture,
streamflow and ET in the specific catchments.
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Figure 5: Geographical distribution of mean May-September memories of soil moisture (ρ (wn, wn+lag), upper
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data (all memories computed for a lag of 30 days (daily data) or 1 month (monthly data)) computed as described
in Section 2.3.
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Fig. 5. Geographical distribution of mean May–September memories of soil moisture (ρ
(
wn,wn+lag

)
, upper row), streamflow

(ρ
(
Qn,Qn+tlag

)
, centre row) and ET (ρ

(
En,En+lag

)
, lower row) for daily and monthly averaged data (all memories computed for a

lag of 30 days (daily data) or 1 month (monthly data)) computed as described in Sect.2.3.

4.3.1 Memory of soil moisture, streamflow and
evapotranspiration

Figure 5 displays the 30-day-lag memories of soil mois-
ture (ρ

(
wn,wn+30 days

)
), streamflow (ρ

(
Qn,Qn+30 days

)
)

and ET (ρ
(
En,En+30 days

)
) computed from daily data in all

catchments as compared to the respective 1-month-lag mem-
ories (e.g.ρ (wn,wn+1 month)) computed from monthly av-
eraged data. The memory patterns derived from daily and
monthly data are very similar. The 1-month-lag memories
are higher, which results from the aggregation of the data
that minimises the impact of day-to-day variations in the me-
teorological forcing.

As reported in numerous earlier studies (e.g.Delworth
and Manabe, 1988; Entin et al., 2000; Robock et al., 2000;
Koster and Suarez, 2001; Orth and Seneviratne, 2012) we
find considerable persistence in soil moisture in almost all
catchments. Largestρ

(
wn,wn+30 days

)
is found across Cen-

tral Europe (Germany, eastern France). We find generally
low ρ

(
wn,wn+30 days

)
in mountainous areas (Alps, Massif

central, Scandinavian mountains). Note that these large-scale
patterns correspond with the spatial distribution of the fitted
water holding capacities shown in Fig.3, pointing out the im-
portance of the storing capacity forρ

(
wn,wn+30 days

)
. Also

similar to the fitted water holding capacities, besides large-
scale gradients we find partly high small-scale variations
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(Germany, Norway). This highlights the importance of lo-
cal soil and vegetation characteristics in comparison to the
impact of the particular climate regime.

Interestingly, for streamflow we find medium memory in
many parts of Europe, especially in the Central Europe and
in the South-West, whereρ

(
wn,wn+30 days

)
is also highest.

Apart from these rather dominant large-scale variations we
find small-scale variations, as can be seen from the partly
high memory differences between nearby catchments in cen-
tral Europe, pointing out some importance of the role of local
catchment characteristics also forρ

(
Qn,Qn+30 days

)
. Fig-

ure5 shows moreover some memory in ET only for monthly
data in some catchments in southern France. Possible reasons
for this feature will be discussed in the following subsections.

4.3.2 Forcing memories and variabilities

As described in Sect.2.1.1, streamflow depends on runoff
(and therefore on soil moisture and precipitation) and on the
delay time scaleτ (Eq. 5). Therefore,ρ

(
Qn,Qn+tlag

)
may

result from propagatingρ
(
wn,wn+tlag

)
, but it is additionally

induced by the delay time scale. ET depends on soil moisture
and net radiation (Eq.2) and hence its memory may stem
from ρ

(
wn,wn+tlag

)
or ρ

(
Rn,Rn+tlag

)
.

For daily data, net radiation memory and precipitation
memory are negligible. Therefore, ET memory results al-
most entirely from soil moisture memory, whereas stream-
flow memory is additionally impacted by the delay time
scale. On the monthly time scale, however, we find small but
no longer negligibleρ

(
Rn,Rn+tlag

)
or ρ

(
Pn,Pn+tlag

)
which

may be caused by persisting patterns of the atmospheric cir-
culation. Associated with that the forcing variabilities de-
crease towards longer time scales as day-to-day variations are
averaged out. Note that the variability of radiation decreases
more strongly than that ofP ∗

n as it already incorporates the
joint impact of many daily precipitation sums.

4.3.3 Controls of memory propagation

To assess the relationship of soil moisture memory,
ρ

(
wn,wn+tlag

)
, with streamflow memory,ρ

(
Qn,Qn+tlag

)
,

and ET memory, ρ
(
En,En+tlag

)
, a scatter plot of

ρ
(
Qn,Qn+tlag

)
andρ

(
En,En+tlag

)
from all selected catch-

ments as a function of the correspondingρ
(
wn,wn+tlag

)
is

displayed in Fig.6. Every point and every triangle represent
one catchment. The left plot is based on daily data and
shows 30-day-lag memories whereas the right plot is based
on monthly data and shows 1-month-lag memories. In agree-
ment with Fig.5, this analysis shows thatρ

(
En,En+tlag

)
are generally lower thanρ

(
Qn,Qn+tlag

)
. With the help of

the dashed identity line we find thatρ
(
Qn,Qn+tlag

)
seems

to be limited by the correspondingρ
(
wn,wn+tlag

)
, which

suggests thatρ
(
Qn,Qn+tlag

)
to some extent originates from

ρ
(
wn,wn+tlag

)
. However, in two catchmentsρ

(
Qn,Qn+tlag

)

clearly exceeds the estimatedρ
(
wn,wn+tlag

)
. This is because

ρ
(
Qn,Qn+tlag

)
is not solely induced byρ

(
wn,wn+tlag

)
,

but it may also be generated through the transformation of
runoff into streamflow (Eq.5), i.e. by (slow) transport of
runoff water to the stream and in the stream towards the
stream gauge station; the corresponding delay time scale that
is among the longest in these two catchments. Depending
on the size of the catchment, this may remove some of the
variability of the runoff signal on the daily time scale.

Using colour coding, Fig.6 shows the respective
soil moisture-streamflow and soil moisture-ET coupling
strengths (ρ (Qn,wn) and ρ (En,wn), respectively, see
Sect. 2.5). The streamflow memoriesρ

(
Qn,Qn+tlag

)
are

found to be dependent onρ (Qn,wn). Almost all catch-
ments that show comparatively highρ

(
Qn,Qn+tlag

)
, also

show comparatively highρ (Qn,wn) together with relatively
high soil moisture memoryρ

(
wn,wn+tlag

)
. This supports

the above-described propagation ofρ
(
wn,wn+tlag

)
. For ET

memoryρ
(
En,En+tlag

)
, the link toρ (En,wn) is less clear,

nonetheless most of the catchments with comparatively high
ρ

(
En,En+tlag

)
display a higherρ (En,wn) at the same time.

In most catchments,ρ (En,wn) is weaker thanρ (Qn,wn),
which explains whyρ

(
Qn,Qn+tlag

)
exceedsρ

(
En,En+tlag

)
.

Whereas the streamflow memoryρ
(
Qn,Qn+tlag

)
in-

creases only slightly from daily to monthly time scales, the
ET memoryρ

(
En,En+tlag

)
increases much stronger. This is

becauseρ (En,wn) increases stronger thanρ (Qn,wn) for
most catchments, thanks to the strong reduction in radiation
variability with increasing time scale (see Sect.4.3.2). These
findings highlight the importance of the time scale used in
memory considerations. Although the forcing memories are
no longer negligible on the monthly time scale (Sect.4.3.2),
Fig. 6 illustrates thatρ

(
Qn,Qn+tlag

)
andρ

(
En,En+tlag

)
on

the monthly time scale are mostly controlled by soil moisture
memoryρ

(
wn,wn+tlag

)
and the respective coupling strength,

ρ (En,wn) or ρ (Qn,wn), like on the daily time scale.
When computing the memory of the evaporative fraction

En

Rn

instead of ET on the daily time scale (not shown) we

find a far stronger memory which is of similar order as for
ρ

(
wn,wn+tlag

)
, underlining the strong weakening impact of

daily net radiation variability onρ
(
En,En+tlag

)
. Similarly,

the memory of
Run

Pn

is similar toρ
(
wn,wn+tlag

)
on the daily

time scale (not shown), and therefore stronger than that of
streamflow, which underlines the weakening impact of day-
to-day precipitation variability.

Summing up, we have shown in this section that
the streamflow and ET memories,ρ

(
Qn,Qn+tlag

)
and

ρ
(
En,En+tlag

)
depend on (i) soil moisture memory

ρ
(
wn,wn+tlag

)
, which acts to some extent as an upper limit,

(ii) the strength of the coupling of streamflow and ET to
soil moisture, and (iii) the memory of the forcing (predom-
inantly on longer time scales). Furthermore the streamflow
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Figure 6: Streamflow (dots) and ET (triangles) memories ρ (Qn, Qn+lag) and ρ (En, En+lag), respectively, of all
selected catchments plotted versus the corresponding soil moisture memories ρ (wn, wn+lag) for daily and monthly
averaged data (all memories computed for a lag of 30 days (daily data) or 1 month (monthly data)). The color
coding denotes the strength of the soil moisture-streamflow coupling ρ (Qn, wn) and the soil moisture-ET coupling
ρ (En, wn), respectively (see Section 2.5).

35

Fig. 6. Streamflow (dots) and ET (triangles) memoriesρ
(
Qn,Qn+tlag

)
andρ

(
En,En+lag

)
, respectively, of all selected catchments plotted

versus the corresponding soil moisture memoriesρ
(
wn,wn+lag

)
for daily and monthly averaged data (all memories computed for a lag of

30 days (daily data) or 1 month (monthly data)). The colour coding denotes the strength of the soil moisture-streamflow couplingρ (Qn,wn)

and the soil moisture-ET couplingρ (En,wn), respectively (see Sect.2.5).

Figure 7: Schematic view of propagation of soil moisture memory to streamflow memory and ET memory. Red
arrows denote positive impacts, blue arrows show negative impacts. Only dependencies investigated in this study
are shown.
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Fig. 7. Schematic view of propagation of soil moisture memory to
streamflow memory and ET memory. Red arrows denote positive
impacts, blue arrows show negative impacts. Only dependencies in-
vestigated in this study are shown.

memory ρ
(
Qn,Qn+tlag

)
may be generated by the delay

time scaleτ reflecting the conversion of runoff to stream-
flow. A schematic view of these dependencies is presented
in Fig. 7, with positive relationships denoted by red ar-
rows and negative relationships shown with blue arrows.
It illustrates that the forcing memory not only supports
ρ

(
Qn,Qn+tlag

)
andρ

(
En,En+tlag

)
, but also the soil moisture

memoryρ
(
wn,wn+tlag

)
itself (Orth and Seneviratne, 2012).

Moreover the scheme includes controls ofρ (Qn,wn) and
ρ (En,wn), which are discussed in the following subsection
together with a further discussion of Fig.7.

4.4 Soil moisture-streamflow and soil moisture-ET
coupling

4.4.1 Geographical distribution

Figure 8 displays the geographical distribution of the two
coupling strengths introduced in Sect.2.5and computed with
daily and monthly averaged data, respectively. The geograph-
ical patterns appear to be independent of the applied av-
eraging time scale. As seen previously for the streamflow
and ET memories, the soil moisture-streamflow coupling
strengths are similar for different time scales whereas the (ab-
solute values of the) soil moisture-ET coupling strengths in-
crease significantly in many catchments with increasing (i.e.
daily to monthly) time scale. This is furthermore reflected
in a clear increase of the standard deviation of all respec-
tive soil moisture-ET coupling strengths from the daily to
the monthly time scale.

The soil moisture-streamflow couplingρ (Qn,wn) is over-
all clearly stronger than the soil moisture-ET coupling
ρ (En,wn). It is comparatively weak in coastal areas (Great
Britain, Norway) and rather strong in flat, continental regions
(Germany, France). However, in coastal areas around the
Baltic sea (Denmark, Estonia, Finland) there is no reduction
in ρ (Qn,wn). Overall, large-scale variations are dominant,
although in some regions (e.g. Norway and Great Britain)
relatively large differences are found for some nearby catch-
ments.

For the soil moisture-ET coupling,ρ (En,wn), small-scale
variations are more prominent than large-scale variations,
especially on the monthly time scale. In southern France
the coupling is particularly strong due to prevailing the dry
regime in that region. Under such a regime, soil moisture
is rather low and the ET function slope is rather high (see
Sect.4.2). Negativeρ (En,wn), which is seen at the monthly
time scale for some catchments in central and northern
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Figure 8: Geographical distribution of mean May-September soil moisture-streamflow (upper row) and soil
moisture-ET (lower row) coupling strengths ρ (Qn, wn) and ρ (En, wn), respectively, for daily and monthly aver-
aged data. Respective strengths are shown through the color coding. In the upper left corner of each plot the
mean and standard deviation over the selected catchments are displayed.
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Fig. 8. Geographical distribution of mean May–September soil moisture-streamflow (upper row) and soil moisture-ET (lower row) coupling
strengthsρ (Qn,wn) andρ (En,wn), respectively, for daily and monthly averaged data. Respective strengths are shown through the colour
coding. In the upper left corner of each plot the mean and standard deviation over the selected catchments are displayed.

Europe, can be explained with very low slopes of the fitted
ET ratio functions in these catchments. As a consequence
ET depends almost entirely on net radiation there, which is
usually negatively related with precipitation and hence soil
moisture.

4.4.2 Controls

Having shown that streamflow and ET memory are origi-
nating from soil moisture memory and are furthermore con-
trolled by the respective soil moisture-streamflow and soil
moisture-ET coupling strengths, we analyse here the two
coupling strengths themselves. Thereby we determine which
climatic regime or catchment characteristics support or in-
hibit memory propagation. As shown in Fig.7, we investi-
gate and identify two controls for the coupling strengths: (i)
the sensitivity of runoff (normalised by precipitation) and ET
(normalised by net radiation) to soil moisture as measured
by the mean slopes of the corresponding functions (Eq.2
and 3; see also example in Fig.4), (ii) the variance of the
forcing, i.e. of cumulative weighted precipitation (P ∗

n , Eq.6)
and net radiation (Rn). We consider here the influence of the
forcing variances on the translation of a soil moisture signal
into streamflow and/or ET. For instance even if the respective

slope is high, the respective coupling strength may be re-
duced by a high forcing variance.

Figure9 shows the impact of both above-described drivers
on the two coupling strengths for daily and monthly aver-
aged data. Every point (streamflow) and every triangle (ET)
represents one catchment. The respective slopes of the fitted
runoff and ET functions are plotted on they axes and the
forcing variances can be read from the colour coding of the
symbols.

Focusing on ET first, we find increasingρ (En,wn) with
increasing mean slope of the ET function on both time scales.
The radiation variances are very similar in all catchments.
When comparing the variances at different time scales, we
find a clear reduction towards the longer, monthly time scale
(see also Sect.4.3.2). This is because day-to-day varia-
tions are averaged out, which causes a stronger increase of
ρ (En,wn) with increasing slope of the ET function.

Interestingly,ρ (Qn,wn) does not increase with an in-
creasing slope of the runoff function, but instead decreases
slightly on both considered time scales. Apart from the ef-
fect of the slope,ρ (Qn,wn) is moreover controlled by the
variance of the atmospheric forcing (cumulative weighted
precipitationP ∗

n ). Different precipitation variances cause a
gradient in the coupling strengths of catchments with similar
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Figure 9: Soil moisture-streamflow (dots) and soil moisture-ET (triangles) coupling strengths, ρ (Qn, wn) and
ρ (En, wn), respectively, plotted against the respective runoff and ET function slope (computed as described in
Section 4.4.2) for daily and monthly averaged data. The color coding denotes the variance of the weighted
precipitation sum precipitation (P ∗n) and of radiation, respectively. All involved quantities computed as means
from May-September. Points that do not fit with the range of the x- and/or y-axis are also included together with
an arrow pointing in the direction of their actual location and the true value displayed next to it.
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Fig. 9. Soil moisture-streamflow (dots) and soil moisture-ET (triangles) coupling strengths,ρ (Qn,wn) andρ (En,wn), respectively, plotted
against the respective runoff and ET function slope (computed as described in Section4.4.2) for daily and monthly averaged data. The colour
coding denotes the variance of the weighted precipitation sum precipitation (P ∗

n ) and of radiation, respectively. All involved quantities
computed as means from May–September. Points that do not fit with the range of thex and/ory axis are also included together with an arrow
pointing in the direction of their actual location and the true value displayed next to it.

slopes. The rather strong role of the precipitation variance
for ρ (Qn,wn) compared to the role of the radiation variance
for the soil moisture-ET coupling is due to the much larger
spread of the precipitation variances between all catchments,
as shown in the colour bars in Fig.9. Note, however, that the
displayed variance ofP ∗

n is not strictly a forcing variance, as
P ∗

n is determined in part by the delay time scaleτ (see Eq.6),
which means consequently thatτ may impactρ (Qn,wn).

The scheme in Fig.7 summarises all the relation-
ships investigated above. It illustrates howρ (Qn,wn) and
ρ (En,wn) feed back on soil moisture memory. The stronger
streamflow and ET respond to soil moisture, the more they
tend to dampen initial soil moisture anomalies. For instance,
a dry anomaly causes a decrease in streamflow and ET,
whereas a wet soil moisture anomaly would cause a strong
increase, especially in streamflow (see Fig.4). The impact
of the initial soil moisture anomaly for the subsequent soil
moisture memory is discussed in Sect.4.5. The variability
of the forcings (precipitation and radiation) may weaken the
streamflow and ET memory, but this effect only plays a role
in case of low slopes of the runoff and ET functions, as seen
especially for streamflow in Fig.9.

4.4.3 Differences between soil moisture-streamflow and
soil moisture-ET coupling

As discussed in Sect.4.3.3, streamflow memory exceeds ET
memory in almost all catchments on the daily time scale,
and in most catchments on the monthly time scale. This is
caused by the stronger coupling of streamflow to soil mois-
ture (ρ (Qn,wn) > ρ (En,wn)) in most of the investigated
catchments, with the slope of the runoff function typically

exceeding that of the ET function. Additionally, the forc-
ing variabilities play a role. As described in Sect.4.3.3,
they decrease with increasing time scale because day-to-day
variations are averaged out, but the radiation variability de-
creases more strongly, which explains why the ET memory
increases more than the streamflow memory with increasing
time scale.

The higher runoff function slopes and the consequently
stronger impact of streamflow on soil moisture dynamics
compared to the impact of ET on soil moisture dynamics are
another reason for the considerable spread of the triangles in
Fig.9. Catchments with similar ET function slopes may have
very different runoff function slopes that impact soil moisture
dynamics differently, thereby causing differentρ (En,wn). It
should be noted that these results are likely dependent on the
climatic region where the catchments are located, and that
the considered catchments are mostly located in central and
northern Europe, i.e. in rather radiation-limited conditions.

4.5 Relating memory to persistence time scales

In Sect.2.4we introduced a methodology to compute persis-
tence time scales. Applying this methodology to the (mod-
elled) streamflow and soil moisture data from the 100 se-
lected catchments we derive maps of the mean persistences
of dry and wet anomalies of medium and high strength in
Fig. 10. The geographical patterns of the persistences com-
pare generally well to the mean memories derived from
daily data as shown in Fig.5, suggesting consistency be-
tween the different approaches for memory computation.
Note that partly strong small-scale variations of persistence
are due to the heterogeneous nature of soil and vegetation
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Fig. 10. Overview of mean durations to recover from (very) dry/wet conditions (1.33 and 1.66 standard deviations away from the respective
daily mean of the respective quantity) to normal conditions (±1 standard deviation around the mean) for (modelled) soil moisture and
streamflow. The results are based on daily data. In the upper left corner of each plot the median over all selected catchments is displayed.
Gray colour indicates that no persistence can be computed because the applied threshold is almost never reached.

characteristics. For soil moisture we find median persistences
over the considered catchments ranging from 17 to 25 days
depending on the considered anomaly. For streamflow, the
medians of the persistence time scales range between 5 and
7 days. Note that we do not investigate ET persistence here
as there is almost no memory on the daily time scale (Fig.5).
We find that it takes generally longer to recover to normal
conditions from strong anomalies than from medium anoma-
lies. In other words, the stronger an initial anomaly, the more
pronounced is the following memory effect. While this is not
unexpected, it has important implications for the forecasts of
extreme events, which should thus be more skillful than for
close-to-normal conditions. Also previous studies reported
an enhanced soil moisture memory following hydrological
extreme conditions (Koster et al., 2010; Orth and Senevi-
ratne, 2012). This impact of the initial soil moisture anomaly
on the strength of the subsequent memory is also included in
the schematic provided in Fig.7.

We find that dry soil moisture anomalies persist longer,
even if the difference to the persistence of wet anomalies is
small in comparison to the absolute value of the persistences.
The reason for this may be that the climate in most of the Eu-
ropean catchments considered here is generally humid which

means that dry anomalies can be very extreme whereas wet
anomalies are rather limited (as it cannot get much wetter).
Unlike the soil moisture patterns, streamflow memory shows
similar strength during dry and wet anomalies. While the
propagating soil moisture memory supports the streamflow
memory especially during dry anomalies, this result is due
to the fact thatρ (Qn,wn) is stronger under wet conditions
(see Sect.4.2), which allows a better propagation of the soil
moisture memory to streamflow (see Sect.4.3.3). Note that
streamflow persistences for strong, dry anomalies could not
be computed for all selected catchments, as in some catch-
ments the respective threshold is only exceeded on very few
days. This is because streamflow values rather follow an ex-
ponential than a normal distribution.

Figure11 displays a comparison of memories computed
as lag correlation and as persistence time scales. As above,
we focus on soil moisture and streamflow, and we addition-
ally investigate observed streamflow. The reasonably high
R2 values of the linear fits indicate consistency between the
two approaches. Only persistence time scales computed for
dry (modelled and observed) streamflow anomalies corre-
spond less well to the respective lag correlations due to the
exponential distribution of the streamflow values discussed
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Fig. 11. Comparison of memory estimates computed as lag correlation and as persistence time scale (based on anomalies of 1.33 standard
deviations from the mean) for modelled soil moisture and streamflow (left and middle) and observed streamflow (right). Red points refer to
persistence time scales estimated from dry anomalies whereas blue points are derived from wet anomalies. The red and blue lines denote the
respective linear least-squares fit. Note the logarithmic scale of the persistence time scale.

above. Figure11shows further that dry soil moisture anoma-
lies persist longer than respective wet anomalies, whereas for
streamflow we find the opposite behaviour. The results for
modelled and observed streamflow are similar, indicating a
good representation of streamflow memory/persistence in the
simple water balance model (which is not surprising, how-
ever, as the model is calibrated with observed streamflow).
The logarithmic scale of the persistence time scales indicates
interestingly that persistence time scales increase exponen-
tially for a linear increase in estimated lag correlation. This
underlines the red noise character of soil moisture, which was
already highlighted byDelworth and Manabe(1988). Note
that the findings of this figure are robust, even if we consider
persistence time scales related to other anomaly thresholds
or lag correlations of other time lags.

5 Conclusions

Using data from 100 catchments located across Europe, we
have shown that a simple water balance model is able to
simulate realistic streamflow as well as realistic streamflow
memory characteristics compared to observations, thereby
expanding an earlier validation performed byOrth et al.
(2013).

Further, this study investigated the relationship of stream-
flow and ET memory to soil moisture memory. We showed
that soil moisture memory to some extent serves as an upper
bound for streamflow and ET memory. Furthermore, we de-
fined measures of the coupling between soil moisture and
streamflow, as well as between soil moisture and ET and
found that their strengths determine the memory strength of
streamflow and ET, respectively. These findings explain why
one can infer that the memorypropagatesfrom soil mois-
ture to streamflow and ET as illustrated in Fig.7. As stream-
flow and ET are moreover driven by the meteorological
forcing, also the (small) memories of cumulative weighted

precipitation and net radiation (only on the monthly time
scale) play a (minor) role for the strength of their respective
memories.

Comparing the results for daily and monthly time scales
we generally find higher memory for monthly averaged data
of soil moisture, streamflow and ET. This is due to the re-
duced impact of the day-to-day variations of the meteorolog-
ical forcing.

Figure 7 moreover displays the special role of the
soil moisture-streamflow and soil moisture-ET coupling
strengths. We show that the soil moisture-ET coupling is
mostly controlled by the slope of the fitted (normalised) ET
function whereas the soil moisture-streamflow coupling is
strongly related to the variance of the weighted cumulative
precipitation. In most catchments, the ET function slope is
smaller than the runoff function slope, which is the main rea-
son for the generally weaker coupling between soil moisture
and ET, and the consequently lower ET memory compared
to that of streamflow.

In the last part of this study we introduced an alterna-
tive approach for computing memory to study its depen-
dency on different hydrological conditions. Instead of using
a lag correlation, we calculated the mean time required to
recover from anomalous conditions above a certain thresh-
old to normal conditions. Applying this new methodology
we found increased memory under more extreme conditions,
as illustrated in Fig.7 by the positive impact of the initial soil
moisture anomaly on subsequent soil moisture memory. We
further point out that soil moisture memory is strongest for
dry anomalies whereas streamflow memory is stronger dur-
ing wet anomalies in the investigated catchments. These re-
sults have important implications for sub-seasonal forecasts
of dry and wet soil moisture and streamflow anomalies, in-
cluding drought and flood events. As the resulting persistence
time scales are expressed in days, this measure of memory is
more easily interpretable, which is of particular relevance for
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Table A1. Overview of catchments.

Catchment Gauging Size Mean Mean daily Catchment
(river) Country station (km2) altitude (m a.s.l.) streamflow (mm) centroid

Antiesen Austria Haging 165 512 1.35 48.3◦ N 13.4◦ E
Braunaubach Austria Hoheneich 292 580 0.60 48.8◦ N 15.0◦ E
Griesler Ache Austria St. Lorenz 122 732 2.99 47.8◦ N 13.3◦ E
Große Rodl Austria Rottenegg 226 703 1.19 48.3◦ N 14.1◦ E
Große Tulln Austria Siegersdorf 202 348 0.51 48.3◦ N 15.9◦ E
Leogangbach Austria Uttenhofen 112 2.14 47.4◦ N 12.8◦ E
Traun Austria Obertraun 334 1078 5.39 47.6◦ N 13.7◦ E
Otava Czech Republic Rejtejn 334 1025 2.22 49.1◦ N 13.5◦ E
Svratka Czech Republic Borovnice 128 0.97 49.7◦ N 16.2◦ E
Teplá Vltava Czech Republic Lenora 176 1018 1.47 48.9◦ N 13.8◦ E
Volynka Czech Republic Nemetice 383 728 0.63 49.2◦ N 13.9◦ E
Vantaa Finland Oulunkylä 1680 78 0.90 60.2◦ N 25.0◦ E
L’Aisne France Mouron 2239 208 0.95 49.3◦ N 4.8◦ E
L’Ance Du Nord France St-Julien-D’ance (Laprat) 354 995 1.01 45.3◦ N 3.9◦ E
Le Bes France St-Juery 283 1200 2.10 44.8◦ N 3.1◦ E
La Colagne France St-Amans (Ganivet) 89 1286 1.30 44.7◦ N 3.4◦ E
Le Doubs France Goumois 1060 992 2.36 47.3◦ N 7.0◦ E
La Drome France Luc-En-Diois 194 1014 1.02 44.6◦ N 5.4◦ E
La Loire France Bas-En-Basset 3234 968 0.90 45.3◦ N 4.1◦ E
La Moselle France St-Nabord (Noir Gueux) 633 720 3.35 48.1◦ N 6.6◦ E
Le Saulx France Vitry-En-Perthois 2109 264 1.12 48.7◦ N 4.6◦ E
La Seine France Bar-Sur-Seine 2344 320 0.94 48.1◦ N 4.4◦ E
La Sioule France St-Priest-Des-Champs (Fades-Besserve) 1305 781 1.08 46.0◦ N 2.8◦ E
La Tardes France Evaux-Les-Bains 854 507 0.84 46.2◦ N 2.4◦ E
La Truyere France Malzieu-Ville (Le Soulier) 582 1122 1.13 44.8◦ N 3.3◦ E
La Truyere France Neuveglise (Grandval) 1803 1069 1.17 44.9◦ N 3.1◦ E
Aitrach Germany Lauben 308 732 1.52 47.9◦ N 10.0◦ E
Apfelstädt Germany Ingersleben 371 449 0.60 50.9◦ N 11.0◦ E
Attel Germany Anger 244 523 1.39 48.0◦ N 12.2◦ E
Brugga Germany Oberried-Ibrech 40 989 3.41 47.9◦ N 8.0◦ E
Dhron Germany Papiermühle 170 489 0.95 49.8◦ N 6.9◦ E
Elsava Germany Rück 145 356 0.72 49.8◦ N 9.2◦ E
Engnitz Germany Hüttengrund 46 654 2.08 50.4◦ N 11.2◦ E
Gaissa Germany Hoerrmannsberg 212 457 1.30 48.7◦ N 13.4◦ E
Grosse Ohe Germany Schönberg 82 811 2.13 48.8◦ N 13.4◦ E
Grosser Regen Germany Zwiesel 177 886 2.52 49.0◦ N 13.2◦ E
Helme Germany Sundhausen 201 255 0.76 51.5◦ N 10.8◦ E
Kinzig Germany Schwaibach 964 600 2.16 48.4◦ N 8.0◦ E
Kollbach Germany Deggendorf 36 1.73 48.8◦ N 13.1◦ E
Lahn Germany Biedenkopf 309 477 1.60 50.9◦ N 8.5◦ E
Lohr Germany Partenstein 217 400 1.20 50.0◦ N 9.5◦ E
Mindel Germany Offingen 951 595 1.14 48.5◦ N 10.4◦ E
Mitternacher Oh Germany Eberhardsreuth 114 663 1.55 48.8◦ N 13.4◦ E
Osterbach Germany Röhrnbach 121 645 1.88 49.0◦ N 13.2◦ E
Reschwasser Germany Unterkashof 61 967 2.69 48.9◦ N 13.5◦ E
Rodach Germany Streitmühle bei Due 55 633 1.55 50.4◦ N 11.5◦ E
Rottach Germany Rottach 31 1159 2.88 47.7◦ N 11.8◦ E
Saalach Germany Unterjettenberg Rech 760 1211 3.34 47.7◦ N 12.8◦ E
Schwarzwasser Germany Aue1 362 745 1.51 50.6◦ N 12.7◦ E
Sinn Germany Mittelsinn 461 456 1.19 50.2◦ N 9.6◦ E
Steinacher Ache Germany Fallmuehle 22 1355 3.73 47.6◦ N 10.5◦ E
Stoisser Ache Germany Piding 50 738 2.08 47.8◦ N 12.9◦ E
Tiroler Achen Germany Staudach 944 1139 3.21 47.8◦ N 12.5◦ E
Traun Germany Stein Bei Altenmarkt 378 850 2.85 48.0◦ N 12.6◦ E
Uessbach Germany Peltzerhaus 176 410 0.84 50.1◦ N 7.1◦ E
Ulster Germany Guenthers 182 598 1.38 50.7◦ N 10.0◦ E
Untere Steinach Germany Oberhammer 67 576 1.44 50.2◦ N 11.5◦ E
Vils Germany Pfronten Ried 110 1369 3.78 47.6◦ N 10.6◦ E
Weisser Regen Germany Koetzing 226 692 1.72 49.3◦ N 13.0◦ E
Wertach Germany Biessenhofen 442 882 2.44 47.8◦ N 10.7◦ E
Weschnitz Germany Lorsch 383 214 0.71 49.7◦ N 8.6◦ E
Wipper Germany Hachelbich 524 324 0.63 51.3◦ N 11.0◦ E

www.hydrol-earth-syst-sci.net/17/3895/2013/ Hydrol. Earth Syst. Sci., 17, 3895–3911, 2013



3910 R. Orth and S. I. Seneviratne: Soil moisture memory propagating to streamflow and evapotranspiration

Table A1. Continued.

Catchment Gauging Size Mean Mean daily Catchment
(river) Country station (km2) altitude (m a.s.l.) streamflow (mm) centroid

Årgårdselv Norway Øyungen 230 316 4.51 64.2◦ N 11.1◦ E
Engesetelev Norway Engsetvatn ndf 41 206 4.92 62.5◦ N 6.6◦ E
Etna Norway Etna 565 925 1.44 61.0◦ N 9.6◦ E
Etneelv Norway Stordalsvatn 140 611 9.09 59.7◦ N 6.0◦ E
Flisa Norway Knappom 1655 414 1.38 60.6◦ N 12.0◦ E
Forra Norway Høggås bru 458 525 3.77 63.5◦ N 11.4◦ E
Fusta Norway Fustvatn 520 472 5.58 65.9◦ N 13.3◦ E
Glomma Norway Atnasjø 468 1140 1.85 61.9◦ N 10.2◦ E
Guddalselva Norway Nautsundvatn 214 436 7.17 61.3◦ N 5.4◦ E
Jondalselv Norway Jondal 150 569 1.73 59.7◦ N 9.6◦ E
Kløvtveitelv Norway Kløvtveitvatn 5 466 11.06 61.0◦ N 5.3◦ E
Lygna Norway Tingvatn 265 564 5.80 58.4◦ N 7.2◦ E
Moelv Norway Salsvatn 435 285 5.18 64.7◦ N 11.5◦ E
Nordelva Norway Krinsvatn 210 435 5.42 63.8◦ N 10.2◦ E
Ogna Norway Helleland 75 336 6.79 58.5◦ N 6.2◦ E
Øren Norway Øren 151 264 4.05 62.8◦ N 7.7◦ E
Oselv Norway Røykenes 55 328 8.63 60.3◦ N 5.4◦ E
Strandå Norway Strandå 27 212 5.89 67.5◦ N 14.9◦ E
Tovdalselv Norway Austenå 310 752 3.01 58.8◦ N 8.1◦ E
No name Norway Karpelv 129 194 1.72 69.7◦ N 30.4◦ E

Biely Vah Slovakia Vychodna 106 1055 1.26 49.0◦ N 19.9◦ E
Kysuca Slovakia Cadca 492 647 1.46 49.4◦ N 19.0◦ E
Poprad Slovakia Poprad-Matejovce 311 1001 1.13 49.1◦ N 20.3◦ E
Rajcianka Slovakia Poluvsie 243 706 1.18 49.1◦ N 18.7◦ E

Dalelven Sweden Ersbo 654 728 3.34 61.3◦ N 13.0◦ E
Moelven Sweden Anundsjön 1457 283 1.10 63.4◦ N 18.3◦ E

Kleine Emme Switzerland Littau 78 2.00 47.5◦ N 8.9◦ E
Murg Switzerland Waengi 477 662 2.79 47.1◦ N 8.3◦ E

Allan Water United Kingdom Kinbuck 172 245 3.07 56.2◦ N 3.9◦ W
Coln United Kingdom Bibury 107 181 1.12 51.8◦ N 1.8◦ W
Cree United Kingdom Newton Stewart 368 243 3.77 55.0◦ N 4.5◦ W
Dart United Kingdom Austins Bridge 249 327 3.91 50.5◦ N 3.8◦ W
Dee United Kingdom Woodend 1394 512 2.46 57.1◦ N 2.6◦ W
Kinnel Water United Kingdom Redhall 78 245 3.45 55.2◦ N 3.4◦ W
Nith United Kingdom Friars Carse 812 293 3.28 55.1◦ N 3.7◦ W
Thet United Kingdom Melford Bridge 315 40 0.53 52.4◦ N 0.8◦ E
Tweed United Kingdom Boleside 1559 361 2.31 55.6◦ N 2.8◦ W
Weaver United Kingdom Audlem 207 89 0.76 53.0◦ N 2.5◦ W

a range of applications. We show consistency between the
two approaches, which is furthermore underlined by the con-
sistency of the derived geographical patterns of soil mois-
ture and streamflow memory. We also find that the persis-
tence time scales are exponentially related to the respective
lag correlations, pointing out a special importance of high lag
correlations identified for soil moisture.
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