Flood trends along the Rhine: the role of river training
Abstract. Several previous studies have detected positive trends in flood flows in German rivers, among others, at Rhine gauges over the past six decades. The presence and detectability of the climate change signal in flood records has been controversially discussed, particularly against the background of massive river training measures in the Rhine. In the past the Rhine catchment has been heavily trained, including the construction of the Rhine weir cascade, flood protection dikes and detention basins. The present study investigates the role of river training on changes in annual maximum daily flows at Rhine gauges starting from Maxau down to Lobith. In particular, the effect of the Rhine weir cascade and of a series of detention basins was investigated. By homogenising the original flood flow records in the period from 1952 till 2009, the annual maximum series were computed that would have been recorded had river training measures not been in place. Using multiple trend analysis, relative changes in the homogenised time series were found to be from a few percentage points to more than 10 percentage points smaller compared to the original records. This effect is attributable to the river training measures, and primarily to the construction of the Rhine weir cascade. The increase in Rhine flood discharges during this period was partly caused by an unfavourable superposition of the Rhine and Neckar flood waves. This superposition resulted from an acceleration of the Rhine waves due to the construction of the weir cascade and associated channelisation and dike heightening. However, at the same time, tributary flows across the entire Upper and Lower Rhine, which enhance annual maximum Rhine peaks, showed strong positive trends. This suggests the dominance of another driver or drivers which acted alongside river training.