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Abstract. This study explores the limits of radar-based fore-
casting for hydrological runoff prediction. Two novel radar-
based ensemble forecasting chains for flash-flood early warn-
ing are investigated in three catchments in the southern Swiss
Alps and set in relation to deterministic discharge forecasts
for the same catchments. The first radar-based ensemble
forecasting chain is driven by NORA (Nowcasting of Oro-
graphic Rainfall by means of Analogues), an analogue-based
heuristic nowcasting system to predict orographic rainfall
for the following eight hours. The second ensemble fore-
casting system evaluated is REAL-C2, where the numerical
weather prediction COSMO-2 is initialised with 25 differ-
ent initial conditions derived from a four-day nowcast with
the radar ensemble REAL. Additionally, three deterministic
forecasting chains were analysed. The performance of these
five flash-flood forecasting systems was analysed for 1389 h
between June 2007 and December 2010 for which NORA
forecasts were issued, due to the presence of orographic forc-
ing.

A clear preference was found for the ensemble approach.
Discharge forecasts perform better when forced by NORA
and REAL-C2 rather then by deterministic weather radar
data. Moreover, it was observed that using an ensemble of
initial conditions at the forecast initialisation, as in REAL-
C2, significantly improved the forecast skill. These forecasts
also perform better then forecasts forced by ensemble rain-
fall forecasts (NORA) initialised form a single initial con-
dition of the hydrological model. Thus the best results were
obtained with the REAL-C2 forecasting chain. However, for
regions where REAL cannot be produced, NORA might be
an option for forecasting events triggered by orographic pre-
cipitation.

1 Introduction

To issue early warnings about flash floods, information about
the spatial and temporal distribution of precipitation is cru-
cial. Catchments with steep slopes and shallow soils, which
are typical in the Alps, specifically react very quickly to in-
tense rainfall. Forecasting for flash-flood events would thus
help to extend the time available to issue warnings and im-
plement safety measures. Producing such forecasts is, how-
ever, a very challenging task. A first challenge is to model
the physical processes that affect the runoff generation. This
involves uncertainties in the model structure and parame-
terization. Also finding an adequate initial state for the ini-
tialisation of a hydrological forecast is not trivial, but im-
portant especially for short-term forecasts, as this state can
have a significant influence on the model output at the begin-
ning of the simulations (AghaKouchak et al., 2013). Fundel
and Zappa (2011) compared ensemble forecasts initialised by
states obtained by reference runs of a hydrological model us-
ing meteorological observations and meteorological reanaly-
sis (ERA-interim) data. The resulting forecasts showed sig-
nificantly better skill using initialisations based on meteoro-
logical observations especially for the first forecast days. In
an experimental framework Zappa et al. (2011) used a radar
ensemble to generate ensembles of initial conditions and
showed that the uncertainty from initial conditions decays
within the first 48 h of the forecast. Another very challenging
issue is the uncertainty about the distribution and intensity of
the main triggering variable, the precipitation. It is already
challenging to estimate precipitation distributions spatially
when precipitation has occurred, but even more difficult to
predict its spatial and temporal distribution in advance to be
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able to issue warnings and take preventive actions if needed
to minimise any kind of loss. In flood prediction meteorolog-
ical uncertainty is therefore usually assumed to be the largest
source of uncertainty (Rossa et al., 2011). Precipitation data
to drive the hydrological model normally stems from either
rain gauges, weather radar or numerical weather prediction
systems, all having their advantages and disadvantages.

Precipitation measurements from rain gauges are very ac-
curate at the point scale (Villarini et al., 2008). However,
they cover only small areas of a few square decimetres
(Michelson, 2004; Sevruk, 1996) but are then interpolated
over tens or hundreds of square kilometres (Tobin et al.,
2011; Velasco-Forero et al., 2009). Considering the very high
spatial variability of precipitation, a problem of representa-
tiveness arises. Ensemble generators based on observed rain-
gauge data are approaches to deal with these uncertainties
(e.g. Ahrens and Jaun, 2007; Moulin et al., 2009; Rakovec et
al., 2012).

The weather radar quantitative precipitation estimate
(QPE) seems to be a very suitable product to detect the loca-
tion of precipitation and to follow its development over time
very closely because it is available at very high spatial and
temporal resolutions. In Switzerland the information is pro-
vided every 5 min at a spatial resolution of 1 km (Germann et
al., 2006). However, determining weather radar QPE is not
an easy task, particularly in mountainous terrain, due to var-
ious sources of error, such as beam shielding, ground clutter
and hardware instabilities, etc. (Germann et al., 2006; Szturc
et al., 2008; Werner and Cranston, 2009). One approach to
take these uncertainties into account is to use ensembles of
weather radar QPEs (Germann et al., 2009; Liechti et al.,
2013). This approach is also followed in the present study by
using the probabilistic real-time radar nowcasting tool REAL
(Radar Ensemble generator designed for the Alps using LU
decomposition) developed by MeteoSwiss (Germann et al.,
2009). But like rain-gauge data, radar QPEs are only avail-
able in real-time and not in advance.

A common way to predict precipitation is to use numerical
weather prediction systems (NWP). They are run at differ-
ent spatial and temporal resolutions, typically ranging from
about 2 to 20 km and from 24 to 240 h of lead time (Montani
et al., 2011; Zappa et al., 2008; Price et al., 2012a). One of the
most detailed models available in Europe is the COSMO-2,
which has a grid size of 2.2 km and 24 h of lead time com-
puted every 3 h (Weusthoff et al., 2010; Ament et al., 2011).
For NWP rainfall forecasts the largest source of uncertainty
is found in the initial conditions of the NWP model (Price
et al., 2012a). To account for this uncertainty ensemble fore-
casts are produced by adding small perturbations to the best
estimate of the initial state of the atmosphere (Schellekens et
al., 2011).

These sources of precipitation estimates are all used as
input in hydrological modelling. As an example, Price et
al. (2012b) present a flood forecasting system for England
and Wales forced by the radar-based rainfall product STEPS

(control run) (Bowler et al., 2006) during the first hours of
the forecast, followed by different NWP products with differ-
ent lead times (36–120 h) and spatial resolutions (4–25 km).
They conclude that despite the errors encountered in radar
rainfall data, these are still the best option for real-time fore-
casting. However, to forecast rapidly responding catchments
accurate and reliable merged products of radar and raingauge
data will play an essential role in the future. Up to now,
for flash-flood early warning purposes, weather radar data
is mainly used as input for nowcasts with zero lead time
(Germann et al., 2009; Liechti et al., 2013; Zappa et al.,
2011), which are then only meaningful within the response
time of the modelled catchment, as Morin et al. (2009)
describe. They developed and tested a flash-flood warning
model for two catchments in the Dead Sea region based on
real-time radar data. The system operates in both determin-
istic and probabilistic mode. For the probabilistic nowcasts
they applied Monte Carlo simulations with an uncertainty
range for both the radar QPEs and the model parameters.
Despite the large amount of uncertainty they obtained ac-
ceptable model performance with their nowcasting system.
For smaller catchments prone to flash floods, however, the re-
sponse time of the catchment may be too short to issue useful
warnings and to take mitigation actions in good time.

To give radar-based forecasts with a more useful lead
time, methodologies based on Eulerian and Lagrangian per-
sistence can be applied to the radar data. Eulerian persistence
keeps the current radar image frozen as a forecast for the
near future (Germann and Zawadzki, 2002), while the La-
grangian persistence basically extrapolates the past motion
of the precipitation into the future (Germann and Zawadzki,
2004; Mandapaka et al., 2012). Berenguer et al. (2005) did
a hydrological verification of a radar-based nowcasting sys-
tem by comparing stream-flow forecasts driven by S-PROG
data (Seed, 2003) with forecasts driven by Eulerian and
Lagrangian persistence. S-PROG is a simple extrapolation
technique, based on Lagrangian persistence, that assumes a
steady state for the motion of the rainfall field and also filters
out the small-scale patterns of the rainfall field as the fore-
casting time increases. The verification of the system showed
that an improvement in the precipitation forecast could be
achieved with this method. However, the improvements in
hydrograph prediction were not significantly better with S-
PROG than with the simpler Lagrangian persistence.

To extend the lead time for flash-flood and flood early de-
tection, several studies have also investigated the applica-
tion of NWP forecasts in flash-flood and flood early warn-
ing systems. Schellekens et al. (2011) report good results for
operational flood forecasts across the Thames Region using
the MOGREPS ensemble forecasting system (Bowler et al.,
2008) developed by the Met Office. Addor et al. (2011) com-
pared flood forecasts driven by probabilistic and determinis-
tic NWP forecasts. In their case study they found that, despite
the coarser spatial resolution, the probabilistic forecast out-
performs the deterministic forecasts for the whole forecast
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range of three days and also extends the lead time. Similarly,
Alfieri et al. (2012) analysed the performance of a NWP-
driven flash-flood alert system. They used a 30 yr meteoro-
logical re-forecast (Fundel et al., 2010) to derive warning
thresholds from the hydrological model with the aim to be
independent from any stream-flow observations. They calcu-
lated forecasts every third hour at a spatial resolution of 1 km
with lead times up to 5 days and analysed their flash-flood
forecasting system on the basis of a qualitative and quan-
titative performance analysis of the Verzasca Catchment in
southern Switzerland. The problems they encountered are
well known: (1) only a limited amount of data is available
for verification, which is why the warning thresholds are set
very low to be able to do robust statistics, but these thresholds
are then not really relevant for flash floods; (2) the catchment
reacts very quickly to extreme precipitation and thus the in-
terval at which the model operates is a limiting factor; and
(3) NWP forecasts of convective precipitation events are not
very accurate. To address this last issue, Rossa et al. (2010)
tested a hydro-meteorological forecasting chain that assimi-
lates radar rainfall data into the NWP model COSMO-2 prior
to processing the forecast data with a hydrological model.
This allows the main convective systems to be introduced
into the model state, which enhances the timing and locali-
sation of precipitation forecasts. This method seemed to im-
prove discharge forecasts up to a lead time of three hours.

Up to now flash-flood early warning systems have either
been run with NWP or, if run with weather radar data, they
have been restricted to nowcasts with very limited lead time.
Most of these studies, however, applied a deterministic ap-
proach. The study presented here is an incremental contri-
bution to Zappa et al. (2011) and Liechti et al. (2013). In
Zappa et al. (2011) the superposition of different sources
of uncertainties in the hydro-meteorological forecast chain
was investigated. In Liechti et al. (2013) the radar ensem-
ble product REAL and a parameter ensemble approach were
tested for hydrological nowcasting. Here we intend to go be-
yond nowcasting and move towards radar-based flash-flood
forecasting by extending the lead time and in applying two
novel approaches of radar-based ensemble flash-flood fore-
casting. The first one is purely radar-based and provides fore-
casts for the next eight hours. It propagates analogue-based
weather radar forecasts with a hydrological model and is de-
signed for situations with orographic precipitation. The other
approach combines the real-time radar ensemble nowcast
REAL (Germann et al., 2009) with the numerical weather
prediction model COSMO-2. The resulting stream-flow fore-
casts are analysed and compared to deterministic radar-based
forecasts. A pluviometer-based forecast chain additionally
serves as a reference forecast, as rain-gauge data was used
for the calibration of the hydrological model. The aim of
our study is to investigate the potential of radar-based en-
semble flash-flood forecasts with special emphasis on purely
radar-based flash-flood forecasts. The experiments compar-
ing the results of the different radar-based forecasting chains

highlight the value of ensemble forcing and the positive influ-
ence of using an ensemble of initial conditions for flash-flood
early warning with lead times up to eight hours. Three basins
of different sizes in the southern Swiss Alps were analysed,
including the well-investigated Verzasca River basin (Alfieri
et al., 2012; Germann et al., 2009)

2 Material and methods

2.1 The hydrological model

All the discharge forecasts in this study were produced with
the semi-distributed rainfall-runoff model PREVAH (Gurtz
et al., 2003; Viviroli et al., 2009a). The model is used in
operational mode in many Swiss catchments for hydrolog-
ical forecasting, amongst others in the catchments presented
in this study. PREVAH operates at a spatial resolution of
500 m; however, this grid is assembled to hydrological re-
sponse units (HRU) containing information on land use, soil
and topography (Gurtz et al., 2003). The model is set up to
work at hourly intervals. This allows a direct comparison of
the different forecast chains, as the meteorological input from
COSMO-2 also has a temporal resolution of one hour. Also
regarding the response time of the study catchments this tem-
poral resolution is sufficient. The meteorological variables
required to run the model are air temperature, water vapour
pressure, global radiation, sunshine duration, wind speed,
and precipitation. Due to the topographical variation in the
catchments, an altitude-dependent gradient has to be consid-
ered for air temperature, wind speed, water vapour pressure
and global radiation (Jaun and Ahrens, 2009; Viviroli et al.,
2009a; Zappa and Kan, 2007).

The model is calibrated using meteorological data from
automatic ground stations. This data is interpolated with in-
verse distance weighting to form meteorological surfaces
on a 500 m×500 m grid (Viviroli et al., 2009b). The 14
adjustable parameters of the PREVAH model used in this
study originate from a default calibration for the Verzasca
Catchment obtained from previous applications (Ranzi et al.,
2007; Wöhling et al., 2006). The most sensitive parame-
ters are the two water balance adjustment terms used to ac-
count for systematic correction of liquid and solid precipita-
tion input (Viviroli et al., 2009b). As discussed in Viviroli et
al. (2009b), such systematic correction is introduced to ac-
count for the integral discharge volume error arising from
different sources (most prominently: under catch of precip-
itation gauges, rain gauge network representativity, interpo-
lation errors, estimation of evapotranspiration and even bias
in the runoff observations). The aim of the calibration was to
find the parameter set that simulates the average flow best and
that has the smallest volume error between the observed and
simulated time series (Viviroli et al., 2009a; Zappa and Kan,
2007). For this purpose nine objective functions focussing
on high flows, low-flow, average-flows and discharge volume
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are combined (Viviroli et al., 2009b). A 13 yr data record was
used for model calibration and verification. The year 1992
was used as the initialisation period for the model, the years
1993 to 1996 for the calibration period and 1997 to 2004 for
the verification period.

In the presented study we also used precipitation esti-
mates from weather radar and NWP to force the hydrolog-
ical model. Due to the lack of homogeneous time series long
enough to perform a calibration, the weather radar data was
used without a water balance adjustment. Prior to being used
by PREVAH, the radar and NWP fields need to be down-
scaled to meet the spatial resolution required by PREVAH
(Jaun et al., 2008). Discharge time series for verification were
provided at hourly intervals by the Federal Office for the En-
vironment (FOEN).

2.2 Data

The precipitation nowcasts and forecasts used in our fore-
casting chains are described in the following sections. The
methodologies we used have already been described in de-
tail in previous publications. For details about the retrieval
of weather radar and NWP products, see the articles cited
below.

2.2.1 NORA – Nowcasting of Orographic Rainfall by
means of Analogues

As precipitation in mountainous regions is influenced by oro-
graphic forcing, Panziera and Germann (2010) investigated
the effects of orographic forcing on the rainfall patterns in
the Lago Maggiore Region in southern Switzerland (Fig. 1).
They found strong relationships between the precipitation
patterns and wind intensity, and the wind direction and air-
mass stability present under orographic forcing. Based on
this finding, they developed NORA (Nowcasting of Oro-
graphic Rainfall by means of Analogues), an analogue-based
heuristic nowcasting system to predict orographic rainfall for
the following eight hours (Panziera et al., 2011). It involves
finding earlier observations very similar to the current sit-
uation with respect to predictors describing the orographic
forcing (four different mesoscale flows and air-mass stabil-
ity) and two features of the radar rainfall field (fraction of
rainy area and average rainfall). To speed up the process of
finding analogues, all past weather radar data is reduced to
an archive that only contains situations related to orographic
forcing. This archive was produced according to three differ-
ent requirements: (1) the archive should be large enough to
cover the whole range of the phenomena of interest; (2) it
should be homogenous in terms of instrumental changes
and data-processing techniques; and (3) the events selected
should be long-lasting and widespread, as typically caused
by large-scale supply of moisture towards the Alps. Isolated
convection and air-mass thunderstorms were excluded from
the archive. All these criteria finally resulted in an archive of

Fig. 1. Lago Maggiore region, southern Switzerland, with test
catchments, meteorological and hydrological stations and weather
radar used in this study. The rectangle with dashed lines shows the
area for which NORA and REAL have been produced.

71 precipitation events observed between January 2004 and
December 2009, corresponding in total to 3050 h of rainfall.

To produce the NORA forecast, the historical situations
most similar to the current one are searched for in the archive.
This procedure is divided into two steps. In a first step, the
120 past instances most similar in terms of meteorological
predictors (four mesoscale flows and air-mass stability) are
chosen (forcing analogues). In a second step, the 12 ana-
logues that, among the 120 forcing analogues, have the rain-
fall pattern most similar to the current one are picked. They
constitute the final analogues. The NORA forecast is then
produced according to the rainfall fields observed in the eight
hours following each of the final analogues. This results in
an ensemble of 12 members, one of which will, by construc-
tion, always be Eulerian persistence (Fig. 2). In this study, the
number of forcing and final analogues of NORA was fixed,
but in general it can be changed according to the archive size
and the application. NORA is produced only if at least one
of the four mesoscale winds can be estimated. Otherwise no
orographic forcing is expected, and thus no NORA forecast
is issued. The technical details about the algorithms behind
NORA are given in Panziera et al. (2011). NORA forecasts
were originally issued in 5 min time steps, but were aggre-
gated to hourly time steps for our study. This may reduce the
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Fig. 2.Procedure to build the ensembles REAL and NORA. For the
REAL ensemble, the current radar QPE is perturbed by a perturba-
tion field 25 times to build an ensemble of 25 members. To build the
NORA ensemble, a radar data archive is searched to find the situa-
tions most similar to the current radar QPE. Then those analogues
and the data of the eight hours following each forcing analogue are
extracted from the archive, and an ensemble of 12 members with
8 h lead time each is built.

actual potential of NORA in forecasting timing and magni-
tude of flash-flood events, but is a trade-off for the compa-
rability with the other forecast chains and the computabil-
ity in an operational context. For the past events analysed
in this study, the whole archive was searched for analogues.
This meant that a hindcast of an event could also contain ana-
logue situations that actually took place after the considered
event in the past. Therefore, the 24 h following the initialisa-
tion of each NORA forecast were excluded from the archive
in which the analogues were sought. Panziera et al. (2011)
found that the results produced in this way did not differ sig-
nificantly from results produced when only the hours of the
archive preceding the NORA forecasts were included.

2.2.2 REAL – radar ensemble

REAL (Radar Ensemble generator designed for the Alps us-
ing LU decomposition) was developed by MeteoSwiss as a
probabilistic real-time radar nowcasting tool (zero lead time).
It provides an ensemble of 25 members, each of which results
from the sum of the current radar image and a stochastic per-
turbation field (Fig. 2). This perturbation field is a combina-
tion of stochastic simulation techniques and detailed knowl-
edge about the space-time variance and auto-covariance of
radar errors (Germann et al., 2009). To obtain this knowl-
edge, a suitable network of meteorological ground stations is
required. With this methodology the residual space-time un-
certainties of the radar precipitation estimates are accounted
for. REAL has been produced since May 2007 at hourly in-
tervals with a spatial resolution of 2 km×2 km (Germann et
al., 2009) for the Lago Maggiore region in the southern Swiss
Alps (Fig. 1).

2.2.3 Connection of REAL and COSMO-2

For our study we connected COSMO-2 forecasts to the
radar-ensemble nowcasts of REAL. COSMO-2 (C2) is a
deterministic numerical weather prediction (NWP) model
of the Consortium for Small-scale Modelling (COSMO).
It has a lead time of 24 h, a spatial resolution of 2.2 km
and has been issued every three hours (00:00, 03:00, 06:00,
09:00, 12:00, 15:00, 18:00, 21:00 UTC) since the beginning
of demonstration period of MAP D-PHASE (Rotach et al.,
2009) in June 2007. The connection with REAL implies
that COSMO-2 meteorological input is actually propagated
through the hydrological model every hour with 25 differ-
ent initial conditions stemming from the nowcast obtained
by forcing PREVAH with REAL.

2.2.4 Deterministic forecasts

In addition to the two ensemble forecast chains with NORA
and REAL-C2, we also tested the performance of two deter-
ministic model chains. They are constructed like the REAL-
C2 forecasts, but unlike with REAL, the initial conditions are
derived by driving PREVAH with the deterministic weather
radar QPE (RADAR) or interpolated rain-gauge data (PLU-
VIO). The data for the interpolated precipitation surfaces
originated from automated rain-gauge stations, which have
a temporal resolution of 15 to 30 min. These were aggre-
gated to hourly values and interpolated with inverse distance
weighting over the areas of the test catchments on a 500 m
×500-m grid. Additionally, a bias correction factor was de-
termined by calibration (Zappa and Kan, 2007) and applied
to all interpolated values, in order to minimise the total dis-
charge volume error at the catchment outlets (Viviroli et al.,
2009a). The radar QPE was taken from the weather radar on
Monte Lema (Fig. 1). They are available at a temporal res-
olution of five minutes and at a spatial resolution of 1 km2,
but were aggregated to hourly time steps and downscaled to
a 500 m×500-m grid.

COSMO-2 takes 2.5 h to assimilate, compute and dissem-
inate. Since COSMO-2 is produced every three hours, this
means that the COSMO-2 forecast is three to five hours old
by the time it can be used for the hydrological forecast.

Table 1 shows the schedule for connecting COSMO-2
forecasts to nowcasts forced by REAL, RADAR or PLUVIO.

2.2.5 Study period

The beginning of the study period was set to June 2007 ac-
cording to the availability of COSMO-2. December 2010 de-
fines the end of our study period. Due to the replacement
of the weather radar on Monte Lema (Fig. 1), the continu-
ous and homogeneous series of high quality weather radar
data ends in early summer 2011. For the period June 2007 to
December 2010, NORA forecasts were initialised on 1389 h,
when orographic precipitation occurred. These 1389 h were
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Table 1. COSMO-2 forecasts connected to discharge nowcasts
forced by REAL, deterministic radar QPE (RAD) and interpolated
rain-gauge data (PLU). Times are in hours UTC.

Initialisation of Start of
COSMO-2 forecast Available at discharge forecast

00:00 02:30 03:00, 04:00, 05:00
03:00 05:30 06:00, 07:00, 08:00
06:00 08:30 09:00, 10:00, 11:00
09:00 11:30 12:00, 13:00, 14:00
12:00 14:30 15:00, 16:00, 17:00
15:00 17:30 18:00, 19:00, 20:00
18:00 20:30 21:00, 22:00, 23:00
21:00 23:30 00:00, 01:00, 02:00

distributed over 40 events. We analysed all 1389 forecasts,
each of which consists of eight hours, for all forecasting
chains included in our study. The 40 individual events are
plotted sequentially in Fig. 3 for the Verzasca Catchment, as
an example, along with the NORA and REAL-C2 forecasts
for 3 and 6 h lead time.

2.3 The catchments

Catchments were selected in the Lago Maggiore region in
southern Switzerland, where NORA and REAL are avail-
able. Until today these two products have been specially pro-
duced for research purposes and are therefore only available
for this limited region (Fig. 1). In many catchments in the re-
gion, water is intensively managed for hydropower produc-
tion. We therefore selected two smaller catchments which are
not, or only slightly, affected by water management, as well
as a large catchment to explore the effects of scale.

The Calancasca Catchment is 120 km2 and the smallest
of the three catchments. The Calancasca valley is a sub-
catchment of the Ticino catchment, and is very rural and
mountainous with steep slopes ranging from 740 m a.s.l. to
3200 m a.s.l. in altitude. At the top of the catchment a small
glacier is covering 1.1 % of the catchment area. The catch-
ment is little affected by hydropower, but some of the head-
water is partly redirected to a hydropower plant in the neigh-
bouring catchment to the east. This diversion is taken into
account in the hydrological model with the routing module.
Downstream of the Calancasca gauge, the stream water is
stored in a small retention lake for hydropower production.

The Verzasca Catchment is 186 km2 in area ranging from
490 to 2900 m a.s.l. It is very little influenced by human ac-
tivity. At altitudes above the discharge gauge in Lavertezzo
it is not affected by any water management but below the
gauge, the river Verzasca flows into Lago di Vogorno, a reten-
tion lake for hydropower production. The basin is the main
focus area for our research group. Wöhling et al. (2006)
presented the results of model calibration and introduced
an assimilation procedure aimed at improving the quality

of initial conditions prior to and during an event. Zappa
et al. (2011) developed and tested a methodology to quan-
tify the relative contribution of different sources of uncer-
tainty (forcing, initial conditions and model parameter esti-
mation) to the total uncertainty of a real-time flood forecast.
Germann et al. (2009) and Liechti et al. (2013) focused on
the verification of the use of REAL as a forcing for real-time
nowcasts. The present study is an incremental contribution,
that goes beyond nowcasting. The connection of nowcasts
with COSMO-2 and the novel radar-based ensemble fore-
cast NORA allow us to investigate flash-flood forecasts with
some hours lead time.

The Ticino catchment is 1515 km2 in area. It is much more
densely populated and thus more influenced by human activ-
ity than the two small catchments. The main valley of the
Ticino catchment is part of one of the main transit routes
that crosses the Alps. Hence the lower area of the catchment,
where the valley is broad enough, is intensively used for in-
dustry and agriculture, whereas the steep slopes are only little
used. Altitudes range from 220 m to 3400 m a.s.l. The influ-
ence of water management is substantial, but all water re-
mains in the catchment and reaches the gauge in Bellinzona.

2.4 Experimental set-up

Our experimental set-up in hindcast mode for the five dif-
ferent forecasting chains consisted of a nowcasting part with
zero lead time (realtime) and a forecasting part (Fig. 4). The
nowcasting part was initialised five days prior to the onset of
the NORA forecast (t0) by the model state derived from a
reference run forced by pluviometer data (Fig. 4). This real-
time part was run for four days, which meant the influences
of the initial model state are reduced at the start of the fore-
casting part at time t0. The five forecasting chains analysed
are

1. NORA: NORA forecast initialised by a deterministic
RADAR nowcast.

2. PERS: the persistence of the current radar QPE at time
t0 (i.e. taking the signal of t0 for the next eight hours)
initialised by a deterministic RADAR nowcast.

3. REAL-C2: COSMO-2 forecast initialised by a proba-
bilistic REAL nowcast.

4. RAD-C2: COSMO-2 initialised by a deterministic
RADAR nowcast.

5. PLU-C2: COSMO-2 initialised by a deterministic
PLUVIO nowcast.

In comparing the performance of REAL-C2 and NORA
to RAD-C2 we can illustrate differences between probabilis-
tic and deterministic forecasts. The three main experiments
resulting from this comparison are

Hydrol. Earth Syst. Sci., 17, 3853–3869, 2013 www.hydrol-earth-syst-sci.net/17/3853/2013/



K. Liechti et al.: The potential of radar-based ensemble forecasts 3859

Fig. 3. NORA and REAL-C2 discharge ensemble for the Verzasca River for all 40 events in the study period. The panels(a) and(c) show
the discharge ensembles at 3 h lead time, and the panels(b) and(d) show the discharge ensembles at 6 h lead time. The individual events are
separated by dashed vertical lines. The dates given in thex axis refer to the date of the beginning of each event.

1. NORA vs. RAD-C2, showing the effect of ensemble
forcing.

2. REAL-C2 vs. RAD-C2, showing the effect of an en-
semble of initial conditions.

3. NORA vs. REAL-C2, setting the two ensemble fore-
casting chains in relation to each other.

The comparison of PERS with the other forecast chains
shows if there is actually any benefit in producing a fore-
cast. The PLU-C2 forecasting chain stands for itself and has

to be seen as a reference. Compared to the radar-based fore-
casting chains this chain has an advantage due to the fact that
the hydrological model was calibrated using rain-gauge data.
The diagram in Fig. 4 visually explains the different model
chains and introduces the names and the colour scheme used
from now on for the different forecasting chains.

2.5 Verification methods

As NORA is limited to a lead time of eight hours, we concen-
trated our verification on these eight hours. We analysed the

www.hydrol-earth-syst-sci.net/17/3853/2013/ Hydrol. Earth Syst. Sci., 17, 3853–3869, 2013
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Fig. 4. Diagram showing the different forecasting chains. From the
top: NORA, PERS, REAL-C2, RAD-C2 and PLU-C2.

performance of the different forecasting chains for each lead
time (1–8 h) separately, as well as for six different thresholds
with the following measures of skill:

TheBrier skill score(BSS) is an ideal measure to compare
the performance of probabilistic and deterministic forecasts
(Wilks, 2006). The BSS is based on the Brier Score (BS),
which describes the quality of the forecast system in predict-
ing the probability to exceed a predefined threshold by mea-
suring the squared probability error. A perfect forecast sys-
tem would have a BS of zero. In order to compare the differ-
ent forecast systems to each other, we made use of the BSS,
which sets the skill of the different forecasts in relation to a
reference forecast. A perfect forecast has a BSS of 1, whereas
forecasts worse than the reference forecast have a skill below
0. In our study, the reference forecast was the probability of
exceedance for the predefined thresholds based on the sam-
ple climatology. The sample incorporated all discharge ob-
servations from hours covered by one or more NORA fore-
casts. This resulted in a sample size of 1788 h. The thresh-
olds analysed in our study correspond to the 0.5, 0.6, 0.7,
0.8, 0.9 and 0.95 quantile of the sample climatology, which
we refer to as q50, q60, q70, q80, q90 and q95. As the sam-
ple is restricted to the hours covered by NORA, the actual
values of the thresholds quantiles are higher than the ones
used in our previous study (Liechti et al., 2013). To esti-
mate the uncertainty of the BSS values, we applied the boot-
strapping method (Efron, 1992). Thus 500 random samples
of forecast-observation pairs were drawn with replacement
from the 1389 h belonging to each lead time leading to the
confidence limits (95 %) shown in Fig. 5.

TheFalse Alarm Ratio (FAR)andProbability Of Detection
(POD) are interlinked and therefore shown together. Both are

measures to evaluate deterministic predictions, where the en-
sembles were reduced to their medians. FAR is the fraction of
the forecast threshold exceedances that turn out to be wrong.
The best FAR value is zero, which means that each positive
forecast was followed by a threshold exceedance. POD is the
ratio of correctly forecast threshold exceedances to the num-
ber of times the event really happened. The best POD value is
one, which means that each observed threshold exceedance
was forecast. The POD is only sensitive to missed events and
not to false alarms, and thus can always be improved by fore-
casting an event more frequently. This would, however, lead
directly to an increase in false alarms and would, for extreme
events, result in an overforecasting bias (Bartholmes et al.,
2009; Wilks, 2006).

The ROC area(ROCA) is the area under the ROC (rela-
tive operating characteristic) curve. A ROC curve is drawn in
a ROC diagram, which incorporates information on the POD
(y axis) and the false alarm rate (x axis) for the whole range
of forecast probabilities. The false alarm rate is the frac-
tion of non-occurrences for which a threshold exceedance
was forecast. A perfect forecast will result in a ROC curve
connecting the points (0/0), (0,1) and (1/1) of the ROC di-
agram. An unskilful forecast will not lie above the diago-
nal (0/0),(1,1). Thus the area under the ROC curve is a con-
venient way to express the degree of discrimination. ROC
is not, however, sensitive to an overall bias, which means
that ROC actually indicates the potential skill that would be
achieved if the forecasts were correctly calibrated (Wilks,
2006). Therefore we also show the bias of the different fore-
casting chains.

3 Results

First we show how the spread of the two ensembles NORA
and REAL-C2 generally develops over lead time. We then
present the results for the three catchments separately. The
results of the analysis with ROC area are summarised for all
catchments together. Finally, we present a forecast for the
Calancasca as it appears in operational mode.

3.1 Chained time series

In Fig. 3 all events in the study period are plotted sequen-
tially together with the forecasts with 3 and 6 h lead time for
the Verzasca Catchment. The spread of the NORA ensemble
increases with the lead time for all catchments; however, the
spread of the REAL-C2 ensemble behaves differently in the
Verzasca Catchment than in the Ticino and Calancasca catch-
ments. In Ticino and Calancasca the spread of the REAL-C2
ensemble stays about constant over the eight hours analysed
(not shown), but in the Verzasca Catchment the spread of
REAL-C2 decreases with longer lead times. This is possi-
bly due to the nature of the events included in the study pe-
riod and is further discussed in Sect.4.3.1. For the Ticino
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Fig. 5. (a) Brier skill score (BSS) according to lead time for the threshold quantile q60, q80 and q90.(b) BSS according to the threshold
quantiles q50 to q95 for 3 and 6 h lead time. Error bars indicate the 95 % confidence limits around the estimated BSS value. Positive BSS
values indicate an improvement in the forecast over the reference forecast, which in this case is the sample climatology.

and Calancasca catchments the spread of REAL-C2 is larger
than that of NORA for all lead times, although for Calan-
casca the difference is relatively small from 6 h lead time on.
For Verzasca, the spread of REAL-C2 is only larger than that
of NORA for up to 4 h lead time, and from 6 h lead time on-
wards NORA forecasts have a larger spread than REAL-C2
forecasts.

3.2 Calancasca

BSS values for REAL-C2 generally decrease with increas-
ing threshold and longer lead times. REAL-C2 shows skill
on all thresholds and all lead times. The highest BSS values
are reached with q60 (0.56–0.6), but for q90 and q95 BSS
values are still as high as 0.35 to 0.4 (Fig. 5b). NORA shows

lower scores than REAL-C2, and its BSS values range be-
tween 0.35 to 0.4 for q50 to q80. For the highest thresholds
BSS values are lower, while for q90 and q95 they range be-
tween 0.15 and 0.25. BSS values for PERS clearly decrease
with lead time (Fig. 5a). The highest score is reached at q60.
BSS values for q90 and q95 are below 0.2, while q90 shows
no skill for lead time 8 (Fig. 5a) and q95 shows no skill af-
ter 3 h lead time (Fig. 5b). RAD-C2 also shows skill on all
thresholds and lead times, but this decreases with lead time
(Fig. 5a). RAD-C2 forecasts reach BSS values between 0.3
and 0.4 for q60 to q80 and lead times up to 6 h. The per-
formance on q70 and q80, however, fall below 0.3. For q90
and q95 BSS values are generally lower than 0.2 (Fig. 5b).
BSS values for PLU-C2 are highest on q70 and are above
0.6 up to 6 h lead time. Additionally PLU-C2 outperforms
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Fig. 6. Probability of detection (POD, dashed line), false alarm ratio (FAR, solid line) and BIAS (lower panel) for each catchment for the
thresholds q50 to q95 with 3 and 6 h lead time. Best FAR equals 0, best POD and BIAS equals 1.

all other forecast chains on this threshold. For the highest
quantile PLU-C2 also shows skill over all lead times, vary-
ing between 0.14 and 0.36.

The probability of detection (POD) for PLU-C2 is higher
than for the other forecast chains, as are the FAR values for
thresholds q80 to q95 (Fig. 6). POD and FAR for PLU-C2 be-
have symmetrically from q70 to q95, which is not the case for
the other forecast chains. POD for REAL-C2, NORA, PERS
and RAD-C2 rapidly decrease above q60. FAR are lowest
for REAL-C2 on all quantiles except q95. FAR and POD for
NORA, PERS and RAD-C2 are about the same. FAR values
range between 0.1 and 0.3 and POD values drop from 0.9 at
q60 to 0.2–0.3 at q95. If we increase the lead time from 3 to
6 h, the main difference is with the q95 threshold, where the
FAR values are highest for all forecasting chains (Fig. 6). The
different behaviour of the different forecasting chains is also
mirrored in the bias. Forecasts for Calancasca have an under-
forecasting bias above q60 for all radar-based forecasts. The
reasons for that can lie in model calibration but also in the
size of the catchment, as for the relatively small Calancasca
Catchment errors in the estimation of the location, duration
and intensity of predicted rainfall do not smoothen until the
catchment outlet. This is most pronounced for REAL-C2.
PLU-C2 performs best and is hardly biased above q60. This
behaviour does not change with increasing lead time.

3.3 Ticino

REAL-C2 reaches BSS values between 0.6 and 0.75 for
thresholds between q50 and q70 for all lead times, but then
drop significantly, ranging between 0.2 and 0.3 for q90

(Fig. 5b). Furthermore, for q95 REAL-C2 only shows skill
for lead times 3 to 6, and even then is below 0.15, that is,
very low. The highest scores for REAL-C2 are reached for
q70 (Fig. 5b). For NORA the BSS values between q50 and
q70 lay between 0.5 and 0.6 for all lead times. The high-
est scores are reached for q70. For q80 the values are a bit
lower (0.35–0.45) and increase with lead time. For the high-
est thresholds NORA shows almost no skill. For PERS the
highest BSS are reached for q70 at 1 h lead time (0.6). For
both q60 and q70 scores for lead time 1 to 3 are between
0.55–0.6, but then BSS values decrease steadily to 0.4 at lead
time 8. PERS show no skill on the highest quantiles (Fig. 5b).
BSS values for RAD-C2 for q60 and q70 also range between
0.5 and 0.6, but decrease less with increasing lead time than
PERS. For q80 BSS values increase from 0.25 at lead time
1 to 0.33 at lead time 8. Like PERS, RAD-C2 has no skill
for q90 and q95 (Fig. 5b). BSS values for PLU-C2 for q50
and q60 decrease with lead time and range from 0.5 to 0.4
and 0.6 to 0.45, respectively. The highest scores are reached
for q70 and range between 0.65 and 0.7. For q80 BSS values
increase with lead time from 0.32 to 0.42. For the highest
threshold quantiles, PLU-C2 shows no skill. For q50, q60
and q80 the skill of PLU-C2 is in the range of NORA and
RAD-C2, but for q70 PLU-C2 outperforms all forecast types
apart from REAL-C2. In comparison with all the other radar
products REAL-C2, shows the most skill. The difference be-
tween NORA, PERS and RAD-C2 increases with increasing
threshold and longer lead times. NORA performs better than
PERS and RAD-C2 on the higher thresholds, but for PERS
and RAD-C2 it depends on the lead time. At shorter lead
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times, PERS scores better and on longer lead times RAD-C2
outperforms PERS.

POD values are high for all thresholds and forecast chains,
ranging between 0.75 and 0.99. PLU-C2 shows the highest
POD, RAD-C2 the second highest and REAL-C2, NORA
and PERS about the same scores. FAR values behave differ-
ently and increase rapidly after q70 from about 0.15 to 0.55
and 0.7. Again PLU shows the highest FAR, REAL-C2 the
lowest and the other forecast chains lie in between on about
the same level. This matches with the bias obtained for the
forecasts in the Ticino catchment. The bias is about 1–1.2
for q50 to q70, and then increases rapidly for all forecasting
chains. PLU-C2 is the most biased and REAL-C2 the least
over all thresholds. The same behaviour for bias, POD and
FAR can be seen when looking at longer lead times, although
the POD values for RAD-C2 on q95 are an exception as they
are below those for NORA and PERS, and lower than at 3 h
lead time.

The forecast chains are ranked in the same order for Ticino
and Calancasca for POD and FAR, but the actual values of
POD and FAR behave reversed, which is also mirrored in the
overforecasting bias for the Ticino catchment. The reason for
this overforecasting bias as well as for the increasing BSS
with lead time is most probably the water management in the
catchment, which causes that the rainfall of a storm does not
reach the catchment outlet in the estimated time, but is stored
or redirected and delayed.

3.4 Verzasca

Up to q80 BSS values for REAL-C2 are around 0.6, while for
q90 and q95 they are between 0.4 and 0.5. The values gen-
erally decrease with increasing lead time. Values for NORA
are lower than for REAL, and for q60 and q70, values range
between 0.45 and 0.6 with a maximum at 4 and 5 h lead time.
BSS values for q80 are around 0.4 with a maximum at lead
time 3 (Fig. 5a). For q90 and q95, BSS values are around 0.2
up to lead times 5 and 6, but then decrease rapidly towards
no skill. The persistence (PERS) starts from the same level
as with NORA on the shortest lead times (BSS 0.55). How-
ever, the skill decreases with increasing threshold (Fig. 5b),
and the decrease in BSS over lead time is faster for higher
thresholds (Fig. 5a). BSS values for RAD-C2 decrease from
0.5 on q50 to 0.3–0.4 on q70. The BSS for short lead times
on q80 are very low, but increase to a maximum of 0.35
for 5 h lead time. Similar to the persistence, q90 and q95
have no skill on the shortest lead times, however, BSS values
show some skill for longer lead times. PLU-C2 reaches BSS
values of around 0.6 for q60 to q80, which decrease with
lead time (Fig. 5a). The highest BSS value for the shorter
lead times (1–4 h) was reached with q80 (0.63). For the high
thresholds, q90 and q95, BSS values still ranged between 0.4
and 0.5 for lead times of 1 to 3 h. If the radar products are
compared, scores for NORA are generally below those for
REAL, but above those of RAD-C2. For lead times 1 and

2, PERS outperforms RAD-C2 on high thresholds. However,
for longer lead times RAD-C2 performs better than PERS.
Comparing NORA with PLU-C2, we see that for q50 NORA
still scores significantly higher than PLU-C2. This changes
for q60 lead time 4, and from q70 onwards PLU-C2 shows
better skill than NORA. This difference is most pronounced
for short lead times.

All forecast chains show POD values above 0.8 on all
thresholds. However, POD and also FAR values for PLU-
C2 behave differently in the Verzasca Catchment than in the
other two catchments. For Verzasca, PLU-C2 shows the low-
est FAR and POD values of all forecast chains except q90 and
q95, where REAL-C2 is a little bit lower in POD. FAR values
generally increase with increasing threshold from about 0.15
to 0.4/0.5. REAL-C2 was the radar product that performed
best. With increasing lead time, NORA outperforms RAD-
C2 in POD. However, NORA also shows higher FAR values
on thresholds higher than q60. Furthermore, for longer lead
times, PLU-C2 reaches the lowest POD and highest FAR on
q95 and not on q90, unlike for shorter lead times. Radar-
based forecasting chains show a significant overforecasting
bias for q80 to q95, which is most probably a calibration is-
sue. PLU-C2 slightly underforecasts up to q70, and slightly
overforecasts for q90 and q95. With increasing lead time, the
bias for RAD-C2 becomes smaller for the high thresholds.

3.5 ROC area

The ROC areas presented in Tables 2–4 are generally higher
than 0.7, which is considered to be the minimum value for
a forecast system to be useful for a decision maker (Buizza
et al., 1999). For Ticino and Verzasca, they do not drop be-
low 0.9 up to q90. For Calancasca they are a bit lower, es-
pecially for NORA and for the high thresholds. For Calan-
casca and Ticino, the REAL-C2 forecasts have higher ROC
areas than NORA forecasts on all lead times and thresh-
olds, although this difference decreases with increasing lead
time. For the Verzasca Catchment, the advantage of REAL-
C2 over NORA is only clearly evident on short lead times.
ROC areas for REAL-C2 decrease with lead time (except Ti-
cino, q90), but this is not the case for NORA forecasts.

3.6 Forecast as in operational mode

In our analysis we focused on the performance of the differ-
ent forecasting chains regarding specific thresholds and lead
times. In an operational context the forecasts would be pre-
sented as shown in Figs. 7 and 8. Here the different forecast-
ing chains are shown together and can be visually compared
directly. The NORA forecasts are connected to COSMO-2
forecasts after eight hours, just as with the other forecasting
chains at time t0. The examples in Figs. 7 and 8 show fore-
casts of an event in the Calancasca River on 15 June 2007
initialised prior to the event and during the event. The NORA
forecast prior to the event gives a good estimate of the first

www.hydrol-earth-syst-sci.net/17/3853/2013/ Hydrol. Earth Syst. Sci., 17, 3853–3869, 2013



3864 K. Liechti et al.: The potential of radar-based ensemble forecasts

Table 2.ROC area for NORA and REAL-C2 forecasts of the Calan-
casca Catchment, with lead times 03:00, 06:00 and 08:00, for the
threshold quantiles q60 to q95.

Calancasca
lt3 lt6 lt8

nora real nora real nora real

q60 0.874 0.935 0.877 0.929 0.879 0.924
q70 0.826 0.937 0.853 0.919 0.85 0.899
q80 0.817 0.945 0.839 0.923 0.826 0.899
q90 0.723 0.887 0.764 0.876 0.733 0.830
q95 0.652 0.897 0.736 0.838 0.725 0.825

Table 3.ROC area for NORA and REAL-C2 forecasts of the Ticino
catchment, with lead times 03:00, 06:00 and 08:00, for the threshold
quantiles q60 to q95.

Ticino
lt3 lt6 lt8

nora real nora real nora real

q60 0.911 0.962 0.913 0.959 0.914 0.958
q70 0.920 0.977 0.911 0.960 0.905 0.950
q80 0.902 0.968 0.914 0.967 0.917 0.955
q90 0.905 0.949 0.915 0.951 0.896 0.947
q95 0.934 0.971 0.944 0.968 0.925 0.946

Table 4.ROC area for NORA and REAL-C2 forecasts of the Verza-
sca Catchment, with lead times 03:00, 06:00 and 08:00, for the
threshold quantiles q60 to q95.

Verzasca
lt3 lt6 lt8

nora real nora real nora real

q60 0.918 0.95 0.915 0.933 0.895 0.918
q70 0.916 0.954 0.923 0.935 0.904 0.911
q80 0.941 0.973 0.939 0.946 0.918 0.910
q90 0.934 0.967 0.911 0.922 0.887 0.888
q95 0.954 0.985 0.942 0.940 0.918 0.927

peak, which occurred seven hours after the forecast initialisa-
tion (t0), but underestimates the main peak, which occurred
21 h after t0. The REAL-C2 forecast misses this first peak
and also underestimates the second peak. For the forecast
initialised during the event, however, NORA still underes-
timates the main peak, but REAL-C2 captures it.

4 Discussion

The skills of the different forecast chains, are easier to com-
pare for lower thresholds as the results are clearer and more
persistent over the catchments and lead times. Thus general
conclusions about the performance of NORA and the other
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Fig. 7. Forecast simulation for the Calancasca initialised on
14 June 2007 at 23:00. At the time of the initialisation of NORA
(vertical solid line), the nowcasts driven by REAL, RADAR and
PLUVIO were connected to COSMO-2. After eight hours (vertical
dashed line), NORA was also connected to COSMO-2. The analy-
sis covers the eight hours covered by NORA forecasts, that is, the
time frame between the vertical solid and dashed lines in the graph
above.

forecasting chains can only be made for threshold quantiles
up to q80. For higher quantiles the results vary considerably
between the three catchments included in the study.

Panziera et al. (2011) verified NORA for precipitation
thresholds of 0.5 and 3 mm per hour, which corresponds to
a low threshold that distinguishes between rain and no rain,
and a threshold for moderate to heavy rainfall. They inte-
grated their analysis over the whole Lago Maggiore area,
but additional investigations for a sub-area showed a similar
skill to that for the entire region. They found that NORA per-
forms generally better than Eulerian persistence for the lower
threshold, but not for the higher threshold. Our performance
analysis for discharge forecasts shows that NORA performs
better than PERS also for high thresholds, as well as for all
catchments on all thresholds over all lead times. Since the
events forecast by NORA tend to be persistent by definition,
the fact that it also performs better than PERS for short lead
times is a valuable finding (Panziera et al., 2011). Moreover,
we do not integrate our analysis over the whole Lago Mag-
giore area, but we analyse the performance of NORA and the
other forecasting chains for sub-areas. Thus the variability of
precipitation over space and time plays a much greater role in
our analysis than in that of Panziera et al. (2011). The good
performance of NORA compared to PERS for the discharge
forecasts can therefore be explained by the way NORA takes
into account the evolution of rainfall (growth and dissipa-
tion), whereas PERS keeps the last radar image frozen, and
also by the fact that NORA is an ensemble approach and thus
takes into account the uncertainty in the location, time and in-
tensity of precipitation. Also the forecast chain using REAL
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Fig. 8.Forecast simulation for the Calancasca initialised on 15 June
at 14:00. For a description, see Fig. 7.

during the nowcast part performs better than PERS. As the
spread already develops during the nowcast period the ad-
vantage of the ensemble approach comes into effect already
at the very start of the forecast period.

Thus, despite the difficulties involved with weather radar
estimates in an alpine region, producing these computation-
ally expensive radar-based ensemble forecasts pays off, as
the skill of the hydrological forecast is improved already
from the start of the forecast period and stays higher also
for longer lead times.

4.1 Effect of ensemble forcing: NORA vs. RAD-C2

Panziera et al. (2011) also compared the performance of
NORA with the performance of COSMO-2 for the same rain-
fall thresholds. For light rainfall (threshold > 0.5 mm h−1),
they found NORA to be better than COSMO-2 for 1–2 h lead
times, and for the higher threshold (3 mm h−1) NORA out-
performed COSMO-2 up to a lead time of 3–4 h. In the corre-
sponding experiment in our study, we compared NORA with
RAD-C2, and found that for thresholds up to q80, NORA
generally performs better than RAD-C2 for all lead times,
except for Calancasca on lead times 4 to 5 h. For the Ticino
and Calancasca catchments, the 95 % interval of the boot-
strapped BSS values of NORA and RAD-C2 overlap quite
a lot (Fig. 5a), but a Student’st test on a 5 % significance
level showed that BSS values of RAD-C2 and NORA are all
different apart from Ticino q70 with lead times 4h and 5 h,
q90 lead time 7 h and Calancasca q60 lead time 3 h. The ad-
vantage of NORA over RAD-C2 up to q80 is, however, clear
for the Verzasca Basin. For the highest quantiles (q90 and
q95), the results differ between the catchments. However,
for the Calancasca NORA significantly outperforms RAD-
C2 from 4 h lead time onwards. For Verzasca, on the other
hand, NORA performs better than RAD-C2 up to 5 to 7 h.
Forecasts for Ticino basically show no skill on the highest

quantile, except NORA on q90, but the BSS values are very
small, probably because of the general overforecasting on
these high quantiles as the catchment is influenced heavily
by water management. It should be noted that the uncertainty
of the results for forecast performances is larger the higher
the threshold (Fig. 5b), due to the fact that fewer data points
lie over the high thresholds. However, in most cases NORA
shows higher scores than RAD-C2, which is indicative of the
added value in using an ensemble forcing for the hydrologi-
cal modelling.

4.2 Effect of using an ensemble of initial conditions:
REAL-C2 vs. RAD-C2

The effect of using an ensemble of initial conditions is shown
by the comparison of REAL-C2 and RAD-C2. The differ-
ence in forecast performance is a function of the model
states after the nowcast period alone, as both forecast chains
are forced with the same data during the forecast period.
The REAL-C2 forecasting chain performs significantly bet-
ter than RAD-C2. The BSS values are higher for all thresh-
olds and lead times in all catchments. Furthermore, the 95 %
confidence interval of the bootstrapped BSS values is mostly
narrower for REAL-C2 and does mostly not overlap with the
95 % confidence interval of the bootstrapped BSS values of
RAD-C2. So using an ensemble of initial conditions signifi-
cantly improved the forecast skill.

4.3 Radar-based ensemble forecasts: REAL-C2 vs.
NORA

REAL-C2 forecasts perform better than NORA forecasts in
all three catchments. This suggests that an ensemble of initial
conditions is more valuable than an ensemble forecast forc-
ing alone. So, for regions where REAL can be produced, that
is, in regions where the space-time variance and the auto-
covariance of radar errors are known, REAL would be pre-
ferred over NORA. REAL also has the advantage that it can
be produced continuously and that it is not restricted to oro-
graphic precipitation. Nevertheless, NORA can offer a use-
ful method to predict near-future discharge in regions where
these requirements are not fulfilled, in situations where oro-
graphic precipitation (or any other repetitive weather situa-
tion) plays a major role in flash-flood triggering and a con-
tinuous series of weather radar data is available.

However, the fact that REAL is not only for orographic
precipitation is important as an analysis of all exceedances of
the q95 threshold from mid June 2007, when the first NORA
forecast was made, to December 2010 showed, that a sig-
nificant part of all threshold exceedances were not covered
by a NORA forecast. For Verzasca, 31 % of the q95 thresh-
old exceedances lie outside the hours forecast by NORA, for
Calancasca 46 %, and for Ticino 42 %. One reason for this
is that the NORA archive contains only situations with oro-
graphic precipitation that can be detected by predictors, and
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excludes local convective events for computational reasons
and because spatially and temporally limited events usually
do not result in critical situations (Panziera et al., 2011). This
may be correct if the whole Lago Maggiore region is con-
sidered, but local convective storms can indeed result in ex-
treme discharge events if they remain stationary over a spe-
cific catchment.

The advantage of REAL-C2 over NORA is also supported
by the ROC areas, which are a measure of the potential
skill of the forecasts if the model is correctly calibrated.
For the Ticino and Calancasca catchments, the ROC areas
for REAL-C2 are always larger than those for NORA. This
means that, even if the system has been correctly calibrated
with radar data, REAL-C2 would outperform NORA for the
current set-up of our study. For the Verzasca Catchment,
REAL-C2 seems to perform better than NORA only on short
lead times.

4.3.1 Ensemble spread

Regarding the spread, the two ensembles behave as expected
over the eight hours analysed. NORA forecasts show an in-
creasing spread over lead time. Even though the forcing ana-
logues of the NORA ensemble are very similar, the evolution
following this initial time step can be very different, and the
possibility of divergence between the individual members in-
creases with each time step as long as there is still precipita-
tion. A NORA forecast also always starts with a single ini-
tial state at time t0 (Fig. 4). REAL-C2, on the other hand, is
initialised four days prior to the initialisation of NORA, by
which time it has already built up some spread. Thus the in-
fluence of the initial state is minor after these four days. At
time t0 the REAL nowcast is connected with the latest avail-
able COSMO-2 forecast. This means that the deterministic
COSMO-2 is started with 25 different initial conditions. As
the REAL ensemble will have already developed its spread
prior to the connection, the change in spread over the fol-
lowing eight hours is not as big as for the NORA ensemble,
which starts from one single initial state. As soon COSMO-2
stops adding more precipitation the ensemble members con-
verge.

The Verzasca is noticeably the only catchment where the
spread of the REAL-C2 ensemble decreases with lead time,
possibly due to the nature of the events included in the study
period. NORA is only produced if the atmospheric condi-
tions favour orographic precipitation, which means in the
Lago Maggiore region, that the winds are blowing from the
southwest or south (Panziera et al., 2011). Thus storms usu-
ally move roughly from southwest to northeast, and there-
fore arrive and leave the Verzasca Basin earlier than the Ti-
cino and Calancasca Basin. This also affects the timing of the
discharge peaks of the major events within the study period,
and the Verzasca River usually peaks at least one hour ear-
lier than the Calancasca River for the events analysed. The
Ticino River also peaks after the Verzasca River, but here the

reason is most likely that the Ticino catchment is one order
of magnitude bigger than the Verzasca Catchment, and thus
reacts more slowly.

The single event in the Calancasca River presented in
Figs. 7 and 8 shows that the relatively old COSMO-2 fore-
cast available prior to the event, on 14 June 2007 at 23:00,
dampens the performance of REAL-C2. COSMO-2 forecasts
only little rain for the first about 15 h of our forecast, so that
the spread of REAL-C2 does not grow much over the first
hours. In such situations NORA can help detect critical sit-
uations earlier. However, the comparison with the forecast
initialised during the ongoing event suggests that the poten-
tial of NORA forecasts mainly lies in the early detection of a
coming event rather than in forecasting the magnitude of an
event, but more individual events need to be analysed, to be
able to draw a general conclusion.

4.4 The reference forecast: PLU-C2

The pluviometer-based forecasts PLU-C2 perform well com-
pared to the other forecasting chains, and in some cases even
outperform REAL-C2 (Calancasca q70 and q90 at long lead
times, Verzasca q80 at short lead times) (Fig. 5). One rea-
son for this relatively good performance of the deterministic
PLU-C2 is that the hydrological model was calibrated with
rain-gauge data, and this calibration is also the basis for all
the model chains based on weather radar data. Furthermore, a
bias correction factor derived during calibration is applied to
all interpolated rain-gauge data. The weather radar data are,
however, due to the lack of a homogenous time series long
enough to perform a calibration, used without such a correc-
tion factor. Thus PLU provides the better initial conditions
for the COSMO-2 forced forecasts.

Although the PLU-C2 forecasting chain performs gener-
ally relatively well, there are quite some differences between
the individual catchments. On the highest quantiles q90 and
q95, PLU-C2 has no skill in the Ticino catchment, whereas
for the Verzasca and Calancasca catchments it is still skilful.
This difference for the Ticino catchment can be explained by
looking at the bias of PLU-C2 for the Ticino catchment. The
PLU-C2 forecasts for Ticino are very positively biased on the
highest quantiles. The other forecasting chains also show a
positive bias, but not that extreme, as is also indicated by the
high FAR combined with still relatively high POD values for
high threshold quantiles. Thus extreme events are overfore-
casted for the Ticino River, possibly due to the influence of
several storage lakes for hydropower production. The precip-
itation that actually falls in the catchment is not then recorded
at the catchment outlet at the estimated time, but is stored in
the lakes.

The interpolated precipitation maps are, however, gen-
erally good as PLU-C2 performed well in the Verzasca
Catchment and especially well in the Calancasca Catchment,
where the PLU-C2 forecasts are mostly unbiased despite the
lack of a rain-gauge in the catchment (Fig. 1). However, the
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good performance of PLU-C2 is mostly connected to the fact
that PREVAH was calibrated using interpolated rain-gauge
data, including a bias correction factor.

5 Conclusions

Our study explored the potential of radar-based ensemble
forecasts for flash-flood early warning by comparing two
novel radar-based ensemble forecast chains to deterministic
forecast products in three catchments of the southern Swiss
Alps using the hydrological model system PREVAH. Special
emphasis was placed on the added value of the purely radar-
based NORA forecasting system. NORA is an analogue-
based ensemble forecast for orographic precipitation, con-
sisting of 12 members, initialised with the initial conditions
derived from a four-day nowcast with deterministic radar
QPE. The second ensemble forecasting system evaluated in
our study is REAL-C2, where COSMO-2 is initialised with
25 different initial conditions derived from a four-day now-
cast with the radar ensemble REAL. Additionally, three de-
terministic forecasting chains were analysed. One is the per-
sistence of the radar QPE at t0 (PERS), while the other two
are COSMO-2 forecasts initialised with initial conditions de-
rived from a four-day deterministic nowcast with radar QPEs
(RAD-C2) and interpolated rain-gauge data (PLU-C2). We
analysed the performance of these five flash-flood forecasting
systems for all hours between June 2007 and December 2010
for which NORA forecasts were issued, when triggered by
orographic precipitation.

We found a clear preference for the ensemble approach.
NORA generally outperformed RAD-C2 for thresholds up
to q80. This shows that a radar-based ensemble forcing of
the hydrological forecast is superior to a deterministic forc-
ing as provided by COSMO-2. Moreover, the better perfor-
mance of REAL-C2 over RAD-C2 shows the positive effect
of working with an ensemble of initial conditions. Further-
more, REAL-C2 performed better than NORA. This com-
parison leads to the conclusion that the positive effect of an
ensemble of initial conditions is bigger than the positive ef-
fect of using a ensemble forecast forcing alone.

A follow-up study may also analyse NORA forecasts with
a temporal resolution smaller than one hour. This would po-
tentially further enhance the performance in forecasting the
timing and magnitude of flash-flood events, and could be
beneficial especially for small catchments with very short
response time. For computational reasons a simple rainfall-
runoff model as proposed by Kirchner (2009) may be con-
sidered for this purpose. Future investigations may also use
NORA forecasts to derive initial conditions for a subsequent
initialisation of NWP forecasts, as in REAL-C2. See the
example in Figs. 7 and 8, where COSMO-2 is connected
to NORA after eight hours. The ideal time for connecting
NORA to COSMO-2 still needs to be decided. According
to the results for the Calancasca and Verzasca catchments,

the ideal time for switching from NORA to an NWP fore-
cast would probably be after 4 to 5 h. This is also in agree-
ment with Panziera et al. (2011) who found that after 4 to 5 h
COSMO-2 precipitation forecasts generally perform better
than NORA. A connection between REAL and NORA could
thus be considered for future work. This would result in an
ensemble of 300 members, which would most probably show
a very large spread. Thus, to be useful for decision making,
some sort of pre-selection of behavioural members would be
required. First tests using the Series Distance method (Ehret
and Zehe, 2011) to rank REAL members encourage further
investigations in this direction. An analysis of this approach
would, however, be beyond the scope of the study presented
here.

Our study also showed that a well-maintained rain-gauge
network is very useful. Nowcasts forced by rain-gauge data
provide good initial conditions for subsequent forecasts. Also
the rain-gauge data are needed to investigate the space-time
variance and auto-covariance of radar errors, which is a pre-
requisite for producing the radar ensemble REAL. For re-
gions covered by a rain-gauge network the application of a
rain-gauged precipitation ensemble generator as proposed in
Rakovec et al. (2012) or Moulin et al. (2009) would be a fur-
ther option to account for the uncertainty in the meteorologi-
cal input to the hydrological model. Such a rain-gauge-based
ensemble could be used, in the same way as REAL was used
in our study, to derive an ensemble of initial conditions for a
subsequent hydrological forecast forced by NWP data. How-
ever, the presented study focused on the use of radar-based
ensemble forecasts which are not only restricted to regions
covered by a good rain-gauge network. In this respect the
calibration of the hydrological model with weather radar data
would be most desirable in order to further improve the fore-
cast performance. However, this would require a long con-
tinuous series of weather radar data.

Generally we can conclude that, if the data required to pro-
duce REAL are available, REAL-C2 is the preferred fore-
casting chain because it performs better than NORA and is
not restricted to events originating from orographic precipita-
tion. However, for regions where REAL cannot be produced,
NORA might be an option to forecast events triggered by
orographic rainfall.
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