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Abstract. This paper investigates the structural difference in
timing of the diurnal temperature cycle (DTC) over land re-
sulting from choice of measuring device or model frame-
work. It is shown that the timing can be reliably estimated
from temporally sparse observations acquired from a constel-
lation of low Earth-orbiting satellites given record lengths of
at least three months. Based on a year of data, the spatial
patterns of mean DTC timing are compared between temper-
ature estimates from microwave Ka-band, geostationary ther-
mal infrared (TIR), and numerical weather prediction model
output from the Global Modeling and Assimilation Office
(GMAO). It is found that the spatial patterns can be explained
by vegetation effects, sensing depth differences and more
speculatively the orientation of orographic relief features. In
absolute terms, the GMAO model puts the peak of the DTC
on average at 12:50 local solar time, 23 min before TIR with
a peak temperature at 13:13 (both averaged over Africa and
Europe). Since TIR is the shallowest observation of the land
surface, this small difference represents a structural error that
possibly affects the model’s ability to assimilate observations
that are closely tied to the DTC. The equivalent average tim-
ing for Ka-band is 13:44, which is influenced by the effect of
increased sensing depth in desert areas. For non-desert areas,
the Ka-band observations lag the TIR observations by only
15 min, which is in agreement with their respective theoret-
ical sensing depth. The results of this comparison provide
insights into the structural differences between temperature
measurements and models, and can be used as a first step to
account for these differences in a coherent way.

1 Introduction

In recent decades, Earth observation by satellite has pro-
gressed from experimental to routine methods for monitor-
ing many aspects of the hydrological cycle over land. For
example, cloud water and precipitation from satellite sensors
are now routinely ingested into numerical weather predic-
tion (NWP) models (Bauer et al., 2011). Soil moisture ob-
servations are at the point of entering into operational NWP
assimilation schemes (Rosnay et al., 2011). Indirect obser-
vations of the evaporative fluxes are now informing drought
monitoring (Anderson et al., 2011; Hain et al., 2011). How-
ever, one crucial parameter that is missing from this list is
land surface temperature (LST). Even though it has been rou-
tinely measured since the first Earth observation satellites,
and physically based retrieval schemes for the above param-
eters must account for LST in some way, it has yet to be
successfully exploited as a stand-alone input to NWP mod-
els. This is striking since LST is tightly linked (even more so
than soil moisture) to land–atmosphere fluxes that are a pri-
mary prediction goal for land models within NWP systems
(Bosilovich et al., 2007).

The utilization of LST observations for hydrological stud-
ies is hampered by the fact that the relationship between
different model and remote-sensing-based estimates of LST
are poorly understood. This is because temperature is highly
variable in time and space (both vertically and laterally).
While, for example, soil moisture can be assumed diurnally
stable, and an observation at midnight can readily be com-
pared to another at 6 a.m. (Parinussa et al., 2012), it is obvi-
ous that no such assumption would hold for LST. The vari-
ability with depth is a problem when comparing temper-
ature observations from different measurement techniques
that have different (and uncertain) sensing depths (and/or
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models which utilize different soil layers and/or soil thermal
capacities). This variability with depth together with a high
spatial variability poses a challenge for the in situ valida-
tion of LST, even though thermal infrared (TIR) measuring
techniques can have high spatial resolutions (up to 1 km for
global MODIS products for example). The resulting uncer-
tainty regarding LST error characteristics is especially prob-
lematic when time-varying structural errors go undetected.
For remotely sensed LST estimates the bias may depend
on emissivity, viewing angle, atmospheric opacity or sens-
ing depth. In NWP models structural errors in LST may
be introduced through the parameterization of the heat ca-
pacity, layer depth or estimation of surface energy balance
components. In previous attempts at assimilation of tem-
perature observations into land surface models (Bosilovich
et al., 2007; Reichle et al., 2010), time-varying bias was ad-
dressed through rescaling of observations to match the auto-
correlation and/or diurnal LST properties of models. While
this may be the preferred strategy in a data assimilation ap-
proach where the physics of the model has to be preserved,
it squanders the opportunity to correct structural errors in
the surface energy balance via comparison to satellite LST
observations. This represents a missed opportunity because
NWP centers are known to have diurnal biases in high-value
predictions like precipitation (Dai and Trenberth, 2004).

In a comparison of temperature output from three different
NWP models with in situ measurements, the depth difference
between model and measurements could be resolved by con-
sidering the timing, or phase, (φ) of the diurnal temperature
cycle (DTC) (Holmes et al., 2012). It was shown that based
on the annual average difference betweenφ of measurements
from different depths, the effect of 5 cm depth difference
could accurately be corrected for. The logic behind this is
that the difference in timing between two measurement or
model systems represents the integrated effect of both depth
difference and soil thermal properties. This timing difference
is then assumed to be accompanied by an exponential change
in amplitude according to heat flow principles (Van Wijk and
de Vries, 1963).

Determiningφ is relatively straightforward when the sam-
pling frequency is much higher than the daily harmonic being
sampled. This is true for NWP models, and also for obser-
vations from geostationary satellites. However, for a single
satellite in low Earth orbit the sampling frequency at any lo-
cation is much lower: 1–2 observations per day (depending
on the swath width). For such satellites we need to combine
the observations from multiple platforms in order to reliably
estimateφ. This was shown inHolmes et al.(2013), where
vertical polarized Ka-band observations from four platforms
were combined before determining the Ka-bandφ. That pa-
per showed that Ka-band observations can be used to en-
hance NWP temperature output, but only if the temperature
series are properly reconciled in terms of timing, amplitude,
and minimum of the diurnal temperature cycle. In the near
future, the potential sampling of the DTC by Ka-band sen-

sors will be greatly enhanced by the constellation of satel-
lites launched under the auspices of the Global Precipita-
tion Measurement mission (Smith et al., 2007). In this pa-
per we determineφ of NWP surface temperature estimates
with an hourly output interval as provided by NASA’s Global
Modeling and Assimilation Office (GMAO). We compare
this to theφ as determined from an inter-calibrated record
of Ka-band brightness temperatures from five satellite plat-
forms. As a third independent data source, we use thermal in-
frared (TIR) LST retrievals from the geostationary Meteosat-
9 satellite (centered at a longitude of 0◦), covering Europe
and Africa.

When considered as group, these three sources (i.e., NWP-
based, microwave-based and TIR-based) all provide inde-
pendent information regarding LST and can theoretically be
integrated together (via e.g. the assimilation of TIR and mi-
crowave LST observations into the NWP model) or used to
improve physical retrievals methods for ET and soil mois-
ture which require ancillary LST information. However, be-
fore these overarching goals can be accomplished, system-
atic differences between these LST data sets – particularly as
they relate toφ – must be understood. This will not only sup-
port efforts to combine temperature from different sources,
but may also help to better tailor a given temperature set to
its function within physical retrieval models. For soil mois-
ture remote sensing it may help to better adjust the temper-
ature measurement to the sensing depth of the band that is
actually used for the soil moisture retrieval. For precipita-
tion, it may help efforts to improve the estimation of back-
ground emissivity (Stephens and Kummerow, 2007). And
finally, a proper reconciliation of thermal and microwave-
based temperature may improve evaporation retrievals, such
as the Atmosphere-Land Exchange Inverse model (ALEXI;
Anderson et al., 1997), that currently depend on suboptimal
gap-filling when clouds prevent TIR observations.

In preparation for a global merging of temperature data,
this paper presents a global analysis of difference in DTC
timing between Ka-band temperature estimates, TIR-based
temperature estimates and NWP model output. The results
of this comparison provide insights into diurnal differences
between temperature measurements and models, and can be
used as a first step to account for them in a coherent way.

2 Theory

The time between solar noon and the time of the daily maxi-
mum is here referred to as the phase of the DTC (φ) and mea-
sured in hours. Because solar noon is the time of day when
the sun is at its highest point in the sky for a given location,
this local definition eliminates any longitudinal dependency
but also the smaller effect of variations in day length through-
out the year. Accordingly, all times denoted here are given in
local solar time.
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Fig. 1. Simulation of effective temperature for Ka-band emission
for a dry (Teff(dry)) and a wet soilTeff(wet)). Assuming the shal-
low and deep layers are weighted equally inTeff(dry), the resulting
effective phase difference (dφ) is 54 min, about a fourth of the dif-
ference (dφz) between the temperatures at their respective damping
depths (z = zs).

For a surface temperature measurement, the averageφ

should be directly related to the incoming radiation, with
a delay (damping) that is a function of the heat capacity of
the soil or vegetation layer over the measurement depth of
the sensor. When comparing two temperature measurements
with the same spatial extent, the measurement depth will de-
termine the level of damping of the diurnal temperature cycle
(Van Wijk and de Vries, 1963) and the measurement with the
earliest peak will represent the shallowest layer. TIR mea-
surements have a sensing depth of about 50 µm, providing
the shallowest practical measurement of LST. The timing of
the maximum TIR temperature is typically reported between
60 and 90 min after solar noon (Choudhury et al., 1987; Betts
and Ball, 1995; Fiebrich et al., 2003). Ka-band microwave
emission has been shown to be a plausible alternative to TIR
measurements, with much higher tolerance for clouds but
a limited spatial resolution (Holmes et al., 2009). The sens-
ing depth for Ka-band microwave emission, with a frequency
of 37 GHz, is slightly deeper than TIR and varies with soil
moisture. For most land surfaces it is assumed to be around
1 mm. Accordingly, theφ derived from Ka-band emission is
expected to be slightly behind that observed using TIR. Only
in very dry areas with no vegetation is the Ka-band sensing
depth potentially much deeper, on the order of cm’s (Ulaby
et al., 1986), and theφ of Ka-band can be further delayed. To
illustrate the difference Fig.1 simulates the effect of sensing
depth on Ka-bandφ for a wet and a dry soil. The damping
of the temperature harmonic with a period of a day can be
described by a phase shift (dφ) proportional to the vertical
distance (dz) divided by the damping depth (zD). The damp-
ing depth is defined as the dz over which the amplitude of
the harmonic is reduced by 63 %, and is an expression of the

thermal properties of the soil:

zD =

√
2a

2πf
, (1)

wherea is the thermal diffusivity (m2s−1) andf is the fre-
quency (s−1) of the harmonic. For a dry soil (a = 0.15e−6)
Eq. (1) yields an estimate ofzD = 6.5cm. Estimates of the
temperature sensing depth (zS) of 1 mm for a wet soil to 1 cm
for a dry soil are given inUlaby et al.(1986). The difference
in zS for microwave Ka-band emission between a dry sandy
soil and a wet soil is therefore about 9 mm. Dividing this by
the dry soilzD of 6.5 cm equates to a 3 h 36 min shift inφ be-
tween the soil layers at the lower ends of these sensing depths
(dφz). Because the shallower soil depths weigh more heav-
ily in the measured emission, and they have larger diurnal
amplitudes, they affect the timing of the DTC more strongly.
Therefore, the shift in phase (dφ) of actual measured Ka-
band emission, originating from the entire soil profile, is es-
timated as dφz/4, or 54 min (see Fig.1). Observational evi-
dence of this dφ will be discussed in Sect.5.

3 Materials

In this study we compare three independent land tempera-
ture measurements, two from satellite measurements and one
based on a global NWP model. The satellite observations in-
clude a number of Ka-band sensors with global coverage and
TIR measurements from a geostationary satellite. All sets are
available for the full year 2009 and are described below.

3.1 Satellite Ka-band brightness temperature

Observations of vertical polarized Ka-band (37 GHz) bright-
ness temperatures (T

Ka, V
B ) are available from several satel-

lites. For 2009 we acquired observations from the Advanced
Microwave Scanning Radiometer on EOS (AMSR-E), the
Special Sensor Microwave and Imager (SSM/I) and the Trop-
ical Rainfall Measurement Mission (TRMM) Microwave Im-
ager (TMI), and Coriolus-WindSat. Detailed sensor specifi-
cations are listed in Table1. The coverage of all polar orbit-
ing satellites is global, whereas the equatorial orbit of TMI
extends from 38◦ N to 38◦ S. Each sensor has a different
spatial resolution, and the location of the center of the foot-
print and its azimuth orientation varies between consecutive
overpasses. To combine these observations, they are binned
to a 0.25◦ regular global grid. This resolution was chosen
based on the satellite with the coarsest resolution (SSM/I; see
Table1). The value for each grid cell is the mean of all ob-
servations with a footprint center within the boundaries of the
cell. The inter-calibration of these five instruments makes use
of the precessing nature of TRMM’s equatorial orbit. This
orbit was designed to sample the diurnal variation of tropical
rainfall and results in regular overlap with all polar orbiting
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Table 1.Specifications of satellite sensors providing Ka-band microwave observations used for land surface temperature estimation.

Sensor SSM/I TMI AMSR-E WindSat

Satellite DMSP F13, F15 TRMM Aqua Coriolus
Orbit Polar Equatorial Polar Polar
Equatorial overpass 6:00–22:00 Variable 01:30/13:30 6:00/18:00
Operational 1987–present 1997–present 2002–2011 2003–present
Accuracy (K) 0.4 0.5 0.7 0.5
Spatial resolution (km) 33 10 12 12
Over-sampling in 0.25◦ grid 1 6 8 8

satellites, allowing for an inter-calibration of the satellites as
described inHolmes et al.(2013).

Within the microwave spectrum,T Ka, V
B is the most appro-

priate frequency to retrieve LST as it balances a reduced sen-
sitivity to soil surface characteristics with a relatively high
atmospheric transmissivity (Colwell et al., 1983). In Holmes
et al.(2009) it was further shown that an assumption of a con-
stant land surface emissivity can be used to obtain LST esti-
mates from Ka-band with relatively high sensitivity, if not ab-
solute accuracy. For the purpose of this paper no conversion
to physical temperature is needed since only the timing of
the DTC is analyzed here, not its amplitude. This means that
for this paper the assumption of constant emissivity needs
only to hold over the course of the day, because there is no
effect of absolute bias in LST on the analysis. Still, the lin-
ear relationship between Ka-band and LST does potentially
break down under frozen soil conditions or during precipita-
tion events. This leads to the formulation of two conditions
for the Ka-band data. To avoid frost conditionsT

Ka, V
B must

be above 260 K, a rough estimate of the Ka-band freezing
point determined inHolmes et al.(2009). The spatial stan-
dard deviation of all Ka-band observations within a 0.25 de-
gree grid box is used as an indicator for measurement uncer-
tainty; above-normalσKa, V is attributed to active precipita-
tion (Holmes et al., 2013). The second condition is therefore
based onσKa, V; a gridbox average is rejected ifσKa, V is
more than 1 K above the annual mean for that grid box. The
Ka-band temperature set is referred to in the following as
TKa. An example of the resulting sampling of the combined
TKa is given in Fig.2 for three days in September 2009. In
the same graph the NWP and infrared resource are shown;
they are described below.

3.2 NWP surface temperature

The modeled temperature data set was acquired from
NASA’s GMAO and their Modern Era Retrospective-
analysis for Research and Applications (MERRA) (http://
gmao.gsfc.nasa.gov/research/merra, Rienecker et al., 2011).
MERRA products are generated using Version 5.2.0 of the
GEOS-5 DAS (Goddard Earth Observing System (GEOS)
Data Assimilation System (DAS)) with the analysis and
model output both at a spatial resolution of 0.5◦ latitude by

Fig. 2. Three days of diurnal cycles ofTKa, TNWP, and TIR in
September 2009. All variables are explained in Sect.3. Solid lines
represent the fitted DTC, as described in Sect.4.

0.67◦ longitude, and with a 6-hourly analysis cycle. Two-
dimensional diagnostics describing the radiative and physical
state of the surface are available as hourly averages.

Surface processes in MERRA are based on the NASA
Catchment land surface model (Ducharne et al., 2000; Koster
et al., 2000). Each MERRA grid cell contains several irreg-
ularly shaped tiles, and each tile is further divided into sub-
tiles based on their modeled hydrological state: saturated, un-
saturated, and wilting. The surface temperature of a grid cell
is obtained by area-weighted averaging of the surface tem-
peratures of all sub-tiles within the grid cell. The sub-tile sur-
face temperatures are prognostic variables of the model and
represent a bulk surface layer with a small but finite heat ca-
pacity. For all vegetation classes except broadleaf evergreen
trees, this bulk surface layer represents the vegetation canopy
and a surface layer at the top of the soil column (effective
layer depth< 1 mm).

In this study we analyzed the gridded surface temperatures
over land, orTNWP. The data was regridded onto a 0.25◦ reg-
ular grid by means of bilinear interpolation, and the hourly
output was temporally interpolated to a 15 min temporal res-
olution. Figure2 gives an example ofTNWP at the original
hourly resolution.
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Fig. 3.Main characteristics of the diurnal temperature cycle and the
definition of the phase of the DTC (φ).

3.3 Geostationary thermal-infrared-based LST

TIR-based LST (TIR) is an operational product of the Land
Surface Analysis–Satellite Applications Facility (LSA-SAF,
seehttp://landsaf.meteo.pt). It is generated using the split-
window channels (10.8 and 12.0 µm) of the Spinning En-
hanced Visible and InfraRed Imager (SEVIRI) on board the
geostationary Meteosat second-generation (MSG) satellite;
therefore a high temporal resolution (15 min) of the data is
possible (Kabsch et al., 2008; Trigo et al., 2011).

These LST data are provided on a 3 km equal-area grid.
When regridding onto a 0.25◦ regular grid, this results in
a large over sampling of the grid box. If more than two-
thirds of the 3 km observations are masked out for a par-
ticular location and time, then that sampling average is re-
jected. This threshold increases the amount of data discarded
by the cloud filter forTIR. We further limit the coverage of
the METEOSAT-9 to the domain covered with an Earth inci-
dence angle up to 78◦, avoiding artifacts at large view angles.
The resulting METEOSAT-9 domain covers Africa, Europe
and the Middle East. In Fig.2 the high sampling rate ofTIR
is apparent, as are gaps (attributed to clouds) on day 1 and 2
of this example series.

4 Methods

In Holmes et al.(2012) it was shown that a relative estimate
of φ can be determined by fitting a simple harmonic model
to a temperature time series. This worked well enough when
only φ differences between temperature sets are needed.
However, the values itself are hard to interpret since the ac-
tual shape of the DTC rarely resembles a perfect harmonic
shape, resulting in differences between the time of maximum
temperature and the peak of the harmonic.

In this paper we adapt a more sophisticated model of
the DTC as described byGöttsche and Olesen(2001). This
harmonic-exponential DTC model improves the fit along the

Fig. 4. Effect of sparse temporal sampling (atTKa observation
times) on retrieval ofφ.

cooling limb of the DTC and allows for better leveraging of
observations at all times. In addition, it yields an estimate of
φ that can be more readily interpreted as the time lag be-
tween solar noon and peak temperature. The DTC model
by Göttsche and Olesen(2001) was originally intended as
a five-parameter model, but a subsequent addition to param-
eterize total (atmospheric) optical depth increased this to six
(Göttsche and Olesen, 2009). A recent comparison paper
(Duan et al., 2012) discussed several variants of the DTC
model byGöttsche and Olesen(2001) and showed that im-
provements were caused by adding an additional free param-
eter related to the day length. In this paper we have to reduce
the number of free parameters to limit the computational de-
mands and speed conversion to a solution. Therefore we sim-
plify the five-parameter model (Göttsche and Olesen, 2001)
to have only three free parameters. A comparison study (not
shown) demonstrated that this does not reduce the accuracy
of the meanφ as determined over longer time series. The
method is detailed below.

In Göttsche and Olesen(2001) the DTC model (Tpar) is pa-
rameterized as a function of the time of maximum (tm), day
length (ω), diurnal amplitude (Ta), diurnal minimum (T0),
change in minimum from day to day (δT ), and start of the
attenuation function (ts):

Tpar(t) = T0 + Tacos
(π

ω
(t − tm)

)
, t < ts (2)

Tpar(t) = T0 + δT +[
Tacos

(π

ω
(ts− tm)

)
− δT

]
e

−(t−ts)
k , t ≥ ts.

Figure3 shows an example ofTpar and illustrates the defini-
tions of its parameters. The attenuation constantk is calcu-
lated by making the first derivatives of the day- and nighttime
equation equal at timets:

k =
ω

π

[
1

tan
(

π
ω
(ts− tm)

) −
δT

Tasin
(

π
ω
(ts− tm)

)]
. (3)
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To limit the degrees of freedom and increase conversion to
a solution, in this studyts is fixed so that half of the decrease
in temperature (over the cooling-down limb) is described by
the exponential equation. That way,ts can be calculated from
tm andω as

ts = tm +
ω

π
arccos

(
1

2

(
1+

δT

Ta

))
. (4)

For a given day and temperature set, first-guess estimates
of T0 andTa are determined based on the minimum and max-
imum recorded observations within the 24 h period from sun-
rise to sunrise. Similarly,δT is initialized based on the dif-
ference betweenT0 of the current and the next day, if avail-
able. Solar noon (tn) andω are calculated based on latitude
and day of year according to general solar position calcula-
tions (Cornwall et al., 2003). Defining φ as the offset be-
tween optimized time of maximum temperature and solar
noontm = tn + φ, there are three free parameters:φ, T0, and
Ta. Of these, onlyT0 andTa vary from day to day;φ is as-
sumed constant over the data range. With these assumptions
it is possible to determineφ in an iterative optimization loop
that minimizes the squared errors (E) betweenTpar and the
data series. In Fig.2 examples ofTpar are shown, as fitted for
the three LST resources used in this manuscript.

The above-described fitting of the DTC model is possible
for days where the available samples are sufficient to con-
strain the estimates ofT0 andTa, together with at least two
further samples to anchorφ. The optimization loop is there-
for only applied to days where the number of samples (N(d))
is four or more. Furthermore, in order to assure a reasonable
fit with the clear-sky DTC model, we limit the analysis to
days where the temperature does not dip below freezing, and
where the maximum temperature is close to the meantm. Fi-
nally, in order to have an acceptable signal-to-noise ratio we
focus on days where the estimated amplitude exceeds 5 K. In
summary, only days (d) where the following conditions are
met are included in the optimization loop to determine the
timing for each temperature set:

1. N(d) >= 4,

2. T0(d) above freezing point,

3. tm(d) within 2 h of meantm, and

4. Ta > 5 K.

The exact thresholds applied in these four conditions are cho-
sen to select the most optimal days for the analysis, without
overly limiting the number of usable data days in a given
time period. Still, the effect of these criteria on the number
of usable days results in the need for a time period of a year
to generate sufficient data days to compensate for the uncer-
tainty in the satellite observations, particularly in the tropical
and boreal zones with limited diurnal amplitude. The above
considerations and conditions also point out the need for five

different satellites to estimate the timing ofTKa. The AMSR-
E satellite is crucial to satisfy condition (3) because its ob-
servation falls close to the maximum of the diurnal at 13:30.
The WindSat and SSM/I satellites help constrain the early
morning minimum and the afternoon cooling limb. The TMI
observations increase the number of data days by helping to
satisfy conditions (1) and (3), and are indispensable for the
inter-calibration of the sensors.

To test if the sampling ofTKa results in a bias relative to
the hourly sampling of MERRA, we looked at the change
in apparent timing forTNWP, when only observations at the
overpass times of the Ka-band set are used. The effect of
sparse sampling on theφ is averaged by latitude and shown
in Fig. 4. By using MERRA model output for this sensitivity
analysis we cannot test for the effect of noise in the observed
data. Moreover, the diurnal harmonic ofTNWP may have a
different bias relative to the DTC model thanTKa. This po-
tential mismatch in DTC shape may be responsible for the
bias as shown around the Equator for the first test with no
noise and imperfect model. We repeat the test after removing
the mismatch in the DTC model, resulting in a perfect model
with no noise. Only if this assumption is valid do we expect
to have no bias. These results indicate that the uncertainty as
introduced by the limited sampling frequency of the Ka-band
data is small enough to measure Ka-band timing from this set
of sensors, but only if the DTC model accurately represents
the measuredTKa.

5 Results

The above-described method to determineφ is applied to the
three temperature recordsTKa, TNWP, andTIR (described in
Sect.3) for the data year 2009. The resulting (0.25◦) maps of
φ are displayed in Fig.5 for Europe and Africa, the spatial
domain of MSG-9.

On average theTKa peaks at 13:44 with lower values over
Europe and highest values over deserts and tropical rain-
forests. Later values of peak temperature in deserts can be
explained by the deeper sensing depth of Ka-band emission
under dry soil conditions (see Sect.2). In fact, the areas with
latestφ correspond closely to sand deserts; see for exam-
ple the Arabian Peninsula in Fig.5a where the Rub’al Khali
Erg shows up causing an hour delay of the Ka-bandφ. This
feature was earlier noted in terms of day/night difference of
SSM/I channels (Prigent et al., 1999), polarization difference
of AMSR-E channels (Jiménez et al., 2010), and even more
comparable to the present analysis, in terms of phase dif-
ference between microwave and TIR temperature (Norouzi
et al., 2012). In this later study the third component derived
from a principal component analysis (PCA) was attributed to
the phase of the diurnal cycle. The close resemblance of the
spatial features generally supports this conclusion.

More surprisingly in Fig.5a is the delay inφ over the
tropical forest, which cannot be attributed to sensing depth
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Fig. 5.2009 meanφ for TKa (a), TNWP (b), andTIR (c). (d) North–south transect of meanφ.

Fig. 6. 2009 meanφ determined forTKa, TIR, andTNWP within
selected IGBP land cover types. BetweenTNWP andTIR there is
a fairly constant dφ of 20 min.TKa agrees withTIR over land surface
types with little or no barren surface.

variation. Another unexpected feature in the maps ofφ(TKa)

is the earlier phase over mountainous areas (e.g., the Rif
mountains in NW Africa, the Caucasus). Both features will
be discussed in relation to theφ of TIR andTNWP.

ForTNWP, with a mean peak temperature at 12:50, there is
much less spatial variation inφ with the notable exception of
tropical rainforest; see Fig.5b. The distinctly different results
over rainforest with values around 13:30 are explained by
a higher heat capacity as parameterized for areas classified
as tropical forest in the MERRA model. At more northern
latitudes, higherφ values are also found over the forest areas
of the eastern European plain. Areas with lowestφ seem to
correspond with high-elevation areas.

Figure5c shows theφ as determined based onTIR. The
TIR data peak on average at 13:13. The higherφ values in the
tropical zone match well with the delay as found forTNWP,
although forTIR the area with delayedφ is slightly more
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Fig. 7.Timing difference [h]:(a) φ(TNWP)−φ(TIR), average dφ = −23min; and(b) φ(TKa)−φ(TIR), average dφ = 30min. The color bar
is centered on the average for each map.

Fig. 8.2009 meanφ for TKa (a), TNWP (b), and the differenceTKa − TNWP (c).
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expansive and includes more generally the humid tropical
zone of Africa.

Figure5d shows a north–south transect of theφ as deter-
mined forTKa, TNWP, andTIR – all averaged over the lon-
gitude extent of 0–30◦ E. All sets have a delayedφ around
the Equator, which forTNWP is explained by the higher heat
capacity as parameterized for tropical rainforest. ForTKa and
TIR, with little to no penetration of the canopy layer, the de-
lay in φ might more plausibly have to do with the effect of
a diurnal pattern in cloudiness which can cause a delay in the
peak solar radiation. If this is true, then MERRA predicts a
correct delay in timing but for the wrong reason. Superim-
posed on this tropical signature,TKa clearly shows a delayed
φ over (seasonally) dry areas in northern and southern Africa,
explained by the deeper sensing depth.

The patterns inφ and differences between the sets seem to
align with particular land surface types. Therefore, MODIS
land cover maps (MCD12C1, Version 051) are used to study
φ by land surface type (International Geosphere-Biosphere
Programme (IGBP) classification). Figure6 lists the aver-
age values as obtained over selected surface types between
longitudes 0 to 30◦ E. This indeed confirms the general re-
lation with vegetation type – all sets exhibit delayedφ over
broadleaf forest compared to the cropland and Europe selec-
tions. Only forTKa are delays inφ recorded over the savan-
nah and desert land cover types.

As a consequence of the general agreement inφ be-
tweenTNWP andTIR, the spatial map of their difference in
φ is remarkably homogenous:φ(TIR) − φ(TNWP) = 27min
(±15 min) for 79 % of the land area (see Fig.7a). Areas with
larger differences are found at the edge of land masses and
mountain ranges, whereφ(TIR) can be up to 1.5 h behind
φ(TNWP) as shown in Fig.7. Interestingly, these areas also
show up in Fig.7b, sometimes even indicating thatTKa peaks
earlier thanTIR, which is not physically realistic. Because
of this, we look toTIR for the explanation of these anoma-
lies. Insofar as these features line up with mountain ranges,
they are tentatively attributed to azimuth angle effects onTIR.
Since they are retrieved from a geostationary satellite (MSG-
9) located at the prime meridian, variations in azimuth angle
might explain the earlierφ over mountains to the northwest
of the satellite and the delayedφ over ranges that are to the
east of the satellite. Such azimuth angle effects are muted
within TKa as this is composed of observations with vary-
ing azimuth angles (and obviously play no role in the NWP
record). Along the coast in the tropical zone large negative
anomalies show up inTIR relative toTKa andTNWP that can-
not be explained by mountains. In these areas there are few
days without clouds, and we therefore attribute this to a fail-
ure of the cloud mask inTIR.

The timing difference betweenTKa andTIR is greatest over
the driest parts of Africa, whereTKa is 57 min (±25 min) be-
hind TIR in φ; see Fig.7b. This average dφ agrees with the
theoretical calculations of Sect.4. This suggests that the large
increase inφKa over dry areas can be quantitatively explained

by an increase in temperature sensing depth. As expected for
all but the driest soils (especially when covered with vege-
tation) the difference is much closer to zero over the rest of
Africa and Europe. For example, over Europe theφ maps
show thatTKa is only 14 min (±12 min) behindTIR.

In order to test if the discussed patterns inφ are stable
throughout the year, the procedure to calculateφ was re-
peated for 3-month seasonal periods. The seasonal results
confirmed the large-scale north–south patterns as shown in
Fig.5d, giving confidence that land cover type is the main de-
terminant forφ, rather than seasonal varying factors like soil
wetness or cloudiness. Furthermore, it suggests thatφ may
be considered relatively constant in time; the spatial standard
deviation of the seasonal anomaly from the annualφ is 6 min
for TNWP, 7 min forTIR, and 14 min forTKa.

6 Global results

This section will briefly discuss the spatial patterns in tim-
ing on the global scale, as calculated forTKa andTNWP. The
geostationary TIR resource is not yet available as a consoli-
dated global data set and is therefore not included here. The
global maps ofφ confirm the land cover features as found
over Africa and Europe and discussed in Sect.5. In the global
φ map ofTKa (see Fig.8, top), delays of up to an hour from
the meanφ of 13:37 for desert areas are matched with similar
delays in the deserts of Australia and central Asia. Similarly,
the apparent delay in timing over tropical forest is repeated
over the Amazon.

For TNWP (Fig. 8, middle panel),φ is generally between
12:30 and 13:00 with three main exceptions. Tropical forest
show up with highly delineated delays inφ of up to 40 min
over the Amazon and Indonesia, in close agreement with the
above discussed Congo Basin in Africa. As discussed earlier,
this is explained by the increased heat capacity of the surface
layer as parameterized for tropical forest by MERRA. Be-
cause this is a static feature of MERRA, the resulting spatial
pattern ofφ is expected to remain stable from year to year,
as long as the same land classification is used.

Another feature that shows up is earlierφ over moun-
tainous and high-elevation areas. Although this feature was
discussed earlier, it is much more pronounced over the An-
des and Himalaya. Since it appears in bothTKa andTNWP,
it most likely reflects an actual pattern in diurnal heat ex-
change. Possible physical mechanisms for this include the
effect of cooler air temperatures at higher elevation on sensi-
ble heat flux, diurnal patterns in orographic cloud formation,
and slope effects on incoming solar radiation as described in
Senkova et al.(2007).

A new feature that appears in these global maps is anoma-
lies of up to an hour from the meanφ as calculated forTNWP,
lining up closely with the boreal climate zone above 60◦ N.
This surprising feature is not matched inTKa. Since our anal-
ysis is restricted to days with minimum temperatures above
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Fig. 9. Example of overall fitTpar to the three LST estimates for selected locations. The displayed data reflect the annual average deviation
1T = T − (T0 + Ta/2) for each hour of day.

freezing and a diurnal amplitude of 5 K or higher, theφ cal-
culated in these northern regions (with weak diurnal radia-
tive forcing) is based on a relatively limited amount of long
cool days. Unfortunately, TIR observations are not available
at those high latitudes to positively attribute this anomaly to
TNWP.

On averageTKa peaks 40 min later thanTNWP (Fig. 8,
lower pane). In the temperate climates and the tropics the
dφ is close to this average. Bigger differences appear in the
desert areas where Ka-band peaks up to 2 h afterTNWP, cor-
responding to a deeper sensing depth. The boreal areas show
smaller differences resulting from the delayedφ of TNWP as
discussed above. Due to the close link with land cover and
geological features it is expected that these patterns of dφ

will remain relatively stable from year to year.
Each of these features deserves discussion in more detailed

studies where ground measurements are available for com-
parison. Such regional studies would benefit from relaxing
some of the parameters that were fixed in this global study,
allowing for improved fit of the DTC model (Tpar) over par-
ticular biomes. In support of the main features that were dis-

cussed in this paper, we conclude with two graphs that sum-
marize the overall fit ofTpar to the three LST estimates over
four key biomes; see Figs.9 and10. The displayed data re-
flect the annual average by hour of day for a single grid cell.
Observational data are corrected for the effect of sparse sam-
pling on the average. These graphs show that even though the
fit of Tpar is not perfect at all times of day, it does not appear
to impact the relative conclusions of the study. All sets have
a clear delay inφ over tropical forest that is picked up by
the fittedTpar in the presented examples. In contrast, the late
φ of TKa stands out from the other sets in the desert exam-
ple. In boreal forestTNWP has a relative delay inφ that is not
reflected inTKa.

7 Conclusions

This study demonstrates that the timing of the diurnal tem-
perature cycle can be reliably determined from temporally
sparse data sets. The method is applied to a yearlong record
of geostationary TIR observations, model output, and a com-
bination of low Earth-orbiting satellites with microwave

Hydrol. Earth Syst. Sci., 17, 3695–3706, 2013 www.hydrol-earth-syst-sci.net/17/3695/2013/



T. R. H. Holmes et al.: Timing of the diurnal temperature cycle 3705

Fig. 9. Example of overall fit Tpar to the three LST estimates for selected locations. The displayed data reflects

the annual average deviation ∆T = T − (T0 +Ta/2) for each hour of day.

Fig. 10. Example of overall fit of Tpar to LST estimate in the boreal region. The displayed data reflects the

annual average deviation ∆T = T − (T0 +Ta/2) for each hour of day.

23

Fig. 10. Example of overall fit ofTpar to LST estimate in the bo-
real region. The displayed data reflect the annual average deviation
1T = T − (T0 + Ta/2) for each hour of day.

radiometers. The spatial patterns inφ for each temperature
set are explainable based on consideration of land surface
type and basic physics describing the penetration depth of
microwave observations. An interesting observation is that
over tropical forest the timing is delayed by 30 to 40 min rel-
ative to the average phase in both satellite data sets. While
this delay is accurately modeled in MERRA, it may be for
the wrong reason if the delay is caused by a diurnal variabil-
ity of cloudiness rather than an increase in heat capacity of
the sampled surface layer. On the other hand, deserts cause
a delay in the timing of Ka-band diurnal temperature cycle
which is not matched in the TIR nor MERRA estimates. This
is explained by a deeper sensing depth for the microwave ob-
servations in dry soils and becomes especially extreme in dry
sand deserts.

The timing of Ka-band observations outside of the desert
and semi-desert areas is (on average) 15 min after TIR.
This small delay of the DTC compared to TIR agrees with
a slightly deeper sensing depth for Ka-band, 50 µm vs. 1 mm.
On the other hand, MERRA seems to model the average peak
of the DTC about 23 min before that of TIR, which should
be the shallowest observation possible of the land surface.
Therefore, if the goal is to model the surface temperature, it
appears the heat capacity of the surface layer is set slightly
too low in MERRA. To put this timing difference in con-
text of biases in T, there are two main considerations. First,

if this timing difference is indeed a result of a low bias in
heat capacity, then the associated overestimation of the diur-
nal amplitude would be 10 % for a 23 min timing difference
(Holmes et al., 2012). Secondly, the timing difference will in-
troduce a diurnal bias term. These two effects together result
in a harmonic diurnal bias with an amplitude that depends on
the diurnal temperature range (for example, 1.4 K bias for aT

with 20 K diurnal range). This type of time-variant structural
bias terms are much harder to account for in data assimilation
approaches than constant bias terms.

This study has identified structural differences in diurnal
timing between MERRA, TIR and Ka-band-based land sur-
face temperature estimates and constitutes one of the first
global analyses of the effects of vegetation and sensing depth
on the timing of different temperature measurements. Even
though the global maps of the timing for each set are based
on the year 2009, these features are expected to be relatively
stable from year to year. The presented analysis of the timing
of the diurnal temperature cycle offers a means to account
for time-variant bias terms between temperature records in
a physically consistent way. With these maps we can now
reconcile temperature records in terms of their diurnal tim-
ing, opening the way for studies that look at differences in
diurnal amplitude and daily minimum, and ultimately for a
global merger of temperature data sets.
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