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Abstract. The space defined by the pair surface tempera-compared on seven ASTER overpass dates with the in situ
ture (I') and surface albedax], and the space defined by measurements collected at six locations within the study do-
the pairT and fractional green vegetation covefd) have  main. The ET simulated by SEB-1S is significantly more ac-
been extensively used to estimate evaporative fraction (EFgurate and robust than that predicted by the clasgicalkx

from solar/thermal remote sensing data. In both space-baseshbace-based model. The correlation coefficient and slope of
approaches, evapotranspiration (ET) is estimated as remotelyre linear regression between simulated and observed ET is
sensed EF times the available energy. For a given data poinproved from 0.82 to 0.93, and from 0.63 to 0.90, respec-
inthe T — o space or in thd" — f,4 space, EF is derived as tively. Moreover, constraining the wet edge using air temper-
the ratio of the distance separating the point from the lineature data improves the slope of the linear regression between
identified as the dry edge to the distance separating the drgimulated and observed ET.

edge and the line identified as the wet edge. The dry and wet
edges are classically defined as the upper and lower limit of

the spaces, respectively. When investigating side by side thg¢ |ntroduction

T —a and thel — f,g Spaces, one observes that the range cov-

ered byT values on the (classically determined) wet edge isEvapotranspiration (ET) is the boundary condition for the
different for both spaces. In addition, when extending the wefland surface and the atmosphere. An accurate representation
and dry lines of the" —« space, both lines cross@t 0.4  of ET is hence required in agronomy, hydrology, meteorol-
although the wet and dry edges of tiie- fig space never ogy and climatology. For such wide range of applications,
cross for 0< fug < 1. In this paper, a new ET (EF) model ET should be monitored over extensive areas at multiple
(SEB-1S) is derived by revisiting the classical physical in- scales. Whereas ET can be measured at the local (several ha)
terpretation of the” — o space to make its wet edge consis- scale using in situ techniques such as eddy covariance and
tent with that of thel’ — f,y space. SEB-1S is tested over a scintillometry systems, remote sensing technology is recog-
16 km by 10 km irrigated area in northwestern Mexico dur- nized as the only viable means to monitor ET spatial vari-
ing the 2007—2008 agricultural season. The clasdicala abilities at the irrigation district, catchment, and meso-scales
space-based model is implemented as benchmark to evalin a temporally and globally consistent and economically
ate the performance of SEB-1S. Input data are composed dtasible manner.

ASTER (Advanced Spaceborne Thermal Emission and Re- Different methods have been developed to derive ET from
flection radiometer) thermal infrared, Formosat-2 shortwave remote sensing data including visible, near infrared and
and station-based meteorological data. The fluxes simulatethermal infrared bandsDfak et al, 2004 Gowda et al.

by SEB-1S and the classicd@l — o space-based model are 2008 Kalma et al, 2008 Verstraeten et 312008 Li et al.,
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2009 Kustas and Andersor2009. They range from semi- related quantities or phenomena such as surface resistance to
empirical ET expressions derived from remotely sensed surET (e.g.,Nemani and Runningl989, soil moisture $and-
face temperaturel() and fractional green vegetation cover holt et al, 2002 Merlin et al, 2008 Mallick et al,, 2009 Kim
(fvg) (e.0.,Price 199Q Moran et al, 1994 Tang et al.201Q and Hogue2012 Merlin et al, 2013h), land-surface precipi-
Long and Singh2012 Yang and Shang?013 or from T tation feedback regime8(unsell 2006, drought (e.g.WWan
and remotely sensed surface albedp(e.g.,Menenti et al, et al, 2009, fuel moisture content for fire danger man-
1989 Roerink et al. 2000, to methods estimating ET as agement Chuvieco et al. 2004, and land cover changes
the residual term of aerodynamic resistance energy balanc.g.,Julien and Sobrind2009.
equations forced by, f,g andx (e.g.,Norman et al.1995 Alternatively to theT’ — f,4 space, thd —« space has also
Bastiaanssen et all998 Anderson et a).2007% Cammalleri  been proposed to monitor ET over extended arkBnénti
et al, 2012, and to data assimilation proceduresointo et al, 1989 Roerink et al. 2000. The Simplified Surface
coupled energy and water balance models (€gparrini Energy Balance Index (S-SEBRoerink et al. 2000 deter-
et al, 2004 Olioso et al, 2005 Pipunic et al.2008. mines the wet and dry lines by interpreting the observed cor-
The current thermal-based ET estimation methods greatlyelations betweel anda (Menenti et al. 1989. The wet
vary in complexity. The main advantages of data assimilationline is defined as the lower limit of thE — « space. It gener-
methods into physically based SVAT (Soil Vegetation Atmo- ally has a positive slope as a result of an evaporation control
sphere Transfer) models are (1) to integrate many ET-relatedn T'. The dry line is defined as the upper limit of thie- «
physical processes such as soil water diffusion and vegetaspace. It generally has a negative slope as a result of a ra-
tion water uptake in the root zone, and (2) to take into ac-diation control on7 (Roerink et al. 2000. Similarly to the
count the uncertainty in both observations and model predicT — f.g Space, EF is derived as the ratio of the distance sepa-
tions in an optimal way. Nevertheless, the majority of SVAT rating the pointd, 7' from the dry line to the distance sepa-
models developed since the 1980s (Ngilhan and Planton  rating the dry and wet lines, and ET is estimated as a fraction
1989 have a large number of parameters that cannot be di{EF) of available energy. S-SEBI (hereafter named classical
rectly measured at the model application scales (Ergnks T — « space-based model) has been successfully applied in
et al, 1997. Implementation of such complex models is a number of studies (e.gzémez et a|.2005 Sobrino et al.
therefore difficult in an operational context. In addition, the 2005 2007 Fan et al.2007 Galleguillos et al.2011h a).
over-parameterization issue of SVAT models is further em- BothT — f,g andT —« spaces can be used to estimate ET
phasized by the possible need for empirical parameters ttased on a similar identification of dry and wet edges. Since
fit model predictions with observations (e.8ijtelli et al., fvg and« provide complementary information on the sur-
2008. Last, simple models may perform similarly as more face, one would expect synergies between both space-based
complex models in terms of ET predictions, given they areapproaches. For instanae,is sensitive to the total vegeta-
correctly calibratedJiang and Islam2003 Margulis et al, tion cover including greenf{gy) and senescent vegetation
2005 Timmermans et al2007). The above mentioned lim-  (Merlin et al, 201Q 20123 b). Consequently thd — fiq
itations in the application of SVAT models (complexity in space-based approach confuses bare soils and soils fully or
operational implementation, over-parameterization and acpartially covered by senescent vegetation, while The «
curacy in ET estimates) are rationales for developing parsispace-based approach does not. However, few studies have
monious ET-oriented modeling approaches which are selfsynergistically combined thE — f,q andT —o spacesMer-
calibrated, i.e., forced by available remotely sensed variable$in et al. (2010 and Merlin et al. (20123 have developed
including”', fug ande. disaggregation methods @ based on observed relation-
TheT — fug Space, also know as the triangle or trapezoid ships betweeff and f,g and observed relationships between
method, has been extensively used to monitor ET from re-T' and«-derived fractional senescent vegetation colvest-
mote sensing dataP(ice 199Q Gillies et al, 1997 Jiang lin et al. (2008 developed a disaggregation method (DIS-
and Islam 2003 Venturini et al, 2004 Stisen et al.2008. PATCH) of surface soil moisture data based on the triangle
ET is estimated either from the remotely sensed evaporativenethod. InMerlin et al. (20121, DISPATCH was improved
fraction (EF) defined as the ratio of ET to the available en-by representing the water status of vegetation. This involved
ergy @iang and Islam1999 or from the remotely sensed estimating the water-stressed (maximum) vegetation temper-
evaporative efficiency (EE) defined as the ratio of ET to po-ature, which was constrained by one vertex of the four-sided
tential ET (Moran et al, 1994). For a given data pointfg, polygon obtained in th& — o space. Nevertheless, the po-
T) in the T — f,q space, EF or EE is derived as the ratio tential synergy betweefi —« andT — fyg spaces in terms
of the distance separating the point from the line identifiedof ET estimation has not been addressed yet.
as the dry edge to the distance separating the dry edge and Another example illustrating the potential synergy be-
the line identified as the wet edge. The dry and wet edgesweenT — f,g andT — « spaces is the determination of tem-
are classically defined as the upper and lower limit of theperature endmembers. One major drawback comma@n-o
spaces, respectively. SinBeice(1990, a number of studies  f,g andT — « space-based approaches is that they both rely
have used thd — f,4 space for characterizing various ET- on the presence of extrenfe If minimum and maximum
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land cover and moisture conditions are not met at the senscrable 1. Flux stations.
resolution within the study domain, then the remotely sensed _
EF (or EE) is expected to be systematically biased by a scale Station  Crop

factor error. To try and free from the presence of extreme 1 Safflower
conditions, original algorithms have been proposed to filter 2 Chili Pepper
outliers in theT — f,4 space Tang et al. 2010, to estimate 3 Chickpeas
the maximum vegetation temperature from fhe- o space 4 Potatoes — Sorghum
(Merlin et al, 201Q 2012h), or to estimate extreme tempera- 5 Wheat

6 Wheat

tures using a formulation of aerodynamic resistaderéin
et al, 1994 McVicar and Jupp2002 Long et al, 2012 and
meteorological data at the specific time of day when the ther-
mal data are acquiredAcVicar and Juppl1999. 2.1 Flux stations

In this context, the main objective of this paper is to de-
velop a monosource (13)—a space-based ET model (SEB- Seven micro-meteorological stations equipped with an eddy
1S) that is fully consistent with thE — f,4 space-based ap- covariance flux measurement system were installed in differ-
proach in terms of the physical interpretation of the edgesent fields. For each of the seven sites, the net radiation was
and vertices of the polygons obtained in b&h-« and  acquired with CNR1 or Q7.1 (REBS) radiometers depend-
T — fug Spaces. Secondary objectives are (1) to take advaning on the stations. The soil heat flux was estimated with
tage of the potential synergy between the-« andT — fiq HUKSEFLUX HFP-01 plates buried at 0.05m at the top and
spaces in the determination of temperature endmembers arfgbttom of the furrow (when applicable). Those data were ac-
(2) to assess the usefulness of constraining the unstressétiired at a frequency of 10 s and then averaged and recorded
(minimum) vegetation temperature with available air temper-each 30 min. Latent and sensible heat fluxes were mea-
ature data. The modeling approach is tested over a 16 km bgured with KH20 fast response hygrometers (Campbell) and
10 km irrigated area in northwestern Mexico using ASTER Campbell CSAT3 or RM Young 81000 3-D Sonic anemome-
(Advanced Spaceborne Thermal Emission and Reflection raters at a frequency of 10Hz and converted to a 30 min av-
diometer) and Formosat-2 data collected on seven dates dugérage, respectively. Meteorological data including air tem-
ing the 20072008 agricultural season. Experimental data arperature, solar radiation, relative humidity and wind speed
described in Sect. 2. In Sect. 3, SEB-1S is described and theere monitored throughout the agricultural season at a semi-
classicall — « space-based model is reminded. In Sect. 4,hourly time step from 27 December 2007 until 17 May 2008.
the surface fluxes simulated by both ET models are compare®etails about the automated data acquisition and flux data
with in situ measurements at six locations. quality can be found iChirouze et al(2013. In this paper,
the six stations listed in Tablg with at least four ASTER
overpass dates of data including the four energy fluxes are
used in the comparison analysis.

The Yaqui experiment was conducted from December 2007 )
to May 2008 over an irrigated area (27°28 109.88 W)  2:2 ASTERthermal infrared data

in the Yaqui Valley (state of Sonora) in northwestern Mex- ASTER was launched in 1999 on a sun-synchronous plat-

g 50% of whet the other 805 being composed of beandOr (NASAS Terra_ satelte) with 1030ECT (Equator
' ¢trossing time) and a 16 day revisit cycle. The ASTER ther-

broccoli, chickpeas, chil pepper, .corn, oranges,. potatoesmal sensor provides scenes of approximately 60km by
safflower and sorghum. The objective of the experiment 8350 km. Data are collected on request over specified areas

to characterize the spatial variability of surface fluxes from .
the field (hectometric;:)to kilometric s)(/:ale. More details aboutThere are five therma! bands centered. at 8.30, 8'65’.9.'05’
10.60 and 11.63 um with a 90 m resolution. ASTER official

the Yaqui experiment can be found Merlin et al. (2019, products were downloaded from the Earth Observing Sys-

Fieuzal et al(2011) andChirouze et al(2013. In this pa-
per, the study area is defined as a 16 km by 10 km area cont—e m Data Gateway and extracted over the 16 km by 10km

taining the 4km by 4 km Yaqui experimental area and in- study area. The 90 m resolution surface skin temperature

. o : . ... (T) and channel emissivity retrieved by the “temperature
cluded in all satellite images. During the 2007—2008 agricul nd emissivity separation” algorithnG{llespie et al, 1998

tural season, seven cloud-free ASTER images were collecte :
over the Yaqui area on 30 December, 23 February, 10 MarchéChm'Jgge et al.1999 were used. The absolute registra-

11 April, 27 April, 6 May and 13 May, and 26 cloud-free tion of temperature/emissivity data was performed using a

Formosat-2 images were obtained from 27 December 200 ackground 8 m resolution Formos.atjzl imafe(iin et al,
to0 13 May 2008. 010. The broadband surface emissivig) (vas expressed

as a linear combination of ASTER channel emissivities using
the coefficients irDgawa and Schmugd2004).

2 Data collection and preprocessing

www.hydrol-earth-syst-sci.net/17/3623/2013/ Hydrol. Earth Syst. Sci., 17, 362837, 2013



3626 O. Merlin: SEB-1S
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Fig. 1. Consistent interpretation of the edges and vertices oflthefyg andT — o polygons & andb), as compared with the classical
interpretation of th&” — o spaceg(c). Underlying grey points correspond to data on 27 April 2008.

2.3 Formosat-2 red and near-infrared data 2.3.2 Surface albedo

Formosat-2 is an Earth observation satellite launched inSurface albedo is estimated as a weighted sum of resampled
2004 by the National Space Organization of Taiwan. It pro- Formosat-2 red and near-infrared reflectances with the coef-
vides high (8 m) resolution images of a particular area evenyficients given byWeiss et al(1999 and validated iBsaibes

day (09:30 ECT) for four bands (blue, green, red and nearet al. (2009, and in Chirouze et al(2013 over the study
infrared) and with the same view angléhern et al.2008. area. As an illustration, Figlb presents thd —« space

In this paper, the Formosat-2 data collected on the nearesibtained for data on 27 April 2008.

date from each of the seven ASTER overpass dates were

used to estimatgyg and« from the red and near-infrared

reflectances aggregated at ASTER thermal sensor resol@ SEB-1S model

tion. The reason why Formosat-derived instead of ASTER-
deriveda was used is mainly because the ASTER short-
wave infrared (SWIR) data were unusable on four out of theTpe surface energy balance can be written as
seven ASTER overpass dat&hfrouze et a.2013: ASTER

3.1 Surface energy balance

SWIR detectors are no longer functioning due to anoma-Rn— G = H + LE, (2)

lously high SWIR detector temperaturéstp://asterweb.jpl.

nasa.gov/swir-alert.asp with Rn (Wm2) being the surface net radiatio@, (Wm—2)
the ground heat fluxid (Wm~—2) the surface sensible heat

2.3.1 Fractional green vegetation cover flux and LE (Wn12) the surface latent heat flux. Hence, by

setting EF =LE/{ + LE), ET can be derived as
Fractional green (photosynthetically active) vegetation cover

is estimated using the expression ®fitman and Ignatov LE = EF x (Rn— G), 3)
1998:

(1999 with Rn— G being the available energy at the surface.
_ NDVI — NDVIs ) Surface net radiation in Eq. (3) is estimated as

~ NDVlyg — NDVI’

fvg

Rn:(l—a)Rg+e(Ra—aT4), @)
with NDVI,4 corresponding to fully covering green vegeta-

tion and NDVk to bare soil or to bare soil partially covered iin r (Wm~2) being the incoming shortwave radiatian,
by senescent (non-photosynthetically active) vegetation. Irth— K—4) the Boltzmann constant, ankl, (Wm—2) the
the study, NDV{g4 and NDVJ; are set to the maximum (0.93) atmospheric longwave radiation computed as

and minimum (0.18) value of the NDVI (Normalized Dif-

ference Vegetation Index) observed during the agriculturalR, = ea0 T2, 5)

season within the study domain. NDVI is computed as the

ratio of the difference between resampled Formosat-2 nearith 7a (K) being the air temperature, angl(-) the air emis-
infrared and red reflectances to their sum. As an illustra-Sivity estimated as iBrutsaer{(1975:

tion, Fig. 1a presents th& — f,g space obtained for data on

. 0.143
27 April 2008. ca= 124 <3‘) (6)

with e5 (hPa) being the air vapor pressure.
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Ground heat fluxin Eq. (3) is estimated as afraction of Rn: - ayg is approximately the same for different crops and

constant during the agricultural season.
G =TRn, (7
— ays IS approximately the same for different crops and
and two dif‘fel’enf expressions are proposed. A firSt formU' constant during the agricu'tura| season.
lation is given bySu(2002:
— component temperatures are linearly related to compo-
' =Ty + (1 fug) (T's — I'vg), (8) nent fractionsilerlin and Chehboun2004 Anderson

with I'yg andI's being empirical parameters set to 0.8%of- etal, 2007 Long and Singh2012).

teith, 1973 and 0.32 Kustas and Daughtry1989 respec-
tively (Su, 2002). Alternatively, a second” formulation is
proposed: as is estimated as the minimumat the time of satellite over-
;L pass.ayg is estimated as the temporal mean (over different
["=Tyg + (1 - EP (s~ I'g). ©) dates) of thex corresponding to the minimurfi within the

The physical rationale df’ is thatG is expected to increase OPServation scener{g=0.19).ays is estimated as the maxi-

with soil temperature gradient, which is a decreasing func-TUM within the observation scene and for the entire agri-
tion of soil moisture availability. In Eq. (9), soil moisture Cultural séasonas=0.39). Figurelb plotsT as a function

availability is approximated to EF. Note thAtand T for-  Of @ and illustrates the location ok, avg, andays for T and
mulations are equal in the case whe{g= EF (soil evapora- ¢ data on 27 April 2008.

tion is neglected meaning that the soil surface is drghguy
et al.(2012 have recently proposed a parameterizatiot of
as a function of EF consistent with Eq. (9).

3.3 Estimating albedo endmembers

3.4 Estimating temperature endmembers

The four temperature endmembers composedZ9hax
Ts min Tv,min, @aNdTy max are estimated from a synergistic use
of bothT —« andT — fg spaceslerlin et al, 2010 20123

EF in Egs. (3) and (9) is derived from seven endmembersb)- I_n particular, a correspondence is built be_tween the_four
the maximum soil temperatuf maxcorresponding to adry  Vertices of thel’ —a andT — fug polygons as illustrated in
soil, the minimum soil temperatuf& min corresponding toa  F19: 1a and b and explained below. Tie- f,4 polygon is
water-saturated soil, the temperature of well-watered vegetadefined by thef,q endmembers (0 and 1) and the four tem-
tion Ty,min, the temperature of water-stressed green or seneg?€rature endmembers, while the-« polygon is defined by
cent vegetatiorTy max the soil albedars, the green vege- the threeéx endmemberso, avg, avs), and the same four
tation albedax,g, and the senescent vegetation albegp ~ {eMperature endmembers as in te- f,g polygon.

Below is a summary of the assumptions made in the fol- The four edges of th& — fiq polygon (see Figla) are

lowing subsections to derive the seven parameters from sonterpreted as “mixed soil and senescent vegetation” between
lar/thermal remote sensing data: A and B, “wet surface” betwee andC, “full-cover green

vegetation” betweel and D, and “dry surface” betweeb
— uniform atmospheric conditions over the study area. andA. The four edges of th& — « polygon (see Figlb) are
— the four temperature endmembers are uniform at th interpreted as "bare soil” betweeh _andB, ‘et surface”
time of thermal sensor overpass. This notably implie:seb etweens andC, "full-cover vegetation” betweed' andD,
that the aerodynamic resistance. to heat transfer is as{imd dry surface” b.etweeD and_A. Note that the segments
sumed to be uniform by fractional vegetation class (4B)and CD) are mterpreted'dlfferently " Fhﬁ B f vg and
" T —a polygons becausg,g (via the NDVI) is a signature

— the impact of the spatial variability of surface soil Of green vegetation cover only whiteis a signature of total
moisture and roughness on soil albedo is neglected(green plus senescent) vegetation cover.
meaning that the soil albedo over dry or wet soil sur-  Each polygon can provide an estimate of the four tempera-
faces can be approximateddg ture endmembers. In tie— f,,4 polygon,7s maxcan be set to

the maximumT’, Ts min to the minimum7 at minimum fyg,

— as is not larger thany,g. As described in the follow- Ty min to the minimum7’, and Ty, max to the maximum? at
ing subsections, the assumptiag<ayg is essential  maximum f,q. Similarly in theT — & polygon,Ts maxcan be
for drawing the polygon in the" — o space. This as-  set to the maximunf’, Ts min to the minimum7" at minimum
sumption generally applies to brown agricultural soils, ¢, Ty min to the minimum7’, and Ty, max to the 7 at maximum
especially to the Yaqui area where the top 0-20 cm soily, However, a different approach is preferred herein to im-
was classified as clay. Further developments of SEBprove the robustness, especially in the environments where
1S will integrate the effects of bright soils (e.g., sands) all surface conditions (dry, wet, bare, full-cover) are not nec-
in the modeling approach. essarily met. In this paper, the procedure for automatically

3.2 Model assumptions

www.hydrol-earth-syst-sci.net/17/3623/2013/ Hydrol. Earth Syst. Sci., 17, 362837, 2013
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estimating temperature endmembers is based on the consis-

Tymin = Tymin1 = Tymin,2 = Tmin, 12
tency between botli —« andT — f,g polygons: vmin v.min.1 v.min.2 min (12)

Tymax = (Tv,max,1+ Tv,max,Z) /2. (13)
— in the T — « polygon, estimates of the minimum soil

temperature Xs min,1 at @ =as) and minimum vegeta- . . . . .
tion temperature Ty min 1 at « = ayg) are obtained by In this study, two different strategies are investigated to fur-

drawing a line passing through the two points belong-ther constrain the wet quﬁ"(mi” and Ts'”_“”) of boih poly-
ing to the wet surface edge, and estimates of maximung o~ The first strategy is to ford® min1=Tymin,2=Ta, by
Soil temperaturels max 1ate = as) and maximum veg- assuming that air temperature is .a_better proxy Tanir.]
etation temperatureTimax.1 at « = ays) are obtained than Tmin. The.r'atlonz'ale for constraining, min is to investi-
by drawing a line passing through the two points be- gate a possibility to improve the robustness of the method-

. logy for estimating temperature endmembers (and hence
longing to the dry surface edge. The wet surface edg 0 . . .
is defined as the line passing through the poitgy eEF/ET) from available meteorological data, especially over

Twmin), With Timin being the minimun®’, and the point areeclft.wh(_ere t?e fl:ll—;:?r\‘/er, l;/veII-W?tered glre?n V(_argr]]etanon
With o <avg and fug < fugTsmin Such as the slope condition is not met at the observation resolution. The sec-

of the line is maximum (meaning that all the other ond strategy is t0 adjugtg rsmin SO that the absolute differ-

data points are located above the wet surface edge)ence betweels min,1andTs,min,2S Minimized. The rationale

: for optimizing fyq Tsmin is to foster the consistency between
Sfvg,Tsmin is a threshold value (set to 0.5 by default) 9 .

thgt stabilizes the determination of the slope. The use?oth 7 —a I?ndT _.df"g polygons at the Wet S|O'| vertex, and

of fug Tsmin is needed to avoid defining a line (the wet to potentially provide a more accuratgmin value.

edge in this case) from two data points very close t0-35 Classicall — space-based EF model

gether Merlin et al, 20128. Similarly, the dry surface

edge is defined as the line passing through the poingFr jn Eq. (3) can be estimated by the classiEat « space-

(ars, Tmax), With Tmax being the maximun¥’, and the  pased approach. In S-SEBI, the wet edge has a positive slope
pointwitha > avg such as the slope of the line is maxi- a5 a result of an evaporation control Brand the dry edge
mum (meaning that all the other data points are locatethas a negative slope as a result of a radiation contrd on
below the dry surface edge). (Roerink et al. 2000. Figurelc represents the wet and dry
edges as classically identified in tlie— o space for data

on 27 April 2008. When investigating side by side Fig.

and c, one observes that the classically determined wet and
dry edges correspond t6' Q) and (A D), respectively.

Figure 2a graphically illustrates how the EF of a given
pointJ in theT — « space is calculated in S-SEBI: EF is de-
rived as the ratio of the distance separating the pbmta,

Ty) from the dry edge to the distance separating the dry and
wet edges. Analytically:

— in the T — fyg polygon, alternative estimates of the
minimum soil temperatureT§ min,2 at fug=0) and
minimum vegetation temperatur&(min 2 at fug=1)
are obtained by drawing a line passing through the
two points belonging to the wet surface edge, and
alternative estimates of maximum soil temperature
(Ts,max,2at fug = 0) and maximum vegetation tempera-
ture (Ty,max,2at fug = 1) are obtained by drawing a line
passing through the two points belonging to the dry
surface edge. The wet surface edge is defined as the T, — Ty
line passing through the point (Iimin) and the point EF = T T (14)
with fyg < fug,Tsmin Such as the slope of the line is ! K
maximum (meaning that all the other data points arewith T; being the surface temperature if the pixel surface was
located above the wet surface edge). Similarly, the dryfully dry, and Tk the surface temperature if the pixel surface
surface edge is defined as the line passing through thevas fully wet.7; and Tx are estimated at; =a; =ag on
point (0, Tmax) and the point withfyg > fug, TvmMAx (AD) and (D), respectively (see Figéb, ¢ and2a):
such as the slope of the line is maximum (meaning

that all the other data points are located below the dryz, — 7y — 2L~ (Tsmax— Tuma) (15)
surface edge). Similarly tgfhg Tsmin, fug,Tvmax iS @ Oys — Us
threshold value (set to 0.5 in this study) that stabilizes nd
the determination of the slop&lérlin et al, 2012h.
oy — o
— an estimate of the four temperature endmembers is obZx = Tvmin + % (Tvmax — Tymin) - (16)
tained by averaging the two temperature endmember vs T g
sets 1 and 2: At this point it is worth noting that the classical interpre-
tation of the wet edge in th& —« space (see Fidlc) is
Tsmax= Tsmax,1= Tsmax,2= Tmax (10) not consistent with that in th& — f,4 space (see Fidla).
Ts min = (Ts,min,l+ Ts,min,z) /2, (1) In fact, two different inconsistencies clearly appear in Eig.
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Fig. 2. EF is computed agJ/I K in S-SEBI(a) and SEB-1SDb).
Underlying grey points correspond to data on 27 April 2008.

First, the range covered 1 values on the (classically de-
termined) wet edge is different for both spaces (see Fg.
and c). Second, when extending the classically determined
wet and dry lines of th& — « space (see Fid.c), both lines
cross atr = 0.4 although the wet and dry edges of fhe fiq
space never cross for9 fyg < 1. The crossing of the wet and
dry edges for a physical value afis not acceptable since a
surface cannot be at the same time fully dry, and transpiring
at potential rate. The two above mentioned inconsistencies
in the classical interpretation of te— o space, and the po-

3629
T — T

oy = as + s,max 0’ (21)
aoj — aAD

T; = Tsmax+ aap (o) — o), (22)

with apy, apc andayp the slope of 0 J), (BC) and
(AD) respectively:

T; —To
a0y = ——, (23)
oy — Os
Tymin — Tsmi
ape = v,min smin (24)
Oyg — Us
T, — T
dAp = v,max s max (25)

Qys — Us

Given the temperature endmembers, albedo endmem-
bers, and the paira(y, Ty), one is able to compute
EF=1J/IK as

0.5

N2 12
[(@s —ap)?+ (Ty TI)]0,5*(26)

EF = sgn(a; — ay) x
[(@k — an? + (Tx — T1)?]

with sgn(x) being the sign function returning/abs().

tential synergy betweefi —« and7 — f,g polygons, both

Note that poinO in Fig. 2b is defined as the homothetic cen-
ter of (AD) and (BC) so that for any poiny in the polygon

provide the opportunity to propose an original interpretationABCD, I belongs to 4 D) andK belongs to BC).

of theT — « space as explained below.
3.6 SEB-1S EF model

In SEB-1S, the wet edge of tife—« space is defined a8 ()

instead of C D) (see Figl). SEB-1S is thus consistent with

the classical interpretation of tlie— f,4 space (see Fidla

and b). Figureb graphically illustrates how the EF of a given

4 Application

The simulation results of SEB-1S and the classiEat «

space-based EF model are compared on the seven ASTER
overpass dates with the in situ measurements collected by
six flux stations. Comparisons are made at the pixel scale by

pointJ intheT —« space is calculated in SEB-1S: EF is de- extracting the ASTER pixels including a flux station.

rived as the ratio of the distance separating the pbmfo,

Ty) from the dry edge to the distance separating the dry andl.1 Temperature endmembers

wet edges. EF is computed as in Eq. (14) exceptThand
Tk are now estimated from the wet edg®(). In practice,
the three-step procedure is described below (seeZbidpr
graphical visualization).

— The bare soil line A B) and the full-cover line ¢ D)
cross each other @ = (xp, To):

apo = Us, (17)

Oyg — O
= (Tv,max - Tv,min)~ (18)

TO = Tv,min -
Qys — Ovg

— The line (O J) crosses the wet edge Kt=(ak, Tk):

Tsmin— T

ax = os+ s,min O’ (19)
apj — apc

Ty = Ts,min + apc (g — as), (20)

and the dry edge dt=(«;, T7):

www.hydrol-earth-syst-sci.net/17/3623/2013/

Figure3a plotsTmin as a function off, for all ASTER over-
pass dates. On 11 April 2008, a significant difference of
about 3C is obtained betweehyin andT,. This difference
may be due to the presence of standing water in some irri-
gated fields or advection effects caused by strong differences
in T between the various fields. Note that 11 April 2008 cor-
responds to the date with the largest available energy among
the seven ASTER overpass dates. When removing this par-
ticular date from the comparison, the root mean square
difference, correlation coefficient, and slope of the linear re-
gression betweefyin andT,is 1.8°C, 0.91, and 1.0, respec-
tively. As a summary, setting, min.1= Tv,min,2= Tmin 2ppears
to be mostly valid over the Yaqui irrigated area, and setting
Tv,min,1= Ty,min,2= Ta provides a significantly differerfy, min
estimate around the seasonal peak of ET.

The strategy for improving the estimation @t min IS
investigated by plottingZs min2 as a function of7s min 1

Hydrol. Earth Syst. Sci., 17, 362837, 2013
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change is notably explained by the presence of bright senes-
cent vegetation towards the end of the agricultural season.
Despite the strong temporal variability 6f— o spaces how-
ever, the automatically retrievdt-« polygons are relatively
stable across the agricultural season, meaning that the four
edges are robustly determined regardless of crop phenologi-
cal stages. Itis suggested that both polygons work in synergy
10 20 30 40 to estimate temperature endmembers. When comparing the
Air temperature (°C) polygons obtained from the two strategi€$ in = Tmin and
o T T Tymin=Ta), one observes that both polygons are generally
“r“]er”;"r ﬁt"‘i" consistent on all dates, although some significant differences
a T, =T are visible especially for the full-cover, unstressed green veg-
SRy etation vertex.
1 Figure5 plots the time series ofyg, « andT for data ex-
50 tracted over each flux station separately. The time series of
(b) fvg indicates various crop phenological stages at all ASTER
observations dates, meaning that minimum and maximum
10 P vegetation covers are generally met within the study do-
main, consistent with th& — f,4 spaces on all dates (see
20 y Fig. 4). When looking at the curve for the dominant crop
10 type (wheat), the seasonal cycle —including growing and
10 20 30 40 50 senescence— is very well marked. The time serias pfo-
50 vides information consistent with thHeé— « spaces plotted in
20 © Fig. 4: « is close to 0.18 forfyq larger than 0.5¢ is gener-
ally lower than 0.18 forf,q lower than 0.5, and is generally
30 larger than 0.18 during the senescence. For the wheat crop,
the increase inv during the senescence is very significant
with values reaching 0.32 on 13 May. The time serie§ of
10 is more complex to interpret since is it a function of both
el the surface state and the atmospheric conditions at ASTER
Minimum soil temperature 1 (*C) overpass time. However, it is still visible thAtgenerally de-
creases withf,q, consistent with thg” — f,4 spaces plotted

Minimum temperature (°C)

40

Minimum soil temperature 2 (°C)

20

Fig. 3. Tmin is plotted versuda (a), andTs min,1 and Ts min 2 are o
intercompared for bothy, min = Tinin and Ty, min = Ta cases, and for 1N F19. 4.

fug,Tsmin=0.5(b) and daily optimizedf,g rsmin (C) separately.
4.2 Available energy

Figure 6 plots the simulated versus observed net radiation
for fug,rsmin=0.5 and daily optimizedf,gtsmin cases in  and ground heat fluxes at the six flux stations. Since wheat
Fig. 3b and c, respectively. In both cases, the minimum soilis the dominant cropping type within the area, results for sta-
temperatures retrieved from th@ min = Tmin and Ty min = Ta tion 5 and 6 are highlighted with black markers. Statistics
assumptions are intercompared. It is visible that settingare reported in Tabl@ in terms of correlation coefficient,
Tymin=Ta generally has a little effect offsmin in both  root mean square difference, mean difference and slope of the
fuvg,Tsmin=0.5 and daily optimizedf,gsmin Cases. How-  linear regression between simulated and observed data. The
ever, adjustingfyg tsmin allows to significantly reduce the uncertainty in modeled net radiation and ground heat flux
absolute difference betwedR min,1and Ts min2 and to sta-  over the Yaqui area, with a root mean square error of about
bilize the retrieval ofTs min from both7 —« and T — fiqg 40-50 Wnt2 for both fluxes, is comparable with other stud-
polygons. In the following,Ts min is consequently derived ies (Chirouze et a].2013. When comparing the ground heat
from the daily optimizedfyg tsmin, for both Ty min = Tmin flux (G) simulated using thé& formulation (Fig.6b) with
andTy,min = Ta assumptions. that (G’) simulated using thé&’ formulation (Fig.6c), one

Figure4 plots side by side th€ —« andT — f,g Spaces for  observes that the scatter is significantly reduced for the lat-
each of the seven ASTER overpass dates. Each space is ovéer. Consequently, it seems that EF can be appropriately used
laid with the polygon built from thé, min = Tmin assumption,  instead off,q to parameteriz& as a fraction of RnChirouze
and with the polygon built from th&, min=T; assumption.  etal.(2013 indicated that the sensors at station 3 (chickpeas)
As in Merlin et al.(20138, one observes that both tiie— « significantly overestimated ground heat flux. When remov-
andT — fyg spaces significantly vary from date to date. This ing this station from the comparison, the root mean square

Hydrol. Earth Syst. Sci., 17, 36233637 2013 www.hydrol-earth-syst-sci.net/17/3623/2013/



O. Merlin: SEB-1S

60 s
Q —— No assumption bS]
= 50 N
< @
2 0 -E
© @
[} 3]
S 30 )
g o
— 20 ®
0
% @
o =}
- 50 N
o P
2
2 40 g
© 2
a—’ O
o 3 @
£ ™
= 20 N
0
60
®©
Q 3
~ 50 o
o 1Y
=1 <
= 40 [&]
g s
S 30 E
§ E
— 20
0
. 60
2 2
5 =]
=4
= =
5
2 30 -
g -
= 20
0
Y 60F
£ : 2
T 50 50
=]
ot I
p E—
4@ 40 40 E.
o) <
o 30 30 ~
g o~
— 20 20
0 0 02 04 06 08 1
—~ 60 60
S - o
=~ 50 50§ o
[0} : o
2 I3V
T 40 40| >
: g
Q.
30 30
£ ©
@
= 20 20
0 0 02 04 06 08 1
. 60 60
g 2
o 50 50 S
= I3
>
T o 408 -
g =
30 301 )
£ -~
@
'_

20 20,
0 01 02 03 04 0 02 04 06 08 1
Surface albedo (-) Fractional green vegetation cover (-)
Fig. 4. For each ASTER overpass date, the« andT — fyg Spaces
are overlaid with the polygon built frorfiy min = Tmin (black) and
the polygon built fromfy, min = 7a (red).

www.hydrol-earth-syst-sci.net/17/3623/2013/

3631

Table 2. Correlation coefficient R), root mean square difference
(RMSD), mean bias and slope of the linear regression between sim-
ulated and observed fluxes.

Flux Ty min R RMSD Bias Slope
Rn NA 0.88 40 -3 087
G NA 0.51 54 2 040
G’ Tmin  0.68 46 —-12 0.38
G’ Ta 0.66 47 —-15 040

o L L
30 Dec 23 Feb 10 Mar 11 Apr 27 Apr 06 May 13 May
[——1 2 3 4 %5 %6 |
0.4
0.3F
L 0.2%
3
k, —
0.1
300Dec 23 Feb 10 Mar 11 Apr 27 Apr 06 May 13 May

\V4

%ODec

Fig. 5. Time series (arbitrary timescale) g, « andT at each flux
station separately.

23 Feb 10 Mar 11 Apr 27 Apr 06 May 13 May

difference, mean difference, correlation coefficient and slope
of the linear regression between simulated and observed
ground heat flux is 30 Wr?, 1Wm~2, 0.67, and 0.54, re-
spectively. When comparing the ground heat flax)(sim-
ulated using the EF derived from tl® min = Tmin @assump-
tion (Fig. 6¢) with that simulated using the EF derived from
the Ty min = Ta assumption (Figeéd), no major difference is
obtained between the two.

43 ET

The classicall — o space-based approach and SEB-1S both
estimate ET as EF times the available energy {R%). To
guantify the impact of the modeling of available energy on
ET predictions, Fig.7a—d present the ET simulated using
the observed available energy and Fg—d present the ET
simulated using the modeled available energy. In each case,
both (classicall’ — o space-based and SEB-1S) EF models

Hydrol. Earth Syst. Sci., 17, 362837, 2013
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Fig. 7. The ET simulated by the classical— « space-based ap-

Fig. 6. Modeled net radiatiofia), ground heat flux using' formu-

lation (b), ground heat flux using’ formulation andZy, min = Tmin

assumption(c), and ground heat flux using’ formulation and
Ty, min = Ta assumptior{d) versus station measurements.

proach & andc) and by SEB-1SK andd) using observed available
energy is plotted versus station measurements. The top and bottom
lines correspond t@y min = Tmin and 7y, min = Ta, respectively.

800

Table 3. Correlation coefficient, root mean square difference, mean
bias and slope of the linear regression between simulated andob | @ | o
served ET. L 600 L 600 . ¢
= *ox e = Ny
EF model n R RMSD B | 2 400 ) = 400 A
model 7y min n—G R S ias Slope = L 2 3 *
T—«a Tmin  Station 0.82 100 -17 0.64 £ 200 7 v < %00 " 5
SEB-1S  Tpi,  Station 093 65 11 0.90 = % O & 72
T—a Ta Station 0.84 93 -3 0.69 0 v 0
SEB-1S T Station 093 67 20 093
T—a Tmin SEB-1S G) 0.82 99 _17 0.66 0 200 400 600 800 0 200 400 600 800
SEB-1S  Tmin SEB-1S(G/) 091 74 19 091 Observed LE (Wm?) Observed LE (Wm?)
T—a Ta SEB-1S() 0.83 96 -2 071 [01 0283 v4 *x5 %6—11—ift]
SEB-1S Ty SEB-1S(G’) 090 84 31 0.95 800 800 -
(©) (d) .
&E“ 600 @E“ 600 Ve
= w2 4
are compared for th&, min = Tmin @nd7y,min = Ta Cases, Sep- w40 A @ 400 7
arately. Statistical results are provided in TaBlén terms 3 *x A 3 %
of correlation coefficient, root mean square difference, mean§ 200 N § 000 W o
difference, and slope of the linear regression between simu-& ‘A/v o ° 2 748
lated and observed LE. It appears that the modeled available ~° 0
0 200 400 600 800 0 200 400 600 800

energy slightly degrades or slightly improves ET model pre-

dictions, and that the approach for estimating EF has a much
stronger impact on ET estimates. In terms of correlation co-Fig. 8. Same for Fig7 but using modeled available energy.
efficient and slope of the linear regression between simulated
and observed LE in particular, modeled available energy is
responsible for a 0.00-0.03 and 0.01-0.02 difference, respedistical results of the classicdl — o« space-based model. Re-

tively, while modeled EF is responsible for a 0.07-0.11 andgarding SEB-1S, the slope of the linear regression between

0.24-0.26 difference, respectively.

tion measurements, settirffymin=7a improves all the sta-

Hydrol. Earth Syst. Sci., 17, 36233637, 2013

Observed LE (Wm-2)

Observed LE (Wm-2)

simulated and observed ET is improved from 0.90 to 0.93
In the case where the available energy is provided by staby setting7y min = Ta, With a constant correlation coefficient
estimated as 0.93. In the case where the available energy
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Although SEB-1S very significantly improves the corre-
lation coefficient and slope of the linear regression between
simulated and observed ET in all configurations, a positive
bias is obtained of about 10-20 and 20—30 Wrfor mod-
eled and observed available energy, respectively (see Ta-
ble 3). The persistent bias is also visible in Figsand 8,
especially for the wheat sites. This may be due to the fact
that the current version of SEB-1S neglects the sensible heat
flux over fully transpiring (well-watered) pixels, and hence
systematically overestimates ET over those areas. One way
to overcome this effect, and to probably reduce the positive
bias would be to estimate EE instead of EF. Part of the dif-
ferences obtained between modeled and observed ET may
also be due to possible changes in size and shape of the spa-
tial fetch of flux towers, and to the non-closure of the energy
balance at eddy covariance sit€&h{rouze et al.2013.
Figure 9 presents the images on the seven ASTER over-
pass dates of the ET simulated by the classicad polygon-
based model, and SEB-1S. A visual intercomparison indi-
cates that the main differences between the two models is the
larger range of the ET values predicted by SEB-1S. More-
over, the spatial distribution of ET seems to be more hetero-
o geneous during the growing period for the classiEal o
space-based polygon, especially on 23 February, 10 March
and 11 April. During the senescence of most crops (around
27 April) the spatial heterogeneity is quite pronounced for
both models, while SEB-1S still provides larger ET esti-
mates. The spatial distribution and mean level of ET is rel-
atively similar for both ET models at the beginning (30 De-
cember) and at the end (6 and 13 May) of the agricultural
season. However, significant differences may appear when
looking at details. For instance, the ET image on 6 May over
a 2km sub-area of the study domain is enlarged in E@.
The classicall’ — « space-based model provides ET values
of about 300 Wm? in the southwestern corner of the 1 km
area, whereas SEB-1S predicts low values (close to 0). This
sub-area corresponds to data points located in the right hand

Fig. 9. Images on the seven ASTER overpass dates of the ET simside of theT —« space (witha values close tav,s) and

ulated by the classical — « space-based model and SEB-1S. The close to € D) (see thel' — « polygon illustrated in Fig2b).

enclosed sub-area for data on 6 May 2008 is enlarged inlBig. For largea values, the classically determined EH J /I K

(see Fig.2a) is highly uncertain because both distantés
and I K become very small, and the ratid /I K is unde-

is modeled, similar improvements are observed by settingermined. On the contrary, the EF estimated in SEB-1S (see

Tymin = Tainstead offy,min = Tmin for both the classical —a  Fig. 2b) becomes small at large values, because for data

polygon-based model and SEB-1S. When extracting the datgoints J close toD, 1/ tends to 0, and K to DC.

from the two wheat sites, the correlation coefficient and

slope of the linear regression between the ET simulated by

SEB-1S and observations is improved from 0.95 to 0.97 andy  conclusions

from 0.90 to 0.99, respectively (case of observed energy, see

Fig. 7b and d). Consequently, forcing the minimum vege- A new solar/thermal-based ET model (SEB-1S) is developed

tation temperature using available air temperature seems tgy providing an original interpretation of tHE — « space.

foster the robustness of both polygon-based models. HowThe main ideas behind SEB-1S are (1) to make the physical

ever, the improvement in ET estimates by setidgin=7a interpretation of the edges and vertices of the polygons in

is relatively small, meaning that estimatiffgmin asTmin IS~ 7 — o and T — f,q Spaces fully consistent (2) to derive EF

a satisfying option over the irrigated Yaqui area. from the T —« space based on this new interpretation and

>600

300
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T-a SEB-1S — investigating possibilities to further constrain the dry
edge (s max and Tymaxy). A robust temperature end-
=1 | member algorithm is needed to extend the validity do-
main of SEB-1S to less heterogeneous rainfed areas,
and to remote sensing data collected at coarser spatial

_J _J resolution Long and Singh2013.
assessing the utility of discretizing the surface into sev-
- eral components to improve the accuracy in modeled
0- | | O = wm) ET. Merlin et al. (20133 have recently developed a
four-source ET model (SEB-4S) based on a synergistic
Fig. 10.Images on 6 May 2008 of the ET simulated by the classical use of bothl" —« andT — f,g spaces. SEB-4S repre-
T — « space-based model and SEB-1S over a sub-area of the study sents four components of agricultural fields including
domain. bare soil, unstressed green (photosynthetically-active)
vegetation, water-stressed green vegetation, and senes-
cent vegetation. Since the above four components
have distinct radiative and turbulent exchange prop-

erties, comparing SEB-1S and SEB-4S results may
help identify the impact of each surface component on

2 km

300 >600

(3) to take advantage of the potential synergy between the
T —a andT — f,g spaces in the determination of temperature
endmembers.

SEB-1S is tested over a 16 km by 10 km irrigated area in

northwestern Mexico during the 2007-2008 agricultural sea- modeled ET.

son. The classicdl’ — « space-based model is also imple- — arevisit cycle of 16 days for ASTER/Landsat (in cloud
mented over the study area, as benchmark to evaluate the  free conditions) is long compared to rapid changes in
performance of SEB-1S. For both models input data are com- relation with rainfall or irrigation for instance, which
posed of ASTER thermal infrared, resampled Formosat-2 makes the practical application of ASTER/Landsat
shortwave, and station-based meteorological data. The fluxes  data to ET monitoring relatively indirect. Before the
simulated by SEB-1S and by the classifat « space-based advent of thermal infrared missions with shorter re-
model are compared on seven ASTER overpass dates with visit cycles (agouarde et al.2013, several tech-
the in situ measurements collected at six locations within the niques could be used to disaggregate low resolution
study domain. It is found that the uncertainties in EF have (e.g., MODIS) temperature data at high temporal reso-
a much larger impact on ET estimates than the uncertainties lution (e.g.Merlin et al, 201Q 20124 prior to running

in available energy. The EF modeled by SEB-1S improves SEB-1S at high spatiotemporal resolution.
the correlation coefficient and slope of the linear regression
between simulated and observed ET from 0.82 to 0.93, and

from 0.63 t0 0.90, respectively. Moreover, constrairiigin AcknowledgementsThe author is grateful to Gilles Boulet,

using al_r temperature .data improves the slope of the linea hani Chehbouni, Jonas Chirouze, Benoit Duchemin and Li-
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20Wn1 2 is obtained in simulated ET. This may be due to acquisition, the MISTRALS (Mediterranean Integrated STudies
the fact that the current version of SEB-1S neglects the senat Regional And Local Scales) SICMed (Continental Surfaces
sible heat flux over fully transpiring (well-watered) pixels, and Interfaces in the Mediterranean area) program, the Euro-
and hence systematically overestimates ET over those areaéan FP7 SIRIUS, the PLEIADES (Participatory multi-Level
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— confirming the potential of this methodology would re-
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