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Abstract. A general consensus on the concept of rainfall in-
termittency has not yet been reached, and intermittency is
often attributed to different aspects of rainfall variability, in-
cluding the fragmentation of the rainfall support (i.e., the al-
ternation of wet and dry intervals) and the strength of in-
tensity fluctuations and bursts. To explore these different as-
pects, a systematic analysis of rainfall intermittency prop-
erties in the time domain is presented using high-resolution
(1-min) data recorded by a network of 201 tipping-bucket
gauges covering the entire island of Sardinia (Italy). Four
techniques, including spectral and scale invariance analysis,
and computation of clustering and intermittency exponents,
are applied to quantify the contribution of the alternation
of dry and wet intervals (i.e., the rainfall support fragmen-
tation), and the fluctuations of intensity amplitudes, to the
overall intermittency of the rainfall process. The presence of
three ranges of scaling regimes between 1 min to∼ 45 days
is first demonstrated. In accordance with past studies, these
regimes can be associated with a range dominated by sin-
gle storms, a regime typical of frontal systems, and a tran-
sition zone. The positions of the breaking points separating
these regimes change with the applied technique, suggest-
ing that different tools explain different aspects of rainfall
variability. Results indicate that the intermittency properties
of rainfall support are fairly similar across the island, while
metrics related to rainfall intensity fluctuations are character-
ized by significant spatial variability, implying that the local
climate has a significant effect on the amplitude of rainfall
fluctuations and minimal influence on the process of rain-
fall occurrence. In addition, for each analysis tool, evidence
is shown of spatial patterns of the scaling exponents com-
puted in the range of frontal systems. These patterns resem-

ble the main pluviometric regimes observed on the island
and, thus, can be associated with the corresponding synop-
tic circulation patterns. Last but not least, we demonstrate
how the methodology adopted to sample the rainfall signal
from the records of the tipping instants can significantly af-
fect the intermittency analysis, especially at smaller scales.
The multifractal scale invariance analysis is the only tool that
is insensitive to the sampling approach. Results of this work
may be useful to improve the calibration of stochastic algo-
rithms used to downscale coarse rainfall predictions of cli-
mate and weather forecasting models, as well as the parame-
terization of intensity-duration-frequency curves, adopted for
land planning and design of civil infrastructures.

1 Introduction

The investigation of rainfall statistical variability is of
paramount importance given the central role of this geophys-
ical variable in a wide range of disciplines, including hydrol-
ogy (Georgakakos and Kavvas, 1987; Dingman, 2008), me-
teorology (Huffman et al., 1997; Trenberth et al., 2003), hy-
drometeorology (Seo et al., 2000; Langousis and Veneziano,
2009a,b; Cuo et al., 2011), ecology (Eagleson, 2002), and
agronomy (Moonen et al., 2002). A considerable number of
studies have focused on the characterization and simulation
of rainfall intermittency in the time domain, a concept often
used to refer to two diverse aspects of variability: (i) the al-
ternation of dry and wet periods, identified through the con-
struction of the binary series, which form the so-called sup-
port of the measure (Verrier et al., 2011; Kundu and Siddani,
2011; Schleiss et al., 2011); and (ii) the sudden variations of
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the rainfall intensity occurring over the support (Lovejoy and
Schertzer, 1990; Venugopal et al., 1999; Deidda, 2000; Dei-
dda et al., 2004, 2006; Molini et al., 2009; Rigby and Por-
porato, 2010). Rainfall intermittency can thus be attributed
to two components: the variability of the support and, for a
given support, the fluctuations of the amplitudes of rainfall
intensity (Veneziano and Langousis, 2005a,b; Langousis and
Veneziano, 2007; Veneziano et al., 2006, 2007).

The increasing availability of large records of high-
resolution (up to few tens of seconds) point measurements
provided by automatic rain gauges and, in some recent ex-
periments, by disdrometers has allowed the study of inter-
mittency properties in the time domain within a wide range
of scales. For this purpose, techniques originally adopted to
examine scalar turbulence have been used, including spectral
analysis (Rebora et al., 2006), investigation of scale invari-
ance and multifractality (Veneziano et al., 2006, and refer-
ences therein), and wavelet-based methods (Venugopal et al.,
2006). The application of such tools has revealed the exis-
tence of different scaling regimes, i.e., time intervals where
the rainfall statistical properties can be expressed through
power law relations across scales (Fraedrich and Larnder,
1993; Deidda et al., 1999; Verrier et al., 2011). A corre-
spondence has often been found between these regimes and
the typical duration of weather phenomena (e.g.,Fraedrich
and Larnder, 1993). In a recent study,Molini et al. (2009)
combined these techniques with the computation of cluster-
ing and intermittency exponents (Bershadskii et al., 2004;
Sreenivasan and Bershadskii, 2006), aiming at weighting the
contribution of the alternation of dry and wet phases to the
overall intermittency of rainfall signals. These authors used
data observed by five rain gauges located in different climates
and found that the scaling and intermittency properties have
distinct features across gauges (i.e., climatic conditions),
whereas the support variability has similar characteristics.

The analysis of rainfall intermittency properties has been
fundamental to develop stochastic models reproducing rain-
fall time series at multiple scales, which are useful for mul-
tiple hydrological applications, including flood and flash-
flood forecasting (Mascaro et al., 2010; Rigby and Porporato,
2010), evaluation of water resources availability (Burton
et al., 2010), and design of civil infrastructures (Veneziano
et al., 2007). These models range from those based on
the fractal and multifractal theories (Lovejoy and Schertzer,
1985; Veneziano et al., 1996; Deidda, 2000; Langousis et al.,
2009), to algorithms assuming parametric distributions of
storm occurrence and structure (i.e., number, intensity and
duration of individual cells) (Rodriguez-Iturbe et al., 1987;
Onof and Wheater, 1993; Robinson and Sivapalan, 1997).

Most studies on rainfall intermittency analyzed time se-
ries collected by a small number of gauges or disdrometers
(e.g.,Deidda et al., 1999; Molini et al., 2009; Verrier et al.,
2011) with the drawback that the statistical significance of
their results is somehow limited: no information on the spa-
tial variability of these statistical properties within regional

domains can be derived, and the identification of the possi-
ble linkages with local terrain characteristics and dominant
synoptic circulation becomes problematic. In this paper, we
attempt to overcome these limitations by characterizing inter-
mittency of rainfall intensity and support on the island of Sar-
dinia (Italy) using time series collected by 201 tipping-bucket
gauges, with tipping accuracy of 0.2 mm of rainfall depth at
time precision of 1 s. Specifically, we pursue the following
main objectives. First, we apply several techniques to inves-
tigate the intermittency properties of the rainfall time series
recorded at each station aiming at the following: (a) assess-
ing the effectiveness of each technique to characterize diverse
aspects of rainfall intermittency; (b) identifying the presence
of multiple scaling regimes and computing, for each of them,
a number of metrics that permit intermittency quantification
related to the fluctuations of rainfall intensity and the frag-
mentation or clusterization of its support; and (c) investi-
gating the relative contribution to the intermittency proper-
ties due to rainfall intensity fluctuations and support frag-
mentation. Second, for each scaling regime, we explore the
possible existence of spatial patterns for the metrics and we
search for linkages with the dominant synoptic circulations
that affect the pluviometric regimes of the island and the
topographic features of the gauge location.

Finally, we focus on a third objective related to the ef-
fect of the sampling methodology (used to build the rain-
fall intensity signal) on the intermittency analysis. Specif-
ically, we focus on the tipping-bucket effect (or quantiza-
tion), which is related to the method usually adopted to de-
rive the rainfall intensity series from the tipping instants (e.g.,
if the volume of each bucket is equivalent to 0.2 mm rain-
fall depth and the time resolution is 1 min, this will lead
to a discretized signal with records multiple of 12 mm h−1).
The importance of the tipping-bucket effect and other instru-
mental artifacts in the estimation of some intermittency met-
rics (namely, power spectra slopes and moment scaling ex-
ponents) has been investigated on synthetical time series by
Harris et al.(1997) andVeneziano and Furcolo(2009). Us-
ing an observed rainfall time series at 15-min resolution de-
rived by digitizing pluviographs of a float-and-syphon-type
gauge,de Lima and Grasman(1999) showed that the proce-
dure used to sample the signal and the gauge characteristics
affects the multifractal analysis, especially when considering
statistics related to the lowest and the highest rainfall inten-
sities. Here, we systematically investigate the tipping-bucket
effects when estimating some intermittency metrics on the
wide rainfall database described above and we suggest an
alternative methodology that allows building the signal in a
more physically realistic fashion, circumventing quantization
artifacts.
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Fig. 1. (a) Digital elevation model of Sardinia (Italy). The inset shows the geographic location of the island with respect to the Italian
peninsula. The polygons delimited by dashed and continuous white lines are the approximate boundaries of the Campidano plain and of the
Sardinian–Corse Mountain System, respectively.(b) Spatial distribution of the annual rainfall. In both panels, the black circles indicate the
location of the 201 stations used for the analyses, while the triangles identify the gauges with IDs 1, 6, 42 and 319 adopted as representative
cases for the subsequent analyses.

2 Study area and pluviometric regimes

The study area is Sardinia (Fig.1), an island of∼ 24 000 km2

located in the Mediterranean Sea, about 400 km west off of
the Italian peninsula (inset in Fig.1a). Apart from the Camp-
idano plain (dashed white polygon in Fig.1a) and a small
area in the northwestern corner, topography is rather com-
plex, as shown in the digital elevation model (DEM) reported
in Fig. 1a. A long mountain range, called Sardinian–Corse
Mountain System (white polygon in Fig.1a), is located in
the eastern part of the island, running from north to south. In
addition, a smaller isolated mountain range is located in the
southwest.

The climate of Sardinia is Mediterranean with extremely
dry summers and rainfall falling for the greatest part during
the period from September to May. The spatial distribution of
annual rainfalls is shown in Fig.1b, produced by applying the
kriging technique to annual rainfall averages obtained from
70-yr-long rainfall records collected by 201 rain gauges oper-
ating at daily resolution. No information about the elevation
was included to interpolate rainfall through kriging. Com-
parison with Fig.1a clearly reveals a strong relation between
the annual rainfall depth and elevation: in areas of lower el-
evation, the total rainfall is about 500 mm per year, reaching
1160 mm at the highest mountains.

Chessa et al.(1999) applied different cluster analysis tech-
niques to study the winter (from September to May) rain-
fall regimes over Sardinia and the linkages with synoptic
circulation. The analysis was performed using daily rainfall
depths from 114 gauges and spatial fields of meteorological
variables at 5◦ resolution, provided by the National Center
for Atmospheric Research (NCAR) analysis. These authors
identified three main clusters of rainfall spatial patterns on
the island, reported in Fig.2, associated with different dom-
inant synoptic conditions. Clusters 1 and 2 are characterized
by a limited negative gradient of rainfall intensity from SW
to NE (cluster 1) and from NW to SE (cluster 2). In both
cases, the Sardinian–Corse Mountain System leads to lower
precipitation amount in the eastern part of the island, and the
dominant synoptic patterns are characterized by northwest-
erly flows (the mistral wind) bringing large frontal systems.

Cluster 3 is completely different and is characterized by
a strong E–W negative rainfall gradient, with synoptic cir-
culation associated with Atlantic flow passing over North-
ern Africa and crossing the southern part of the Mediter-
ranean Sea. Under these conditions, moist air at lower levels
of the atmosphere is transported towards Sardinia by south-
easterly winds (the sirocco wind) while, simultaneously, cold
air arrives at upper levels from the north. This potential in-
stability state is further enhanced by the orographic barrier
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in the eastern part of the island and by the mountain ranges
in the south (Fig.1a). Under this type of synoptic condition,
precipitation events of high intensity (frequently on the or-
der of 300 mm and sometimes of more than 500 mm accu-
mulated in 24 h, with peaks exceeding 100 mm in less than
1 h) have been observed, especially during the autumn sea-
son when the sea temperature is relatively high. These storms
have caused severe floods in the territories located along the
eastern coast of the island and close to Cagliari (the main
town), with significant property damage and loss of lives
(Chessa et al., 2004).

3 Dataset and construction of rainfall signals

We used rainfall time series collected by a total of 201 rain
gauges covering the entire island with approximately uni-
form density in terms of both space and elevation (black dots
in Fig. 1a and b). The pluviometers belong to the network of
the Sardinian Hydrological Survey and are all of the tipping-
bucket-type, with an accumulated rain depth of 0.2 mm per
tip and an electronic apparatus that records the tipping in-
stants in a digital memory with a time precision of 1 s. The
high-resolution dataset spans over 11 yr of observations from
1986 to 1996, with periods of instrument malfunction of var-
ious lengths in each station. This dataset was previously uti-
lized byBadas et al.(2006) to test an approach for including
the effect of orography in the calibration of a multifractal
model in a spatiotemporal framework.

Most of the time series of rainfall observations collected
by tipping-bucket rain gauges are usually provided as rain-
fall intensityi1t at a given resolution1t derived by (i) com-
puting the accumulated rain depth within each step1t by
multiplying 0.2 mm (or the rainfall depth corresponding to
the bucket volume) by the number of tips occurred in1t ,
and (ii) dividing the resulting rain depth by1t . Hence, this
approach assumes that (i) the rainfall depth needed to fill one
bucket (e.g., 0.2 mm) is attributed to the current time step
(which is equivalent to assuming that the rain entirely falls
when the tip is recorded), and (ii) the relation between cu-
mulative rainfall depth and time is a step-wise line. The re-
sulting signal is thus discretized (the method will be hereafter
labeled as DC, discrete counting). The use of DC leads to two
disadvantages that potentially affect the intermittency analy-
sis, especially for low1t . First, when only one tip occurs
within a time step1t , the method returns a relatively high
intensity that may not have physical sense. For example, the
World Meteorological Organization (WMO) suggests assum-
ing a resolution of1t = 1 min (see, e.g.,Lanza et al., 2005,
and references therein). Hence, the minimum non-zero inten-
sity is 0.2 mm/1 min = 12 mm h−1. Second, it is possible that
i1t = 0 is assigned to time steps included within a continu-
ous (i.e., without interruptions) rainfall event characterized
by low intensity. To overcome the drawbacks of DC and to
investigate the effects that the use of this method causes when

Fig. 2. Main classes of rainfall spatial patterns in the Sardinian re-
gion (adapted fromChessa et al.(1999)); see main text for details.

studying rainfall intermittency, here we suggest an alternative
approach, based on the hypothesis that the relation between
cumulative rainfall depth and time is obtained through linear
interpolation between the tipping instants. This method (la-
beled as CC, continuous counting) is described in detail in
AppendixA together with the DC strategy. As a matter of
fact, the CC approach allows the signal to be sampled in a
more realistic manner.

The dataset used in this study was built by sampling the
signals of the tipping instants with both CC and DC methods
at a resolution1t = 1 min. For each gauge, we extracted con-
tinuous time sequences with durationT = 216 (∼ 45 days).
The values selected for1t andT permit investigating inter-
mittency in a range of scales of great interest for hydrological
applications. Despite the presence of missing data, we were
able to extract a minimum of 29 events (i.e., about 3.5 yr of
data) per station with variable mean intensity, including some
zero values observed in the summer. For each gauge, analy-
ses were performed on the quartile of events with the highest
mean intensity resulting in a mean, minimum and maximum
number of 12, 7, and 17 events per pluviometer, respectively.
In addition to the rain intensity signali1t (hereafter FS, full
signal), we created the binary transformation (hereafter BS,
binary signal) to study the intermittency associated with the
support. This is simply defined as BS(i1t ) = 1 if i1t > 0, or
BS(i1t ) = 0 if i1t = 0.

4 Methods

In this section, we describe the techniques used to character-
ize the intermittency properties of rainfall time series, includ-
ing the classical tools of spectral and scale invariance anal-
ysis, and the clustering and intermittency exponents. Each
tool involves the investigation of a scaling law with a corre-
sponding exponent that was utilized as a metric to quantify
intermittency of the full and the binary series (FS and BS).

4.1 Spectral and (multifractal) scale invariance analysis

We used the fast Fourier transform to compute the power
spectra of FS and BS in the range of scales included between
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Fig. 3. Example of scaling regimes obtained through the spectral analysis for gauges with IDs 42, 6 and 319 (shown in Fig.1b), for (a) the
FS and(b) the BS series. The slopes of the lines are estimates of the spectral exponentsαFS andαBS in Eq. (1). Arbitrary units on the y-axis
are used in order to display results from different gauges in the same graph.

Table 1. Summary of the metrics used to investigate rainfall inter-
mittency, including symbol, description, reference to the equation
of the corresponding scaling law, and symbols adopted in the appli-
cation to the full and/or the binary series (FS and BS, respectively).

Symbol Description Equation FS BS

α Spectral Exponent (1) αFS αBS

K(q) Multifractal Exponent (3) K(q) –
φ Clustering Exponent (4) – φ

µ2 Intermittency Exponent (6) µFS
2 µBS

2

216 min (∼ 45 days) to 2 min. For a given gauge, a single
spectrum was produced by averaging, for each frequency
f , the energyE(f ) of all available∼ 45-day sequences.
Following evidence of previous studies (e.g.,Fraedrich and
Larnder, 1993; Verrier et al., 2011), we investigated the pres-
ence of characteristic ranges of scaling regimes through the
following power law:

E(f ) ∼ f −α, (1)

whereα is the spectral exponent that can be estimated via
linear regression by applying the logarithms on both sides of
Eq. (1). Hence, for each gauge and range of scaling regime,
two spectral exponents for FS and BS were estimated and
labeled asαFS andαBS.

The multifractal scale invariance analysis was carried out
only on the FS time sequences over scales ranging from a fine
(τ0) to a coarse (T = τ0 · 2M , whereM is a non-negative in-
teger) scale and, then, computing the partition function (see,
e.g.,Deidda et al., 1999):

Sq(τ ) =
1

N(τ)

N(τ)∑
k=1

[
iτ,k

]q
, (2)

where iτ,k is the rainfall intensity aggregated at scale
τ = τ0 · 2j (j = 0, ...,M) in thek-th time step,N(τ) the num-
ber of non-overlapping stepsτ included inT , andq the con-
sidered moments. Hence, for a givenq, Sq(τ ) is calculated
for the different aggregation scalesτ and the presence of
scale invariance is investigated by verifying that the power
law holds for differentq:

Sq(τ ) ∼ τ−K(q). (3)

This is accomplished again by plotting Eq. (3) in the log-
log plane and estimating the slopeK(q) through linear re-
gression. The series is multifractal (fractal) if the exponents
K(q) are non-linearly (linearly) related toq. Here, the scale
invariance analysis was carried out fromτ0 =1t = 1 min to
T = 216 min (∼ 45 days) and for the momentsq = 1.5, 2, 2.5
and 3. For a given station, the analysis was conducted on a
single set of mean partition functions, computed by averag-
ing theSq(τ ) of all available∼ 45-day time sequences.

4.2 Clustering and intermittency exponents

The clustering exponent is a metric defined only for BS. It
was proposed to analyze turbulence fluxes bySreenivasan
and Bershadskii(2006) and adapted to investigate the rain-
fall intermittency component due to the support of the mea-
sure byMolini et al. (2009). The clustering exponent is com-
puted as follows. Each BS(i1t ) series with resolution1t and
length T =1t · 2M (where, again,M is a non-negative in-
teger) is divided in consecutive, non-overlapping time win-
dows τ =1t · 2j , with scale indexj = 1, ..., (M − 1). The
numberN of zero crossing (i.e., the transition from rain to
no-rain and viceversa) of BS(i1t ) within each windowτ is
counted, and the corresponding raten(τ) =N/τ is derived.
Next, the standard deviation〈[δn(τ)]2〉1/2 of the fluctuations
δn(τ) =n(τ) − 〈n(τ)〉 is computed, where〈 · 〉 is the average
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Table 2. Mean and standard deviation (in parentheses) across the 201 gauges of the metrics in the different scaling regimes (separated by
square brackets). The breaking points of the time ranges for each metric are reported in the header, where we also indicate the characteristics
of the weather phenomena used to interpret the spectra scaling regimes byFraedrich and Larnder(1993). The metrics have been calculated
on FS and/or BS signals constructed with the CC method.

[ Storms ][ Frontal Systems ][ Transition ]
1 2 25 27 212 214 215 216

1 min 2 min 32 min ∼ 2.4 h ∼ 3 d ∼ 11 d ∼ 22 d ∼ 45 d

αFS [ 1.12 (0.35) ][ 0.55 (0.18) ][ Not Computed ]
αBS [ 1.76 (0.02) ][ 0.92 (0.07) ][ Not Computed ]
K(3) on FS [ 0.77 (0.30) ][ 1.36 (0.14) ][ 1.04 (0.18) ]
φ on BS [ 0.45 (0.01) ][ 0.27 (0.02) ][ 0.64 (0.10) ]
µFS

2 [ 0.74 (0.07) ][ 0.86 (0.06) ][ 0.70 (0.07) ]
µBS

2 [ 0.88 (0.02) ][ 0.49 (0.04) ][ 0.41 (0.05) ]

operator over all windows of sizeτ . The procedure is re-
peated for different scales of observationτ , and the pres-
ence of ranges of scaling regimes is investigated through
the relation:

〈[δn(τ)]2〉1/2
∼ τ−φ, (4)

where the exponentφ of the power law is the clustering ex-
ponent. In this study, the scaling relation Eq. (4) was tested
in the scale range from 2 min to 215 min (∼ 22 days). For
a given gauge, we computed〈[δn(τ)]2〉1/2 for all available
∼ 45-day sequences and, for eachτ , we averaged the corre-
sponding values. The relation Eq. (4) was then investigated
using a single set of mean〈[δn(τ)]2〉1/2 per gauge.

The intermittency exponent is a metric computable for
both FS and BS. Like the clustering exponent, it was origi-
nally adopted as a tool for turbulence investigation (Bershad-
skii et al., 2004) and applied to rainfall time series byMolini
et al. (2009). To illustrate how the intermittency exponent
is obtained, let us refer to the FS seriesi1t (the application
for BS is analogous). As for the multifractal scale invari-
ance analysis, the time series is divided in consecutive, non-
overlapping windowsτ =1t · 2j (j = 0, ...,M). For a given
τ , the variable

χτ =
1

τ

N(τ)∑
k=1

(
|
i1t,k − i1t,k−1

1t
|
21t

)
(5)

is computed within each windowτ . In Eq. (5), N(τ) is the
total number of windowsτ within the series of lengthT and
(i1t,k − i1t,k−1)/1t is the gradient ofi1t for the k-th time
step. The metricχτ provides an average measure of the signal
variability and intermittency within each time windowτ . The
procedure is repeated for different scales of observationτ

and the presence of the scaling relation is tested:

〈χ2
τ 〉

〈χτ 〉
2

∼ τ−µ2. (6)

In Eq. (6), µ2 is the intermittency exponent, estimated
through linear regression in the log-log plane. For each sta-

tion and range of scaling regime, two single values of the in-
termittency exponent were calculated, one for FS (indicated
with µFS

2 ) and the other for BS (µBS
2 ), following the same

approach illustrated for the other exponents. We highlight
that previous studies (Veneziano and Iacobellis, 1999; Neu-
man, 2010a,b, 2012; Guadagnini and Neuman, 2011) have
demonstrated that techniques based on the gradient ampli-
tude method, like the intermittency exponent, are not able to
reveal presence of scaling and multifractal properties. Thus,
the intermittency exponent was here only utilized to com-
pare the intermittency characteristics of BS and FS series.
For the sake of clarity, the metrics investigated in this study
are summarized in Table1.

5 Results and discussion

In this section we present and discuss the main results aris-
ing from the systematic application of the methods previ-
ously described to the rainfall time series observed in the
201 gauges. The section is divided into four subsections. In
the first three, results are presented for the series built with
the CC method: in Sect.5.1, we show evidence of scaling
regimes as emerged by applying each of the four metrics; in
Sect.5.2, we analyze and compare the intermittency proper-
ties of rainfall intensity and support, while in Sect.5.3 we
discuss the existence of spatial patterns for the metrics on the
island and of linkages with topography and weather patterns.
Finally, in the last Sect.5.4we compare results obtained with
the CC method with those returned by analyzing the signals
sampled with the discrete counting (DC) approach.

5.1 Evidence of scaling regimes and summary
of metrics

The investigation of the scaling laws Eqs. (1), (3), (4),
and (6) on the FS and/or BS series derived from the 201
gauges allowed the identification of three ranges of scal-
ing regimes, with breaking points (i.e., the times separating
the regimes) determined by applying the method described
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Fig. 4. Example of scale invariance regimes for gauges with IDs 1, 6 and 42 (shown in Fig.1b) – subplots(a), (b) and(c), respectively. The
slopes of the lines are estimates of the multifractal exponentsK(q) in Eq. (3).

in AppendixB. As discussed below in more detail, results
of our analyses indicate the following: (i) for a given tech-
nique, the positions of the breaking points are fairly constant
for most gauges, and (ii) the location of the breaking points
changes with the metric, suggesting that these tools provide
diverse information about the intermittency properties of the
rainfall series.

The spectra for FS and BS have similar shape charac-
terized by the presence of three scaling regimes according
to Eq. (1): from 216 min (∼ 45 days) to 212 min (∼ 3 days)
the spectra are almost flat, while two scaling laws with dis-
tinct spectral exponents emerge in the ranges from 212 min
to 27 min (∼ 2 h), and from 27 min to 2 min. Figure3 show
examples of the spectra computed for FS and BS for three
gauges (IDs 42, 6 and 319) with contrasting behavior. The
shape of the spectra and the numerical values of the expo-
nents are similar to those reported in previous studies fo-
cused on diverse climatic settings and scale ranges from
years to minutes (see, e.g.,Verrier et al., 2011, and refer-
ences therein). The existence of three scaling regimes was
also found through the scale invariance analysis of Eq. (3),
but the breaking points are located at 214 min (∼ 11 days)
and 25 (32) min. A similar discrepancy with the spectral anal-
ysis was also found byVerrier et al.(2011) and is likely due
to the different sampling methods involved in these tech-
niques to analyze the signal at diverse scales. Evidence of
scale invariance in the time series observed in three gauges
is shown in Fig.4. We highlight that, in a small number of
stations, the existence of a single regime from∼ 11 days
to 1 min may be identified (e.g., gauge 42 in Fig.4c). Fi-
nally, the computation of the clustering and intermittency ex-
ponents showed the presence of breaking points at 212 min
(∼ 3 days), as found with the spectral analysis, and at 25

(32) min, as emerged through the investigation of scale in-
variance. Figures5 and 6 show examples of outcomes of
these analyses for three stations.

To summarize the results, in Table2we reported the break-
ing points separating the scaling regimes identified by each
analysis and, for a given regime, the mean and the standard

deviation across the gauges of all metrics, including the spec-
tral exponents of FS and BS (αFS andαBS, respectively), the
multifractal exponentsK(3) for momentq = 3, the cluster-
ing exponentφ and the intermittency exponents for FS and
BS (µFS

2 and µBS
2 , respectively). In addition, we indicated

the kind of meteorological phenomena typical of each time
regime. For this purpose, we referred to the definition pro-
vided byFraedrich and Larnder(1993) to interpret the spec-
trum: the flat portion of the spectrum at scales larger than
∼ 3 d is characteristic of a transition zone; the range from
∼ 3 d to∼ 2.4 h is typical of frontal systems; and the interval
from ∼ 2.4 h to 2 min is dominated by convective storms or
single rainfall cells.

5.2 Intermittency properties of rainfall intensity
and support

Examination of Table2 allows drawing some important con-
siderations on the intermittency features of rainfall intensity
and support signals. First, we highlight that the standard de-
viations of the metrics characterizing BS (αBS, φ, andµBS

2 )
are much lower than those of the metrics calculated on FS
(αFS, K(3), andµFS

2 ). This implies that, while the statistical
properties of the rainfall intensity significantly vary within
our regional study site, the corresponding support has instead
very similar intermittency characteristics across the island.
Hence, the local climate has minimal influence on the sup-
port fragmentation and a stronger effect on the variability of
the rainfall intensity. This result is in accordance with find-
ings ofMolini et al. (2009) obtained with series observed in
different climatic settings.

The values obtained for the spectral exponentsαFS and
αBS are higher in the scaling regime typical of single storms,
both for FS and BS series. Higher spectral exponents im-
ply faster decay of the spectra energy from larger to smaller
temporal scales, indicating the existence of individual rain-
fall cells localized in time (e.g., convective storms) (Purdy
et al., 2001). In contrast, lower values ofαFS andαBS are
found in the scaling regime typical of frontal systems: in this
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Fig. 5. Example of scaling regimes using the clustering exponentφ

for gauges with IDs 42, 6, and 319 (shown in Fig.1b). The slopes
of the lines are estimates ofφ in Eq. (4). Arbitrary units on the y-
axis are used in order to display results from different gauges in the
same graph.

case, the energy decreases with a smaller rate from larger to
smaller time scales, consistent with the presence of longer,
stratiform rainfall systems (Purdy et al., 2001).

The multifractal scale invariance analysis accounts for an-
other characteristic of rainfall intermittency, which is the rate
of dissipation of the fluctuations of FS as a function of the
aggregation scale. A highK(3) is obtained when the signal
is more variable and intermittent, with presence of uneven
peaks, when it is sampled at smaller scales. These sudden
variations are then smoothed out as the scale of aggregation
increases (i.e., the partition functionS3(τ ) decreases faster
for increasingτ ). In contrast, low values ofK(3) refer to
smooth signals with small fluctuations across the aggrega-
tion scales (the extreme case of a uniform signal is charac-
terized byK(3) = 0). Table2 shows thatK(3) is the highest
in the range dominated by frontal systems (1.36), is charac-
terized by intermediate values in the transition zone (1.04),
and receives the smallest values in the storm regime (0.77).
We highlight that the intermittency exponent of FS,µFS

2 , pro-
vides similar information to the scale invariance analysis, be-
cause the computation of the intermittency exponent is based
on the signal gradients (Eq.5) and is thus directly affected
by the rainfall intensity fluctuations.

The clustering exponentφ has an average value of 0.45 in
the range from 32 to 2 min associated with convective storms
and single rain cells. This is close to 0.5, which is the ex-
pected value for the white noise (Sreenivasan and Bershad-
skii, 2006), indicating low clustering and high randomness
of the process. The meanφ decreases to 0.27 (i.e., higher
clustering of dry and wet periods) in the range from∼ 3 days
to 32 min, likely because of the larger compactness of the
frontal systems typical of these scales. In the transition zone,
the averageφ is 0.64, higher than the expected value for the
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Fig. 6. Example of scaling regimes obtained by computing the in-
termittency exponentµ2 for gauges with IDs 42, 6, and 319 (shown
in Fig. 1b), for (a) the FS and(b) the BS series. The slopes of the
lines are estimates ofµ2 in Eq. (6). Arbitrary units on the y-axis are
used in order to display results from different gauges in the same
graph.

white noise. A probable reason for this inconsistency in that,
at scales larger than several days, the rainfall process does
not exhibit a multiplicative structure. However, in the ab-
sence of a reliable physical interpretation, this metric may
not be appropriate to study support intermittency in this scale
range. The information provided byφ in the ranges of storms
and frontal systems is similar to that given byµBS

2 , as also
demonstrated by the high correlation coefficients between
these metrics (> 0.8). In the transition regime, the relation
betweenφ andµBS

2 is instead weaker, confirming their poor
efficacy when used at these large scales.

A last consideration can be derived through the compari-
son ofµFS

2 andµBS
2 , which allows quantifying the contribu-

tion of the support variability on overall intermittency. Ta-
ble 2 shows that, in the storm regime,µFS

2 < µBS
2 , mean-

ing that the variations of rainfall intensities smooth the sup-
port intermittency. In contrast, for scales larger than 32 min,
µBS

2 < µFS
2 , implying that the rainfall intensities have the ef-

fect of amplifying the support fluctuations, in accordance
with results ofMolini et al. (2009), who obtained similar
values of the intermittency exponent in an analogous scale
range.

5.3 Linkage with synoptic circulation and topography

As a next step of the study, we investigated the presence
of spatial patterns for the metrics obtained in the two scal-
ing ranges of frontal systems and storms. From this analy-
sis, we excluded the transition regime because, in this range,
results presented so far were often uncertain and character-
ized by unclear physical meaning, and also since these large
scales have less relevance for hydrological applications. The
spatial patterns for the metrics were obtained by applying
the kriging technique on the whole island of Sardinia. In-
spection of the maps reveals that meaningful spatial patterns
only emerge in the regimes associated with frontal systems
(shown in Fig.7), while the metrics are more randomly dis-
tributed at scales typical of convective cells and single storms
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Fig. 7. Spatial maps of the metrics in the range of frontal systems,
obtained by (i) applying the kriging technique for the 201 gauges
in a regular grid of 1 km (a power model has been fitted to the em-
pirical variogram), and (ii) drawing the contour lines from the grid.
Top (bottom) panels report results for the metrics applied to BS (FS)
series.

(< 32 min) (not shown). As a consequence, the connections
with (i) the main rainfall regimes observed on the island and,
in turn, with the dominant synoptic circulation as identified
by Chessa et al.(1999), and (ii) the topographic features are
only presented and discussed for the metrics obtained in the
frontal system regime.

The metrics relative to BS (αBS, φ, andµBS
2 ) are reported

in Fig. 7a–c , while those computed on FS (αFS, K(3), and
µFS

2 ) are shown in Fig.7d–f. The breaking points limiting
the scale range in each case are also indicated in the subplot
titles. The patterns ofαBS andαFS are very similar (Fig.7a
and d). A significant correlation exists betweenφ andµBS

2
(Fig. 7b and c), even if the pattern ofφ is more variable
as compared to the smootherµBS

2 , due to a stronger linkage
with the elevation (described later). A similar consideration
can also be made forK(3) and µFS

2 (Fig. 7e and f), with
K(3) displaying more variability thanµFS

2 . Overall, the pat-
terns of Fig.7 resemble the clusters of the rainfall regimes of
Fig. 2. The spectral exponentsαBS andαFS (Fig. 7a and d)

are more correlated to the sirocco pattern (cluster 3), while
the other metrics are more affected by the signature of mis-
tral patterns, especially cluster 1. The presence of linkages
with synoptic circulation may be useful to improve the cali-
bration of stochastic downscaling models that reproduce the
rainfall time series at multiple scales, when these simulation
tools are used in cascades to weather forecasting or climate
prediction models.

As a subsequent analysis, we evaluated the linkages be-
tween the metrics and the topographic features at the gauge
locations. For this purpose, we calculated the slope, aspect
and elevation of each gauge using a DEM. While no specific
relation was found between the metrics computed in any scal-
ing regime and the slope or the aspect, a significant depen-
dence was detected between the gauge elevation and the met-
rics calculated in the regime of frontal systems. This is shown
in Fig. 8, where each plot refers to a metric and was built
by (i) dividing the 201 gauges in 6 classes of elevation with
approximately the same number of stations, and (ii) comput-
ing, for each class, the mean elevation of the gauges falling
in that class, and the corresponding mean and standard devi-
ation of the metric (plotted as circle and bars, respectively).
The figures indicate that, as the elevation increases, (a) indi-
vidual, more localized rainfall events are present within the
FS and BS time series (increasingαBS andαFS); (b) the rain-
fall statistical properties are characterized by decreasing rate
of dissipation of the intensity fluctuations as the scale of ag-
gregation decreases (decreasingK(q) andµFS

2 ); and (c) the
support clustering increases and the BS series are less in-
termittent (decreasingφ andµBS

2 ). The presence of a rela-
tion between intermittency properties of rainfall and eleva-
tion is important to develop regionalization techniques to re-
fine parametrization of intensity-duration-frequency curves
useful in land planning and design of civil infrastructures.

5.4 Effect of the signal sampling methodology on
intermittency analysis

As already discussed in the Introduction, most of rainfall
time series recorded by modern tipping-bucket rain gauges
are provided according to the discrete counting (DC) ap-
proach (e.g., rainfall depth multiples of 0.2 mm with a 1-min
resolution). However, the use of DC may introduce a num-
ber of drawbacks that affect the intermittency analysis. To
overcome these problems, in this study we proposed an alter-
native approach, the CC approach illustrated in AppendixA,
which was applied to preprocess the signals used for all the
analyses presented so far. In this subsection, we show evi-
dence of how the use of DC can alter the values of the met-
rics adopted to study rainfall intermittency and, in turn, the
physical interpretation. For this aim, all the metrics described
in Sect.4 were also calculated on the signals sampled at 1-
min resolution with the DC approach and compared against
those obtained at the same resolution on the series built with
the CC method. Prior to discussing results relative to each
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Fig. 8.Relation between the metrics in the range of frontal systems and the elevation; see main text for details.

Fig. 9. Scatter plots between the spectral exponents computed for
the signals sampled with CC (x-axis) and DC (y-axis) methods.
Panels(a)–(c) and (d–f) refer toαBS (αFS) for the three scaling
regimes.

metric, we highlight that the same scaling regimes emerged
from the signals created with both sampling approaches.

Figure9 shows the scatter plots between the spectral expo-
nents of BS and FS (αBS andαFS, respectively) derived from
the series of all gauges sampled with CC (x-axis) and DC (y-
axis) methods. The figures reveal that, at the highest frequen-
cies between 2 min and 2.4 h (i.e., in the storm regime), sig-
nificant differences emerge between the two methods (Fig.9a
and d). This is particularly evident for BS, where the mean
αBS changes from 1.76 to 0.11 when considering CC and DC,
respectively. Clearly, such a remarkable shift may induce

wrong physical interpretation of the spectra. The differences
between theαBS values are still present in the frontal regime
and become minimal in the transition zone, with absence of
any significant bias (Fig.9b and c). Differences inαFS are in-
stead negligible at scales larger than∼ 2.4 h (Fig.9e and f).
Thus, distortions induced by the DC sampling strategy are
more significant at smaller scales and for the binary signal.

Similar distortions as those affecting the spectral expo-
nentsα were also detected for the clustering (φ) and inter-
mittency (µ2) exponents. The scatter plots for the metricµ2
are shown in Fig.10, where strong similarities with results
of Fig. 9 are immediately apparent (e.g., a significant under-
estimation ofµBS

2 in the DC case at scales lower than 32 min
is evident from Fig.10a). In addition, in this case signifi-
cant biases are also present in the time regimes larger than
32 min (Fig.10b, c, e, f). Note the opposite bias for the met-
rics µBS

2 andµFS
2 in the transition zone (Fig.10c and f). Re-

sults for the clustering exponentφ are presented in Fig.11
that, again, show evidence of similar distortions discussed
for the previous figures.

Finally, comparison between results of the multifractal
scale invariance analysis (Fig.12) reveals that this metric is
insensitive to the sampling method used to build the rainfall
signal, as the multifractal exponentsK(3) calculated from
the signal constructed with DC and CC approaches are al-
ways coincident. This is a significant result that should be
kept in mind when selecting rainfall downscaling models.

6 Conclusions

We conducted a systematic study aimed at characterizing
different aspects related to the nature of rainfall intermit-
tency through the analysis of high-resolution (1-min) data
recorded by a network of 201 tipping-bucket gauges cover-
ing the entire island of Sardinia (Italy). Four techniques in-
cluding spectral and scale invariance analysis, and clustering
and intermittency exponents, were used to investigate inter-
mittency associated with (i) the alternation of dry and wet

Hydrol. Earth Syst. Sci., 17, 355–369, 2013 www.hydrol-earth-syst-sci.net/17/355/2013/



G. Mascaro et al.: On the nature of rainfall intermittency 365

Fig. 10. Scatter plots between the intermittency exponents com-
puted for the signal sampled with CC (x-axis) and DC (y-axis)
methods. Panels(a)–(c) and(d–f) refer toµBS

2 (µFS
2 ) for the three

scaling regimes.

periods (i.e., the variability of rainfall support) and (ii) the
fluctuations of rainfall intensity amplitudes. Each of these
tools involves the investigation of a scaling law and the com-
putation of a scaling exponent, which was used as a metric to
quantify the different aspects of rainfall intermittency.

Analyses revealed the presence of three scaling regimes,
separated by breaking points whose positions change with
the considered metric, most probably because such tools
characterize different aspects of rainfall variability. Consis-
tent with previous studies, the three scaling regimes can
be associated with a transition zone at the largest scales
(>∼ 3 d), a regime typical of frontal systems at intermediate
scales (between∼ 2.4 h and∼ 3 d), and a range dominated by
single storms at the smallest scales (<∼ 2.4 h). By analyzing
the metric values, we obtained the following main results,
which allow drawing some general conclusions:

1. The intermittency properties of rainfall support were
found to be fairly similar across the analyzed region,
while those of rainfall intensity are characterized by sig-
nificant spatial variability. This implies that the local cli-
mate has a larger effect on the fluctuations of the rainfall
amplitudes and minimal influence on the wet/dry pro-
cess of rainfall occurrence.

2. The rainfall support is less clusterized in the storm
regime as compared to the range of frontal systems.

3. The fluctuations of the rainfall amplitudes are similar
across the aggregation scales in the storm regime, while
they tend to increase at smaller time scales within the
range of frontal systems.

Fig. 11.Scatter plots between the clustering exponentsφ computed
for the signal sampled with CC (x-axis) and DC (y-axis) methods.
Each panel refers to a given scaling regime.

4. In the transition regime, results are uncertain and cannot
be readily supported by physical interpretations.

Thanks to the adequate spatial coverage of the gauge net-
work, we also investigated the presence of spatial patterns
for the metrics and found that these are only significant in
the range of frontal systems. The patterns resemble those
of the main pluviometric regimes and can thus be associ-
ated with the corresponding dominant synoptic circulation.
These findings suggest the possibility to improve the cali-
bration of rainfall downscaling models used in cascade to
coarse predictions of climate or weather forecasting mod-
els. In addition, a relation was found between the metrics
and the elevation of the gauges. This outcome may help
the refinement of the parameterization of intensity-duration-
frequency curves through regionalization techniques, useful
in civil engineering applications.

Last but not least, we demonstrated how the discrete sam-
pling methodology typically adopted to build the rainfall in-
tensity signal for this type of modern tipping-bucket gauges
leads to distortions in the analysis of rainfall intermittency.
To limit the drawbacks, we suggested a method that allows
sampling the signal in a more realistic fashion. Moreover,
we showed that the multifractal scale invariance analysis is
the only tool that is insensitive to the sampling approach and
that the related metrics are neither biased nor distorted in any
scaling regime.
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Fig. 12.Scatter plots between the multifractal exponentsK(3) com-
puted for the signal sampled with CC (x-axis) and DC (y-axis)
methods. Each panel refers to a given scaling regime.

Appendix A

Signal sampling with DC and CC methods

Let i(t) andH(t) (usually in mm h−1 and mm, respectively)
be the continuous rainfall intensity and the cumulative rain-
fall depth functions, related as

H(t) =

t∫
0

i(θ)dθ. (A1)

If H(t) is known, Eq. (A1) allows one to easily compute the
mean rainfall intensity discretized at a given resolution1t ,
by applying the derivative operator in discrete form:

i1t,k =
H (tk + 1t) − H (tk)

1t
, (A2)

wherei1t,k is the mean rainfall intensity in the generick-th
time step1t , included between the instantstk andtk +1t .

Let us assume that rainfall is measured by a tipping-bucket
rain gauge with bucket volume that corresponds to 0.2 mm of
rainfall. In the discrete counting (DC) sampling approach, the
0.2 mm of rain collected before a tip is recorded are assumed
to instantaneously fall when the tip occurs. This implies that,
if N(t) is the number of tips that occurred up to a generic
time t andr1, r2, ...,rN(t) are the instants where the tips were
recorded, theH(t) function in the DC approach is defined
as H(t) = 0.2· N(t) mm, which represents a step-wise line
with steps of 0.2 mm located inr1, r2, ..., rN(t). This is il-
lustrated in the qualitative example of Fig.A1a, where the
crosses indicate the tipping instants and the black line is the
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Fig. A1. Qualitative example illustrating the construction of the
rainfall intensity signal with discrete counting (DC) and continu-
ous counting (CC) methods.(a) Cumulative rainfall depth function
H(t) of the rainfall signal built with DC and CC methods: the sym-
bols are described in AppendixA. (b) Rainfall intensity signal at
resolution1t built with the DC method.(c) Same as(b) but for CC.
The values reported on the y-axis refer to the case of1t = 1 min and
an accumulated rainfall depth per tip of 0.2 mm.

H(t) function for the DC approach. FigureA1b shows the
corresponding time series of rainfall intensitiesi1t computed
using Eq. (A2) and represented as a hyetograph.

The use of DC can lead to a signal with physical inconsis-
tencies, including (i) isolated time steps with a relatively high
value of i1t , and (ii) time steps withi1t = 0 within rainfall
events where it is likely raining without interruptions. Both
shortcomings can be noticed at the beginning of the storm in
Fig. A1b, where (i) the intensity in the first time step with
i1t > 0 is artificially set to a relatively high value, and (ii)
there is a gap wherei1t = 0 between this time step and the
bulk of the storm. Moreover, the signal is discretized (in our
case, choosing a 1-min time step as suggested by WMO, the
values ofi1t are multiples of 12 mm h−1).

To overcome the drawbacks of the DC approach, we used
a strategy to sample the signal in continuous fashion (method
labeled as CC, continuous counting). To construct theH(t),
we assume that the 0.2 mm recorded in a generic tiprj have
been accumulated with constant intensity fromrj−1. In other
words, we assume a linear interpolation betweenH(rj−1)

to H(rj ). This hypothesis requires dealing with an excep-
tion that occurs when we have consecutive tips that are too
far away and, presumably, belong to different storms. In
fact, if we linearly interpolate, we are assuming the presence
of a constant rainfall of very low (or negligible) intensity
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between storms. To avoid this drawback, we introduce a time
duration threshold1t∗ such that, when (rj − rj−1) > 1t∗

(i.e., when tips are very distant), we assume that the 0.2 mm
have been uniformly accumulated in the time interval from
t ′ = (rj − 1t ′) to rj , where1t ′ = (rj+1 − rj ). In other words,
we hypothesize that the 0.2 mm of rainfall recorded atrj and
at rj+1 have fallen with same duration and intensity.

To better illustrate this, let us consider the instantr6 in
Fig. A1a. Here, the distance with the previous tipr5 (not
shown) is larger than1t∗. To distribute the 0.2 mm of rain-
fall falling prior to r6, we calculate the interval1t ′ = (r7 − r6)
and we assume that the 0.2 mm have been uniformly accumu-
lated betweent ′ = (r6 − 1t ′) andr6. As a result, we introduce
a time t ′ where the storm begins (gray circle in Fig.A1a).
From a physical point of view, the duration1t∗ is associ-
ated with the typical cell life duration, which can range from
ten minutes to more than half an hour. We tested several1t∗

values within this range, obtaining similar results in terms
of scaling regimes and metrics. In this work, we assumed
1t∗ = 15 min as this is physically consistent with the rainfall
characteristics in the study area.

The H(t) function built with the CC approach is shown
as a gray line in Fig.A1a, while the corresponding time se-
riesi1t , computed with Eq. (A2), is shown in Fig.A1c. Note
how, in this case, the rainfall intensities at the beginning of
the storm appear more realistic and the whole signal is not
anymore discretized. We highlight that, while we analyzed
the time series of our rain gauges, we found cases of sin-
gle isolated tips, very distant from antecedent and subsequent
rainfall events. In these situations, it is very likely that no pre-
cipitation has effectively fallen and that the presence of a tip
may be due to dew or other problems of the recording appa-
ratus. As a result, we decided to remove these isolated tips
before building the signal. This has led to negligible differ-
ences in the total accumulated rainfall.

Appendix B

Detection of breaking points

The application of the four techniques led to the identifica-
tion of the three ranges of scaling regimes where the power
laws Eqs. (1), (3), (4), and (6) hold with different expo-
nents. In the following, we illustrate the procedure to de-
tect the breaking points that separate the scaling regimes for
the case of scale invariance (Eq.3). The approach, adapted
with the proper change of variable names, was also applied
to study the scaling regimes of the other analysis tools used
in the paper. The position of the first breaking pointtBP,1 was
searched by (i) assumingtBP,1= 2j , with j = 2 in the first it-
eration; (ii) applying the linear regression in the range be-
tween log(τ0) and log(tBP,1); and (iii) computing the root-
mean-square error (RMSE) between points and regression
line. Steps (i)–(iii) were repeated for increasing values ofj

up to a maximum valuejmax that we fixed based on visual in-
spection of the relations log[Sq(τ )] versus log(τ ) of all sta-
tions. The first breaking point was set astBP,1= 2j∗

, where
j∗ (2≤ j∗

≤ jmax) is the index for which the RMSE is min-
imum. The same procedure was then repeated to determine
tBP,2, starting fromtBP,1.
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