
Hydrol. Earth Syst. Sci., 17, 3455–3472, 2013
www.hydrol-earth-syst-sci.net/17/3455/2013/
doi:10.5194/hess-17-3455-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences
O

pen A
ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

Resolving structural errors in a spatially distributed hydrologic
model using ensemble Kalman filter state updates

J. H. Spaaks1,2 and W. Bouten1

1Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
2Netherlands eScience Center, Amsterdam, the Netherlands

Correspondence to:J. H. Spaaks (jspaaks@uva.nl)

Received: 12 January 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 7 February 2013
Revised: 2 July 2013 – Accepted: 11 July 2013 – Published: 9 September 2013

Abstract. In hydrological modeling, model structures are de-
veloped in an iterative cycle as more and different types of
measurements become available and our understanding of
the hillslope or watershed improves. However, with increas-
ing complexity of the model, it becomes more and more diffi-
cult to detect which parts of the model are deficient, or which
processes should also be incorporated into the model during
the next development step. In this study, we first compare
two methods (the Shuffled Complex Evolution Metropo-
lis algorithm (SCEM-UA) and the Simultaneous parame-
ter Optimization and Data Assimilation algorithm (SODA))
to calibrate a purposely deficient 3-D hillslope-scale model
to error-free, artificially generated measurements. We use
a multi-objective approach based on distributed pressure
head at the soil–bedrock interface and hillslope-scale dis-
charge and water balance. For these idealized circumstances,
SODA’s usefulness as a diagnostic methodology is demon-
strated by its ability to identify the timing and location of pro-
cesses that are missing in the model. We show that SODA’s
state updates provide information that could readily be incor-
porated into an improved model structure, and that this type
of information cannot be gained from parameter estimation
methods such as SCEM-UA. We then expand on the SODA
result by performing yet another calibration, in which we in-
vestigate whether SODA’s state updating patterns are still
capable of providing insight into model structure deficien-
cies when there are fewer measurements, which are more-
over subject to measurement noise. We conclude that SODA
can help guide the discussion between experimentalists and
modelers by providing accurate and detailed information on
how to improve spatially distributed hydrologic models.

1 Introduction

Our understanding of hillslope and watershed hydrology is
typically summarized in numerical models. Ideally, such
models are the result of an iterative process that involves
modeling, experimental design, data collection, and analy-
sis of the model–data mismatch (e.g.Box and Tiao, 1973,
Sect. 1.1.1 “The role of statistical methods in scientific in-
vestigation” andPopper, 2009, Sect. 1.1.3 “Deductive test-
ing of theories”). Especially when combined with laboratory
experiments, thisiterative research cyclehas proven to be
a useful method for theory development. Its usefulness stems
from the fact that in laboratory experiments, the state of the
system under study as well as its parameters and the forc-
ings/disturbances to which the system is subjected can usu-
ally be measured more or less accurately. This allows the in-
vestigation to focus on the one remaining uncertain factor,
namely the hypothesis/model structure. There is, however,
a stark contrast between experiments carried out in the labo-
ratory and those carried out in the field. As hydrologists, we
are often dealing with open systems (e.g.von Bertalanffy,
1950), meaning that flows such as precipitation, groundwater
recharge, and evapotranspiration cross the system’s bound-
ary. Unfortunately, we often lack the necessary technology
to observe these flows (or how they affect the state of the
system) at the scale triplet (e.g.Blöschl and Sivapalan, 1995;
Western and Bl̈oschl, 1999) of interest, and manipulation ex-
periments are generally impossible (e.g.Young, 1983). Fur-
thermore, many hydrological models have parameters that
cannot be measured directly, either because of practical con-
siderations or because the parameters are conceptual. The un-
certainty associated with the parameters, state, forcings, and
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output makes theory development at the scale of watersheds
and hillslopes much more difficult than for small-scale ex-
periments in the laboratory.

So, it is certainly not straightforward to collect enough
data of sufficient quality in field experiments. This is not the
only challenge though: making sense of the data (i.e. analy-
sis) has proven just as difficult. In the remainder of this pa-
per, we will focus on the latter problem. When discussing
the analysis stage of the iterative research cycle, it is use-
ful to distinguish between two possible scenarios. In the first
scenario, the modeling is performed because a prediction is
needed (for instance in support of estimating the chance of
a flood of a certain magnitude). In this context, a good pre-
dictive model is one that is capable of estimating the variable
of interest with little bias and small uncertainty, which can
be demonstrated by performing a traditional split-sample test
(e.g.Klemĕs, 1986). In this scenario, the mechanisms under-
pinning the model structure need not concern the modeler
too much – the important thing is that the model gives the
right answer, even when it does so for the wrong reasons (e.g.
Kirchner, 2006).

Being right for the wrong reasons is not acceptable in the
second scenario, in which the purpose of the modeling is to
test and improve our understanding of how hillslopes and
watersheds function. Since it is axiomatic that for complex
systems the initial model structure is at least partly incorrect,
the challenge that we are facing in the analysis stage of the
iterative research cycle is how todiagnosethe current, in-
correct model structure, such that we can make an informed
decision on what needs to be changed for the next, hopefully
more realistic model structure (e.g.Gupta et al., 2008).

A common way of diagnosing how a given model can be
improved is through an analysis of model-observation resid-
uals. It is important to note, though, that such an analysis
is only possible after the model has been parameterized. In
case the model parameters cannot be measured directly, the
parameter values need to be determined by means of parame-
ter estimation methods. In recent years, various authors have
discussed the pitfalls associated with parameter estimation,
specifically when applied to cases in which data error and
model structural error cannot be neglected (e.g.Kirchner,
2006; Ajami et al., 2007). For example, it has been demon-
strated how model parameters can compensate for model
structural errors by assuming unrealistic values during pa-
rameter estimation (e.g.Clark and Vrugt, 2006). Without the
right parameter values, interpretation of the residual patterns
– and therefore model improvement – becomes much more
difficult. To overcome these difficulties, various lines of re-
search have been proposed that attempt to increase the di-
agnostic power of the analysis by extending the traditional
parameter estimation paradigm in various ways.

For example, one line of research has argued that a multi-
objective approach can provide more insight into how
a model structure may be deficient (Yapo et al., 1998;
Gupta et al., 1998). In the multi-objective approach, the

performance of each model run is evaluated using not just
one but multiple objectives. Individual objectives can vary
in the function used (RMSE, HMLE, mean absolute error,
Nash–Sutcliffe efficiency, etc.; e.g.Gupta et al., 1998), in
the variable that the objective function operates on (stream-
flow, groundwater tables, isotope composition, major ion
concentrations, etc.; e.g.Mroczkowski et al., 1997; Franks
et al., 1998; Kuczera and Mroczkowski, 1998; Dunn, 1999;
Seibert, 2000), or in the transformation, selection, or weight-
ing that is used (e.g.Vrugt et al., 2003a; Tang et al., 2006).
After a number of model runs have been executed, the popu-
lation of model runs is divided into a “good” set and a “bad”
set. The good set consists of points that are non-dominated,
meaning that any point in this set represents in some way
a best point. Together, the non-dominated points make up the
Pareto front (Goldberg, 1989; Yapo et al., 1998). The multi-
objective approach is useful for model improvement because
it enables analyzing the trade-offs that occur between vari-
ous objectives in the Pareto front. If the various objectives
have been formulated such that individual objectives pre-
dominantly reflect specific aspects of the system under con-
sideration, then inferences can be made about the appropri-
ateness of those aspects (Gupta et al., 1998; Yapo et al., 1998;
Boyle et al., 2000, 2001; Wagener et al., 2001; Bastidas et al.,
2006). For a recent review of the multi-objective approach,
seeEfstratiadis and Koutsoyiannis(2010).

A second line of research abandons the idea of using just
one model structure for describing system behavior but in-
stead uses an ensemble of model structures. The ensem-
ble may be composed of multiple existing model structures
that are run using the same initial state and forcings (e.g.
Georgakakos et al., 2004). Alternatively, the ensemble may
be made up of model structures that are assembled from
a limited set of model structure components using a com-
binatorial approach (e.g.Clark et al., 2008). The predictions
generated by members of the ensemble may further be com-
bined in order to maximize the predictive capabilities of
the ensemble, for example by using Bayesian model aver-
aging (e.g.Hoeting et al., 1999; Raftery et al., 2003, 2005;
Neuman, 2003). Regardless of how the ensemble was con-
structed, differences between members of the ensemble can
be exploited to make inferences about the appropriateness of
specific model components.

The idea underpinning the third line of research originates
with calibration attempts in which it was found that the op-
timal values of a given model’s parameters tend to change
depending on what part of the empirical record is used in cal-
ibration (see for example Fig. 2b inGupta et al., 1998). This
is generally taken as an indication that the model is struc-
turally deficient, because it is unable to reproduce the en-
tire empirical record with a single set of parameters (Gupta
et al., 1998; Yapo et al., 1998; Wagener et al., 2001; Lin and
Beck, 2007). Due to the deficiency, the model does not ex-
tract all of the information that is present in the observations,
which in turn means that the residuals contain “information
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with nowhere to go” (Doherty and Welter, 2010). Over the
last few decades, various mechanisms have been proposed
with which such misplaced information can be accommo-
dated. For example, the time-varying parameter (TVP) ap-
proach (Young, 1978) and the related state-dependent param-
eter (SDP) approach (Young, 2001) relax the assumption that
the model parameters are constant during the entire empirical
record. Somewhat related to TVP is the DYNIA approach of
Wagener et al.(2003). DYNIA attempts to isolate the effects
of individual model parameters. To do so, it uses elements of
the well-known generalized sensitivity analysis (GSA) and
generalized likelihood uncertainty estimation (GLUE) meth-
ods (Spear and Hornberger, 1980; Beven and Binley, 1992).
DYNIA facilitates making inferences about model structure
by analyzing how the probability distribution of the param-
eter values changes over simulated time, and by analyzing
how the distribution is affected by certain response modes,
such as periods of high discharge.

A similar approach was taken inSieber and Uhlenbrook
(2005), who used linear regression to analyze how param-
eter sensitivity varied over simulated time and in relation
to additional variables. This allowed them to make infer-
ences about the appropriateness of the model structure and
provided insight into when certain model parameters were
relevant and when they were not.Reusser and Zehe(2011)
combined a time-variable parameter sensitivity analysis with
multiple objectives. In their approach, the objective scores
are aggregated using a clustering algorithm. Individual clus-
ter members thus represent a certain type of deviation be-
tween the simulated behavior and the observed behavior (for
instance, the simulation lags behind the observations). Sub-
sequent analysis of when certain cluster members were dom-
inant, combined with the (in)sensitivity of the parameters at
that time, proved useful in determining the appropriateness
or otherwise of certain model components, as well as in dis-
tinguishing between data error and model structure error.

Relaxing the assumption that the parameters are constant
with time is not the only mechanism with which misplaced
information may be accommodated though; some authors
have advocated the introduction of auxiliary parameters,
whose primary purpose is to absorb the misplaced informa-
tion, such that the actual model parameters can adopt phys-
ically meaningful values during parameter estimation (e.g.
Kavetski et al., 2006a,b; Doherty and Welter, 2010; Schoups
and Vrugt, 2010).

In contrast to parameter-oriented methods described
above, state-oriented methods let the misplaced information
be absorbed into the model states. The most widespread of
the state-oriented methods is the Kalman filter (KF;Kalman,
1960) and its derivatives, notably the extended KF (EKF;
e.g.Jazwinski, 1970) and the ensemble KF (EnKF;Evensen,
1994, 2003). The family of KFs has further been extended
with that of particle filters (PFs), which have become pop-
ular due to their ability to cope with complex probability
distributions. Both KFs and PFs use a sequential scheme to

propagate the model states through simulated time. In this se-
quential scheme, the simulation continues until the next mea-
surement becomes available. At that point in simulated time,
the simulation is temporarily halted and control is passed to
the filter. The filter compares the state value suggested by the
model (i.e. the prior model state) with the state value sug-
gested by the measurement, and calculates the value of the
posterior model state. The specific way in which the calcula-
tion is done depends on the type of filter but generally takes
into account the uncertainties associated with the simulated
and measured state values. For example, if more confidence
is placed on, say, the measured state value than on the sim-
ulated state value, the posterior state value will generally be
closer to the measured value than to the simulated value. The
simulation is then resumed, starting from the posterior state
value (as opposed to the prior state value). The process of
halting the simulation, calculating the posterior, and resum-
ing the simulation is continued until all measurements have
been assimilated.

The sequential nature of this process allows for retaining
information about when and where simulated behavior de-
viates from what was observed. This is a particularly attrac-
tive property when the objective is to evaluate and improve
a given model. Nonetheless, filtering methods have hitherto
been used mostly to improve the accuracy and precision of ei-
ther the parameter values themselves or the predictions made
with those parameters (Eigbe et al., 1998). That is, the focus
has been on the a posteriori estimates. In contrast, we argue
that an analysis ofhow the a priori estimates are updated
may yield valuable information about the appropriateness of
the model structure: if there are no apparent patterns in the
updating, the model structure is as good as the data allow. On
the other hand, if there are patterns present in the updating, an
alternative model formulation exists that better captures the
observed dynamics. Analysis of state updating patterns could
thus provide a much-needed diagnostic tool for improving
model structures.

The aim of our study is to demonstrate that, when a model
does not have the correct structure given the data,

1. parameter estimation may yield residual patterns in
which the origin of the error is obscured due to com-
pensation effects;

2. combining parameter estimation with ensemble Kalman
filtering provides accurate and specific information that
can readily be applied to improve the model structure.

By using artificially generated measurements, we avoid any
issues related to accuracy and precision of field measure-
ments, as well as any issues related to incommensurability
of field measurements and their model counterparts.

www.hydrol-earth-syst-sci.net/17/3455/2013/ Hydrol. Earth Syst. Sci., 17, 3455–3472, 2013
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2 Methods

This study consists of four parts: (1) generation of an ide-
alized data set; (2) calibration with a parameter estimation
algorithm, the Shuffled Complex Evolution Metropolis algo-
rithm (SCEM-UA;Vrugt et al., 2003b); (3) calibration with
a combined parameter and state estimation algorithm, the Si-
multaneous parameter Optimization and Data Assimilation
(SODA; Vrugt et al., 2005); and (4) calibration with SODA
using a reduced data set which is furthermore subject to mea-
surement noise.

In the first part, we generated artificial measurements by
simulating the hydrodynamics of a small, hypothetical hill-
slope with a relatively shallow soil, using the SWMS3D
model for variably saturated flow (S̆imůnek, 1994; S̆imůnek
et al., 1995). We then introduced a model structural error by
making some small simplifications to the model structure.
Hereafter, we use the terms “reference model” and “simpli-
fied model” to differentiate between these two model struc-
tures. Due to the simplifications, the simplified model is
structurally deficient: it does not fully capture the complex-
ity apparent in the artificial measurements. In the second and
third part of this study, the simplified model was calibrated
to the idealized data set using SCEM-UA and SODA, re-
spectively. We analyzed the model output associated with
the optimal parameter combination(s) for both methods, and
we evaluated how useful each result was for identifying the
structural deficiency in the simplified model. In the fourth
part of this study, we expand on the SODA results from part 3
by performing another SODA calibration, but this time using
a reduced set of measurements, which are moreover subject
to measurement noise.

2.1 Generation of the artificial measurements

We used the SWMS3D model (̆Simůnek, 1994; S̆imůnek
et al., 1995) to generate artificial measurements. SWMS3D
implements the Richards equation for variably saturated flow
through porous media (Richards, 1931):

∂θ

∂t
=

∂

∂s

[
K(h)

∂(h + z)

∂s

]
− B, (1)

in which θ is the volumetric water content,t is time, s is
distance over which the flow occurs,K is hydraulic conduc-
tivity, h is pressure head,z is gravitational head, andB is
a sink term. WhileB is normally used for simulating water
extraction by roots, we instead used it to simulate downward
vertical loss of water from the soil domain to the underlying
bedrock. The SWMS3D model solves the Richards equation
using the Mualem–van Genuchten functions (van Genuchten,
1980):

θ(h) =

{
θr +

θs−θr
(1+|αh|

n)m
h < 0

θs h ≥ 0
(2)

K(h) =

Ks · S
1
2
e

[
1−

(
1− S

1
m
e

)m]2

h < 0

Ks h ≥ 0
(3)

with

Se =
θ − θr

θs− θr
, (4)

in which θr is the residual volumetric water content,θs is the
saturated volumetric water content,α is the air-entry value,
n is the pore tortuosity,m = 1− 1/n,n > 1, andKs is the
saturated hydraulic conductivity.

The soil domain is represented by a grid of 15 rows, 7
columns and 5 layers of nodes. The soil depth is spatially
variable, ranging from 0.16 to 1.47 m (Fig.2). Horizontally,
the nodes are regularly spaced at 3 m intervals. Vertically,
the nodes are distributed uniformly over the local soil depth
(Fig. 1). In what follows, we use a shorthand notation for
the horizontal location of a node: e.g. X03Y12 refers to a lo-
cation 3 m from the left of the hillslope and 12 m from the
seepage face at the bottom. Unless specifically stated other-
wise, this notation always refers to the lowest of 5 nodes at
a givenXY location. The top of the domain represents the
atmosphere–soil interface. It is a more-or-less planar surface
with an incline of approximately 13◦. The bottom of the do-
main represents the soil–bedrock interface. The model exclu-
sively simulates the hydrodynamics of the soil domain: nei-
ther the atmosphere nor the bedrock is explicitly included in
the model. Instead, the interface between atmosphere and soil
is treated as a source of soil water, whereas the soil–bedrock
interface is treated as a sink. In order to mimic typical field
situations, the sink mechanism is set up as a spatially het-
erogeneous process. Using this configuration, we represent
bedrock material that is somewhat permeable in most places,
but that also has small areas where the bedrock material has
disintegrated. In these areas, transient saturation infiltrates
the underlying bedrock more quickly.

To simulate the vertical loss of water from the soil do-
main, we let the sink termB in Eq. (1) operate on all nodes
at the soil–bedrock interface except those that were part of
the seepage face (Fig.1). We used a spatially heterogeneous
pattern for the sink rate (Fig.2). Nodes X00Y18, X06Y30,
X09Y15, X15Y39 and X18Y09 were assigned a relatively
high sink rate; hereafter, they are referred to as “hotspots”.
The other nodes for which we enabled the sink term were as-
signed a relatively low value. The magnitude of the sink term
is determined according to

B =


0 h < 0

rsink(high) · h h ≥ 0 hotspots

rsink(low) · h h ≥ 0 not a hotspot

, (5)

in which rsink(high) andrsink(low) are sink efficiency parame-
ters.rsink(high) was set to 0.30 h−1 while rsink(low) was set to
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Fig. 1. Transect of lower section of the domain with boundary node types shown. Infiltration enters the domain at the atmosphericboundary
nodes. Excess water is removed from the domain either vertically at the sink nodes, or laterally as seepage.

Table 1. Overview of the most relevant parameters in the SWMS3D model.

parameter description SWMS3D parameter name value units

geometry

total number of nodes NumNP 525 –
total number of boundary nodes NumBP 133 –
total number of elements NumEl 2016 –

soil hydraulic parameters

residual water content θr 0.28 –
saturated water content θs 0.475 –
air entry value α 4.00 m−1

pore tortuosity n 2.0 –
saturated conductivity Ks 0.35 mh−1

numerical integration settings

maximum number of iterations MaxIt 31 –
tolerance on theta TolTh 1×10−6 –
tolerance on head Tolh 1×10−6 m
initial integration time step dt 6 min
minimum integration time step dtMin 1 min
maximum integration time step dtMax 20 min
time step decrease factor DMul 0.7 –
time step increase factor DMul2 1.2 –

zero at the soil-bedrock interface, while nodes in the other
4 layers were assigned a pressure head of−z, in which z is
the absolute vertical distance from a given node to the soil-
bedrock interface at a particularX,Y location. Starting from
St=0, the reference model was then run untilt=96h. Dur-
ing this period, soil water was redistributed due to hydraulic
head differences. The slope of the domain, convergence of

flow due to varying soil depth, as well as water removal from
the domain at the sink hotspots were the driving factors in
this redistribution. No precipitation was applied during the
warm-up period. The resulting pressure head patternSt=96

then served as the initial state for the reference model (dur-
ing generation of the artificial measurements) as well as for
the simplified model (during calibration with SCEM-UA and

Fig. 1.Transect of lower section of the domain with boundary node types shown. Infiltration enters the domain at the atmospheric boundary
nodes. Excess water is removed from the domain either vertically at the sink nodes or laterally as seepage.6 J. H. Spaaks and W. Bouten: Resolving structural model errors

Fig. 2. Soil depth distribution. The locations of sink hotspots arein-
dicated with asterisks—these are the locations where the reference
model appliesrsink(high). At the complementary locations, the ref-
erence model appliesrsink(low).

SODA).

We used the following boundary conditions: all of the
nodes located aty=0 were assigned a seepage face bound-
ary condition (Fig. 1), meaning that they shed water only if
the pressure head is positive. At the atmosphere-soil inter-
face, nodes which were not part of the seepage face were
assigned an atmospheric boundary condition, across which
infiltration occurs. Precipitation was applied at a rate of
6mmh−1 for a period of 6 h (t= 96 – 102h), followed by
a period of no rain for 114h (t=102 – 216h) until the end
of the simulation. Evaporation and transpiration were not in-
cluded in this study. Nodes located on the outside of the do-
main that were not part of the seepage face, the atmosphere-
soil interface, or the soil-bedrock interface were assigned
a no-flow boundary condition.

With the settings described above, we ran the reference
model in order to generate artificial measurements fort=97
throught=216 h at hourly intervals. During the simulation,

approximately 26.3m3 of precipitation was applied. After
the simulation ended, a total volume of about 15.7m3 had
been extracted vertically from the soil domain according to
Eq. (5), while a total of about 12.1m3 was removed from the
domain as seepage from the seepage face. At the end of the
simulation period att=216h, 186.5m3 of water was present
in the soil, slightly less than the 188.0m3 of water that had
been present att=96h. Figure 3 shows how pressure head
developed at the soil-bedrock interface for all nodes during
the simulation period. Transient saturation occurred in about
60 % of the nodes, but dissipated relatively quickly for most
nodes once precipitation stopped.

Upon completion of the run, we saved 3 variables: (1) the
total volume of soil water that had been extracted according
to Eq. (5); (2) the time series of discharge from the seep-
age face at the bottom of the hillslope; (3) the space-time
distributed pattern of pressure head at the soil-bedrock inter-
face. That is, the first two variables describe integrated hy-
drologic responses, whereas the third is spatially distributed.
In parts 2 and 3 of this study (see sections 2.2 and 2.3, respec-
tively), these 3 variables were then used as error-free artificial
measurements with which to calibrate the simplified model;
in part 4 (see section 2.4), the SODA calibration from part 3
is repeated, but this time using only a subset of the artifical
measurements, which were moreover perturbed in order to
mimic the effect of measurement noise.

2.1.1 Simplified model and calibrated parameters

The simplified model differs only slightly from the reference
model, in that it assumes that the sink is spatially homoge-
neous. Equation (5) thus simplifies to:

B=

{

0 h< 0

rsink ·h h≥ 0
(6)

For field studies, it is common to make this assump-
tion, even in cases where soft data suggests the presence
of preferential-flow features such as cracks in the bedrock.
Even though its validity may often be questionable, the mod-
eler’s hand is forced by the lack of direct observations.

We calibrated 2 parameters:Ks, the saturated hydraulic
conductivity (Eq. 3), andrsink, which controls the rate at
which water is lost from the soil domain as it infiltrates the
bedrock (Eq. 6).

2.2 SCEM-UA (idealized data set)

The Shuffled Complex Evolution Metropolis (SCEM-UA)
algorithm has been discussed in detail elsewhere (e.g. Vrugt
et al., 2003b); only a summary is presented here.

SCEM-UA is a parameter estimation algorithm which was
developed to better deal with uncertainty in parameter es-
timates, while improving the efficiency and effectiveness
of searching the parameter space. The algorithm is based
on the popular SCE parameter estimation algorithm (Duan

Fig. 2. Soil depth distribution. The locations of sink hotspots are
indicated with asterisks – these are the locations where the refer-
ence model appliesrsink(high). At the complementary locations, the
reference model appliesrsink(low).

0.01 h−1. Note that we do not mean to claim that this con-
cept is necessarily realistic – its sole purpose here is to in-
troduce a structural difference between the reference model
and the simplified model (described below). We use spatially
homogeneous soil properties and hydraulic conductivity. Ta-
ble 1 provides additional details about how we configured
SMWS 3D. The soil hydraulic parameters, as well as the ge-
ometry of the model domain and numerical integration set-
tings are loosely based onHopp and McDonnell(2009).

We took the soil–bedrock interface as the reference level
for pressure head. For what follows, it is useful to define
St=x as the model state, i.e. the 3-D pressure head pattern
at timex. In this paragraph we describe how we determined
the initial stateSt=0 for the warm-up, as well asSt=96, which
served as a starting state for all simulations presented here-
after. St=0 was determined by setting the pressure head to
zero at the soil–bedrock interface, while nodes in the other
4 layers were assigned a pressure head of−z, in which z is
the absolute vertical distance from a given node to the soil–
bedrock interface at a particularXY location. Starting from
St=0, the reference model was then run untilt = 96 h. Dur-
ing this period, soil water was redistributed due to hydraulic
head differences. The slope of the domain, convergence of
flow due to varying soil depth, as well as water removal from
the domain at the sink hotspots were the driving factors in
this redistribution. No precipitation was applied during the
warm-up period. The resulting pressure head patternSt=96
then served as the initial state for the reference model (dur-
ing generation of the artificial measurements) as well as for
the simplified model (during calibration with SCEM-UA and
SODA).

We used the following boundary conditions: all of the
nodes located aty = 0 were assigned a seepage face bound-
ary condition (Fig.1), meaning that they shed water only if
the pressure head is positive. At the atmosphere–soil inter-
face, nodes which were not part of the seepage face were
assigned an atmospheric boundary condition, across which
infiltration occurs. Precipitation was applied at a rate of
6 mmh−1 for a period of 6 h (t = 96 – 102 h), followed by
a period of no rain for 114 h (t = 102 – 216 h) until the end
of the simulation. Evaporation and transpiration were not in-
cluded in this study. Nodes located on the outside of the do-
main that were not part of the seepage face, the atmosphere–
soil interface, or the soil–bedrock interface were assigned
a no-flow boundary condition.
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Table 1.Overview of the most relevant parameters in the SWMS3D model.

parameter description SWMS3D parameter name value units

geometry

total number of nodes NumNP 525 –
total number of boundary nodesNumBP 133 –
total number of elements NumEl 2016 –

soil hydraulic parameters

residual water content θr 0.28 –
saturated water content θs 0.475 –
air entry value α 4.00 m−1

pore tortuosity n 2.0 –
saturated conductivity Ks 0.35 mh−1

numerical integration settings

maximum number of iterations MaxIt 31 –
tolerance on theta TolTh 1× 10−6 –
tolerance on head Tolh 1× 10−6 m
initial integration time step dt 6 min
minimum integration time step dtMin 1 min
maximum integration time step dtMax 20 min
time step decrease factor DMul 0.7 –
time step increase factor DMul2 1.2 –

With the settings described above, we ran the reference
model in order to generate artificial measurements fort = 97
throught = 216 h at hourly intervals. During the simulation,
approximately 26.3 m3 of precipitation was applied. After
the simulation ended, a total volume of about 15.7 m3 had
been extracted vertically from the soil domain according to
Eq. (5), while a total of about 12.1 m3 was removed from the
domain as seepage from the seepage face. At the end of the
simulation period att = 216 h, 186.5 m3 of water was present
in the soil, slightly less than the 188.0 m3 of water that had
been present att = 96 h. Figure3 shows how pressure head
developed at the soil–bedrock interface for all nodes during
the simulation period. Transient saturation occurred in about
60 % of the nodes, but dissipated relatively quickly for most
nodes once precipitation stopped.

Upon completion of the run, we saved 3 variables: (1) the
total volume of soil water that had been extracted according
to Eq. (5); (2) the time series of discharge from the seepage
face at the bottom of the hillslope; and (3) the space–time
distributed pattern of pressure head at the soil–bedrock inter-
face. That is, the first two variables describe integrated hy-
drologic responses, whereas the third is spatially distributed.
In parts 2 and 3 of this study (see Sects.2.2and2.3, respec-
tively), these 3 variables were then used as error-free artificial
measurements with which to calibrate the simplified model;
in part 4 (see Sect.2.4), the SODA calibration from part 3
is repeated, but this time using only a subset of the artificial
measurements, which were moreover perturbed in order to
mimic the effect of measurement noise.

2.1.1 Simplified model and calibrated parameters

The simplified model differs only slightly from the reference
model, in that it assumes that the sink is spatially homoge-
neous. Equation (5) thus simplifies to

B =

{
0 h < 0

rsink · h h ≥ 0
. (6)

For field studies, it is common to make this assump-
tion, even in cases where soft data suggest the presence of
preferential-flow features such as cracks in the bedrock. Even
though its validity may often be questionable, the modeler’s
hand is forced by the lack of direct observations.

We calibrated 2 parameters:Ks, the saturated hydraulic
conductivity (Eq.3), and rsink, which controls the rate at
which water is lost from the soil domain as it infiltrates the
bedrock (Eq.6).

2.2 SCEM-UA (idealized data set)

The Shuffled Complex Evolution Metropolis (SCEM-UA)
algorithm has been discussed in detail elsewhere (e.g.Vrugt
et al., 2003b); only a summary is presented here.

SCEM-UA is a parameter estimation algorithm which was
developed to better deal with uncertainty in parameter es-
timates, while improving the efficiency and effectiveness
of searching the parameter space. The algorithm is based
on the popular SCE parameter estimation algorithm (Duan
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Fig. 3. Artificial measurements: simulated traces of pressure headin space and time. For each node at the soil-bedrock interface, the figure
contains a subplot showing a time series of the pressure head(magenta line) fort=97–216h. Horizontal dashed lines represent zero pressure
head. Each subplot’s axes have been clipped vertically to [−0.5,0.25] in order to better show the pressure head dynamicsduring relatively
wet conditions. To further ease interpretation, each subplot was assigned a background color depending on how long saturated conditions
lasted at a given location. The locations of sink hotspots are indicated with asterisks.

Fig. 3. Artificial measurements: simulated traces of pressure head in space and time. For each node at the soil–bedrock interface, the figure
contains a subplot showing a time series of the pressure head (magenta line) fort = 97–216 h. Horizontal dashed lines represent zero pressure
head. Each subplot’s axes have been clipped vertically to [−0.5, 0.25] in order to better show the pressure head dynamics during relatively
wet conditions. To further ease interpretation, each subplot was assigned a background color depending on how long saturated conditions
lasted at a given location. The locations of sink hotspots are indicated with asterisks.

et al., 1992); but where SCE uses a multidimensional sim-
plex to generate offspring, SCEM-UA uses Markov chains
combined with a Metropolis-simulated annealing scheme
(Metropolis et al., 1953; Kuczera and Parent, 1998).

Following the classical approach to inverse modeling,
SCEM-UA assumes that the hydrological model structure
f (·) is a perfect description of the processes as they occur in
reality, and that data errors are negligible. The model output
vectorY is calculated using the model forcingsU by prop-
agating the model initial stateX0 using the model structure
f (·) and the model parametersθ :

Y = f (X0,U,θ). (7)

The model output is compared with observationsZ, and the
goodness-of-fit is expressed in an objective functiong(·):

OF= g(Y,Z), (8)

where OF represents the objective score. Points in the param-
eter space thus become associated with an objective score.
Note that the single-objective approach described here can
be extended to include multiple objectives using the concept
of Pareto optimality (Yapo et al., 1998; Gupta et al., 1998;
Vrugt et al., 2003a).

The goal of parameter estimation is to find the parame-
ter combinations(s)θ whose associated output follows the
observations as closely and consistently as possible (Vrugt
et al., 2005). In order to find the part of the parameter space
that yields the best parameter combinations, SCEM-UA pro-
ceeds as follows:
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1. Initialize a population of points in the parameter space,
divide them over multiple complexes as perDuan et al.
(1992);

2. When convergence has not been achieved, do

a. sample new points from the feasible parameter
space;

b. determine the objective score OF for each point, by

i. running the model

ii. running the objective function(s)

c. accept or reject each new point according to the
Metropolis rule;

d. shuffle complexes;

e. calculate Gelman–Rubin convergence statistic
(Gelman and Rubin, 1992).

SCEM-UA reliably finds the part of the parameter space that
yields the best possible objective scores. It has been used suc-
cessfully to identify model parameters in a variety of disci-
plines including hydrology, soil chemistry, and ecology (e.g.
Vrugt et al., 2003b, 2007; Nierop et al., 2002).

2.2.1 Objective functions

We use the following 3 functions to evaluate the performance
of individual parameter combinations:

OF1 = |εobs− εsim| , (9)

in which εobs andεsim are the total observed and total sim-
ulated vertical water loss, respectively.ε is calculated as
ε = Vinit +Vin −Vq −Vend, in whichVinit is the total volume
of water that is present in the soil att = 96 h,Vin is the to-
tal volume of infiltration,Vq is the total volume of discharge
that is removed from the soil as seepage, andVend is the total
volume of water that is present in the soil att = 216 h;

OF2 =

√√√√ 1

nt

nt∑
t=1

(qobs,t − qsim,t )2, (10)

in whichnt is the number of time steps, andqobs,t andqsim,t

are the observed and simulated hillslope-scale discharge for
thet th time step, respectively; and

OF3 =

√√√√ 1

ni

ni∑
i=1

(hobs,i − hsim,i)2, (11)

in whichni is the product of the number of rows and columns
in the grid times the number of time steps, andhobs,i and
hsim,i are the observed and simulated pressure head at the
soil–bedrock interface for theith combination of row, col-
umn and time step, respectively.

The rationale behind this combination of objective func-
tions is as follows. The simplified model simulates redistri-
bution of the available water, i.e. initial storage and infiltra-
tion. The redistribution is subject to losses due to bedrock in-
filtration (vertically) and seepage (laterally). Successful cal-
ibration of the model requires that the volume of water that
leaves the domain is accurate, which is achieved by minimiz-
ing the first two objectives (Eqs.9 and10). However, the first
two objectives are not capable of extracting any spatial in-
formation. Using just the first two objectives could therefore
lead to a proliferation of equally realistic solutions of pres-
sure head patterns internal to the hillslope. To avoid that, the
third objective (Eq.11) attempts to use the spatial informa-
tion in the pressure head data series, such that the solutions
that were equally realistic based on just the first two objec-
tives can now be differentiated.

2.3 SODA (idealized data set)

The Simultaneous parameter Optimization and Data Assim-
ilation (SODAVrugt et al., 2005) algorithm may be viewed
as an extension of SCEM-UA. It combines SCEM-UA’s pa-
rameter estimation procedure with an ensemble Kalman fil-
ter (EnKF;Evensen, 1994, 2003) such that uncertainty in the
model states can be accommodated. SODA’s general struc-
ture is therefore similar to the SCEM-UA structure outlined
earlier, except that Step 2.b is different. Instead of running the
model for all time steps at once, the EnKF generates an en-
semble of model predictions, each of which having slightly
different states. Each ensemble member is then propagated
time step by time step, using the parameter combination sug-
gested by the parameter estimation part of SODA. Step 2.b
thus becomes

2.b. Determine the objective score OF for each point, by

i. generating an ensemble of model states based on
the last a posteriori state (or the initial state);

ii. propagating each ensemble member one time step,
using the model structure, the model forcings, and
the parameter combination. This results in an a pri-
ori state estimate for each ensemble member. Use
the same parameter combination for all ensemble
members and time steps;

iii. determining the magnitude and direction of the
state updates by calculating the weighted average
of the a priori state estimates and the observations
(the weights are related to the degree of uncertainty
in each component);

iv. adding the state updates to the a priori state esti-
mates to get the a posteriori state estimates.

v. returning to (i) if the current time is less than the
simulation end time; and

vi. running the objective function(s).
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Fig. 4. SCEM-UA (idealized data set): evolution of the parameters.Dashed lines represent value ofrsink(low) andrsink(high) (upper plot) and
Ks (lower plot). Markov chains are color-coded; open symbols are samples that have been rejected by the Metropolis scheme,solid colors
have been accepted. Note that the vertical axes are logarithmic.

being error-free), the EnKF will not place as much confi-
dence on the measurements. Consequentially, errors are not
corrected as quickly, and the state updating pattern will be
more difficult to interpret. This problem can be alleviated by
measuring at smaller intervals, or by installing a more precise
measurement device. When setting up future field experi-
ments, it may thus be worthwile to increase the measuring
frequency, even at the cost of the experiment’s duration.

3.2.2 Limitations with respect to information content

Besides balancing the measurement interval with the time
scale of the process of interest, it also remains important
that the measurements contain all relevant behavioral modes.
This is because information content is more important than
sheer data volume (e.g. Sorooshian et al., 1983; Gupta and
Sorooshian, 1985); even powerful methods of analysis can-
not extract information that is not present. For example, the
reference model includes 5 hotspots, but only 4 of these can
be identified from the SODA analysis. The reason for this is
that the difference between the reference model and the sim-
plified model only becomes apparent when saturated condi-
tions occur at the location of one of the hotspots. If satu-
rated conditions do not occur, the simplified model’s behav-
ior cannot be distinguished from the reference modelforward
model’s behavior: the sink termB is equal to zero for both
models (compare Eqs. 5 and 6). Since saturated conditions
did indeed not occur at X15Y39 (see Fig. 3), node X15Y39
cannot be identified as a hotspot from these measurements,
regardless of the method used.

3.3 SODA (reduced and perturbed data set)

Figure 9 shows the evolution of the parameters during cali-
bration with SODA using the reduced and perturbed data set.
ParameterKs is identified with similar accuracy and preci-
sion as for the idealized data set, while parameterrsink is
slightly more uncertain and a very small bias has been intro-
duced. The space-time pattern of state updating associated
with one of the Pareto-optimal parameter combinations is vi-
sualized in Figure 10. In terms of magnitude, timing, and
location, it is quite similar to the state updating associated
with the idealized data set (Fig. 7). There are, however, some
differences as well.

First there is the general appearance of state updating,
which is much more noisy here than for the idealized data
set. This is because every state update is now partly a cor-
rection for the measurement noise that was introduced at the
previous time step. Because the magnitude of measurement
noise is only small in comparison to the model uncertainty,
and because the measurement noise is not systematic, the
noise does not negatively affect the state updating patternas
a whole.

The second difference relates to nodes for which state up-
dating cannot be solely attributed to spurious measurement
noise, but for which the updating is controlled by an ad-
ditional systematic component (nodes with greenish back-
ground color in Figure 10). These locations coincide with,
or are in close proximity to, hotspots. If measurements of
pressure head are available at the location where the model
structural error is introduced, i.e. the hotspot, the nature of
the model structure error is reflected in the state updates (left
and middle subplots in Fig. 11). For these nodes, the re-

Fig. 4.SCEM-UA (idealized data set): evolution of the parameters. Dashed lines represent value ofrsink(low) andrsink(high) (upper plot) and
Ks (lower plot). Markov chains are color-coded; open symbols are samples that have been rejected by the Metropolis scheme, while solid
colors have been accepted. Note that the vertical axes are logarithmic.

The major advantage of this approach is that, when errors
are introduced on the model states (either as a result of errors
in the model initial state, errors in the model forcings, or by
the use of an imperfect model structure), their propagation
through time is limited by the EnKF’s intermediate updating.

2.3.1 Objective functions

For water balance and discharge, we let SODA use the same
objective functions and measurements that were used for
SCEM-UA (Eqs.9 and10). The pressure head information,
however, is used in a different way: rather than aggregating
all errors using the objective function defined by Eq. (11),
the pressure head measurements are used to update the a pri-
ori model prediction in the EnKF. This is necessary in order
to retain the timing and localization information pertaining
to errors that may occur, and is therefore crucial for model
improvement.

2.4 SODA (reduced and perturbed data set)

In part 4 of this study, we expand on the SODA results from
part 3 by investigating whether SODA’s diagnostic capabil-
ities are negatively affected when there are fewer measure-
ments, and when those measurements are moreover subject
to measurement noise. For this, we removed approximately
half of the pressure head observation locations from the data
set according to a random elimination pattern. Among the
eliminated locations were two important sink hotspot loca-
tions (X09Y15 and X00Y18). We then mimicked the effect
of measurement noise by perturbing the remaining measure-
ments. For the pressure head observations, we used zero-
mean, homoscedastic Gaussian noise of standard deviation
0.005 m. The discharge measurements were perturbed using

a zero-mean, heteroscedastic Gaussian noise, with standard
deviation equal to 10% of the true (unperturbed) discharge.

For water balance and discharge, we let SODA use the
same objective functions that were used in part 3 (Eqs.9 and
10). The pressure head information is applied in the same
fashion as in part 3, although there are now fewer locations
where measurements are available and the values that remain
are now subject to measurement noise.

3 Results and discussion

3.1 SCEM-UA (idealized data set)

Figure 4 shows the evolution of the parameter distribution
during the SCEM-UA calibration. Once the distribution be-
comes stable after about 500 model evaluations,Ks is ac-
curately and precisely identified, but thersink parameter has
settled on a range of values that represents neitherrsink(low)

nor rsink(high). Because of the simplified model’s structural
deficiency, any value forrsink leads to errors somewhere in
the hillslope. Forrsink values close torsink(low), large errors
would be introduced at the locations of the hotspots – specif-
ically, they would be too wet. The excess water at these lo-
cations would subsequently lead to a plume of overestimated
pressure heads downslope from each hotspot. However, the
extent of the plumes is smaller forrsink values that are some-
what higher thanrsink(low). This is due to the combination of
two effects: first, slightly raising the value ofrsink leads to
a less severe overestimation of pressure head at the hotspot;
and secondly, the excess water downslope from the hotspot
infiltrates the underlying bedrock more quickly. Since the ex-
tent of the plume directly affects the objective score (Eq.11),
log10(rsink) values from the[ −1.4,−1.3] range are asso-
ciated with better objective scores than log10(rsink) values
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Fig. 5. SCEM-UA (idealized data set): model-observation pressurehead residuals in space and time, as associated with the Pareto-optimal
parameter combinationlog10(rsink)≈−1.30; log10(Ks)≈−0.47. For each node at the soil-bedrock interface, the figure contains a subplot
showing a time series of model-observation residuals (black line) for t=97–216h. Horizontal dashed lines represent zero-residual. To ease
interpretation of the residual pattern, each subplot was assigned a background color depending on the cumulative positive and cumulative
negative residual: magenta colors represent under-estimation of artificial measurements (simulated value is too dry)while cyan means over-
estimation (too wet). Note the spatial coherence and error propagation. The locations of sink hotspots as used in the reference model (but
not the simplified model) are indicated with asterisks.

Fig. 5. SCEM-UA (idealized data set): model-observation pressure head residuals in space and time, as associated with the Pareto-optimal
parameter combination log10(rsink) ≈ −1.30; log10(Ks) ≈ −0.47. For each node at the soil–bedrock interface, the figure contains a subplot
showing a time series of model-observation residuals (black line) fort = 97–216 h. Horizontal dashed lines represent zero residual. To ease
interpretation of the residual pattern, each subplot was assigned a background color depending on the cumulative positive and cumulative
negative residual: magenta colors represent under-estimation of artificial measurements (simulated value is too dry), while cyan means over-
estimation (too wet). Note the spatial coherence and error propagation. The locations of sink hotspots as used in the reference model (but not
the simplified model) are indicated with asterisks.

close to−2.0, even though the latter value is in fact the
correct one for 93 out of 98 nodes. The side effect of
these compensatory parameter values is that it becomes
more difficult to determine the origin of the model struc-
ture error. For example, Fig.5 shows the difference between
the simulated pressure head dynamics (generated using the
Pareto-optimal parameter values log10(rsink) ≈ −1.30 and
log10(Ks) ≈ −0.47) and the artificial measurements. The er-
roneous parameterization leads to systematic deviations in
pressure head for much of the hillslope, despite the fact that
the simplified model differs only slightly from the reference
model.

Considering the abundance and high quality of the data
(no measurement error, no incommensurability), an experi-
enced hydrologist would probably be able to make an edu-
cated guess based on Fig.5 about what goes wrong in the
simplified model and how it could be improved – perhaps
by focusing on where errors are first introduced, and relating
them to the value of various model variables at that time and
place. In the next section, we show that the SODA method-
ology bears some resemblance to this approach, albeit that
SODA is a more formalized and fully automated methodol-
ogy.
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Fig. 6. SODA (idealized data set): evolution of the parameters. Dashed lines represent value ofrsink(low) andrsink(high) (upper plot) andKs

(lower plot). Markov chains are color-coded; open symbols are samples that have been rejected by the Metropolis scheme,solid colors have
been accepted. Note that the vertical axes are logarithmic.

lation between the state and the subsequent update is quite
similar to the result of the idealized data set, although natu-
rally the relation is somewhat masked by the effect of mea-
surement noise. In any case, relations derived from state up-
dating can directly be used to construct an improved model.
On the other hand, if no measurements of pressure head are
available at the hotspot, the update can only occur some dis-
tance away, and as a result, the state updating is then only
indirectly related to the source of the error (e.g. right subplot
in Figure 11). The separation between source of the error
and the subsequent update means that the diagnostic infor-
mation contained in the original error is scrambled beyond
the point where it could be retrieved. Consequentially, addi-
tional measurements must be made before the model struc-
ture can be improved. Figure 10 may once again be used
to infer that such additional measurements are most likely to
yield new insights when placed at a previously unmeasured
location near one of the nodes with systematic updating. Fur-
thermore, the figure tells us which measurement device may
be removed without affecting the diagnostic power of the pat-
tern as a whole; any node with a light background color qual-
ifies for this. Their lack of systematic updating means that
the corresponding measurement devices have not provided
any new insights, so they are better deployed at a new loca-
tion.

In summary, the analysis of SODA’s state updating helps
to identify model deficiencies and provides us with the infor-
mation necessary to improve our understanding of hydrolog-
ical processes in an iterative cycle of modeling, experimental
design, data collection, and analysis.

4 Conclusions

As models get more complex, there is a growing need for
better tools with which to evaluate them (e.g. Beck, 1987;
Gupta et al., 1998; Kirchner, 2006). It has been argued in
the literature that model evaluation should not be limited to
ranking model runs (differentiating between the good and the
bad representations of the real world), but should also pro-
vide some guidance on how to improve a given model struc-
ture (Beck, 1987; Lin and Beck, 2007; Gupta et al., 2008).
In this study, we purposely used a deficient model structure,
which we calibrated by both a parameter estimation approach
(SCEM-UA), and by a combined parameter and state estima-
tion approach (SODA). We then assessed how suitable each
method was for providing aforementioned guidance.

Four main conclusions that can be drawn from this work
are:

1. State adjustment patterns generated by SODA are help-
ful in evaluating when and where model structural er-
rors occur;

2. Relations can be constructed between SODA’s state ad-
justments and the model states themselves. Such re-
lations can readily be adopted in an improved version
of the model. Perhaps most importantly, they stimu-
late the discussion between modeler and experimental-
ist about what process could explain them, while at the
same time guiding the discussion by setting constraints
on the functional form of the relation.

3. For a reduced and perturbed data set, SODA proved use-
ful in identifying the location of some hotspots, as well

Fig. 6.SODA (idealized data set): evolution of the parameters. Dashed lines represent value ofrsink(low) andrsink(high) (upper plot) andKs
(lower plot). Markov chains are color-coded; open symbols are samples that have been rejected by the Metropolis scheme, while solid colors
have been accepted. Note that the vertical axes are logarithmic.

3.2 SODA (idealized data set)

Figure 6 shows the evolution of the parameters during
the SODA calibration. The figure shows that, after about
600 model evaluations, SODA draws exclusively from the
narrow range around log10(Ks) ≈ −0.45 and log10(rsink) ≈

log10(rsink(low)) = −2. The simplified model appliesrsink to
all sink nodes at the soil–bedrock interface, leading to an
overestimation of pressure heads at the hotspots. However,
when this happens, the EnKF recognizes that the simulation
is systematically deviating from the artificial measurements,
and it updates the model states accordingly. Updating the
model states (i.e. pressure head) downward equates to an ex-
traction of water from the soil. However, since the updating
is not part of the model structure itself but rather an effect of
the state updating by SODA, we refer to it as an implicit sink
term. Pressure head in the hillslope is thus affected by two
flows that are part of the model (i.e. net lateral subsurface
flow and the sink term of Eq.6), as well as by the implicit
sink that is external to the model. The implicit sink repre-
sents any vertical losses that occur in excess of what Eq. (6)
accounts for. Without the implicit sink, the lower part of the
hillslope would be much too wet, which would in turn lead
to biased optimal parameters.

From a model evaluation perspective, the state updates are
interesting because they essentially form a record of how
model structural error affects the model states. Moreover,
the information contained within the record is specific to
both a location and a time, making it possible to relate the
magnitude and direction of state updates to physically rele-
vant processes. Figure7 shows the state updating that was
performed when SODA evaluated the simplified model us-
ing log10(rsink) ≈ −1.97 and log10(Ks) ≈ −0.46. Two types
of responses can be distinguished in the figure: on the one

hand, most of the states do not need any updating. For those
nodes, the simplified model provides an appropriate repre-
sentation of the measurements, at least when the model is
run with parameter values from the optimal range. On the
other hand, there are other nodes that need substantial updat-
ing (e.g. X00Y18, X06Y30, X09Y15, and X18Y09). These
nodes coincide with hotspots. The structural difference be-
tween the simplified model and the reference model leads
to consistently deviating a priori estimates of pressure head
in these areas, which are subsequently corrected by SODA.
Further down, we explain why state updating is not limited
to just the hotspots, but also occurs at nodes that are located
close to hotspots.

Besides model evaluation, state adjustment patterns are
also helpful in generating the inspiration and guidance for
constructing new, improved hypotheses. Such guidance is
necessary to avoid making ad hoc decisions with regard to
model design. As an example of how SODA can help to for-
mulate an improved model design, Fig.8 shows the magni-
tude of the state updating as a function of pressure head for
the nodes that have the strongest cumulative updates. The
figure suggests that the simplified model structure could be
improved by including an additional nonlinear term at the
locations for which the strongest cumulative updating was
performed. Figure8 further shows that no state updating was
needed for node X06Y30 when the pressure head was be-
low 0. This is consistent with the difference between Eqs. (5)
and (6). We argue that relations such as those visualized in
Figs.7 and8 greatly stimulate the discussion between mod-
eler and experimentalist about what process could explain
the state updating patterns. At the same time, these relations
also guide model improvement by setting constraints on the
functional form of the relation.
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Fig. 7. SODA (idealized data set): pressure head state updates in space and time, as associated with the Pareto-optimal parameter combination
log10(rsink)≈−1.97; log10(Ks)≈−0.46. For each node at the soil-bedrock interface, the figure contains a subplot showing a time series
of state updates (black line) fort=97–216h. Horizontal dashed lines represent zero-updates (no adjustment). To ease interpretation of the
updating pattern, each subplot was assigned a background color that visually shows the magnitude of cumulative negative updating. Greener
backgrounds mean stronger over-estimation (i.e. the model’s a priori value is too wet with respect to the artificial measurements). This figure
uses a color scheme that is different from that of Fig. 5 to emphasize the difference in interpretation between model-observation residuals on
the one hand and state updates on the other. The locations of sink hotspots as used in the reference model (but not the simplified model) are
indicated with asterisks.

Fig. 7.SODA (idealized data set): pressure head state updates in space and time, as associated with the Pareto-optimal parameter combination
log10(rsink) ≈ −1.97; log10(Ks) ≈ −0.46. For each node at the soil–bedrock interface, the figure contains a subplot showing a time series
of state updates (black line) fort = 97–216 h. Horizontal dashed lines represent zero updates (no adjustment). To ease interpretation of the
updating pattern, each subplot was assigned a background color that visually shows the magnitude of cumulative negative updating. Greener
backgrounds mean stronger over-estimation (i.e. the model’s a priori value is too wet with respect to the artificial measurements). This figure
uses a color scheme that is different from that of Fig.5 to emphasize the difference in interpretation between model-observation residuals on
the one hand and state updates on the other. The locations of sink hotspots as used in the reference model (but not the simplified model) are
indicated with asterisks.

3.2.1 Limitations with respect to measurement interval

In this part, we are using an idealized data set without any
measurement noise. As a result, the EnKF places much more
confidence on the measurements than it does on the a pri-
ori estimate of the model state: the a posteriori model state
is effectively determined by “resetting” the a priori model
state to the value of the measurement. When the confidence
balance is strongly in favor of the measurements, any errors
that may have been introduced since the last measurement
time are canceled almost completely after the states are up-
dated at the time of the next measurement. However, if a lot

of time passes in between measurement times (relative to the
dynamics of the modeled process) the error can still signifi-
cantly affect other model states. For example, we used 60 min
measurement intervals, but the SWMS3D model used in-
tegration time steps of 1–20 min (Table1). Small overesti-
mation errors introduced at the hotspots could thus spread
to neighboring nodes, where the a priori estimate of model
state was subsequently reset to the measured state during
state updating. This explains the small state updates that the
EnKF performed at the nodes adjacent to the hotspots at
X00Y18, X06Y30, X09Y15, and X18Y09 (Fig.7). Because
the spreading of errors is stronger when the measurements
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Fig. 8. SODA (idealized data set): state updating as a function of
state value for 4 hotspot nodes. The data for this figure originate
from SODA’s evaluation oflog10(rsink)≈−1.97 andlog10(Ks)≈
−0.46.

as the functional relation driving the model structure er-
ror. Due to gaps in the spatial distribution of measure-
ments, some other hotspots could not be identified, al-
though the space-time pattern of state updating did show
the general area where model structure errors were in-
troduced.

4. SCEM-UA cannot provide information that is as infor-
mative as that provided by SODA. Parameter estima-
tion methods such as SCEM-UA lack a strategy with
which the propagation of errors is reduced. Due to
compensation effects, tuning the parameters of a struc-
turally deficient model may therefore result in optimal
parameter values without any physical relevance. This
inhibits a straightforward interpretation of the model-
observation residuals with regard to model improve-
ment.

By using artificially generated measurements, we were
able to focus strictly on the usefulness of the algorithms,
while avoiding any issues relating to the quality of measure-
ments.

5 Next steps

The usefulness of the SODA approach as part of the iterative
research cycle must ultimately be demonstrated by its appli-
cation to real-world problems. Only then, we can judge how
much it can contribute to reducing the many uncertainties we
are facing when we study hydrological dynamics of catch-
ments. While this study has focused on improved analysis of
simulation-measurement discrepancies, various other aspects
also play a role in successfully learning from experimenta-
tion. For these aspects, continued experimentation with arti-

ficial measurements can be of great value, for instance when
investigating the effect of spatially distributed soil proper-
ties or the effect of uncertainties in the model forcings. Po-
tentially, there are many such effects influencing the model
state, and we do not claim that the proposed analysis is the
way to identify all of them. Nonetheless, SODA’s state up-
dating will certainly help to provide the information neces-
sary to improve our understanding of hydrological processes
in an iterative cycle of modeling, experimental design, data
collection and analysis.
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Fig. 9. SODA (reduced and perturbed data set): evolution of the parameters. Dashed lines represent value ofrsink(low) andrsink(high) (upper
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colors have been accepted. Note that the vertical axes are logarithmic.
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In summary, the analysis of SODA’s state updating helps
to identify model deficiencies and provides us with the infor-
mation necessary to improve our understanding of hydrolog-
ical processes in an iterative cycle of modeling, experimental
design, data collection, and analysis.

4 Conclusions

As models get more complex, there is a growing need for
better tools with which to evaluate them (e.g.Beck, 1987;
Gupta et al., 1998; Kirchner, 2006). It has been argued in
the literature that model evaluation should not be limited to
ranking model runs (differentiating between the good and the
bad representations of the real world), but should also pro-
vide some guidance on how to improve a given model struc-
ture (Beck, 1987; Lin and Beck, 2007; Gupta et al., 2008).
In this study, we purposely used a deficient model structure,
which we calibrated both by a parameter estimation approach
(SCEM-UA) and by a combined parameter and state estima-
tion approach (SODA). We then assessed how suitable each
method was for providing aforementioned guidance.

Four main conclusions that can be drawn from this work
are

1. State adjustment patterns generated by SODA are help-
ful in evaluating when and where model structural er-
rors occur.

2. Relations can be constructed between SODA’s state ad-
justments and the model states themselves. Such rela-
tions can readily be adopted in an improved version of
the model. Perhaps most importantly, they stimulate the
discussion between modeler and experimentalist about
what process could explain them, while at the same

time guiding the discussion by setting constraints on the
functional form of the relation.

3. For a reduced and perturbed data set, SODA proved
useful in identifying the location of some hotspots, as
well as the functional relation driving the model struc-
ture error. Due to gaps in the spatial distribution of mea-
surements, some other hotspots could not be identified,
although the space–time pattern of state updating did
show the general area where model structure errors were
introduced.

4. SCEM-UA cannot provide information that is as in-
formative as that provided by SODA. Parameter es-
timation methods such as SCEM-UA lack a strategy
with which the propagation of errors is reduced. Due to
compensation effects, tuning the parameters of a struc-
turally deficient model may therefore result in optimal
parameter values without any physical relevance. This
inhibits a straightforward interpretation of the model-
observation residuals with regard to model improve-
ment.

By using artificially generated measurements, we were
able to focus strictly on the usefulness of the algorithms,
while avoiding any issues relating to the quality of measure-
ments.

5 Next steps

The usefulness of the SODA approach as part of the iterative
research cycle must ultimately be demonstrated by its appli-
cation to real-world problems. Only then, we can judge how
much it can contribute to reducing the many uncertainties we
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Fig. 10. SODA (reduced and perturbed data set): pressure head state updates in space and time. These state updates are associatedwith
the Pareto-optimal parameter combinationlog10(rsink)≈−2.13; log10(Ks)≈−0.46. Where pressure head observations were available, the
figure contains a subplot showing a time series of state updates at the soil-bedrock interface (black line) fort=97–216h; the other nodes
have been grayed out. Horizontal dashed lines represent zero-updates (no adjustment). To ease interpretation of the updating pattern, each
subplot was assigned a background color that visually showsthe magnitude of cumulative negative updating. Greener backgrounds mean
stronger over-estimation (i.e. the simplified model’s a priori value is too wet with respect to the artificial measurements). This figure uses
a color scheme that is different from that of Fig. 5 to emphasize the difference in interpretation between model-observation residuals on the
one hand and state updates on the other. The locations of sinkhotspots as used in the reference model (but not the simplified model) are
indicated with asterisks.

Fig. 10. SODA (reduced and perturbed data set): pressure head state updates in space and time. These state updates are associated with
the Pareto-optimal parameter combination log10(rsink) ≈ −2.13; log10(Ks) ≈ −0.46. Where pressure head observations were available, the
figure contains a subplot showing a time series of state updates at the soil–bedrock interface (black line) fort = 97–216 h; the other nodes
have been grayed out. Horizontal dashed lines represent zero updates (no adjustment). To ease interpretation of the updating pattern, each
subplot was assigned a background color that visually shows the magnitude of cumulative negative updating. Greener backgrounds mean
stronger over-estimation (i.e. the simplified model’s a priori value is too wet with respect to the artificial measurements). This figure uses
a color scheme that is different from that of Fig.5 to emphasize the difference in interpretation between model-observation residuals on the
one hand and state updates on the other. The locations of sink hotspots as used in the reference model (but not the simplified model) are
indicated with asterisks.18 J. H. Spaaks and W. Bouten: Resolving structural model errors

Fig. 11. SODA (reduced and perturbed data set): state updating as a function of state value for selected nodes. The data for this figure
originate from SODA’s evaluation oflog10(rsink)≈−2.13 andlog10(Ks)≈−0.46.
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are facing when we study hydrological dynamics of catch-
ments. While this study has focused on improved analysis of
simulation-measurement discrepancies, various other aspects
also play a role in successfully learning from experimenta-
tion. For these aspects, continued experimentation with arti-
ficial measurements can be of great value, for instance when
investigating the effect of spatially distributed soil proper-
ties or the effect of uncertainties in the model forcings. Po-
tentially, there are many such effects influencing the model
state, and we do not claim that the proposed analysis is the
way to identify all of them. Nonetheless, SODA’s state up-
dating will certainly help to provide the information neces-
sary to improve our understanding of hydrological processes
in an iterative cycle of modeling, experimental design, data
collection and analysis.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
17/3455/2013/hess-17-3455-2013-supplement.zip.
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Blöschl, G. and Sivapalan, M.: Scale issues in hydrological mod-
elling – a review, Hydrol. Process., 9, 251–290, 1995.

Box, G. E. P. and Tiao, G. C.: Bayesian Inference in Statistical Anal-
ysis, Addison-Wesley-Longman, Reading, Massachusetts, 1973.

Boyle, D. P., Gupta, H. V., and Sorooshian, S.: Toward improved
calibration of hydrologic models: combining the strengths of
manual and automatic methods, Water Resour. Res., 36, 3663–
3674, 2000.

Boyle, D. P., Gupta, H. V., Sorooshian, S., Koren, V., Zhang, Z.,
and Smith, M.: Toward improved streamflow forecasts: value of
semidistributed modeling, Water Resour. Res., 37, 2749–2759,
doi:10.1029/2000WR000207, 2001.

Clark, M. P. and Vrugt, J. A.: Unraveling uncertainties in
hydrologic model calibration: addressing the problem of
compensatory parameters, Geophys. Res. Lett., 33, L06406,
doi:10.1029/2005GL025604, 2006.

Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A.,
Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Under-
standing Structural Errors (FUSE): a modular framework to di-
agnose differences between hydrological models, Water Resour.
Res., 44, W00B02,doi:10.1029/2007WR006735, 2008.

Doherty, J. and Welter, D.: A short exploration of structural noise,
Water Resour. Res., 46, W05525,doi:10.1029/2009WR008377,
2010.

Duan, Q., Gupta, V. K., and Sorooshian, S.: Effective and efficient
global optimization for conceptual rainfall-runoff models, Water
Resour. Res., 28, 1015–1031, 1992.

Dunn, S. M.: Imposing constraints on parameter values of a concep-
tual hydrological model using baseflow response, Hydrol. Earth
Syst. Sci., 3, 271–284,doi:10.5194/hess-3-271-1999, 1999.

Efstratiadis, A. and Koutsoyiannis, D.: One decade of
multi-objective calibration approaches in hydrologi-
cal modelling: a review, Hydrolog. Sci. J., 55, 58–78,
doi:10.1080/02626660903526292, 2010.

Eigbe, U., Beck, M. B., Wheater, H. S., and Hirano, F.:
Kalman filtering in groundwater flow modelling: prob-
lems and prospects, Stoch. Hydrol. Hydraul., 12, 15–32,
1doi:0.1007/s004770050007, 1998.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error
statistics, J. Geophys. Res., 99, 10143–10162, 1994.

Evensen, G.: The Ensemble Kalman Filter: theoretical formula-
tion and practical implementation, Ocean Dynam., 53, 343–367,
doi:10.1007/s10236-003-0036-9, 2003.

Franks, S. W., Gineste, P., Beven, K. J., and Merot, P.: On constrain-
ing the predictions of a distributed model: the incorporation of
fuzzy estimates of saturated areas into the calibration process,
Water Resour. Res., 34, 787–797,doi:10.1029/97WR03041,
1998.

Gelman, A. and Rubin, D. B.: Inference from Iterative Simula-
tion Using Multiple Sequences, available at:http://www.jstor.
org/stable/pdfplus/2246093.pdf, Stat. Sci., 7, 457–472, 1992.

Georgakakos, K. P., Seo, D., Gupta, H., Schaake, J., and
Butts, M. B.: Towards the characterization of streamflow simula-
tion uncertainty through multimodel ensembles, J. Hydrol., 298,
222–241,doi:10.1016/j.jhydrol.2004.03.037, 2004.

Goldberg, D. E.: Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, Boston, Massachusetts,
1989.

Hydrol. Earth Syst. Sci., 17, 3455–3472, 2013 www.hydrol-earth-syst-sci.net/17/3455/2013/

http://www.hydrol-earth-syst-sci.net/17/3455/2013/hess-17-3455-2013-supplement.zip
http://www.hydrol-earth-syst-sci.net/17/3455/2013/hess-17-3455-2013-supplement.zip
http://www.esciencecenter.nl
http://dx.doi.org/10.1029/2005WR004745
http://dx.doi.org/10.1029/2005JD006377
http://dx.doi.org/10.1029/WR023i008p01393
http://dx.doi.org/10.1029/2000WR000207
http://dx.doi.org/10.1029/2005GL025604
http://dx.doi.org/10.1029/2007WR006735
http://dx.doi.org/10.1029/2009WR008377
http://dx.doi.org/10.5194/hess-3-271-1999
http://dx.doi.org/10.1080/02626660903526292
http://dx.doi.org/10.1007/s004770050007
http://dx.doi.org/10.1007/s10236-003-0036-9
http://dx.doi.org/10.1029/97WR03041
http://www.jstor.org/stable/pdfplus/2246093.pdf
http://www.jstor.org/stable/pdfplus/2246093.pdf
http://dx.doi.org/10.1016/j.jhydrol.2004.03.037


J. H. Spaaks and W. Bouten: Resolving structural model errors 3471

Gupta, H. V., Sorooshian, S., and Yapo, P. O.: Toward improved cal-
ibration of hydrologic models: multiple and noncommensurable
measures of information, Water Resour. Res., 34, 751–763, 1998.

Gupta, H. V., Wagener, T., and Liu, Y.: Reconciling theory with
observations: elements of a diagnostic approach to model eval-
uation, Hydrol. Process., 22, 3802–3813,doi:10.1002/hyp.6989,
2008.

Gupta, V. K. and Sorooshian, S.: The relationship between data and
the precision of parameter estimates of hydrologic models, J. Hy-
drol., 81, 57–77, 1985.

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T.:
Bayesian model averaging: a tutorial, Stat. Sci., 14, 382–401,
1999.

Hopp, L. and McDonnell, J. J.: Connectivity at the hillslope scale:
Identifying interactions between storm size, bedrock permeabil-
ity, slope angle and soil depth, J. Hydrol., 376, 378–391, 2009.

Jazwinski, A. H.: Stochastic Processes and Filtering Theory, Aca-
demic Press, New York, 1970.

Kalman, R. E.: A new approach to linear filtering and prediction
problems, available at:http://www.cs.unc.edu/∼welch/kalman/
media/pdf/Kalman1960.pdf, T. ASME J. Basic Eng., 82, 35–45,
1960.

Kavetski, D., Kuczera, G., and Franks, S. W.: Bayesian analysis
of input uncertainty in hydrological modeling: 1. Theory, Water
Resour. Res., 42, W03407,doi:10.1029/2005WR004368, 2006a.

Kavetski, D., Kuczera, G., and Franks, S. W.: Bayesian analysis
of input uncertainty in hydrological modeling: 2. Application,
Water Resour. Res., 42, W03408,doi:10.1029/2005WR004376,
2006b.

Kirchner, J. W.: Getting the right answers for the right rea-
sons: linking measurements, analyses, and models to advance
the science of hydrology, Water Resour. Res., 42, W03S04,
doi:10.1029/2005WR004362, 2006.
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