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Abstract. Hydrologic models are one of the core tools used can more efficiently apply a hydrologic model over a geo-
to project how water resources may change under a warmingpgically complex landscape and resolve geo-climatic differ-
climate. These models are typically applied over a range ofnces in how different watersheds are likely to respond to
scales, from headwater streams to higher order rivers, and fa@imple warming scenarios.
a variety of purposes, such as evaluating changes to aquatic
habitat or reservoir operation. Most hydrologic models re-
quire streamflow data to calibrate subsurface drainage pa-
rameters. In many cases, long-term gage records may not bk Introduction
available for calibration, particularly when assessments are
focused on low-order stream reaches. Consequently, hydrd@ne of the key challenges in providing spatially distributed
logic modeling of climate change impacts is often performedstreamflow information is the limitation of data that is avail-
in the absence of sufficient data to fully parameterize theseble for hydrologic model calibration and parameterization
hydrologic models. In this paper, we assess a geologic-base@even, 2001; Singh and Woolhiser, 2002; Wagener and
strategy for assigning drainage parameters. We examine thé&/heater, 2006). Implementing hydrologic models typically
performance of this modeling strategy for the McKenzie requires calibration of a number of drainage-related param-
River watershed in the US Oregon Cascades, a region whereters that cannot be directly measured (Beven, 2001). Most
previous work has demonstrated sharp contrasts in hydrologyecent model-based studies of climate-warming impacts on
based primarily on geological differences between the Highhydrology within the Western US have used historic stream-
and Western Cascades. Based on calibration and verificatioffow records for model calibration (Knowles and Cayan,
using existing streamflow data, we demonstrate that: (1) &2002; Christensen et al., 2004; Hidalgo et al., 2009; Jung
set of streams ranging from 1st to 3rd order within the West-and Change, 2010; Null et al., 2010). Climate change impact
ern Cascade geologic region can share the same drainage pagssessments in the Western US address streamflow changes
rameter set, while (2) streams from the High Cascade geacross multiple scales and for multiple basins, ranging from
ologic region require a different parameter set. Further, wempacts on larger-order streams that provide water supply to
show that a watershed comprised of a mixture of High andimpacts on smaller headwater streams that support aquatic
Western Cascade geologies can be modeled without addhabitat (Farley et al., 2011). Particularly when assessments
tional calibration by transferring parameters from these dis-are focused on multiple streams and lower order stream
tinctive High and Western Cascade end-member parametgeaches, long-term gage records may not be available for cal-
sets. More generally, we show that by defining a set of end4bration. The limited availability of hydrologic data is fur-
member parameters that reflect different geologic classes, wiher exacerbated by the steady decline in the USGS stream-
flow gauging network (USGS, 1999). Hydrologic modeling
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studies often assume that parameters used for a largdghese systems are likely to respond to climate variability and
gaged watershed can be consistently applied to smaller sulzhange.
watersheds, or that parameters from neighboring watersheds In this study, we investigate drainage parameter variation
can be used. Calibration based on gauges from a larger oand its implication for hydrologic model-based estimates of
der watershed however, does not necessarily apply to the dseasonal streamflow responses to climate warming within
versity of lower order streams within that watershed. Simi-the McKenzie River watershed in Western Oregon. Our ap-
larly, parameter transfer from neighboring watersheds mayproach applies a process-based hydro-ecological model, the
not be appropriate. In this paper we present a relatively simRegional Hydro-Ecologic Simulation System (RHESSys),
ple strategy for parameter transfer based on geologic similarand focuses on the estimation of seasonal streamflow re-
ity. We hypothesize that for regions with sharp geologic con-sponse to climate change at multiple spatial scales. We pro-
trasts, we can develop end-members parameter sets based pose an end-member mixing approach to parameter trans-
geologic classification that can be used to parameterize hyfer, where end-member sub-watersheds are defined based
drologic models across a range of scales without additionabn geologic classification and used to estimate spatial pat-
calibration. terns of drainage parameters. We then examine the utility
Parameter transfer schemes, where parameters are asfthis parameter transfer strategy within the context of pre-
signed based on some readily measured watershed charadicting inter-annual variation in seasonal streamflow patterns
teristics, offer one approach for assigning drainage paramand streamflow response to climate warming in the snow-
eters when estimates of streamflow across a range of wadominated watersheds of the Oregon Cascades.
tersheds are needed. In fact, when drainage parameters are
assigned based on calibration of a larger watershed, stream-
flow estimates for nested subcatchments implicitly transfer2  Background
parameters and assume similarity of those parameters across
the larger watershed. Studies on parameter transfer have us&hsemble climate model predictions for the mountain re-
watershed size, elevation, and vegetation as a basis for trangions of the US Pacific Northwest (PNW) predict temper-
ferring parameters between watersheds with varying degreeature increases of between 1 antiC4(Payne et al., 2004).
of success (e.g., van der Linden and Woo, 2003; WageneBoth empirical and model-based analyses in the PNW also
and Wheater, 2006). These studies focus on overall moddink recent and projected future increases in air temperatures
performance using different parameter schemes, but do nowith reduced summer water availability (Tague et al., 2008;
explicitly address implications for estimating climate change Hayhoe et al., 2004). This study focuses on tributaries of the
impacts. Evaluation of parameter transfer schemes, calibraMcKenzie River, which is itself a tributary of the Willamette
tion approaches, and model performance in general shoul®River in Oregon. The Willamette River watershed is one of
ultimately reflect the context in which the model is being the largest river systems in Oregon, and drains 28 672tkm
used. How good is good enough depends on the modelings mouth at the Columbia River. The McKenzie River water-
goal. shed is one of several large tributaries of the Willamette that
Drawing on an example from the snow-dominated moun-drains from the Cascade crest westward before joining the
tains of the Cascades in Western Oregon, here we evaluatillamette in its northward flow. The McKenzie River wa-
parameter transfer approaches in the context of assessing ctiershed, at 3463 kfnaccounts for approximately 12 % of the
mate change impacts on streamflow. Our broader focus is olVillamette’s total drainage. Streamflow within the McKen-
the analysis of drainage parameter transfer within the framezie supports agriculture, aquatic biota, recreation, power gen-
work of snowmelt-dominated watersheds in the mountainouseration, and municipal water supplies. Climate change im-
Western US, and the use of hydrologic models to estimatgacts on the seasonality of flow, particularly reductions in
how streamflow seasonality in these watersheds will respondummer flows when discharges are already low, will affect
to a warming climate. The hydrology of mountain regions these water uses. Climate impact assessments for these mul-
throughout the globe is expected to be highly vulnerable totiple water uses will require estimates of the impact of cli-
a warming climate (Barnett et al., 2005). In snow-dominatedmate variability and change in streamflow at multiple scales
regions, warmer temperatures can reduce the amount of préFarley et al., 2011). For example, headwater reaches in the
cipitation falling as snow and lead to earlier snowmelt, partic- McKenzie support threatened fish species, such as Oregon
ularly at elevations where the majority of precipitation falls Bull Trout and Chinook salmon (US EPA, 2003). At larger
near @C (Nolin and Daly, 2006). These changes in snow scales, flows are regulated by several large reservoirs primar-
dynamics shift the timing of seasonal hydrographs, resultdily operated by the US Army Corps of Engineers within the
ing in increased flow in winter and reductions during spring McKenzie to provide power generation and flood protection.
and summer (Knowles and Cyan, 2002; Barnett et al., 2005; For the McKenzie and other similar snow-dominated wa-
Stewart et al., 2005). Process-based hydrologic models areersheds, a key hydrologic issue is how changing snow accu-
one of the core tools used to project how water resources imulation and snowmelt translate into changes in streamflow.
There are two primary controls on this response: (1) how
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spatial patterns of snow accumulation and melt change, and
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(2) how those changes in input translate into changes in Prelcr;lgilt‘;'tion & \JJ)
streamflow behavior (Fig. 1). The latter is primarily con- * hos et
trolled by subsurface drainage characteristics. Changes in POV N
evapotranspiration fluxes are a 3rd factor and can become ‘?\‘C QB oo *
increasingly important when climate change substantially al- 2 \ SN il oW 200
ters vegetation structure through disturbances. A significant RN Qe
research focus in the Western US has been on improving MR LA

vV \

models of snow accumulation and melt, as well as spatially

explicit estimates of climate forcing functions (Daly et al., N
1994). Translating these effects into streamflow change how-
ever, also requires adequate estimates of subsurface drainage

Filter 2:

characteristics. Our previous work has demonstrated that
within the McKenzie, geologically mediated spatial differ-
ences in subsurface drainage characteristics can be a 1st or-
der control on spatial patterns of streamflow response to
warming (Tague and Grant, 2009). Subsurface drainage char-
acteristics reflect both topography, which is relatively easy to
parameterize given the widespread availability of DEMs, and
effective subsurface conductivity of watersheds, where con-
ductivity is a complex product of matric- and macropore flow
rates and their distribution (Troch et al., 2009). In most hy- Fig. 1. Landscape responses to precipitation inputs — as a series of
drologic modeling studies, parameters associated with effecfilters (Tague and Grant, 2009).
tive conductivity, such as hydraulic conductivity and macro-
pore distributions, are calibrated or assumed to be spatially
uniform. Given that subsurface drainage properties evolve
through landscape evolutionary processes, one might expeg@roducing quicker transfer of recharge to streamflow (Tague
that these parameters would vary across geological classand Grant, 2004). These differences in flowpaths, and there-
fication (Jefferson et al., 2006, 2010). Empirical studies andfore subsurface residence times, lead to distinctively differ-
models based on streamflow patterns in the Oregon Cascadesit hydrologic regimes, characterized by higher baseflows,
support this assertion (Tague and Grant, 2004, 2009). slower recessions, and muted flood peaks in HC watersheds
Within the McKenzie River watershed, sharp geologic (Tague and Grant, 2009). During winter storm and early
contrasts exist between two largely contiguous geologicspring snowmelt peaks, recharge in WC regions quickly en-
provinces: (1) the Plio-Pleistocene High Cascades (HC) taers streams, contributing a greater portion to flow than in HC
the east, and (2) the primarily Miocene Western Cascadesegions. During summer periods, months after the last sub-
(WC) to the west (Sherrod and Smith, 2000). Elevationsstantial precipitation has fallen, the groundwater storage in
range from 400 to 1800 m in the WC and from 1500 m to overWC systems is largely depleted (Jefferson et al., 2006), and
3400 m at the summits of the large stratovolcanoes in the HCthe pattern reverses as the majority of flow in the McKenzie
Although the HC region has the highest elevations, much oforiginates from slow-draining HC aquifers (Tague and Grant,
the landscape is a broad constructional platform with rela-2004).
tively low relief; the WC is much steeper and more dissected. Given these geologic distinctions, we hypothesize that ge-
Young basaltic lava flows dominate the HC province while ologic classification should be a good indicator of drainage
older lava flows and volcaniclastic rocks dominate the WCparameters for hydrologic models. To assess whether geol-
province. These distinctions drive hydrologic flowpath dif- ogy can be used as an effective parameter transfer approach,
ferences and residence times (Jefferson et al., 2006). Theee compare the estimated parameters using model calibra-
young lava flows in the HC have exceptionally high perme-tion against observed streamflow across a range of scales for
ability with high vertical hydraulic conductivity, resulting in  WC watersheds, and compare with parameters estimated for
a greater portion of deep groundwater flow and large vol-HC watersheds. We then investigate the implications of us-
ume spring discharges. The high vertical conductivity allowsing a “generalized” WC and HC parameter set for predict-
recharge to quickly drain through the shallow and undevel-ing streamflow responses to warming and test model perfor-
oped soils and intersect large deep aquifers, where residengeance for a watershed that includes both HC and WC geol-
times can be on the scale of years or decades (Jefferson egy, where spatial patterns of drainage parameters within the
al., 2006). In the WC, greater drainage efficiencies due towvatershed are assigned based on these generalized values,
steep lateral hydraulic gradients, shallow bedrock, and clayderived from calibration of end member WC and HC water-
aquitards confine recharge to the shallow subsurface regiorsheds. We then explore how model assessments of climate
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warming impacts on streamflow seasonality respond to theseput data based on standard elevational lapse rates. While
strategies for assigning drainage parameters. additional meteorological stations are located within the wa-
tershed, long-term records at multiple meteorological sta-
tions are often unavailable. In contrast, approaches for inter-
3 Methods polating climate data such as PRISM are available for wide
geographic areas. Here we test how well streamflow char-
RHESSys (Tague and Band, 2004) is a physically based, spacteristics can be predicted for different watersheds using
tially distributed, hierarchical daily time-step model that cou- commonly available data sets. Other GIS data sets, such as
ples watershed hydrology, vegetation growth, and soil bio-soils, land cover, and elevation, are obtained from the Ore-
geochemical cycling processes. It models both vertical andyon Geospatial Data Clearinghouse.
lateral hydrologic processes. As a spatial model, RHESSys There are six hydrologic parameters that can be calibrated
discretizes the landscape into a hierarchy of spatial objectin RHESSys. Two parameters control soil transmissivify:
including: watersheds; hillslopes, which drain to either side(m day 1), the saturated hydraulic conductivity at the sur-
of a stream reach; zones, which are areas of similar meteordace; andn (meters), the exponential decay of saturated con-
logical forcing within hillslopes; and finally patches, which ductivity with depth; such that:
are typically 30 to 90 m scale modeling units. Most verti-
cal p?/(?cess}i/ng of hydrologic and carbongcycling processes isK (2) = exp(=zp/m). (1)
done at the patch scale; while shallow subsurface moisturélerez is depth (m) below the surface apds porosity. Two
redistribution occurs between patches at the hillslope scaleparameters control soil moisture holding capacity: po — pore
and a deeper groundwater store is also modeled at the hillsize index; and pa (meters of water), soil water potential at
slope scale. The shallow subsurface flow model considersir entry; and two parameters control deeper ground-water
four layers: (1) a surface detention store, (2) rooting zone drainage: gw1l, the percentage of subsurface water that enters
(3) unsaturated store, and 4) saturated zone store, and routasdeep groundwater storage, bypassing shallow subsurface
this surface and shallow subsurface water laterally betweefiowpaths and rooting zone storage; and gw2 (% djythe
model units (30—120 m patches) based on topography andate of drainage from the deep groundwater storage. The last
soil drainage parameters. Transpiration of infiltrated water, aswo parameters are only included in parameterization if this
well as evaporation of water from interception, litter, and soil deeper ground-water store is needed, i.e., for watersheds with
is estimated using the Penman-Monteith approach. DeepdfC geology (Tague and Grant, 2004). Where deep ground-
groundwater flow of water that bypasses the shallow subwater is not present, a simpler representation of subsurface
surface flow system is modeled at a coarser hillslope scalérainage is obtained by setting gwl to 0, thus using only a
(unit draining either side of a stream reach) using a linearshallow subsurface flow representation in the watershed.
storage-discharge relationship. RHESSys has been applied in The gwl and gw2 parameters are used to characterize the
a number of mountain catchments in the Western US (Barordeeper ground water systems that are well below the biolog-
et al., 2000; Tague and Grant, 2009), as well as mountainical active soil and rooting zone. The other four parameters
ous catchments in Europe (Zierl et al., 2006), and evaluateqpo, pa,m, K) reflect soil characteristics and shallow sub-
against respective catchment observed streamflow, snow, casurface flowpaths. We hypothesize that the younger, deeper
bon and moisture flux data. The model’s physical treatmenigroundwater dominated HC region will lead to higher values
of rain and snow partitioning, snow melt, shallow and deepof gw1. We also note, however, that soil water-holding capac-
groundwater flow, and evapotranspiration make it a suitablgty (parameters po and pa) and shallow subsurface drainage
tool for studying the impacts of global change on mountain(m and K) are also likely to depend on the time taken for
hydrology. Details of RHESSys process representation arsoil development. Western Cascade soils are derived from
summarized in Tague and Band (2004). bedrock that has weathered in place for up to 30 million
RHESSys model inputs consist of meteorological time se-years, over which time a wide range of clay species have de-
ries data and GIS-based inputs of topography, soils, land use/eloped forming impervious layers and aquacludes. Infiltra-
and land cover. For simplicity, we use data from a single me-tion rates are high with abundant residual stones and clasts
teorologic station as input. While this paper focuses on the(Dyrness, 1969), and soils are shallow due to mass wasting
role of subsurface drainage uncertainty, another key chaland creep. In contrast, HC soils are much younger (less than
lenge in estimating streamflow in mountain environmentsseven million years) and typically lack abundant clays and
is distributing meteorological and, in particular, precipita- corresponding impermeable layers. They also occupy much
tion data. For this study, we account for spatial variationlower gradient portions of the landscape, meaning that hy-
in precipitation using a single meteorological station com-draulic gradients are gentler.
bined with widely available PRISM mean annual precipita- RHESSys was calibrated independently for seven gaged
tion grids (Day et al., 1994) to derive spatially variable esti- watersheds in the upper McKenzie watershed, including two
mates for daily precipitation data. For temperature, we alsdHC watersheds and five WC watersheds (Table 1, Fig. 2).
use the same meteorological station and adjust temperaturehe two HC watersheds are McKenzie River at Clear Lake
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Table 1. Watershed characteristics. Watershed Locations

Watershed Abbreviation Drainage Elevation  Geology , ‘ Y s
(WS) (k) (m) Elevation [/
Budworm Creek  BUD 7.77 (54.5) 619-1626 WC D 3152 M
Lookout Creek HJA 62.4 428-1620 WC 3
Mack Creek MACK 5.8 758-1610 WC 2437
Watershed 2 w2 0.60 548-1070 WC _‘
Watershed 8 w8 0.22 993-1170 WC 1723 B N
Clearlake CLR 239.3 924-2019 HC
Horse Creek HORSE 387.5 439-3152 HC
Southfork SF 538.7 530-2044  36% WC; 1008
64% HC

== 294

] west /L"

[ High

(CLR) and Horse Creek near McKenzie Bridge (HORSE).
The five WC watersheds are Budworm Creek near Belknap
Springs (BUD) and Lookout Creek (HJA), along with three Fig. 2. Map showing study watersheds (listed in Table 1) and geo-
sub-watersheds within the Lookout Creek drainage (MACK logic classification.

Creek, W2, and W8). The number of HC watersheds con-

sidered was limited by the small number of gaged water-

sheds draining predominately HC geology. All seven water-but all gave model results within the acceptable performance
sheds were calibrated for two water years, following a sin-criteria.

gle year of spin-up. All watersheds were run across the same To assess the use of geologic classification as a method
1500 randomly generated parameter sets by sampling from #or assigning hydrologic parameters, we apply RHESSys
uniform random distribution within realistic ranges for each to the South Fork McKenzie (SF) watershed (comprised of
of the six parameters. For 300 of the 1500 parameter setdyoth HC and WC geology; Table 1, Fig. 2). We use an end-
we set gwl equal to 0 in order to run a simpler (and moremember mixing approach, where drainage parameters within
parsimonious) model. Realistic ranges for each paramete8F are assigned based on drainage parameters for “pure” WC
were established based on RHESSys parameter libraries. Wend HC watersheds. In other words, parameters are varied
used two performance metrics, the Nash—Sutcliffe Efficiencyspatially according to HC/WC geologic classification within
(NSE) and the NSE of log-transformed flow (NSElog), to the SF watershed. The pure “WC” and “HC” parameters
evaluate the parameter sets. The Nash-Sutcliffe Efficiencyare the generally acceptable drainage parameters from the
is a commonly used metric for evaluating streamflow pre-calibrations of HC and WC described above. Thus, for the
dictions from hydrologic models. Because streamflow in thisportion of SF with HC geology (approximately 64 % of the
region has a high dynamic range (high winter peaks and lowdrainage area), we use parameter sets that had acceptable per-
summer flows), we add the NSE of log-transformed flowsformance from the CLR and HORSE calibrations. For the
to test whether the model can capture recession and summ&yC portion (36 %), we use parameter sets that had accept-
flow behavior as well as storm flows. able performance across all five WC watersheds.

For each watershed, we compared the number of accept- NSE is a commonly used performance metric and values
able parameter sets as well as sensitivity of model perforabout 0.5 are often considered acceptable. Nonetheless, as-
mance to each parameter. We examine how acceptable paessing how “good” is “good enough” depends on the ap-
rameter values differ between HC watersheds and WC waplication of the hydrologic model. For this study, we base
tersheds relative to comparisons of acceptable parameter satsir assessment of “good enough” on the ability of the model
within WC watersheds alone. The parameter sets are cornto capture changes in seasonality of streamflow with climate
sidered acceptable if the NSElog value).5; we also con-  warming. In climate change assessment within the West-
sider a more stringent criterion 0.8. We then define our ern US, a frequently used measure of streamflow change
generalized HC parameter sets as those that are acceptabléth warming is the spring fraction of total annual stream-
for both of the two HC watersheds and our generalized WCflow. Studies have shown that as snowpacks decline, the late
parameter sets as those that are acceptable for all five W&pring and early summer fraction of total annual flow also
watersheds. To test model performance, we selected four catieclines (Regonda et al., 2005; Stewart et al., 2005). To ex-
ibrated parameter sets from the generally acceptable data satmine whether model performance for the SF watershed us-
and ran RHESSys for all years for which streamflow is avail-ing the generalized parameter sets is “good enough”, we ex-
able (> 25 water years for most watersheds). Parameter setamine the correlation between observed and modeled spring
were selected to cross a range of different parameter values,action of flow. We define spring as April-June. We then
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Fig. 3. Cumulative distribution of performance across parameter sets. The y-axis gives the cumulative probability of the performance measure
(or parameter distribution). The x-axis gives the value of the parameter. Solid black line shows the original parameter distribution; colored
lines show distribution of performance by parameter value for each watershed. Departures from the black line show preference for particular
parameter values.

simulate the response of SF and other watersheds to botimterpreted as the reference distribution). Generally, depar-
2 and 4 C warming scenarios (using one of the best perform-tures above the reference distribution indicate preference for
ing parameter sets), and assess whether predicted changes pegrameter values in that range and vice-versa. Results were
small or large relative to error in predicting historic stream- similar using the NSE performance metric so only NSElog
flow response to inter-annual climate variability. We apply aresults are shown. The greatest difference in acceptable pa-
uniform temperature increase to historic meteorologic forc-rameter distributions occurs between HC and WC sites; this
ing data to generate the warming scenarios. Predicted futurdifference is present for all parameters. Relative to the WC
warming scenarios in the PNW range between one and eightvatersheds, the HC watershed CLR shows improved per-
degrees (Mote and Salathe Jr., 2010). We acknowledge thdormance for higher values of gwl, lower values of gw2,
a uniform warming scenario is simplistic and actual climate higher values ofn, and lower values oK. This set of pa-
warming will be more temporally complex; we use it here, rameters for a HC watershed reflect a slower draining system
however, to assess the sensitivity of modeled streamflow tavith greater proportions of infiltrated water connecting to a
changes in temperature, given different assumptions aboudeeper groundwater reservoir. The HC watersheds also show
drainage parameters. a slightly different responses to air entry pressure (pa) and
pore size index (po). All sites show a strong sensitivityto
(e.g., cumulative distribution of NSElog acrosgparameter
4 Results shows the greatest departure from the distributions of param-
) . ] eters within the calibration data set). For theparameter,
Figure 3 illustrates the cumulative performance across paere are also differences within the WC sites, particularly for
rameter values for each of our six calibration parametersy2. Higher values ofr show improved performance in W2
within each of the seven calibration watersheds. Followingye|ative to other WC sites. The distinctive calibrated parame-
Thorndahl et al. (2008), we examine model sensitivity t0 Spe-ers for W2 relative to other WC watersheds may suggest ac-
cific parameters by comparing this cumulative performancey, difference in drainage characteristics. We note, however,
distribution with the cumulative distribution of parameter pat parameters associated with W2 may alternatively reflect
values. Calibration preference (or improved performance) forpotential errors in stream gage measurement, since previous
particular parameter values is demonstrated by a shift of th‘ﬁydrologic analysis in W2 using a water-balance approach
cumulative distribution of NSE or NSElog for that parame- suggests that approximately 20 % of streamflow may be lost

ter relative to its cumulative distribution within the calibra- 55 geep groundwater and not captured by the gage (Waichler
tion set (shown in Fig. 3 as a solid black line — this can be
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Table 2. Number of acceptable parameters sets for each watershediable 3. Example of an acceptable parameter set across common
geologic watersheds.

WS Initial Criteria Stringent Criteria

(NSElog>0.5) (NSElog>0.8) WS M K pa po gw2  gw2
R 17G% 0 (m) (mday?) (m) (dim) (0-1) (0-1)
HORSE 11 (2%) 0 CLR 5.1 34 0.9 1.6 0.3 0.6
BUD 266 (44 %) 20 (3%) HORSE 5.1 34 0.9 1.6 0.3 0.6
HJA 431 (72 %) 185 (31 %) BUD 0.8 58 1.8 1.1 0 0
MACK 404 (67 %) 152 (25 %) HJA 0.8 58 1.8 11 0 0
W2 327 (55 %) 126 (21 %) MACK 0.8 58 1.8 1.1 0 0
W8 376 (63 %) 111 (19 %) w8 0.8 58 1.8 1.1 0 0

w2 1.8 249 1.8 13 0.2 0.6

et al., 2005). Improved performance for WC watersheds oc-
curred with lower values ofz relative to HC watersheds. sets for the HC watershed have gw1 setto 0. Thus, for the HC
Lower values ofn denote a steeper decline in hydraulic con- watersheds, a deeper groundwater store must be included.
ductivity with depth, and are consistent with shallower hy- For validation, we randomly selected four parameter sets
drologically active soils. This result is consistent with the from those that were considered acceptable for the WC sites
more well-developed clay and bedrock confining layers as-and then for the HC sites, respectively, using the more strin-
sociated with the older WC geology. gent selection criteria. We argue that any of these parameter
Table 2 summarizes the number of acceptable paramesets could be selected as the “best” parameter set in a calibra-
ter sets for each watershed. The watersheds differ in term#on process, depending on the criteria used or the calibration
of the percentage of parameter sets that achieved an aperiod. We examine results from four parameters within the
ceptable level of performance, where acceptable was deacceptable set to ensure that our results are not overly de-
fined as NSElog- 0.5. HJA had the highest (72 %) number pendent on which “acceptable” parameter set is chosen. For
of parameters that achieved acceptable performance, whilBUD, HJA, MACK, and W8, we use parameter sets that met
HORSE had the lowest (2 %). There were 173 parameter setihe more stringent criteria for all sites, and two that did not in-
that were acceptable for all WC sites (10 % of parametersclude a deeper groundwater store (gwl was set to 0). We con-
based on NSElog 0.5 criteria). None of the parameter sets sider these parameters to be examples of WC end-member
that achieved acceptable performance for the WC sites alsparameter sets. We exclude W2 calibrations from developing
achieved acceptable performance for the HC sites. In othethe end-member WC parameter set because of their deviation
words, the set of acceptable parameters for the WC sites wergom other WC watersheds and the evidence of observation
mutually exclusive from those for the HC sites. Within the error as the cause of this difference as noted above. For W2
WC sites, however, there was substantial, although not comsimulations itself, however, we use parameters that met the
plete, overlap of acceptable parameter sets. more stringent criteria for W2 and the initial criteria for all
There was some variation in overall performance in theWC sites. For HORSE and CLR, we randomly selected four
calibration period between different sites. In general, sitesparameter sets that met the more stringent criteria for both of
with a larger number of acceptable parameters had highethose sites, and consider these parameters to be examples of
overall performance. To try to further constrain parameterHC end-member parameters. Table 3 summarizes one of the
values, we consider a more stringent criteria, defined agparameter sets selected.
NSElog > 0.8 (Table 2). Using these more stringent crite- Table 4 summarizes model performance for a seven-year
ria, there remain 17 parameter sets that are acceptable acrosgaluation period that is common across all watersheds (ex-
BUD, HJA, MACK, and W8 sites. However, W2 parameter cept HORSE, which had very few years of overlap) and for
sets do not overlap with the other sites if these more strin-a longer period using the full streamflow record available
gent criteria are used. This difference in W2 performance refor each watershed. As expected, all watersheds show some
flects its differing sensitivity to the: parameter as discussed degradation in performance over the evaluation periods rel-
above. ative to the two-year period used for calibration. Nonethe-
There are parameter sets that have gwl set to 0 withidess, all watersheds show at least reasonable performance for
those that are acceptable for BUD, HJA, MACK, and W8 the common evaluation and longest evaluation periods, with
using these more stringent criteria. We consider these sets tNSElog above 0.6 and NSE above 0.4 in most cases. Wa-
be preferable, given that they result in a simpler (more parsitersheds do differ in terms of long-term performance, with
monious) model because the deeper groundwater store is n6tORSE and CLR showing lower NSElog values than other
used. Itis worth noting that none of the acceptable parametewatersheds. We note that Horse and CLR are located farthest
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Table 4. Model performance across four chosen parameters.

WS Calibration Evaluation Evaluation

(WY 1999-2000) (longest period) (WY 1980-1986)

NSElog NSE NSElog NSE Eval. period NSElog NSE
CLR .51-.67 .30-.68 .61-68 .55-.56 WY 70-06 .54-62 .50-.53
HORSE .50-.62 .46-.65 .52-59 .40-.48 WY 62-69 NA NA
BUD .80-.83 .62-.68 .68-75 .40-45 WY 79-86 .67-74 40-44
HJA .82-91 .72-.82 .68-.82 .47-.60 WY 58-05 .70-.80 .49-.62
MACK  .85-91 .60-.70 .68-76 .41-49 WY 80-06 .56-.69 .40-.53
W2 .83-91 .51-61 .69-75 .36-.44 WY 58-06 .66—.74 .31-43
w8 .88-.89 .60-.66 74-75 .35-.37 WY 64-05 .69-72 .39-.46
SF NA NA .75-80 .58-.66 WY 58-88 .68-.75 .59-.69

from the meteorologic station, and thus are most susceptibl@able 5. Effectiveness of end-member parameters for the WC

to errors in spatial interpolation of precipitation. region.
To demonstrate the effectiveness of end-member param-

eters for the WC region, we compute the range of NSElog Min Mean Max
values obtained for full simulation period for each WC wa- NSElog NSElog NSElog
tershed using only the set of parameters that were accept- BUD 067 0.77 0.85
able for all other WC watersheds (Table 5). We exclude W2 HJA 0.57 0.85 0.93
from this analysis. Essentially, these show the range of per- MACK 0.65 0.86 0.91
formance that would have been obtained for that watershed w8 0.84 0.87 0.91

if parameters were based on acceptable WC end-member pa-
rameter sets, rather than calibration of that particular water-
shed. Acceptable end-member parameters were based on cal- o )
ibration of the other WC watersheds. Results show good periNPUts), which is an ongoing area of research. Further work
formance for all WC watersheds, including the nested wa-USind improved precipitation input estimates will also test
tersheds within the HJA (W8 and MACK) as well as the whether under-prediction reflects geologic controls. In par-
neighboring watershed (BUD). We could not repeat this ex-licular, the disorganized drainage of the HC portion of SF
periment for HC because we were limited to only two end- MY in some cases lead to inter-basin subsurface water trans-
member HC watersheds. However, generalization of HC paf€rs- This effect was shown to be small for the CLR water-

rameters is supported by results from the mixed-geology gpshed and we do not expect it to be a s.ignific.ant loss here but
watershed, as discussed below. further work would be needed to confirm this. Performance

Streamflow predictions for SF, resulting from a set of pa- metrics for 16 combinations of parameters (four different ex-
rameters transferred using the geologic end-member mix@mples of HC end-member parameters paired with fou_r ex-
ing described above, show good correspondence betwee‘?_fnples_’ of WC end-member parameters), after the precipita-
observed and modeled flows (Fig. 4). Based on our initialtlon 2djustment, are summarized in Table 4. _
model implementation using this approach, streamflow pre- Model results for SF show relatively minor degradation
dictions were consistently 20 % lower than observed streaml Performance relative to the other watersheds that used
flow across all parameter sets. The long-term bias of 20 yalibrated parameters. For the common evaluation period,
in total streamflow likely reflects a bias in input rather than NSE for calibrated watersheds ranges from 0.59 to 0.69 and
drainage parameters, which tend to influence the hydrograph'SEI09 from 0.68 to 0.75. Performance measures for SF
shape. Error in precipitation input estimates is not surpris-2'€ Within or even better than these ranges. For the longest
ing given that precipitation inputs are based on a meteoro€valuation period, SF produces performance metrics wnhm
logic station more than 27 km from SF. Although PRISM the_ranggs produced by the watersheds for the calibration
was also used to scale precipitation from the meteorologid®€/0d- Figure 5 shows modeled streamflow for SF for one
site, PRISM grids are also relatively coarse (200 m). SinceVater year, using a parameter set based on our geologic
the focus of this paper is on drainage parameters, we simpl¢nd-member mixing approach. We compare this prediction
applied a 20 % increase in precipitation input to the model to'© Predictions using only WC or HC parameters. When SF
account for the difference. We note, however, that the neced 'Un @s an all WC watershed, winter peaks are overpre-

sity of post-hoc precipitation adjustment illustrates the sensi-dicted and summer flows underpredicted. When SF is run

tivity to precipitation interpolation (or downscaling for GcMm @S an all HC watershed the opposite bias occurs. Thus, when
WC parameters are used for SF, we get a reasonable NSE
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Fig. 4. Southfork watershed streamflow, modeled and observed. Modeled streamflows are generated using geologic end-members to assig
soil drainage parameters.

(0.71), but a much low NSElog (0.28). When HC parame-the model captures historically driven climate variation in the
ters are used for SF, we get a reasonable NSElog (0.83), bugeasonality of flow for all sites.
a lower NSE (0.65). Using a combination of HC/WC in the  For most sites, model estimates of long-term means of
end-member mixing approach substantially improves perforspring fraction were not significantly different from observed
mance and obtains high NSE and NSElog performance meavralues (Fig. 7a). The exception is W2, where modeled means
sures (0.83, 0.9 respectively). Differences in performance usef spring fraction were significantly higher than observed
ing spatially uniform HC or WC parameters versus spatially values. As noted above, W2 model results tend to over-
explicit parameter sets suggest that hydrologic behavior oestimate flow in general and may reflect stream gage limita-
SF reflects its mixed geologies, which include flow from both tions. Overestimation of spring fraction by the model would
the relatively fast shallow subsurface dominated WC geologytherefore be expected given that more flow occurs during
and the slower deeper groundwater dominated HC geology.the spring. Interestingly, W2 shows the highest correlation
If end-member drainage parameters are used, all sitebetween historic inter-annual variations in observed versus
show statistically significant (p-value 0.001) relationships modeled spring fraction (Fig. 6) — again suggesting that the
between observed and modeled estimates of inter-annuahodel captures response to climate variation but that there is
variation in spring fraction of annual flow (Fig. 6). Corre- an overall bias in estimates of the volume of flow.
lation coefficients of the relationship between observed and Finally, we test whether model estimates of spring frac-
modeled inter-annual variation in spring flow fraction range tion of flow for warming scenarios are significantly different
from 0.6 to 0.9. Lowest correlations occur for CLR. Good from baseline estimates. For the@ warming scenario (T2),
correlation between observed and modeled estimates of inte€LR, HJA, MACK, and SF show statistically lower spring
annual variation in spring fraction of annual flow suggest thatfractions. For the 4C warming scenario (T4), all water-
sheds except the more rain-dominated W2 show significant

www.hydrol-earth-syst-sci.net/17/341/2013/ Hydrol. Earth Syst. Sci., 17, 34354, 2013



350 C. L. Tague et al.: Parameterizing sub-surface drainage with geology

Southfork McKenzie i HORSE (0.37) ) CLR (0.66)
=y 2
8 = = observed e . g
—— combined, NS=.83 = S o ’
o | — asall WG, NS=71 & 1 ]
© —— as all HC, NS=.65 — o] o |
LL o = T T T T T T T o = T T T T T T T
— 0 | i 00 01 02 03 04 05 06 0.7 00 01 02 03 04 05 06 0.7
o
g (% } BUD (0.89) } HJA (0.73)
~ o | . o | © |
=z « T o] o] .
.,—9 o o] o] i
g 2+ = S ] S
o o] g
"(75 9 - = T T T T T T T T = T T T T T T T T
00 01 02 03 04 05 06 0.7 00 01 02 03 04 05 06 0.7
o MACK (0.58) W2 (0.70)
o] . @]
07 07
° = o] o] AT
% o] o] ;.;'.t:: .
ICI ]
L g B T T T T T T T g B T T T T T T T
o 00 01 02 03 04 05 06 0.7 00 01 02 03 04 05 06 0.7
Q.
n W8 (0.51) SF (0.53)
= = observed o] R ©
— combined, NS=.90 ° S =N
@ — asall WC, NS=.28 § ] ] :
= \ — asall HC, NS=83 o 31
E . .
e g’ T T T T T T T T g’ T T T T T T T T
g 00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07
E_| Obs. Spr. Fract. Obs. Spr. Fract.
(]
2 Fig. 6. Correlation between observed and modeled spring fraction
‘é ° of annual flow. Values in brackets are Pearson Correlation Coeffi-
9o cient — all were significant at 99 % confidence. Results are shown
T for a single acceptable parameter set and for all years with ob-
served/modeled streamflow (available water years for each water-

shed are listed in evaluation column of Table 4).

Oct
Nov —
Dec —
Jan —
Feb —
Mar —
Apr H
May —
Jun —
Jul
Aug —
Sep

Fig. 5. Observed and modeled dai(g) streamflow andb) log-
transformed  streamflow for South Fork McKenzie. Modeled ¢ o\ ssion
streamflow estimates are shown for three parameter-transfer strate-
gies including using only WC end-member parameters, only HC ) ) o )
end-member parameters and combined strategy where parameteePmparison of drainage parameter sensitivity across multi-
are varied spatially according to HC/WC geologic classification Ple watersheds provides insight into underlying hydrologic
within the Southfork watershed. behavior of these watersheds, and establishes a basis for de-
ciding whether or not hydrologic parameters might be readily
) ) _transferred from one watershed to another. For sites within
reductions (Fig. 7a). For the SF watershed, changes ifhe \WC geologic region, we show that parameters can be
streamflow with warming are large relative to model error. readily transferred across scales ranging from a 4th order
Further, we show that for the SF watershed, changes in springja) to a 3rd order (MACK) to a 1st order (W8) water-
fraction of flow are substantially different across different gheq, parameter sensitivity for HC sites was clearly differ-
assumptions regarding drainage parameters (Fig. 7b). Simant from WC sites, and is consistent with the interpretation
ulations using the HC watersheds show the least reductiopyresented in other modeling and empirical analyses (Tague
in spring fraction of flow with warming, and also show al- et a|,, 2008; Jefferson et al., 2008) that suggest HC geology
most no difference between T2 and T4 warming scenarioSsypports a slower draining, deeper groundwater system. Fur-
If WC end-member parameters are used, the reduction iRner, we show that for a watershed of mixed geology (SF), pa-
spring fraction of flow is greater, more variable from year to ;3meters from WC and HC end-member sets can be used to
year, and shows a greater decline with more warming. Usingptain reasonable streamflow estimates without calibration.
the combined end-member approach, changes in seasonal-The success of parameter transferability based on this
ity with warming are intermediate between those found Us-mappable HC/WC classification depends on (1) whether the
ing the WC end-member and HC end-members alone. In thigyc/\wc geologic classification resolves dominant spatial dif-
case, there is a moderate, though still substantial, reductiofsrences in subsurface drainage behavior; (2) whether the
in spring fraction of flow with 2C warming, but with high  model representation of spatial differences in snow accumu-
inter-annual variation. lation and melt is adequate and not implicitly corrected for
by drainage parameters; and (3) whether spatial variation in
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Horse Cir Bud HIA RHESSYys is a spatially distributed hydrologic model of in-
7 termediate complexity. Simpler hydrologic models (such as
5 . . IHACRES; Littlewood and Jakeman, 1994) that use a lumped
3 ol4~ ST _ i representation of fast and slow drainage systems may also
"C';, o:3~QE o EEE T T T H o be able to capture geologically based hydrologic differences
£ 02" B | BQQE HE ¢ between HC and WC systems. In these steep mountain wa-
o, - - - Q! tersheds, however, discretization of the landscape to account
004 R for spatial patterns of snow accumulation and melt would
% T g, T § Ty é Ty be more difficult to capture with these lumped models. In
@ © © @ addition, accounting for within-watershed spatial redistribu-
oy ek w2 we SF tion of moisture may also impact evapotranspiration esti-
c 064 . T mates by supporting higher ET in near stream areas or topo-
L os{ I - o ; graphic hollows. RHESSys also accounts for coupled feed-
S o0l T[] R i o backs between ecosystem carbon cycling, growth, and hy-
';';, osBH L : E L 3 f ' EB i drology. This paper highlights that a relatively simple hydro-
g 024 1 *Bi é ‘ Q. H ‘ E - Ll ?! logic parameterization scheme can be effective for this type
N 01 = Pl B ’ of intermediately complex hydrologic model.
oo e R R Ultimately, the evaluation of model performance depends
§grF §2FF §2FF §4FF (@) upon the use of that model. Here we evaluate model per-

formance relative to an assessment of the impact of simple
climate warming on seasonality of streamflow. Specifically,
; we examined model estimates of the spring fraction of an-
R nual flow. For most study sites, our model estimates of mean
‘ : spring fraction of flow and its inter-annual variation were
not significantly different from observed flow given historic
climate forcing. There are, however, notable differences in
inter-annual mean and variation between observed and mod-
§ | eled estimates. One potential source of these errors would be
— B4 ‘ : errors in estimation of meteorologic inputs. Interpolation of
1 : R ‘ ‘ both temperature and precipitation in mountain environments
. . is a well-documented source of error in hydrologic models
WCT2  WCT4 HCT2  HCT4 CombT2 CombT4 (D) (Liston and Elder, 2006). Here we use a relatively simple ap-
proach where point meteorologic measurements of tempera-

eled (white) and observed (gray) with historic climate (WY) and ture are Scaleq using a.ConStant envl|r-onr_nen.tal lapse rate of
modeled results for a & (orange) and C (red) warming sce- temperature with elevation, anq precipitation is scaled based
nario. Results are shown for a single acceptable parameter set arfR! long-term mean patterns derived from PRISM (Daly et al.,
for all years with observed/modeled streamflow (available water1994). Recent studies have shown that air temperature lapse
years for each watershed are listed in evaluation column of Tafates with elevation are considerably more complex in this
ble 4). (b) Change in modeled spring fraction of annual flow for region, reflecting temperature inversions and cold air pool-
2°C (white) and £#C (gray) warming scenarios in SF run as all ing (Lundquist and Cayan, 2007; Daly et al., 2007). Simi-
WC, as all HC, and SF comprised of both HC and WC. larly, there are likely to be substantial errors in interpolating
precipitation data for specific storm events. Our use of daily
streamflow over several decades for model calibration and
other inputs, including meteorologic forcing, is adequately evaluation emphasizes long-term seasonal patterns of high
represented. For the SF, the necessity of adjusting incomand low flows and recession behavior —which are more likely
ing precipitation magnitudes suggest that condition (3) isto be sensitive to average climate and geology and are the fo-
not met and more sophisticated schemes for interpolatingus of this paper. We therefore emphasize drainage parameter
precipitation data are needed. The relatively strong perforcalibration and transferability, given expected uncertainties
mance of SF once precipitation magnitudes (but not timing)in meteorologic forcing. What is particularly encouraging is
were adjusted suggests that conditions (1) and (2) can bthat even with these limitations, the SF watershed shows no
met within the larger McKenzie River watershed. For SF anddegradation in performance relative to calibrated watersheds
other watersheds, model performance measured as NSE @pased on predictions of spring fraction of flow). Future work
NSElog was within the range commonly reported in otherwill focus on disentangling the relative roles played by errors
model-based studies within the Western US (e.g., Hay andn meteorologic forcing and drainage properties.
Clark, 2003; Franz et al., 2008; Graves, 2007). We note that
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Fig. 7. (a) Variation in spring fraction of annual flow for mod-
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Results of warming scenarios show that geology and snowrurther, our results suggest that in watersheds with mixed
vs. rain are both important factors in the sensitivity of water- lithologies, which are the norm for larger watersheds, de-
sheds to warming. For all snow-dominated sites, a warmindineating sub-watershed areas of distinctive geology will be
of 4°C led to a statistically significant reduction in spring an important component of this parameter transfer approach.
fraction. For the rain-dominated site it did not. These re- Lumping geologically distinctive areas within a watershed,
sults are consistent with empirical findings (Mayer and Na-on the other hand, is likely to lead to errors in transferring
man, 2011) on the sensitivity of streamflow to temperature inparameters.
this region. For the 2C warming scenario, higher and more
snow-dominated watersheds such as W8, did not show a sig-
nificant reduction in spring fraction. In contrast, larger wa- 6 Conclusions
tersheds such as HJA and MACK that comprise a larger el-
evation range and include elevations typically at the bound-The hydro-climatic setting in the McKenzie River watershed
ary between rain-dominated and snow-dominated, did shovoffers an illustrative example that may reflect other similar
a reduction in spring fraction for the°Z warming sce- mountain systems, where spatial patterns of snow accumula-
nario. These modeled spatial differences in the sensitivitytion and melt are superimposed on geologically mediated dif-
of streamflow to warming are consistent with both empirical ferences in subsurface drainage and storage. In these settings,
and model-based literature records that demonstrate a linkmodeling the spatial response of streamflow to predicted cli-
age between reductions in spring fraction of flow, elevation,mate change requires disentangling the spatial interaction be-
and warming for snow-dominated regions in the Western UStween the static differences in subsurface drainage properties
(Stewart et al., 2005; Nolin and Daly, 2006). In addition and the dynamic transition between rain and snow. To esti-
to variation in the sensitivity of spring fraction to warming mate how these systems will respond to climate variability
across snow-to-rain transitions, geologic differences are alsand change, process-based modeling must represent the nat-
important. Using only the end-member drainage parametersiral physical processes controlling runoff and capture rele-
from the WC for the SF watershed resulted in greater andvant spatial differences in climate inputs and soil/drainage
more variable estimates of the reductions in spring fractionparameters. For climate inputs, limited spatial coverage by
of flow with warming relative to estimates using only HC meteorologic stations with long-term records leads to the use
drainage parameters, suggesting that greater drainage rateginterpolation schemes such as PRISM, to account for spa-
associated with WC geology enhance the sensitivity of thetial difference in climate inputs. Continued improvements in
spring fraction of flow to warming. These results are con- estimates of precipitation and temperature spatial-temporal
sistent with our earlier model-based analysis which demon-patterns, both for retrospective and future analysis, are a crit-
strated that greater subsurface drainage rates in snow domical research area. Limited spatial coverage of gaged streams
nated catchments in the Western US tended to increase sprirtg calibrate drainage parameters, however, is also an impor-
sensitivity to warming and decrease summer streamflow sertant factor and necessitates a strategy for drainage parameter
sitivity (Tague and Grant, 2009; Safeeq et al., 2012). Wetransfer. In this paper, we demonstrate a successful drainage
note that differences in SF response across drainage pararparameter transfer approach based on end-member param-
eters are solely due to the effect of subsurface effective coneter sets associated with mapped geologic classes. Stream-
ductivity/drainage rates since all other factors, including to-flow estimation using this geologic end-member approach
pography and changes in snow accumulation and melt, aréo transfer parameters was sufficient to capture historic cli-
held constant across the warming scenarios (Fig. 7b). Thesmate variability for a set of watersheds that cross a range of
differences in response of SF watershed as a function ofcales from 1st to 4th order streams, including one watershed
drainage parameters highlight the importance of accountinghat comprised a mixture of geologic classes from both end-
for geologically based differences in drainage rates in addi-members. Model error using this geologic end-member ap-
tion to topographic differences. Further, the emergence oproach to assign drainage parameters was also small relative
end-member parameters that are consistent with mappabl® changes in seasonal streamflow patterns associated with
geologic classifications points to an approach for accom-simple warming scenarios. For watersheds with a mixture of
plishing this in the face of limited stream gage data. geology, assigning uniform parameters results in substantial

These findings have broad implications for the use of dis-degradation in flow, but perhaps more importantly, leads to
tributed hydrologic models as a means of predicting down-substantially different estimates of the impact of warming
scaled streamflow response to climate warming, as is becormsn flow seasonality. These results argue the importance of
ing increasingly common (Hamlet and Lettenmaier, 1999:accounting for drainage parameter heterogeneity and offer a
Payne et al., 2004; Christensen et al., 2004; VanRheenen @tethod for doing so.
al., 2004; Wood et al., 2004). Our results show that if predic- Our geologic end-member approach could be used to
tions are needed in watersheds where calibrations have nahodel hydrologic responses to climate warming for a range
been explicitly conducted, geology offers a potential methodof watersheds within the McKenzie and potentially adapted
for assigning drainage parameters across a range of scalefar other areas of the mountainous Western US. The need for
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this type of multi-watershed modeling and parameterizationEdited by: M. Sivapalan
approach is particularly important in assessments of climate

change impacts on aquatic habitat, where the spatial patterns

and diversity of hydrologic response within river watersheds
may be important drivers of habitat quality and sensitivity to

enwr#lnmer;]tal change._ hed i b Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts
While the McKenzie watershed incorporates  sub- of a warming climate on water availability in snow-dominated

watersheds with sharply contrasting hydrogeologic terrains, regions, Nature, 38, 303-309, 2005.

it is by no means unique. Similar differences in drainagegaron, J. S., Hartman, M. D., Band, L. E., and Lammers, R. B.: Sen-
efficiencies would be expected in watersheds drained by both sitivity of a high elevation Rocky Mountain watershed to altered
karstic and non-karstic lithologies, deeply weathered versus climate and CQ, Water Resour. Res., 36, 89-99, 2000.
unweathered intrusive or sedimentary bodies, or glaciatedeven, K. J.: Rainfall-Runoff Modelling: The Primer, John Wiley
versus non-glaciated terrain. Parameterization schemes for and Sons, Ltd., New York, 2001.

hydrologic models along the lines that we have outlined herg~hristensen, N. S., Wood, A. W, Voisin, N., Lettenmaier, D. P., and
offer a useful means of characterizing and interpreting the Palmer, R. N.: Effects of climate change on the hydrology and
hydrologic differences among these varied settings. These water resources of the Colorado River Basin, Climatic Change,

. - 62, 337-363, 2004.
schemes lend themselves well to modeling within and acros]s:.)aly C.. Neilsen, R. P, and Phillips, D. L: A Statistical-
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thg basis of their hydrologic behavior and similarities (i.e.,  gyer Mountainous Terrain, J. Appl. Meteorol., 33, 140-158,
Winter, 2001). 1994,

In sum, our analysis has shown that by defining a setDaly, C., Smith, W., and Smith, J. I.: High-resolution spatial mod-
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