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Abstract. The quality of soil-moisture simulation using land values, and simulated the mean soil moisture. It is presented
surface models depends largely on the accuracy of the melere as a promising way for reproducing long-term, high-
teorological forcing data. We investigated how to reduce theresolution spatial and temporal soil-moisture data.
uncertainty arising from meteorological forcings in a simula-
tion by adopting a multiple meteorological forcing ensemble
approach. Simulations by the Community Land Model ver-
sion 3.5 (CLM3.5) over mainland China were conducted us-1  Introduction

ing four different meteorological forcings, and the four sets

of soil-moisture data related to the simulations were thenSoil moisture plays a very important role in the global hydro-
merged using simple arithmetical averaging and Bayesiarogical cycle and energy balance within the land—-atmosphere
model averaging (BMA) ensemble approaches. BMA is ainteraction in the climate system (Robock et al., 1998). It is
statistical post-processing procedure for producing Ca"bratedl'SO a crucial variable for monitoring land surface conditions
and sharp predictive probability density functions (pDFS),that force extreme events such as drought and flood (Wang et
which is a weighted average of PDFs centered on the bias?l-, 2009, 2011; Albergel etal., 2012). As a consequence, itis
corrected forecasts from a set of individual ensemble memYery important to obtain accurate high-resolution spatial and
bers based on their probabilistic likelihood measures. Comtemporal soil-moisture information. Currently, land surface
pared to in situ observations, the four simulations capturednodels (LSMs) have been widely used to provide estimates
the spatial and seasonal variations of soil moisture in mos@f soil moisture on global or continental scales; however,
cases with some mean bias. They performed differently whert-SM simulations of soil moisture still contain large errors.
simulating the seasonal phases in the annual cycle, the intefone of the main sources of error is the uncertainty in the me-
annual variation and the magnitude of observed soil moisturdeorological forcing. The accuracy of a simulation by LSM
over different subregions of mainland China, but no individ- depends largely on the quality of its meteorological forcing,
ual meteorological forcing performed best for all subregions.and is especially sensitive to precipitation, radiation and tem-
The simple arithmetical average ensemble product outperPerature (Wei et al., 2008; Li and Ma, 2010; Wang and Zeng,
formed most, but not all, individual members over most of 2011).

the subregions. The BMA ensemble product performed bet- Meteorological forcing driving a land surface model is
ter than simple arithmetical averaging, and performed bes@ienerally produced by combining in situ observations, re-
for all fields over most of the subregions. The BMA ensem- Mote sensing measurements and reanalysis data (Qian et al.,
ble approach applied to the ensemble simulation reproduced006; Sheffield et al., 2006). It has been found that simula-

anomalies and seasonal variations in observed soil-moisturons by CLM3.5 are improved using a meteorological forc-
ing obtained through merging many more in situ observations
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of precipitation and temperature (Wang and Zeng, 2011)respectto hydrological process, the modifications to CLM3.5
At a regional scale, many more in situ observations and remainly include canopy interception, surface and subsurface
mote sensing measurements are available for LSM use. Faunoff, water table depth, frozen soil, soil water availability
example, high-resolution space/time meteorological forcingsand soil evaporation.

for mainland China have been developed by He (2010), For the hydrological process, CLM3.5 simulates changes
Shi (2008), Shi et al. (2011) and Tian et al. (2010), but var-in canopy water AW¢an, sSnow water AWgpe, SOil wa-
ious errors are still found in soil-moisture simulations by ter Awiq,;, Soil ice Awice;, and water in the unconfined
LSM using different forcings. It has been found that the sim- aquifer AW, by parameterizing interception, throughfall,
plest ensemble approach (simple arithmetical averaging otanopy drip, snow accumulation and melt, water transfer be-
soil moisture from an individual ensemble member) is an ef-tween snow layers, infiltration, surface runoff, sub-surface
fective strategy for improving the simulation of soil mois- drainage, redistribution within the soil column, and ground-
ture, but it is still not superior to the best individual ensemble water discharge and recharge. The total water balance equa-
member in most cases (Guo et al., 2007). Bayesian modeion is

averaging (BMA) was proposed by Raftery et al. (2005) as N
an ensemble post-processing approach for calibrating foreA Wean+ AWsno+ Y (Awiiq,i + Awicei) + AWa 1
cast ensembles from numerical weather models and pro- i=1 @

ducing calibrated and sharply predictive probability density = (drain+dsno— Ev — Eg — qover — qdrai — grgw) AL,

functions (PDFs). Many previous studies, which applied theynereg,in is rainfall, gsnois snowfall, Ey is evapotranspira-
BMA approach to a range of different weather and seasonafion from vegetation£g is ground evaporatiomjoyer is Sur-
climate ensemble forecasts, have demonstrated that it is Syzce runoffgarai is sub-surface drainagggwi is runoff from
perior to the simple arithmetical averaging method and pro-gjaciers, wetlands and lakes, and runoff from other surface
vides a quantitative description of total predictive uncertaintytypes due to snow capping/ is the number of soil layers,
through the PDF (Raftery et al., 2005; Duan et al., 2007;3nd At is the time step. The total 0-3.43m soil column is
Vrugt et al., 2008; Liu et al., 2013). divided into 10 layers of variable thickness from 0.0175m to

In the present work, four meteorological forcings were 1 1370 m. The node depth, thicknesse@\d;, and interface
used to conduct simulations over mainland China usinggeptha, ;of theith soil layer are given by

Community Land Model version 3.5 (CLM3.5, Oleson et al.,

2007, 2008). Then the four sets of simulated soil-moisture exp(=22) -1

data were merged using a BMA ensemble approach to reduce di = a0 ' '7T 12,10 @

the CLM3.5 simulation uncertainty arising from the four me- (d1+d2)/2, i=1,

teorological forcings, and improve soil-moisture simulation. A — ! (g,.1 —di_1)/2, i=2,3,---,9, ©)
This paper is organized as follows. We briefly describe the di —d; 1, i =10,

LSM CLM3.5, four various meteorological forcings and in .

situ observation of soil moisture in China in Sect. 2. Sec- 4, ; = { (i +diy1)/2, i=12-.9, (4)

tion 3 briefly describes the experiment design and ensemble di+0.5Ad;,  i=10

approaCh. Validation and Comparison of individual member Figure 1 shows the hydro]ogica| process simulated by

and ensemble simulations of soil moisture in eight climatic CLM3.5 (right) and the soil-moisture layer formation

subregions of mainland China are presented in Sect. 4. Wgdopted in the CLM3.5 simulation (left).

discuss the results in Sect. 5 and flna"y give a summary and A detailed description of the physica| processes, modifi-

conclusions in Sect. 6. cation and performance of CLM3.5 was given in Oleson et
al. (2004, 2008) and Lawrence et al. (2007).

2 Model and data 2.2 In situ observations of soil moisture

2.1 Land surface model CLM3.5 The observed soil-moisture data were obtained from the
China Meteorological Administration (CMA) National Me-

The LSM used in this study was CLM3.5 (Oleson et al., teorological Information Center (NMIC). The original data
2007) released by the National Center for Atmospheric Refor 1992-2011 from 778 stations had been collected from
search (NCAR). This model is a modified version of CLM3.0 agricultural meteorological stations located in farmland
(Oleson et al., 2004), and has significantly improved the sim-across mainland China. The soil moisture was measured
ulation of many variables in the hydrological cycle and the three times on the 8th, 18th and 28th day of every month in
spatial distribution of vegetation. A new surface dataset waghe warm season at soil depths of 10 cm, 20 cm, 50 cm, 70cm
introduced to improve land surface representation and im-and 100 cm. No measurements were recorded in frozen soil.
prove the simulation of surface albedo, near-surface temperSoil-moisture content was measured by weight difference,
ature and precipitation (Lawrence and Chase, 2007). Withénd recorded originally as mass percentagei.e.,
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Fig. 1. Hydrological process simulated by CLM3.5 (right) and soil-moisture layer formation in CLM3.5 (left).

monthly soil-moisture content values at depths of 0—-10cm,

M 10-20cm and 70-100cm at 411 stations from July 2005 to
Om = o (5)  June 2010 were then compared with the simulated values at
S those depths. The 411 stations were grouped into eight sub-
wherem,, is the weight of soil water, angs is the weight  regions on the basis of the spatial patterns of the centers of
of dried soil. The original data were obtained from agricul- dryness and wetness throughout China, based on Zhu (2003);
tural meteorology stations which serve for agriculture, andthese are defined in Table 1. Figure 2 shows the eight subre-

were expressed as relative soil-moisture conigptn the gions and the location of all 411 stations, 391 of which were

soil-moisture dataset as follows: located in the eight subregions in this study.
Sm = Om (6) 2.3 Multiple meteorological forcings
0

An offline CLM3.5 simulation requires external meteorolog-
pacity. The dataset included the information for every sta-iCaI forcing data that includes air temperature, wind speed,

tion. The relative soil-moisture content was then convertedSpecifiC humidity, surface pressure, precipitation and radia-
to volumetric soil moisture. with units m-3: tion. In this study, four sets of meteorological forcing over

mainland China developed by different institutions were used

whered is the volumetric soil-moisture content at field ca-

Oy = S x Ps 0. 7) in our multiple forcings ensemble system. They include
Pw — Forcing data for China (hereafter FY) developed by
Similarly, the mass percentage was also converted to vol-  Shi (2008) and Shi et al. (2011), which introduced
umetric soil moisture: inverted precipitation and ground-incident solar radia-
Os tion products acquired through the high-resolution spa-
v = Om x p_’ 8 tial and temporal FY2C geostationary satellite data
v for precipitation and solar radiation. The original in-
where ps and py are the bulk densities of soil and wa- verted precipitation products from the China Satel-

ter, respectively. This soil-moisture observation dataset has lite Data Service Centehftp://satellite.cma.gov.grare
been widely used to study the variations of soil moisture estimated 6-hourly accumulated precipitation output.
and for evaluating the LSM-simulated soil moisture in China Shi (2008) used an inversion algorithm to convert these
(Liu et al., 2001; Li et al., 2004; Zhang, 2009; Wang and data to hourly accumulated precipitation at a spatial
Zeng, 2011), and is constantly updated. In this study, a sim-  resolution of 0.1 using a time-weighted interpolation
ple quality control procedure was performed on the updated = method based on hourly geostationary satellite cloud
soil-moisture observations in terms of observation frequency  category information. The temporal resolution of orig-
(i.e., the ratio between the available measurement times and inal inverted ground-incident solar radiation products
the period from March to September) (Zhang, 2009). The is 1 day; the spatial resolution is 0.9n addition, the
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Fig. 2. Locations of the 411 in situ soil-moisture observation stations (red dots). Also shown (boxes) are the eight subdivisions defined in

Table 1 for regional averaging.

Table 1.Locations of the eight subregions in China.

Identification  Region name Location Number of
observational
stations
China l northeast China 12E-135 E, 74
40° N-50° N
China ll northern North China 12E-120 E, 34
40° N-45° N
Chinal lll southern North China 12E&E-12C E, 116
34° N-40° N
China IV middle and lower Yangtze River basin  ?H-122 E, 36
30° N-34 N
China Vv eastern northwest China 95-110 E, 67
34°N-42° N
China VI western northwest China BE-95 E, 19
34° N-5C° N
China VII northern southwest China 108-110 E, 32
28° N-34 N
China VIII southern southwest China 10B-11C E, 13
20° N-28 N

near-surface air temperature, pressure, wind speed and
humidity were derived from National Centers for En-
vironmental Prediction (NCEP)/NCAR reanalysis data.
Shi et al. (2011) and Jia et al. (2013) used this informa-
tion as the external meteorological forcing of land data
assimilation system.

— Forcing data for China (hereafter ITP) established
by He (2010), which merged the observations from
740 operational stations of the CMA with the

Hydrol. Earth Syst. Sci., 17, 33553369 2013

corresponding Princeton global meteorological forcing
dataset (Sheffield et al., 2006) to produce near-surface
air temperature, pressure, wind speed and specific hu-
midity fields. This combined three precipitation datasets
to determine the precipitation field, and corrected the
Global Energy and Water Cycle Experiment—Surface
Radiation Budget (GEWEX-SRB) (Pinker and Laszlo,
1992) shortwave radiation dataset with reference to ra-
diation estimates (Yang et al., 2006) in order to as-
certain the incident shortwave radiation fields. Chen et

www.hydrol-earth-syst-sci.net/17/3355/2013/
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Table 2. Comparison of major features of four sets of meteorological forcing data.

Forcing  Resolution Coverage Composition Institution  Reference
FY 1h0.2 x0.22 15°N-55'N (1) precipitation and ground- incident solar ra-CMA Shi (2008);
75°E-13% E diation from FY2C satellite data; Shi et al. (2011)
2005.7-2010.6 (2) NCEP/NCAR reanalysis data
ITP 3h0.P x0.2° 15°N-55"N (1) near-surface air temperature, pressure, windPCAS He (2010); Chen et al. (2011);
70°E-140E speed, specific, humidity and precipitation from Sheffield et al. (2006); Yang et
1979-2011 740 operational stations of the CMA,; al. (2006); Yatagai et al. (2009);
(2) Princeton meteorological forcing data; Huffman et al. (2007);
(3) TRMM3B42 and APHRODITE Pinker and Laszlo (1992)

precipitation product;
(4) GEWEX-SRB shortwave radiation data and
radiation estimates from a hybrid radiation
model
TIAN 6h1.87% x 1.91% 15°N-55°N (1) precipitation and temperature from 740 op{APCAS Tian et al. (2010)
70°E-140E erational stations of the CMA,;
2004-2010 (2) ERA-interim reanalysis data;
JRA 6h1.128x 1.125 Global JRA-25 reanalysis data JMA Onogi et al. (2008)
1979-2011

* China Meteorological Administration (CMA), Institute of Tibetan Plateau Research, Chinese academy of Sciences (ITPCAS), Institute of Atmospheric Physics, Chinese
Academy of Sciences (IAPCAS), Japanese 25 yr Reanalysis (JRA-25), Japan Meteorological Agency (JMA), Tropical Rainfall Measuring Mission (TRMM), Asian
Precipitation-Highly Resolution Observational Data Integration Toward Evaluation of Water Resources (APHRODITE), Global Energy and Water Cycler Experiment-Surface
Radiation Budget (GEWEX-SRB) precipitation products (Huffman et al., 2007), precipitation data.

al. (2011) demonstrated that simulations driven by ITPtemporal variation in most cases. However, FY is wetter than
forcing improve land surface temperature modeling for the other three forcings in most subregions, especially for the
dry land in China. period January 2010—June 2010, and shows greater temporal
variation in most subregions. JRA is slightly drier than other

. . three forcings, and shows smaller temporal variation in most
al. (2010), which extended the observation-based atmo'subregions except China VII, but it indicates a higher peak

spheric forcing data from Qian et al. (2006) up until lue in th
: S .H h f
2010, using the ERA-interim data. and temperature andva ue in the wet season. Here, the area average accounts for

o . . only those grid cells nearest the relevant soil-moisture obser-
precipitation from 740 operational stations of the CMA. vati):)n statigns
Tian et al. (2010) used these data as the external meteo- '
rological forcing of land data assimilation system.

— Forcing data (hereafter TIAN) developed by Tian et

— Japanese 25yr reanalysis data (JRA-25) (Onogi et al.?’ Experiment design and ensemble approach

2008) (hereafter JRA).

Table 2 summarizes the primary features of and differ-
ences between these forcings. Since precipitation is the drivIhe four soil-moisture simulations were determined by the
ing force of soil-moisture variability, and that precipitation following forcings (described in Table 2), which are coded as
uncertainty accounts for about2of the total soil-moisture (1) CLM3.5.FY (for the FY simulation); (2) CLM3.5T1AN
uncertainty arising from all forcing data (Wei et al., 2008), (for the TIAN simulation); (3) CLM3.5ITP (for the ITP sim-
we compared the precipitation from the above four forc- ulation); (4) CLM3.5JRA (for the JRA simulation). In order
ings. Figure 3 shows the spatial distribution for the five- to spin-up for the deep soil layers and achieve an equilib-
year (July 2005-June 2010) averaged precipitation from théium state of the CLM3.5, the model first adopted ITP me-
four forcings: in generaL the precipitation from each of the teorOlOgical fOfCing from 1979 to 2010, and the first files on
forcings displayed a similar spatial pattern, i.e., obviousl January 2011 and 1 July 2010 were saved and used to ini-
northwest—northeast and northwest—southeast gradients frofflize all four simulations at the beginning of each of the four
dry to wet. However, FY indicates wetter conditions than theforcings (1 January 1979 for ITP and JRA; 1 January 2004
other three forcings in most areas of mainland China, andor TIAN; 1 July 2005 for FY). These were all run at reso-

JRA is slightly drier than other three forcings, especially in lutions of 0. latitudex 0.1° longitude in CLM3.5, and the
northern China (China I, II, 111). forcing data were also interpolated to 9.The time step is

Figure 4 shows the time series of precipita’[ion from the 1800s. Because the different forCingS Spanned four different
four forcings for the period July 2005—-June 2010 in the eighttime periods, in this study we chose the time span that was
subregions of mainland China defined in Table 1. Precipita-common to all four, which was July 2005-June 2010.
tion figures from FY, TIAN, ITP and JRA display a similar

3.1 Experiment design

www.hydrol-earth-syst-sci.net/17/3355/2013/ Hydrol. Earth Syst. Sci., 17, 335869 2013
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Fig. 3. Precipitation (mm yr1) averaged for July 2005-June 2010 frag@) FY; (b) TIAN; (c) ITP; (d) JRA.

The four sets of simulated soil-moisture data were thenwherey is the predictive variablef;,k=1,2,---, K is the
merged, using simple arithmetical averaging and BMA en-kth ensemble member forecasts, is the number of en-

semble approaches. semble members being combined, are the training data,
pe(|(fx, y) is the conditional PDF of based on ensem-
3.2 Ensemble approach ble memberf;, given thatf; is the best forecast in the en-

. semble. The weightingy is the posterior probability of fore-
The ensemble approaches have been found to be quite ef- K

fective in improving soil moisture simulations. The simplest cast, such that it is non-negative ajd w; = 1, and repre-

ensemble approach (simple arithmetical averaging) and a0, hts the contribution of ensemble

advanced ensemble approach (BMA) were both used in this, . . .
. Skill of th le. F Eq. h

study. Raftery et al. (2005) proposed a BMA approach WhICh% il of the ensemble. From Eq. (3), we obtain the posterior

; i . . redictive PDF of the predictive variable, such as soil mois-
involves statistical post-processing to produce calibrated an{]’

o . ure in this study. In the original BMA approach, Raftery et
sharply pred|_ct|ve PD.FS from ense_mbles of dynamic mF)Ol'al. (2005) assumed that the conditional PDF was Gaussian,
els, and provide a reliable description of the total modeling

uncertainty. The BMA predictive PDF is a weighted averagebUt the probability distribution of soil-moisture error is non-

. ian. Tian |. (2011) found that th mma distribu-
of PDFs centered on the bias-corrected forecasts from as?aussa an et al. (2011) found that the gamma distribu

Lo %on ives a better approximation of the soil-moisture error
of individual ensemble members, based on measures of the{ 9 P

probabilities, with the better-performing ensemble membershan the Gaussian distribution. In the BMA we developed and

: ) . A sed, we assumed that the conditional P, T
being assigned a higher weighting than those that producearom each ensemble member at the spec‘?(ilf:ygig]é gn)d) loca-
less satisfactory results:

tion was approximated as a gamma distribution:

k=1
membt the predictive

K 1 w
POI - feoy D) =D w1y, ©) POy ) = Zap ey ey B0, (o)

wherel («y) is the gamma function. The shape parameter
and scale parametgy. of the gamma distribution are given

by
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Fig. 4. Time series of precipitation (prec, mm day) for July 2005-June 2010 from FY, TIAN, ITP and JRA in the eight subregions of China
defined in Table 1.

4 Results

Mk = ok Bk = bok + bk fk. (11) 4.1 Spatial distribution and temporal variation
2 2
ok = kB =co+efis (12) The soil moisture was observed only for the 0-10cm, 10—
where ., ando2 are the mean and variance of the gamma20 cm and 70-100 cm soil layers; since the soil layer thick-
distribution an&Ok bux, co, c1 are the parameters to be esti- nesses in CLM3.5 did not match the thicknesses at which the
mated Thé mean (’)f th’e B’MA posterior PDF is the determin-in situ observations were made, the multiple soil layers in
istic forecast. In this study, we considered only the determin-CI‘MS'5 were adjl.JStEd to the three obsgrved SO'I. layer thick-
istic forecast of the BMA method for the soil moisture. nesses by the weighted averages of soil layer thicknesses.
Figure 5 shows the spatial distribution for the five-year

The BMA parameters were estimated from a training . . .
dataset using the linear regression method and the maXI(JuIyZOOS—June 2010) averaged volumetric soil moisture de-

mum likelihood technique for which the values were ob- rived from CLM3.5 simulations driven by the above four
tained iteratively using the modified Markov chain Monte forcings, their simple arithmetical averaging ensemble (re-

Carlo (MCMC) algorithm following Vrugt et al. (2008). In ferregl to afs CLdI\/iB.Bn%all_an:r;J)BnchXefre 0?1)' their BMQ ebn-
the present study, July 2005-June 2008 was chosen as trEMo'e (re erredtoas » from nere o_n), andob-
erved values in the 0—-10 cm soil layer (the first column in

training period, and July 2008—June 2010 as the evaluatiofy . -
period. In spatial distribution, the BMA parameters were re- 'Og' fgblo_zghcnls.og Iayle r (thg s'e;(_:ong colzlumtr;]|n F'QI' 5) gnd
located from data-rich areas to data-sparse or no-data area75,_ cm (the third column in Fig. 5). For the soil mois-

based on the distribution compartmentalization of climatetUr® I the 0-10 cm SO'I. layer, Fhe observed .SO'I mmsture
defined in Table 1. over mainland China (Fig. 5a, first column) displays obvi-

ous northwest—northeast and northwest—southeast gradients
from dry to wet. Soil drought< 0.14 m? m=3, Fig. 5a, first

www.hydrol-earth-syst-sci.net/17/3355/2013/ Hydrol. Earth Syst. Sci., 17, 335869 2013
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Fig. 5. Mean volumetric soil moisture (fm=3) averaged for July 2005-June 2010 in 0-10cm soil layer (first column), 10—20 cm soil
layer (second column), 70-100 cm soil layer (third colung@)pbservations (OBS)p) CLM3.5_FY; (c) CLM3.5_TIAN; (d) CLM3.5.ITP;
(e) CLM3.5_JRA; (f) CLM3.5.mean;(g) CLM3.5 BMA.

column) is evident in most of Xinjiang, western Gansu, In- all four forcings generally captured the spatial pattern of soil
ner Mongolia and the Hetao region; wetter soil appears ovemoisture in most cases, but the CLMFY, CLM3.5_TIAN

part of the northeast and most of southeast. The spatial pagnd CLM3.5ITP simulated moisture content was wetter than
tern is generally consistent with the analysis of in situ soil- observed values, especially CLM3% over the Hai River
moisture observations from Sun et al. (2005). Figure 5b—e irbasin. CLM3.5JRA predicted drier soil than observed over
the first column indicate that the soil moisture simulated bynorthern China, especially in the northeast. In summary, a
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Fig. 6. Time series of monthly volumetric soil moisture (SM23m~3) for the 0-10cm soil layer from observations, CLM3:¥,
CLM3.5.TIAN, LM3.5_ITP, CLM3.5JRA, CLM3.5mean and CLM3.8BMA in the eight subregions of China defined in Table 1.

mean bias was revealed in the CLM3.5 soil-moisture simu- The second and third columns repeat the maps of the first
lation when individual forcings were used. Precipitation had column in Fig. 5, with the 10-20 cm and 70-100 cm soil lay-
a dominant impact on the soil-moisture variation. Compari-ers shown. Both the 0-10cm and 10-20cm soil layers are
son of the precipitations from the four forcing and four sim- the upper soil layers, and the spatial distribution in the 10—
ulated soil-moisture values showed that the simulated soiR0cm soil layer in Fig. 5 (second column) basically agrees
moisture in Fig. 5b—e (first column) had a similar spatial with the first column, and the performance is similar. For the
pattern to that for precipitation in Fig. 3, but some differ- 70—100 cm layer (third column in Fig. 5), the spatial patterns
ences were evident in the spatial patterns of precipitation an@f soil moisture for all simulations coincide with observa-
soil moisture. For example, the higher simulated precipita-tions in most cases, but spatial distribution varies much less
tion from JRA in China VIl may merely represent increased than the 0—10 cm layer (first column in Fig. 5), and the mean
runoff and evaporation of the precipitation intercepted by thebias is much greater. Possible causes include the inability of
canopy without increasing soil moisture. Figure 5f—g (first CLM3.5 to simulate the variation of soil moisture at deeper
column) show that CLM3.8nean and CLM3.BMA re- soil layers, or alternatively the relatively short spin-up time.
duced the mean bias, resulting in a spatial distribution thatrigure 5g shows that CLM3.BMA greatly improved the
approximated the observed values more closely than the indisimulated results, and agreed more closely with the observed
vidual members, and captured the locations of the several sodpatial patterns in the 0—-10, 10-20 and 70-100 cm soil lay-
moisture drought centers very well. Also, CLM31eanwas  ers.

wetter than the observed values; CLMBMA clearly cap- To quantitatively examine the performance of CLM3.5
tured several dryness and wetness centers in mainland Chinaimulations of soil moisture driven by the four individual
and it approximated the observed values spatially. forcings and their ensemble simulations, we compared the
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Fig. 7. July 2005-June 2010 mean monthly volumetric soil moisture (Sl@lmm3) for the 0-10cm soil layer from observations,
CLM3.5.FY, CLM3.5_TIAN, CLM3.5_ITP, CLM3.5.JRA, CLM3.5mean and CLM3.8BMA in the eight subregions of China defined in
Table 1.

simulated and observed monthly volumetric soil moistureother three. For the eight subregions, the temporal varia-
time series averaged over the eight subregions defined in Taion trends and magnitudes of soil moisture shown in Fig. 6
ble 1. In this study, the observational stations are widely scatare generally consistent with precipitation (Fig. 4). Precipi-
tered, with the result that the area averages of simulated voltation played an important role in these soil-moisture simu-
umetric soil moisture count only those grid cells closest tolations, especially in the surface layer, but this was not the
the relevant observation stations. only aspect to be considered. For example, CLMBIAN

Figure 6 shows the comparisons between simulatecand CLM3.5ITP overestimated the observed soil moisture
and observed monthly volumetric soil moisture in the 0—in eastern China (China I-1V), yet slightly underestimated
10cm soil layer for the period July 2005-June 2010 init in the northwest (China VI); these findings are consistent
the eight subregions for each of the four models, andwith those of Wang and Zeng (2011) and Wang et al. (2011),
also for CLM3.5mean and CLM3.BBMA. CLM3.5_FY, and may be related to deficiencies in CLM3.5, e.g., scaling of
CLM3.5_TIAN and CLM3.5ITP all generally captured the canopy interception (Lawrence et al., 2007), soil texture and
seasonal cycle and temporal evolution of the observed soimodel structure. The CLM3.:hean and CLM3.8BMA en-
moisture reasonably well, but overestimated the amplitudesembles showed considerable improvement over individual
for most subregions in mainland China, predicting muchforcing simulations. CLM3.3BMA produced a closer sim-
higher soil-moisture values than observed. CLM3FA ulation of the observed values of the temporal evolution of
performed somewhat worse in capturing the temporal evoboth soil moisture and seasonal phases, and greatly reduced
lution of soil moisture, but showed a smaller bias than the
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the mean bias. It also approximated the observed time series a)
most closely. 10— . . . . . . L
It should be noted that LSM simulations usually reproduce 08 -
anomalies and seasonal variations but fail to simulate the — °¢ 3
mean soil moisture (Entin et al., 2000; Gao and Dirmeyer, « 2:: E
2006; Qian et al., 2006); the BMA approach applied in the 00 E
present study did simulate the mean soil-moisture values. 02 3 E
For the 10-20 cm soil layer (figure not shown), the tem- | ; Wy v ww
poral variation basically agrees with the map in Fig. 6 and
has a similar performance for the eight subregions. For the b) | ! ! ! ! 1 1 1
70-100 cm soil layer (figure not shown), in six experiments 012 a
the simulation agreed with the observed temporal variation in 1 E
the China I-VII subregions, but most did not capture the ob-
served temporal variation well in the China VIII subregion. 000 ] E
This may be due to the dense vegetation, copious rainfall, the <= ,, 1 E
shortage of observations, and the complex terrain in southern E— | T T T T T —
China. In subregions China | and II, the temporal variation oo vy
was much smaller and the mean bias was much greater than c)
that shown in Fig. 6. CLM3.9RA performed worst in this
soil layer, substantially underestimating the soil moisture in
northern China (China |, Il and V). This may be due to that
the precipitation from JRA is drier than that from other three
forcing and indicates a higher peak value in the wet season & 03 -
(Fig. 4). The higher peak value in the wet season will increase 0.0 - L
the runoff. In addition, simulation of soil moisture in deep ! l t v v v
soil layers is not only related to forcing precipitation, but d)
also to soil processes, vegetation processes and other vari- 15 3 -
ables considered in CLM3.5. CLM3BMA performed best 15 -
of all six simulations, both for temporal variation and mean > 27 =
soil moisture. @ 097 2
Figure 7 compares the six simulations, averaged over the - E
eight subregions, with the observed annual soil-moisture 00
cycle in the 0-10cm soil layer. All six simulations gen- I || i v v vioow
erally captured the annual cycle in most subregions, but mmm cim35_Fy B cm35_TIAN = cm3.5_ITP
CLM3.5_FY was too wet; CLM3.5TIAN and CLM3.5ITP EEm cim35 JRA  EEE cim3.5_mean B ¢Im3.5_BMA
predicted slightly wetter values than observed; CLM3RA
had a smaller bias and were drier than observations in northFig. 8. Statistical scores for CLM3.5Y, CLM3.5.TIAN,
ern China, especially for the deep soil layer (70—-100 cm, notCLM3.5.ITP, CLM3.5JRA, CLM3.5mean and CLM3.BBMA in
shown in Fig. 7); CLM3.5BMA agreed very closely with the validation period July 2008—June 2010 in the 0—10 cm soil layer

observation. For the 1020 cm and 70-100 cm soil layers, th& the eight subregions of China defined in Tablgd):correlation
annual cycles were comparable (not shown in Fig. 7). coefficient R); (b) mean bias error (MBE)(c) root mean square
error (RMSE);(d) normalized standard deviation (SDV).

m?)

0.08 - -

3

0.04 | -

MBE(m

0.12 - -
0.00 -

0.06 -

MSE(m® m™®)

0.6 - -

4.2 Statistical comparison between simulation and in
situ observation

(recorded as REF). The distance between the point “REF”
As a further quantitative illustration of the advantages ofand the other points representing the model is the centered
the BMA ensemble approach in improving the simulation normalized root mean square difference between the model
of soil moisture, statistical scores of correlation coefficientand in situ patterns.
(R), mean bias error (MBE), root mean square error (RMSE) The statistical post-processing in the BMA method re-
and normalized standard deviation (SDV) were used to fur-quires training data to calibrate the BMA model parame-
ther examine the performance of the six simulatiodh@and  ters. We chose July 2005-June 2008 as the training period
SDV were plotted on two-dimensional Taylor diagrams (Tay- and July 2008—June 2010 as the evaluation period. The sta-
lor, 2001). The SDV is displayed as radial distankdpr in tistical scores of the six simulations in the 0-10cm soil
situ observations as an angle in the polar plot, and the in sitdayer are presented in Fig. 8 for each of the eight subre-
observation as a point on theaxis atR =1 and SDV=1 gions. For the individual forcing experiments, CLM3'B°
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Fig. 9. Taylor diagram illustrating the comparison between CLMBY CLM3.5.TIAN, CLM3.5.1TP, CLM3.5.JRA, CLM3.5mean,
CLM3.5.BMA and in situ observation in the eight subregions of China defined in Table 1 for the validation period July 2008—June 2010 in:
(a) 0-10 cm soil layer(b) 10-20 cm soil layer{c) 70—100 cm soil layer.

and CLM3.5TIAN showed good temporal correlatioR) over China Il, lll and VI subregions, in MBE over all subre-
ranging from 0.5 to 0.8 in most subregions. CLM3IBA gions except China VI and VII, in RMSE over all subregions
performed worst in temporal correlation, and is shown toexcept China VII, and in SDV over China Ill and VI subre-
have negative correlation in Fig. 8a. Figure 8b—c show thation for all fields. In general, The CLM3.BMA performed
CLM3.5.JRA produced a relatively small MBE and RMSE, best for all fields over most of the subregions.
whereas the other three individual forcing experiments each The statistical scores of six different experiments in the
showed a relatively large MBE and RMSE. The standard10-20cm and 70-100 cm soil layers show similar outcomes
deviation of CLM3.5FY approximated in situ observa- with those in the 0-10cm soil layer, but the quality of the
tions most closely (i.e., SDV approximated 1 most closely) prediction deteriorated with greater soil depth; for instance,
(Fig. 8d). Figure 8 also shows that only some of the individ- in the China IV and VIII subregions, the BMA ensemble was
ual forcing experiments ranked highly, and this was only inless dominant in temporal correlation (figure not shown).
some of the subregions. None of the individual forcing ex- Figure 9 shows three Taylor diagrams comparing the six
periments ranked highest in all subregions. experiments with observed values over the eight subregions:
CLM3.5.mean ranked highly over most subregions but Fig. 9a is for the 0—10cm soil layer, Fig. 9b is for the
it did not outperform all the individual members. The 10-20cm soil layer and the Fig. 9c is for the 70-100cm
CLM3.5.BMA ranked highly over all subregions for all soil layer. (Negative correlations are not shown in Taylor
fields and performed better than CLM31ean over most diagrams.) Figure 9 shows clearly that the CLMBI®
subregions, and performed best in temporal correlatin ( generally performed best of the four individual forcing
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Fig. 10. Comparison betweelfa) mean precipitation minus simulated evapotranspiratiraHT); and(b) simulated mean volumetric soil
moisture in the 0—10 cm soil layer averaged for July 2005—-June 2010 by CLM3.5 using ITP forcing.

experiments, and CLM3.BMA performed best of all sixex-  the weighted averages of the thicknesses in CLM3.5. Also,
periments in general, in most cases. Also, it is shown clearlysince the spatial scale coverage of local station observations
that the performances of the simulations deteriorated withdid not match the size of the CLM3.5 grid, it was necessary
greater soil depth in the Fig. 9. The BMA ensemble approachto choose a CLM3.5 grid that most closely matched the dis-
improved the quality of simulated soil moisture significantly, tance between local station observations. These uncertainties
not only in better simulation of the spatial (Fig. 5) and tem- were not considered in this study.
poral variation (Fig. 6), but also in reducing the mean bias Thirdly, the BMA ensemble approach depends on the
(Figs. 5-7). availability of observational data; measured soil-moisture in-
formation in China is sparse, especially in southern China.
Therefore spatial BMA parameters must be transferred from
data-rich areas to data-sparse or no-data areas. In this study,
we transferred parameters based on the partitioning of cli-
mate types, as set out in Table 1. However, the spatial vari-
ation of soil moisture is large (Liu et al., 2001; Minet et al.,
3011) and it is sensitive to precipitatio®), radiation and
mperature; in other words, it is relatedRcand evapotran-

5 Discussion

The uncertainty of LSM-simulated soil moisture mainly de-
rives from the uncertainty of the meteorological forcing that
is used, and also on the LSM parameterization method. Thi
suggests that more effort is needed to reduce the uncertain

and improve the soil-moisture simulation. Due to the lack of piration (P__ET)’ but it is not merely eqL_JaI t6—ET multi-
available long-term soil-moisture data, the BMA ensemblepI'Ed by a simple scale factor because it is also closely related

approach was applied to multiple forcings and a multi-model© thet§0|I i)r:o::essebs, vege_tat||0|: %r%cecs:iﬁSagd:ther Inputin-
ensemble for simulating soil moisture, and showed promiseforma ion that can be manipulated by - AS an exam-

as a way of reproducing accurate and high-resolution Iongfle’ F'II?I %0 tShovff;iT co_mp?r:addto §;mu|gtfd sql :EO'S'
term spatial and temporal soil-moisture data, which in turn is ure, ustrating that the simufated soll moisture 1s the re-

very important for the study of long-term hydrological vari- sult of precipitation, temperature and radiation Of forcing, to-
ation at the land surface. gether with soil, vegetation and other processes in CLM3.5 at

Some limitations to this study should be noted. Firstly, a regional scale. Although this method of transferring BMA

while we have demonstrated that the BMA method reduce@artam(tate'rst:nprovtis dthe S'mUIatt'OQ mdsgme W(;:lyls, the un-
the modeling uncertainty and improves modeling overall,thecer. ainty in the method remains o be addressed. 'n cases in
method depends on the accuracy of observed field values t hich the observational _data are sparse, other methods ml_ght
provide an adequate training dataset for calibrating the mode e found to be appropriate: for example, a comprehensive

parameters. In this study we assumed that the local observ£arameter—transfer approach that embraces climate, hydrol-

tions of the station were true values; the uncertainty of the®%Y: vegetation and soil texture properties may improve sim-
' ulated soil-moisture patterns.

soil-moisture observations was not discussed.

Secondly, we did not consider the uncertainty introduced
by the scale mismatch between observation and simulation.
The thicknesses of the observed soil layers were differen6 Summary and conclusion
from those demanded by the CLM3.5 simulation software,
requiring the multiple soil layer thicknesses in CLM3.5 to This study investigated the extent to which the quality of
be adjusted to the three observed soil layer thicknesses usingpil-moisture simulation is improved by using a multiple
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