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Abstract. The quality of soil-moisture simulation using land
surface models depends largely on the accuracy of the me-
teorological forcing data. We investigated how to reduce the
uncertainty arising from meteorological forcings in a simula-
tion by adopting a multiple meteorological forcing ensemble
approach. Simulations by the Community Land Model ver-
sion 3.5 (CLM3.5) over mainland China were conducted us-
ing four different meteorological forcings, and the four sets
of soil-moisture data related to the simulations were then
merged using simple arithmetical averaging and Bayesian
model averaging (BMA) ensemble approaches. BMA is a
statistical post-processing procedure for producing calibrated
and sharp predictive probability density functions (PDFs),
which is a weighted average of PDFs centered on the bias-
corrected forecasts from a set of individual ensemble mem-
bers based on their probabilistic likelihood measures. Com-
pared to in situ observations, the four simulations captured
the spatial and seasonal variations of soil moisture in most
cases with some mean bias. They performed differently when
simulating the seasonal phases in the annual cycle, the inter-
annual variation and the magnitude of observed soil moisture
over different subregions of mainland China, but no individ-
ual meteorological forcing performed best for all subregions.
The simple arithmetical average ensemble product outper-
formed most, but not all, individual members over most of
the subregions. The BMA ensemble product performed bet-
ter than simple arithmetical averaging, and performed best
for all fields over most of the subregions. The BMA ensem-
ble approach applied to the ensemble simulation reproduced
anomalies and seasonal variations in observed soil-moisture

values, and simulated the mean soil moisture. It is presented
here as a promising way for reproducing long-term, high-
resolution spatial and temporal soil-moisture data.

1 Introduction

Soil moisture plays a very important role in the global hydro-
logical cycle and energy balance within the land–atmosphere
interaction in the climate system (Robock et al., 1998). It is
also a crucial variable for monitoring land surface conditions
that force extreme events such as drought and flood (Wang et
al., 2009, 2011; Albergel et al., 2012). As a consequence, it is
very important to obtain accurate high-resolution spatial and
temporal soil-moisture information. Currently, land surface
models (LSMs) have been widely used to provide estimates
of soil moisture on global or continental scales; however,
LSM simulations of soil moisture still contain large errors.
One of the main sources of error is the uncertainty in the me-
teorological forcing. The accuracy of a simulation by LSM
depends largely on the quality of its meteorological forcing,
and is especially sensitive to precipitation, radiation and tem-
perature (Wei et al., 2008; Li and Ma, 2010; Wang and Zeng,
2011).

Meteorological forcing driving a land surface model is
generally produced by combining in situ observations, re-
mote sensing measurements and reanalysis data (Qian et al.,
2006; Sheffield et al., 2006). It has been found that simula-
tions by CLM3.5 are improved using a meteorological forc-
ing obtained through merging many more in situ observations
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of precipitation and temperature (Wang and Zeng, 2011).
At a regional scale, many more in situ observations and re-
mote sensing measurements are available for LSM use. For
example, high-resolution space/time meteorological forcings
for mainland China have been developed by He (2010),
Shi (2008), Shi et al. (2011) and Tian et al. (2010), but var-
ious errors are still found in soil-moisture simulations by
LSM using different forcings. It has been found that the sim-
plest ensemble approach (simple arithmetical averaging of
soil moisture from an individual ensemble member) is an ef-
fective strategy for improving the simulation of soil mois-
ture, but it is still not superior to the best individual ensemble
member in most cases (Guo et al., 2007). Bayesian model
averaging (BMA) was proposed by Raftery et al. (2005) as
an ensemble post-processing approach for calibrating fore-
cast ensembles from numerical weather models and pro-
ducing calibrated and sharply predictive probability density
functions (PDFs). Many previous studies, which applied the
BMA approach to a range of different weather and seasonal
climate ensemble forecasts, have demonstrated that it is su-
perior to the simple arithmetical averaging method and pro-
vides a quantitative description of total predictive uncertainty
through the PDF (Raftery et al., 2005; Duan et al., 2007;
Vrugt et al., 2008; Liu et al., 2013).

In the present work, four meteorological forcings were
used to conduct simulations over mainland China using
Community Land Model version 3.5 (CLM3.5, Oleson et al.,
2007, 2008). Then the four sets of simulated soil-moisture
data were merged using a BMA ensemble approach to reduce
the CLM3.5 simulation uncertainty arising from the four me-
teorological forcings, and improve soil-moisture simulation.

This paper is organized as follows. We briefly describe the
LSM CLM3.5, four various meteorological forcings and in
situ observation of soil moisture in China in Sect. 2. Sec-
tion 3 briefly describes the experiment design and ensemble
approach. Validation and comparison of individual member
and ensemble simulations of soil moisture in eight climatic
subregions of mainland China are presented in Sect. 4. We
discuss the results in Sect. 5 and finally give a summary and
conclusions in Sect. 6.

2 Model and data

2.1 Land surface model CLM3.5

The LSM used in this study was CLM3.5 (Oleson et al.,
2007) released by the National Center for Atmospheric Re-
search (NCAR). This model is a modified version of CLM3.0
(Oleson et al., 2004), and has significantly improved the sim-
ulation of many variables in the hydrological cycle and the
spatial distribution of vegetation. A new surface dataset was
introduced to improve land surface representation and im-
prove the simulation of surface albedo, near-surface temper-
ature and precipitation (Lawrence and Chase, 2007). With

respect to hydrological process, the modifications to CLM3.5
mainly include canopy interception, surface and subsurface
runoff, water table depth, frozen soil, soil water availability
and soil evaporation.

For the hydrological process, CLM3.5 simulates changes
in canopy water1Wcan, snow water 1Wsno, soil wa-
ter 1wliq,i , soil ice 1wice,i , and water in the unconfined
aquifer 1Wa by parameterizing interception, throughfall,
canopy drip, snow accumulation and melt, water transfer be-
tween snow layers, infiltration, surface runoff, sub-surface
drainage, redistribution within the soil column, and ground-
water discharge and recharge. The total water balance equa-
tion is

1Wcan+ 1Wsno+

N∑
i=1

(1wliq,i + 1wice,i) + 1Wa

= (qrain+ qsno− Ev − Eg − qover− qdrai− qrgwl)1t,

(1)

whereqrain is rainfall,qsno is snowfall,Ev is evapotranspira-
tion from vegetation,Eg is ground evaporation,qover is sur-
face runoff,qdrai is sub-surface drainage,qrgwl is runoff from
glaciers, wetlands and lakes, and runoff from other surface
types due to snow capping,N is the number of soil layers,
and1t is the time step. The total 0–3.43 m soil column is
divided into 10 layers of variable thickness from 0.0175 m to
1.1370 m. The node depthdi , thicknesses1di , and interface
depthdh,iof theith soil layer are given by

di =
exp( i−0.5

2 ) − 1

40
, i = 1,2, · · · ,10, (2)

1di =

 (d1 + d2)/2, i = 1,

(di+1 − di−1)/2, i = 2,3, · · · ,9,

di − di−1, i = 10,
(3)

dh,i =

{
(di + di+1)/2, i = 1,2, · · · ,9,

di + 0.51di, i = 10.
(4)

Figure 1 shows the hydrological process simulated by
CLM3.5 (right) and the soil-moisture layer formation
adopted in the CLM3.5 simulation (left).

A detailed description of the physical processes, modifi-
cation and performance of CLM3.5 was given in Oleson et
al. (2004, 2008) and Lawrence et al. (2007).

2.2 In situ observations of soil moisture

The observed soil-moisture data were obtained from the
China Meteorological Administration (CMA) National Me-
teorological Information Center (NMIC). The original data
for 1992–2011 from 778 stations had been collected from
agricultural meteorological stations located in farmland
across mainland China. The soil moisture was measured
three times on the 8th, 18th and 28th day of every month in
the warm season at soil depths of 10 cm, 20 cm, 50 cm, 70 cm
and 100 cm. No measurements were recorded in frozen soil.
Soil-moisture content was measured by weight difference,
and recorded originally as mass percentageθm, i.e.,
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Fig.1. Hydrological process simulated by CLM3.5 (right) and soil moisture layer 683 

formation in CLM3.5 (left). 684 

685 

Fig. 1.Hydrological process simulated by CLM3.5 (right) and soil-moisture layer formation in CLM3.5 (left).

θm =
mw

ms
, (5)

wheremw is the weight of soil water, andms is the weight
of dried soil. The original data were obtained from agricul-
tural meteorology stations which serve for agriculture, and
were expressed as relative soil-moisture contentSm in the
soil-moisture dataset as follows:

Sm =
θm

θ
, (6)

whereθ is the volumetric soil-moisture content at field ca-
pacity. The dataset included the information for every sta-
tion. The relative soil-moisture content was then converted
to volumetric soil moisture, with units m3 m−3:

θv = Sm ×
ρs

ρw
× θ. (7)

Similarly, the mass percentage was also converted to vol-
umetric soil moisture:

θv = θm ×
ρs

ρw
, (8)

where ρs and ρw are the bulk densities of soil and wa-
ter, respectively. This soil-moisture observation dataset has
been widely used to study the variations of soil moisture
and for evaluating the LSM-simulated soil moisture in China
(Liu et al., 2001; Li et al., 2004; Zhang, 2009; Wang and
Zeng, 2011), and is constantly updated. In this study, a sim-
ple quality control procedure was performed on the updated
soil-moisture observations in terms of observation frequency
(i.e., the ratio between the available measurement times and
the period from March to September) (Zhang, 2009). The

monthly soil-moisture content values at depths of 0–10 cm,
10–20 cm and 70–100 cm at 411 stations from July 2005 to
June 2010 were then compared with the simulated values at
those depths. The 411 stations were grouped into eight sub-
regions on the basis of the spatial patterns of the centers of
dryness and wetness throughout China, based on Zhu (2003);
these are defined in Table 1. Figure 2 shows the eight subre-
gions and the location of all 411 stations, 391 of which were
located in the eight subregions in this study.

2.3 Multiple meteorological forcings

An offline CLM3.5 simulation requires external meteorolog-
ical forcing data that includes air temperature, wind speed,
specific humidity, surface pressure, precipitation and radia-
tion. In this study, four sets of meteorological forcing over
mainland China developed by different institutions were used
in our multiple forcings ensemble system. They include

– Forcing data for China (hereafter FY) developed by
Shi (2008) and Shi et al. (2011), which introduced
inverted precipitation and ground-incident solar radia-
tion products acquired through the high-resolution spa-
tial and temporal FY2C geostationary satellite data
for precipitation and solar radiation. The original in-
verted precipitation products from the China Satel-
lite Data Service Center (http://satellite.cma.gov.cn) are
estimated 6-hourly accumulated precipitation output.
Shi (2008) used an inversion algorithm to convert these
data to hourly accumulated precipitation at a spatial
resolution of 0.1◦ using a time-weighted interpolation
method based on hourly geostationary satellite cloud
category information. The temporal resolution of orig-
inal inverted ground-incident solar radiation products
is 1 day; the spatial resolution is 0.5◦. In addition, the

www.hydrol-earth-syst-sci.net/17/3355/2013/ Hydrol. Earth Syst. Sci., 17, 3355–3369, 2013
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Fig.2. Locations of the 411 in situ soil moisture observation stations (red dots). Also 687 

shown (boxes) are the eight subdivisions defined in Table 1 for regional averaging. 688 
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Fig. 2. Locations of the 411 in situ soil-moisture observation stations (red dots). Also shown (boxes) are the eight subdivisions defined in
Table 1 for regional averaging.

Table 1.Locations of the eight subregions in China.

Identification Region name Location Number of
observational

stations

China I northeast China 120◦ E–135◦ E,
40◦ N–50◦ N

74

China II northern North China 110◦ E–120◦ E,
40◦ N–45◦ N

34

China III southern North China 110◦ E–120◦ E,
34◦ N–40◦ N

116

China IV middle and lower Yangtze River basin 110◦ E–122◦ E,
30◦ N–34◦ N

36

China V eastern northwest China 95◦ E–110◦ E,
34◦ N–42◦ N

67

China VI western northwest China 80◦ E–95◦ E,
34◦ N–50◦ N

19

China VII northern southwest China 100◦ E–110◦ E,
28◦ N–34◦ N

32

China VIII southern southwest China 100◦ E–110◦ E,
20◦ N–28◦ N

13

near-surface air temperature, pressure, wind speed and
humidity were derived from National Centers for En-
vironmental Prediction (NCEP)/NCAR reanalysis data.
Shi et al. (2011) and Jia et al. (2013) used this informa-
tion as the external meteorological forcing of land data
assimilation system.

– Forcing data for China (hereafter ITP) established
by He (2010), which merged the observations from
740 operational stations of the CMA with the

corresponding Princeton global meteorological forcing
dataset (Sheffield et al., 2006) to produce near-surface
air temperature, pressure, wind speed and specific hu-
midity fields. This combined three precipitation datasets
to determine the precipitation field, and corrected the
Global Energy and Water Cycle Experiment–Surface
Radiation Budget (GEWEX-SRB) (Pinker and Laszlo,
1992) shortwave radiation dataset with reference to ra-
diation estimates (Yang et al., 2006) in order to as-
certain the incident shortwave radiation fields. Chen et

Hydrol. Earth Syst. Sci., 17, 3355–3369, 2013 www.hydrol-earth-syst-sci.net/17/3355/2013/
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Table 2.Comparison of major features of four sets of meteorological forcing data.

Forcing Resolution Coverage Composition Institution Reference

FY 1 h 0.2◦ × 0.2◦ 15◦ N–55◦ N
75◦ E–135◦ E
2005.7–2010.6

(1) precipitation and ground- incident solar ra-
diation from FY2C satellite data;
(2) NCEP/NCAR reanalysis data

CMA Shi (2008);
Shi et al. (2011)

ITP 3 h 0.1◦ × 0.1◦ 15◦ N–55◦ N
70◦ E–140◦ E
1979–2011

(1) near-surface air temperature, pressure, wind
speed, specific, humidity and precipitation from
740 operational stations of the CMA;
(2) Princeton meteorological forcing data;
(3) TRMM3B42 and APHRODITE
precipitation product;
(4) GEWEX-SRB shortwave radiation data and
radiation estimates from a hybrid radiation
model

ITPCAS He (2010); Chen et al. (2011);
Sheffield et al. (2006); Yang et
al. (2006); Yatagai et al. (2009);
Huffman et al. (2007);
Pinker and Laszlo (1992)

TIAN 6 h 1.875◦ × 1.915◦ 15◦ N–55◦ N
70◦ E–140◦ E
2004–2010

(1) precipitation and temperature from 740 op-
erational stations of the CMA;
(2) ERA-interim reanalysis data;

IAPCAS Tian et al. (2010)

JRA 6 h 1.125◦ × 1.125◦ Global
1979–2011

JRA-25 reanalysis data JMA Onogi et al. (2008)

* China Meteorological Administration (CMA), Institute of Tibetan Plateau Research, Chinese academy of Sciences (ITPCAS), Institute of Atmospheric Physics, Chinese
Academy of Sciences (IAPCAS), Japanese 25 yr Reanalysis (JRA-25), Japan Meteorological Agency (JMA), Tropical Rainfall Measuring Mission (TRMM), Asian
Precipitation-Highly Resolution Observational Data Integration Toward Evaluation of Water Resources (APHRODITE), Global Energy and Water Cycler Experiment-Surface
Radiation Budget (GEWEX-SRB) precipitation products (Huffman et al., 2007), precipitation data.

al. (2011) demonstrated that simulations driven by ITP
forcing improve land surface temperature modeling for
dry land in China.

– Forcing data (hereafter TIAN) developed by Tian et
al. (2010), which extended the observation-based atmo-
spheric forcing data from Qian et al. (2006) up until
2010, using the ERA-interim data, and temperature and
precipitation from 740 operational stations of the CMA.
Tian et al. (2010) used these data as the external meteo-
rological forcing of land data assimilation system.

– Japanese 25 yr reanalysis data (JRA-25) (Onogi et al.,
2008) (hereafter JRA).

Table 2 summarizes the primary features of and differ-
ences between these forcings. Since precipitation is the driv-
ing force of soil-moisture variability, and that precipitation
uncertainty accounts for about 2/3 of the total soil-moisture
uncertainty arising from all forcing data (Wei et al., 2008),
we compared the precipitation from the above four forc-
ings. Figure 3 shows the spatial distribution for the five-
year (July 2005–June 2010) averaged precipitation from the
four forcings: in general, the precipitation from each of the
forcings displayed a similar spatial pattern, i.e., obvious
northwest–northeast and northwest–southeast gradients from
dry to wet. However, FY indicates wetter conditions than the
other three forcings in most areas of mainland China, and
JRA is slightly drier than other three forcings, especially in
northern China (China I, II, III).

Figure 4 shows the time series of precipitation from the
four forcings for the period July 2005–June 2010 in the eight
subregions of mainland China defined in Table 1. Precipita-
tion figures from FY, TIAN, ITP and JRA display a similar

temporal variation in most cases. However, FY is wetter than
the other three forcings in most subregions, especially for the
period January 2010–June 2010, and shows greater temporal
variation in most subregions. JRA is slightly drier than other
three forcings, and shows smaller temporal variation in most
subregions except China VII, but it indicates a higher peak
value in the wet season. Here, the area average accounts for
only those grid cells nearest the relevant soil-moisture obser-
vation stations.

3 Experiment design and ensemble approach

3.1 Experiment design

The four soil-moisture simulations were determined by the
following forcings (described in Table 2), which are coded as
(1) CLM3.5 FY (for the FY simulation); (2) CLM3.5TIAN
(for the TIAN simulation); (3) CLM3.5ITP (for the ITP sim-
ulation); (4) CLM3.5JRA (for the JRA simulation). In order
to spin-up for the deep soil layers and achieve an equilib-
rium state of the CLM3.5, the model first adopted ITP me-
teorological forcing from 1979 to 2010, and the first files on
1 January 2011 and 1 July 2010 were saved and used to ini-
tialize all four simulations at the beginning of each of the four
forcings (1 January 1979 for ITP and JRA; 1 January 2004
for TIAN; 1 July 2005 for FY). These were all run at reso-
lutions of 0.1◦ latitude× 0.1◦ longitude in CLM3.5, and the
forcing data were also interpolated to 0.1◦. The time step is
1800s. Because the different forcings spanned four different
time periods, in this study we chose the time span that was
common to all four, which was July 2005–June 2010.

www.hydrol-earth-syst-sci.net/17/3355/2013/ Hydrol. Earth Syst. Sci., 17, 3355–3369, 2013
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Fig.3. Precipitation (mm/year) averaged for July 2005 – June 2010 from: (a) FY; (b) 692 

TIAN; (c) ITP; (d) JRA. 693 
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Fig. 3.Precipitation (mm yr−1) averaged for July 2005–June 2010 from:(a) FY; (b) TIAN; (c) ITP; (d) JRA.

The four sets of simulated soil-moisture data were then
merged, using simple arithmetical averaging and BMA en-
semble approaches.

3.2 Ensemble approach

The ensemble approaches have been found to be quite ef-
fective in improving soil moisture simulations. The simplest
ensemble approach (simple arithmetical averaging) and an
advanced ensemble approach (BMA) were both used in this
study. Raftery et al. (2005) proposed a BMA approach which
involves statistical post-processing to produce calibrated and
sharply predictive PDFs from ensembles of dynamic mod-
els, and provide a reliable description of the total modeling
uncertainty. The BMA predictive PDF is a weighted average
of PDFs centered on the bias-corrected forecasts from a set
of individual ensemble members, based on measures of their
probabilities, with the better-performing ensemble members
being assigned a higher weighting than those that produced
less satisfactory results:

p(y|(f1, · · · ,fK ,yT)) =

K∑
k=1

wkpk(y|(fk,y
T)), (9)

wherey is the predictive variable,fk,k = 1,2, · · · ,K is the
kth ensemble member forecasts,K is the number of en-
semble members being combined,yT are the training data,
pk(y|(fk,y

T)) is the conditional PDF ofy based on ensem-
ble memberfk, given thatfk is the best forecast in the en-
semble. The weightingwk is the posterior probability of fore-

cast, such that it is non-negative and
K∑

k=1
wk = 1, and repre-

sents the contribution of ensemble memberk to the predictive
skill of the ensemble. From Eq. (9), we obtain the posterior
predictive PDF of the predictive variable, such as soil mois-
ture in this study. In the original BMA approach, Raftery et
al. (2005) assumed that the conditional PDF was Gaussian,
but the probability distribution of soil-moisture error is non-
Gaussian. Tian et al. (2011) found that the gamma distribu-
tion gives a better approximation of the soil-moisture error
than the Gaussian distribution. In the BMA we developed and
used, we assumed that the conditional PDFpk(y|(fk,y

T))

from each ensemble member at the specific time and loca-
tion was approximated as a gamma distribution:

pk(y|(fk,y
T)) =

1

β
αk

k 0(αk)
yαk−1exp(−y/βk), (10)

where0(αk) is the gamma function. The shape parameterαk

and scale parameterβk of the gamma distribution are given
by

Hydrol. Earth Syst. Sci., 17, 3355–3369, 2013 www.hydrol-earth-syst-sci.net/17/3355/2013/
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Fig. 4.Time series of precipitation (prec, mm day−1) for July 2005–June 2010 from FY, TIAN, ITP and JRA in the eight subregions of China
defined in Table 1.

µk = αkβk = b0k + b1kfk, (11)

σ 2
k = αkβ

2
k = c0 + c1fk, (12)

whereµk andσ 2
k are the mean and variance of the gamma

distribution, andb0k,b1k,c0,c1 are the parameters to be esti-
mated. The mean of the BMA posterior PDF is the determin-
istic forecast. In this study, we considered only the determin-
istic forecast of the BMA method for the soil moisture.

The BMA parameters were estimated from a training
dataset using the linear regression method and the maxi-
mum likelihood technique for which the values were ob-
tained iteratively using the modified Markov chain Monte
Carlo (MCMC) algorithm following Vrugt et al. (2008). In
the present study, July 2005–June 2008 was chosen as the
training period, and July 2008–June 2010 as the evaluation
period. In spatial distribution, the BMA parameters were re-
located from data-rich areas to data-sparse or no-data areas,
based on the distribution compartmentalization of climate
defined in Table 1.

4 Results

4.1 Spatial distribution and temporal variation

The soil moisture was observed only for the 0–10 cm, 10–
20 cm and 70–100 cm soil layers; since the soil layer thick-
nesses in CLM3.5 did not match the thicknesses at which the
in situ observations were made, the multiple soil layers in
CLM3.5 were adjusted to the three observed soil layer thick-
nesses by the weighted averages of soil layer thicknesses.

Figure 5 shows the spatial distribution for the five-year
(July 2005–June 2010) averaged volumetric soil moisture de-
rived from CLM3.5 simulations driven by the above four
forcings, their simple arithmetical averaging ensemble (re-
ferred to as CLM3.5mean from here on), their BMA en-
semble (referred to as CLM3.5BMA from here on), and ob-
served values in the 0–10 cm soil layer (the first column in
Fig. 5), 10–20 cm soil layer (the second column in Fig. 5) and
70–100 cm (the third column in Fig. 5). For the soil mois-
ture in the 0–10 cm soil layer, the observed soil moisture
over mainland China (Fig. 5a, first column) displays obvi-
ous northwest–northeast and northwest–southeast gradients
from dry to wet. Soil drought (< 0.14 m3 m−3, Fig. 5a, first

www.hydrol-earth-syst-sci.net/17/3355/2013/ Hydrol. Earth Syst. Sci., 17, 3355–3369, 2013
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Fig. 5. Mean volumetric soil moisture (m3 m−3) averaged for July 2005–June 2010 in 0–10 cm soil layer (first column), 10–20 cm soil
layer (second column), 70–100 cm soil layer (third column):(a) observations (OBS);(b) CLM3.5 FY; (c) CLM3.5 TIAN; (d) CLM3.5 ITP;
(e)CLM3.5 JRA; (f) CLM3.5 mean;(g) CLM3.5 BMA.

column) is evident in most of Xinjiang, western Gansu, In-
ner Mongolia and the Hetao region; wetter soil appears over
part of the northeast and most of southeast. The spatial pat-
tern is generally consistent with the analysis of in situ soil-
moisture observations from Sun et al. (2005). Figure 5b–e in
the first column indicate that the soil moisture simulated by

all four forcings generally captured the spatial pattern of soil
moisture in most cases, but the CLM3.5FY, CLM3.5 TIAN
and CLM3.5ITP simulated moisture content was wetter than
observed values, especially CLM3.5FY over the Hai River
basin. CLM3.5JRA predicted drier soil than observed over
northern China, especially in the northeast. In summary, a
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Fig.6. Time series of monthly volumetric soil moisture (SM, m
3
.m

–3
) for the 0–10 cm 707 

soil layer from observations, CLM3.5_FY, CLM3.5_TIAN, LM3.5_ITP, CLM3.5_ 708 

JRA, CLM3.5_mean and CLM3.5_BMA in the eight subregions of China defined in 709 

Table 1. 710 

Fig. 6. Time series of monthly volumetric soil moisture (SM, m3 m−3) for the 0–10 cm soil layer from observations, CLM3.5FY,
CLM3.5 TIAN, LM3.5 ITP, CLM3.5 JRA, CLM3.5mean and CLM3.5BMA in the eight subregions of China defined in Table 1.

mean bias was revealed in the CLM3.5 soil-moisture simu-
lation when individual forcings were used. Precipitation had
a dominant impact on the soil-moisture variation. Compari-
son of the precipitations from the four forcing and four sim-
ulated soil-moisture values showed that the simulated soil
moisture in Fig. 5b–e (first column) had a similar spatial
pattern to that for precipitation in Fig. 3, but some differ-
ences were evident in the spatial patterns of precipitation and
soil moisture. For example, the higher simulated precipita-
tion from JRA in China VII may merely represent increased
runoff and evaporation of the precipitation intercepted by the
canopy without increasing soil moisture. Figure 5f–g (first
column) show that CLM3.5mean and CLM3.5BMA re-
duced the mean bias, resulting in a spatial distribution that
approximated the observed values more closely than the indi-
vidual members, and captured the locations of the several soil
moisture drought centers very well. Also, CLM3.5mean was
wetter than the observed values; CLM3.5BMA clearly cap-
tured several dryness and wetness centers in mainland China,
and it approximated the observed values spatially.

The second and third columns repeat the maps of the first
column in Fig. 5, with the 10–20 cm and 70–100 cm soil lay-
ers shown. Both the 0–10 cm and 10–20 cm soil layers are
the upper soil layers, and the spatial distribution in the 10–
20 cm soil layer in Fig. 5 (second column) basically agrees
with the first column, and the performance is similar. For the
70–100 cm layer (third column in Fig. 5), the spatial patterns
of soil moisture for all simulations coincide with observa-
tions in most cases, but spatial distribution varies much less
than the 0–10 cm layer (first column in Fig. 5), and the mean
bias is much greater. Possible causes include the inability of
CLM3.5 to simulate the variation of soil moisture at deeper
soil layers, or alternatively the relatively short spin-up time.
Figure 5g shows that CLM3.5BMA greatly improved the
simulated results, and agreed more closely with the observed
spatial patterns in the 0–10, 10–20 and 70–100 cm soil lay-
ers.

To quantitatively examine the performance of CLM3.5
simulations of soil moisture driven by the four individual
forcings and their ensemble simulations, we compared the
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Fig.7. July 2005 – June 2010 mean monthly volumetric soil moisture (SM, m
3
.m

–3
) for 712 

the 0–10 cm soil layer from observations, CLM3.5_FY, CLM3.5_TIAN, CLM3.5_ 713 

ITP, CLM3.5_JRA, CLM3.5_mean and CLM3.5_BMA in the eight subregions of 714 

China defined in Table 1. 715 

 716 

717 

Fig. 7. July 2005–June 2010 mean monthly volumetric soil moisture (SM, m3 m−3) for the 0–10 cm soil layer from observations,
CLM3.5 FY, CLM3.5 TIAN, CLM3.5 ITP, CLM3.5 JRA, CLM3.5mean and CLM3.5BMA in the eight subregions of China defined in
Table 1.

simulated and observed monthly volumetric soil moisture
time series averaged over the eight subregions defined in Ta-
ble 1. In this study, the observational stations are widely scat-
tered, with the result that the area averages of simulated vol-
umetric soil moisture count only those grid cells closest to
the relevant observation stations.

Figure 6 shows the comparisons between simulated
and observed monthly volumetric soil moisture in the 0–
10 cm soil layer for the period July 2005–June 2010 in
the eight subregions for each of the four models, and
also for CLM3.5mean and CLM3.5BMA. CLM3.5 FY,
CLM3.5 TIAN and CLM3.5 ITP all generally captured the
seasonal cycle and temporal evolution of the observed soil
moisture reasonably well, but overestimated the amplitude
for most subregions in mainland China, predicting much
higher soil-moisture values than observed. CLM3.5JRA
performed somewhat worse in capturing the temporal evo-
lution of soil moisture, but showed a smaller bias than the

other three. For the eight subregions, the temporal varia-
tion trends and magnitudes of soil moisture shown in Fig. 6
are generally consistent with precipitation (Fig. 4). Precipi-
tation played an important role in these soil-moisture simu-
lations, especially in the surface layer, but this was not the
only aspect to be considered. For example, CLM3.5TIAN
and CLM3.5ITP overestimated the observed soil moisture
in eastern China (China I–IV), yet slightly underestimated
it in the northwest (China VI); these findings are consistent
with those of Wang and Zeng (2011) and Wang et al. (2011),
and may be related to deficiencies in CLM3.5, e.g., scaling of
canopy interception (Lawrence et al., 2007), soil texture and
model structure. The CLM3.5mean and CLM3.5BMA en-
sembles showed considerable improvement over individual
forcing simulations. CLM3.5BMA produced a closer sim-
ulation of the observed values of the temporal evolution of
both soil moisture and seasonal phases, and greatly reduced
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the mean bias. It also approximated the observed time series
most closely.

It should be noted that LSM simulations usually reproduce
anomalies and seasonal variations but fail to simulate the
mean soil moisture (Entin et al., 2000; Gao and Dirmeyer,
2006; Qian et al., 2006); the BMA approach applied in the
present study did simulate the mean soil-moisture values.

For the 10–20 cm soil layer (figure not shown), the tem-
poral variation basically agrees with the map in Fig. 6 and
has a similar performance for the eight subregions. For the
70–100 cm soil layer (figure not shown), in six experiments
the simulation agreed with the observed temporal variation in
the China I–VII subregions, but most did not capture the ob-
served temporal variation well in the China VIII subregion.
This may be due to the dense vegetation, copious rainfall, the
shortage of observations, and the complex terrain in southern
China. In subregions China I and II, the temporal variation
was much smaller and the mean bias was much greater than
that shown in Fig. 6. CLM3.5JRA performed worst in this
soil layer, substantially underestimating the soil moisture in
northern China (China I, II and V). This may be due to that
the precipitation from JRA is drier than that from other three
forcing and indicates a higher peak value in the wet season
(Fig. 4). The higher peak value in the wet season will increase
the runoff. In addition, simulation of soil moisture in deep
soil layers is not only related to forcing precipitation, but
also to soil processes, vegetation processes and other vari-
ables considered in CLM3.5. CLM3.5BMA performed best
of all six simulations, both for temporal variation and mean
soil moisture.

Figure 7 compares the six simulations, averaged over the
eight subregions, with the observed annual soil-moisture
cycle in the 0–10 cm soil layer. All six simulations gen-
erally captured the annual cycle in most subregions, but
CLM3.5 FY was too wet; CLM3.5TIAN and CLM3.5 ITP
predicted slightly wetter values than observed; CLM3.5JRA
had a smaller bias and were drier than observations in north-
ern China, especially for the deep soil layer (70–100 cm, not
shown in Fig. 7); CLM3.5BMA agreed very closely with
observation. For the 10–20 cm and 70–100 cm soil layers, the
annual cycles were comparable (not shown in Fig. 7).

4.2 Statistical comparison between simulation and in
situ observation

As a further quantitative illustration of the advantages of
the BMA ensemble approach in improving the simulation
of soil moisture, statistical scores of correlation coefficient
(R), mean bias error (MBE), root mean square error (RMSE)
and normalized standard deviation (SDV) were used to fur-
ther examine the performance of the six simulations.R and
SDV were plotted on two-dimensional Taylor diagrams (Tay-
lor, 2001). The SDV is displayed as radial distance,R for in
situ observations as an angle in the polar plot, and the in situ
observation as a point on thex axis atR = 1 and SDV= 1

42 
 

 718 

Fig.8. Statistical scores for CLM3.5_FY, CLM3.5_TIAN, CLM3.5_ITP, CLM3.5_ 719 

JRA, CLM3.5_mean and CLM3.5_BMA in the validation period July 2008 – June 720 

2010 in the 0–10 cm soil layer in the eight subregions of China defined in Table 1: (a) 721 

correlation coefficient (R); (b) mean bias error (MBE); (c) root mean square error 722 

(RMSE); (d) normalized standard deviation (SDV). 723 

Fig. 8. Statistical scores for CLM3.5FY, CLM3.5 TIAN,
CLM3.5 ITP, CLM3.5 JRA, CLM3.5mean and CLM3.5BMA in
the validation period July 2008–June 2010 in the 0–10 cm soil layer
in the eight subregions of China defined in Table 1:(a) correlation
coefficient (R); (b) mean bias error (MBE);(c) root mean square
error (RMSE);(d) normalized standard deviation (SDV).

(recorded as REF). The distance between the point “REF”
and the other points representing the model is the centered
normalized root mean square difference between the model
and in situ patterns.

The statistical post-processing in the BMA method re-
quires training data to calibrate the BMA model parame-
ters. We chose July 2005–June 2008 as the training period
and July 2008–June 2010 as the evaluation period. The sta-
tistical scores of the six simulations in the 0–10 cm soil
layer are presented in Fig. 8 for each of the eight subre-
gions. For the individual forcing experiments, CLM3.5ITP
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 724 

Fig.9. Taylor diagram illustrating the comparison between CLM3.5_FY, CLM3.5_ 725 

TIAN, CLM3.5_ITP, CLM3.5_JRA, CLM3.5_mean, CLM3.5_BMA and in situ 726 

observation in the eight subregions of China defined in Table 1 for the validation 727 

period July 2008 – June 2010 in: (a) 0–10 cm soil layer; (b) 10–20 cm soil layer; (c) 728 

70–100 cm soil layer. 729 

730 

Fig. 9. Taylor diagram illustrating the comparison between CLM3.5FY, CLM3.5 TIAN, CLM3.5 ITP, CLM3.5 JRA, CLM3.5mean,
CLM3.5 BMA and in situ observation in the eight subregions of China defined in Table 1 for the validation period July 2008–June 2010 in:
(a) 0–10 cm soil layer;(b) 10–20 cm soil layer;(c) 70–100 cm soil layer.

and CLM3.5TIAN showed good temporal correlation (R)
ranging from 0.5 to 0.8 in most subregions. CLM3.5JRA
performed worst in temporal correlation, and is shown to
have negative correlation in Fig. 8a. Figure 8b–c show that
CLM3.5 JRA produced a relatively small MBE and RMSE,
whereas the other three individual forcing experiments each
showed a relatively large MBE and RMSE. The standard
deviation of CLM3.5FY approximated in situ observa-
tions most closely (i.e., SDV approximated 1 most closely)
(Fig. 8d). Figure 8 also shows that only some of the individ-
ual forcing experiments ranked highly, and this was only in
some of the subregions. None of the individual forcing ex-
periments ranked highest in all subregions.

CLM3.5 mean ranked highly over most subregions but
it did not outperform all the individual members. The
CLM3.5 BMA ranked highly over all subregions for all
fields and performed better than CLM3.5mean over most
subregions, and performed best in temporal correlation (R)

over China II, III and VI subregions, in MBE over all subre-
gions except China VI and VII, in RMSE over all subregions
except China VII, and in SDV over China III and VI subre-
gion for all fields. In general, The CLM3.5BMA performed
best for all fields over most of the subregions.

The statistical scores of six different experiments in the
10–20 cm and 70–100 cm soil layers show similar outcomes
with those in the 0–10 cm soil layer, but the quality of the
prediction deteriorated with greater soil depth; for instance,
in the China IV and VIII subregions, the BMA ensemble was
less dominant in temporal correlation (figure not shown).

Figure 9 shows three Taylor diagrams comparing the six
experiments with observed values over the eight subregions:
Fig. 9a is for the 0–10 cm soil layer, Fig. 9b is for the
10–20 cm soil layer and the Fig. 9c is for the 70–100 cm
soil layer. (Negative correlations are not shown in Taylor
diagrams.) Figure 9 shows clearly that the CLM3.5ITP
generally performed best of the four individual forcing
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 731 

Fig.10. Comparison between: (a) simulated mean volumetric soil moisture in the 732 

0–10 cm soil layer; and (b) mean precipitation minus simulated (P–ET) averaged for 733 

July 2005 – June 2010 by CLM3.5 using ITP forcing. 734 

Fig. 10.Comparison between:(a) mean precipitation minus simulated evapotranspiration (P–ET); and(b) simulated mean volumetric soil
moisture in the 0–10 cm soil layer averaged for July 2005–June 2010 by CLM3.5 using ITP forcing.

experiments, and CLM3.5BMA performed best of all six ex-
periments in general, in most cases. Also, it is shown clearly
that the performances of the simulations deteriorated with
greater soil depth in the Fig. 9. The BMA ensemble approach
improved the quality of simulated soil moisture significantly,
not only in better simulation of the spatial (Fig. 5) and tem-
poral variation (Fig. 6), but also in reducing the mean bias
(Figs. 5–7).

5 Discussion

The uncertainty of LSM-simulated soil moisture mainly de-
rives from the uncertainty of the meteorological forcing that
is used, and also on the LSM parameterization method. This
suggests that more effort is needed to reduce the uncertainty
and improve the soil-moisture simulation. Due to the lack of
available long-term soil-moisture data, the BMA ensemble
approach was applied to multiple forcings and a multi-model
ensemble for simulating soil moisture, and showed promise
as a way of reproducing accurate and high-resolution long-
term spatial and temporal soil-moisture data, which in turn is
very important for the study of long-term hydrological vari-
ation at the land surface.

Some limitations to this study should be noted. Firstly,
while we have demonstrated that the BMA method reduces
the modeling uncertainty and improves modeling overall, the
method depends on the accuracy of observed field values to
provide an adequate training dataset for calibrating the model
parameters. In this study we assumed that the local observa-
tions of the station were true values; the uncertainty of the
soil-moisture observations was not discussed.

Secondly, we did not consider the uncertainty introduced
by the scale mismatch between observation and simulation.
The thicknesses of the observed soil layers were different
from those demanded by the CLM3.5 simulation software,
requiring the multiple soil layer thicknesses in CLM3.5 to
be adjusted to the three observed soil layer thicknesses using

the weighted averages of the thicknesses in CLM3.5. Also,
since the spatial scale coverage of local station observations
did not match the size of the CLM3.5 grid, it was necessary
to choose a CLM3.5 grid that most closely matched the dis-
tance between local station observations. These uncertainties
were not considered in this study.

Thirdly, the BMA ensemble approach depends on the
availability of observational data; measured soil-moisture in-
formation in China is sparse, especially in southern China.
Therefore spatial BMA parameters must be transferred from
data-rich areas to data-sparse or no-data areas. In this study,
we transferred parameters based on the partitioning of cli-
mate types, as set out in Table 1. However, the spatial vari-
ation of soil moisture is large (Liu et al., 2001; Minet et al.,
2011) and it is sensitive to precipitation (P ), radiation and
temperature; in other words, it is related toP and evapotran-
spiration (P–ET), but it is not merely equal toP–ET multi-
plied by a simple scale factor because it is also closely related
to the soil processes, vegetation processes and other input in-
formation that can be manipulated by CLM3.5. As an exam-
ple, Fig. 10 showsP–ET compared to simulated soil mois-
ture, illustrating that the simulated soil moisture is the re-
sult of precipitation, temperature and radiation of forcing, to-
gether with soil, vegetation and other processes in CLM3.5 at
a regional scale. Although this method of transferring BMA
parameters improves the simulation in some ways, the un-
certainty in the method remains to be addressed. In cases in
which the observational data are sparse, other methods might
be found to be appropriate: for example, a comprehensive
parameter-transfer approach that embraces climate, hydrol-
ogy, vegetation and soil texture properties may improve sim-
ulated soil-moisture patterns.

6 Summary and conclusion

This study investigated the extent to which the quality of
soil-moisture simulation is improved by using a multiple
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meteorological forcings ensemble approach. Four meteoro-
logical forcings developed by different institutions were used
in the LSM numerical model CLM3.5 to simulate the mois-
ture content of soils across mainland China. All simulations
were performed on a grid at 0.1◦ resolution. Two ensemble
approaches (simple arithmetical averaging, and BMA) were
then applied to the resulting four sets of simulations. The
simulated soil moisture from all six experiments were then
compared to in situ measured soil moisture from 411 sta-
tions in eight subregions across mainland China for the pe-
riod July 2005–June 2010. The major conclusions are stated
in the following paragraphs.

The CLM3.5 simulations of soil moisture using the four
individual forcings generally captured the spatial pattern and
seasonal variation of soil moisture in these areas, but pro-
duced some mean bias when compared with the observed in
situ soil-moisture values. Of the four individual forcing ex-
periments, CLM3.5ITP and CLM3.5TIAN showed the best
correlation, CLM3.5JRA had the lowest mean bias, and the
variation of soil-moisture values produced by CLM3.5FY
was generally consistent with measured values. In general,
CLM3.5 ITP performed best and CLM3.5JRA performed
worst in most subregions. This result is associated with
the quality of the meteorological forcing: for example, ITP,
TIAN and FY require substantial numbers of measured val-
ues to be merged with remote sensing observations.

The performances of the simulations in the top soil lay-
ers (0–10 cm and 10–20 cm) were superior to those at 70–
100 cm, which is associated with the ability of CLM3.5 to
simulate soil moisture in the deeper soil layers, and the mis-
match between the actual measured soil layer depths and the
theoretical depths that are part of the design of the CLM3.5
model. The simulated soil-moisture values in northern China
were found to approximate more closely to in situ observed
values than those in southern China (subregions China IV,
VII and VIII). This result was presumably related to the co-
pious rainfall in those subregions together with the scarcity
of observational data, the dense vegetation, the complex ter-
rain and the soil texture.

Ensembles based on combining the four meteorological
forcings improved the accuracy of the simulated soil mois-
ture. The simple arithmetical averaging ensemble ranked
highly in most subregions, but did not produce the best of the
results in all categories in most subregions. The BMA ensem-
ble performed better, being best over most of the subregions
in general. The BMA ensemble approach significantly im-
proved the ability to accurately simulate soil moisture. It is a
promising way of reproducing the mean value and variation
in volumetric soil moisture.
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