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Abstract. Water temperature in lakes is governed by a com-show remarkable agreement with measurements over the en-
plex heat budget, where the estimation of the single fluxedire data period. The use of air temperature reconstructed by
requires the use of several hydro-meteorological variablesatellite imagery is also discussed.

that are not generally available. In order to address this issue
we developed Air2Water, a simple physically based model
to relate the temperature of the lake superficial layer (epil-
imnion) to air temperature only. The model has the form of 1  Introduction

an ordinary differential equation that accounts for the over-

all heat exchanges with the atmosphere and the deeper |ay(Water temperature is crucial for lakes physical, chemical and
of the lake (hypolimnion) by means of simplified relation- Piological dynamics: temperature is the primary driver of
ships, which contain a few parameters (from four to eight inthe vertical stratification, and thus directly affects vertical
the different proposed formulations) to be calibrated with the€Xchanges of mass, energy and momentum within the wa-
combined use of air and water temperature measurement€r column. Water temperature plays a key role in influenc-
The calibration of the parameters in a given case study aling the aguatic ecosystem of lakes, which usually adapts to
lows for one to estimate, in a synthetic way, the influence@ specific range of physical and environmental conditions.
of the main processes controlling the lake thermal dynamicsAS @ matter of fact, water temperature can affect both the
and to recognize the atmospheric temperature as the maighemical (e.g., dissolved oxygen concentration) and biologi-
factor driving the evolution of the system. In fact, under cer- ¢l (€.g., fish growth) processes occurring in the water body
tain hypotheses the air temperature variation implicitly con- (€.9., Wetzel 2001). Recent studies demonstrate that lakes
tains proper information about the other major processes inae highly sensitive to climate, and their physical, chemical
volved, and hence in our approach is considered as the On|§md biological properties respond rapidly to climate-related
input variable of the model. In particular, the model is suit- changesAdrian et al, 2009. In the light of these considera-
able to be applied over long timescales (from monthly to in-tions, itis evident that any significant modification to current
terannual), and can be easily used to predict the respong]vironmental conditions may influence the limnic system,
of a lake to climate change, since projected air temperaWith direct impacts on the composition and richness of its
tures are usually available by large-scale global circulationecosystemNlacKay et al, 2009. There are indeed several
models. In this paper, the model is applied to Lake Supe/€asons to look for a reliable tool to have information about
rior (USA—Canada) considering a 27 yr record of measurethe dependence of water temperature on the various factors
ments, among which 18yr are used for calibration and thdnfluencing the heat balance of the lake compartments.
remaining 9yr for model validation. The calibration of the ~ Water temperature in lakes follows complex dynamics
model is obtained by using the generalized likelihood un-and is the result of a combination of different fluxes,
certainty estimation (GLUE) methodology, which also al- Whose sum is often small compared to the single terms

lows for a sensitivity analysis of the parameters. The resultd€-g-Imboden and West 1995. Therefore, relatively small
errors in the estimate of the single contributions may result
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in a significantly large error in the evaluation of the net heatmay cover a wider interval of values. Regression-type mod-
flux. This is particularly true for the well-mixed surface layer, els, either linear or non-linear, have been successfully applied
usually termed as epilimnion during stratified conditions, to estimate the temperature of rivers and streams, giving rise
which experiences strong oscillations at a variety of tempo-to a rich literature (e.g.Kothandaraman and Evank972
ral scales: from short (hourly and daily) to long (annual and Crisp and Howsonl982 Webb et al.2003 Benyahya et a).
interannual) up to climatic (decades to centuries). Closing2007 Morrill et al., 2005. Nevertheless, these models can-
the heat balance correctly at the different scales and predictrot straightforwardly be extended to the case of lakes, espe-
ing the future trend of surface water temperature is thereforeially for those water basins that have a significant seasonal
challenging, and not always possible (e.g., if meteorologi-hysteresis. As a matter of fact, the variety of processes of
cal data are not sufficient). As a consequence, some hydrdieat exchange across the lake surface and the thermal inertia
dynamic lake models prescribe surface water temperature asf the water mass cause an annual phase lag between air and
surface boundary condition instead of computing the net heatvater temperatures, which is hard to consider in regressions.
flux at the water—atmosphere interface (eGpudsmitetal.  In many cases, simplistic linear regressions are adopted for
2002 Piccolroaz and Toffolon2013 Piccolroaz 2013. In the conversion, following the assumption of a direct mono-
general, large uncertainties are associated with the estimatesnic relationship between air temperature and surface wa-
of the various heat exchange components; however, the varter temperature (e.gShuter et al. 1983 Livingstone and
ables involved in the different processes are either not all inLotter, 1998 Livingstone et al. 1999, which do not allow
dependent from each other or do not present strong interfor capturing the hysteresis cycle. In other cases, seasonal
annual variations, suggesting that some simplifications carysteresis is solved by estimating different seasonal regres-
be possibly adopted. For instance, shortwave solar radiasion relationships, one for each branch of the hysteresis loop
tion substantially depends on the latitude of the lake and(e.g., one for the ascending and another for the descending
on cloudiness, with the former presenting a rather regulabranch) (e.g.Webh 1974, or by using linear regressions
annual trend and the latter being important mainly at shortto estimate the monthly means of surface water temperature
timescales (from hourly to weekly). Deep-water temperaturefrom the monthly means of measured air temperature data
typically changes on timescales much longer than surfac€McCombie 1959.
water, and thus the heat exchanged with the hypolimnion can Besides regression analysis, water temperature of lakes
be reasonably assumed as constant in many situations. Difzan be estimated by means of process-based numerical mod
ferently, air temperature is a significant index of the overall els (e.g.,Arhonditsis et al. 2004 Fang and Stefgnl999
meteorological conditions, and can be reasonably assumed &eeters et 312002 Martynov et al, 2010, possibly cou-
the main variable influencing the heat balance of the surfacgled with an atmospheric model (e.Goyette and Perroud
layer of the lakel(ivingstone and Padék, 2007). 2012 Martynov et al, 2012 aimed at including the mutual
Thankfully, long-term, high-resolution air temperature ob- interaction between water and atmosphere. These kinds of
servational datasets are in general available, both for histormodels can provide exhaustive information about the ther-
ical periods adopted to calibrate general circulation modelsmal structure of lakes, and accurately characterize the differ-
(GCMs) and regional climate models (RCMs), and for fu- ent energy fluxes involved in the lake temperature dynamics.
ture periods where air temperature is a variable commonlyThe major drawback of the process-based models is the re-
derived from GCM or RCM projections. Conversely, water quirement of detailed time series of meteorological data in
temperature measurements are far less available, and futureput (e.g., wind speed, humidity, cloudiness, etc., in addi-
projections could be only obtained through the adoption oftion to air temperature), which are often not available or not
predictive models fully coupled with atmospheric and land accurate enough.
surface models, which at the present stage is not a common In order to overcome the limitations of traditional ap-
practice MacKay et al, 2009. In order to overcome these proaches (both regression- and process-based models), semi-
limitations (i.e., scarce availability and difficult estimation), empirical models based on physical principles may repre-
several simple models have been formulated that use air tensent a valid alternative, having the key advantage of requiring
perature (widely accessible both for past and future periodsjewer data in input than deterministic models, whilst preserv-
to derive surface water temperature of lakes. ing a clear physical basis. Recentfgttle et al.(2004 pro-
Regression models (s&harma et al.2008 for a review)  posed a simple empirical model to estimate mean daily water
are typically adopted for this scope, but their use may betemperature, using only air temperature and the theoretical
questionable, especially when it is necessary to extrapolatelear-sky solar radiation as input information. The model is
temperature values beyond the maximum (or minimum) limitbased on the sensible heat exchange modRloothe(1952
of the measured time series. This is often the case in cli{see alsdilello, 1964, and implicitly accounts for the main
mate change studies, where the regression relationships buitteat exchange processes through four parameters. The model
upon current climate condition are applied to estimate surperforms well, but its application is limited to specific peri-
face water temperature for different climate change scenareds of the year with nearly uniform stratification conditions
ios, with the possibility that the projected air temperature (it has been applied to small lakes in Greenland from late
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June to early September, long after ice melts, when water
temperature is always abové@). However, it does not ac-

count for the seasonal evolution of the thermal structure of

the lake, and hence of the mixing depth (i.e., the depth of the T 8L
epilimnion), which determines the volume of water respond-

ing to meteorological forcing, and has a significant influence Preciptation s
on the seasonal patterns of atmosphere—lake heat exchange. ;. cvachration Hd ¢

In the attempt to reliably estimate the cycle of surface N P B condgnsation H
water temperature of lakes from air temperature measure- ' S e (1-roHs (1-r)H, °
ments/projections only, both under past, current and pro- Hg Diffusive heat flux
jected climate conditions, a simplified model has been de- "o Long-wave radiation

veloped. Such a model is primarily based on the energy bal-
ance between atmosphere and lake surface waterlfFisut kg 1. Main heat exchange affecting the surface layer. For the de-
avoids the need to take into account all heat budget terms exscription of the single terms, refer to Appendix
plicitly. A simple parameterization of the seasonal evolution
of the mixing depth is included in the model equations, which
only depend upon air temperature. The key objective of thecs is a coefficient that is primarily ascribable to a transfer
present work is thus the definition of a modeling framework function of sensible heat flux), a constant tergrand a resid-
that could allow for a consistent description of the physical ual correctiorcsTy, dependent on the water temperature (the
principles governing lake surface temperature, and ensurel@st two terms combined together basically account for the
general applicability of the model (e.g., over the entire year).contribution of the latent heat flux). The only meteorolog-
The paper is structured as follows. In Setthe govern-  ical variable explicitly included in the model i&, while
ing equations are presented, and the model is formulated. Thiéae remaining meteorological forcing (e.g., wind speed, solar
heat budget is presented in detail in AppendixSection3 radiation, humidity and cloudiness, which besides air tem-
provides a general description of the data used in this studyperature are the major factors controlling the heat budget of
The results concerning model calibration and validation ardakes) are inherently accounted for in the model's parame-
presented in Sectt with reference to the different versions ters. In particular, the formulation of the model implicitly
of the model and the various dataset used in this work. Reaccounts for the seasonal patterns of these external forcing
sults are discussed in Sebt.and finally we draw the main terms through the data-driven calibration of the parameters.
conclusions in Secé. Consistent with the main aim of the model (i.e., to repro-
duce the evolution offy, at long timescales, e.g., monthly,

) annual, interannual), higher frequency fluctuations are not
2 Formulation of the model considered.
Considering the upper layer of the lake, the volume-

The net heat fluxtine: in the surface layer of a lake re- integrated heat equation can be expressed as follows

sults from the combination of the different fluxes entering
and exiting the upper water volume (see Fiy). The main v dlw HoA 2
heat exchanges occur at the interface between the epilimniofi? ¥ —g; = “net4: @

and atmosphere, and between the epilimnion and deep Wa-h is th ter densitv. is th ific heat at
ter (i.e., hypolimnion). According to the simplifications dis- V\i e:e,o IS the Wa‘;r zrjf' Yip tlﬁ € IspeC| 'Cd?r? a Cfon-
cussed in Appendid, a simplified version of the net heat stant pressure and and A are the volume and the surtace
flux can be expressed as area of the layer, respectively. Bothand A can be left un-

determined in the analysis if we define the depth of the well-

Hoer = c1 cos[zn (t — cz)i| +es mixed surface layer (i.e., the epilimnion thickness) as follows
tyr
+ca (Tq — Tw) + c5Tw, 1 74
4 (Ta w) 51w ( ) D= Z (3)

wheret is time, ry, is the duration of the year expressed in
suitable time unitsT; and 7y, are air and water tempera-  The depthD typically depends on the stratification of the
ture (expressed irfC] for simplicity), respectively, and; (i water column, and is characterized by a clear seasonal be-
from 1 to 5) are coefficients with a physical correspondence havior. In order to include this essential feature, a suitable
whose definition is detailed in Appendix Note that Eq.1) parameterization oD in time is required. The most appro-
accounts for a sinusoidal annual forcing term with amplitudepriate choice is to estimat® as a function of the thermal

c¢1 and phase; (which result from a combination of the sea- stratification, and thus of the vertical temperature gradient.
sonal fluctuations of solar radiation and of sensible and latenAs a first approximation, the strength of the stratification
heat fluxes), an air-water exchange teutly — 7w) (where  can be evaluated as proportional to the difference between
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the surface water temperatufig and a reference valug. lake is inversely stratified, and avoid a discontinuityDrat
T; is representative of deep-water temperature, and thus cathe transition from direct to inverse stratification (i.e., when
be suitably chosen depending on the thermal regime of thagy, =4°C).

lake (for a classification of lakes refer to, e.Blytchinson By substituting Eqgs.1), (3), (4) and 6) into Eq. @), we
and Loffler, 1956 Lewis, 1983. In the case of cold mo- obtain

nomictic lake (i.e., never over the temperature of maximum dT,,

density 7, max~ 4°C, stably stratified in winter and circu- —— = 5 {Pl 005[271 <a - pz)] + p3

lating in summer; in these lakes the thermal stratification is
referred to as inverse since water temperature at the surface, +pa(Ta— Tw) + psTw}, (6)
T, is colder than in the hypolimnion]; can be assumed as ith

the maximum surface temperature registered during the year.

In the case of warm monomictic lakes (i.e., always aboves — exp<Tr — TW), (Tw > Tp)

4°C, circulating in winter and stably stratified in summer; p

in these lakes the thermal stratification is referred to as di-{S _ exp(TW - Tr)

rect since water temperature at the surfakg, is warmer -

than in the hypolimnion)Z; can be assumed as the mini- where the model parameteys (i=1, 3, 4, 5) are the

mum surface temperature registered during the year. Finall . . -
P 9 9 y . )(/:oefflmentSc,- present in Eq. 1) divided by the product

T; can be assumed equal to the temperature of maximum D o/t N = o and

densityT,, max~ 4°C for the case of dimictic lakes (i.e., in- 2P°7r+ P2= €2/lyr P6 = Twarm, D7 = Teold, P8 = Tice,

versely stratified in winter, stably stratified in summer and 8 = D/Dr s the normalized depth, whose seasonal evolution

) . . . is schematically represented in Fitffor the case of dimictic
circulating twice a year at the transition between the two A . : -
o lakes (monomictic regimes are particular cases of the dimic-
states, at about ). In all cases, when the water column

is nearly isothermal (i.eZy, — Ty), close to the onset of the tic regime, Wh.'Ch represents the most ge:nerallclase).
o In conclusion, we propose a semi-empirical lumped
seasonal turnover, the thermal stratification weakens and, as

. . . “model, which solves the temporal evolution of surface wa-
a consequence, the surface mixed lapereaches its maxi- . . .
. ter temperature of lakes, using only air temperature as input
mum thicknessD,. In general, we assume that the stronger

the stratification (i.e.|Tw — Tr| > 0), the thinner the surface forcmg. The madel requires the calibration of.e|lght phys-
mixed layerD. ically based parameters, whose range of variation can be

For the period of direct stratificatiorfy, > 7;), the evo- reasonably estimated according to their definitions (see Ap-

lution of D is described using the simple exponential decaypend'XA)'
law
_ 3 Study site
D(t) = Dy exp <—M) (4)
Twarm In order to apply the model described in Segtonly two

series of data are required: air temperature as input forcing,
and surface water temperature for calibration purpose. A suf-
ficiently long dataset (i.e., more than one year) is an essential
prerequisite to perform a robust model calibration and vali-

dation procedure. Moreover, a long-term dataset provides a
clear picture of the possible interannual temperature variabil-
ity, thus allowing for the identification of a set of parameters

T — Tw(t)) 4 oxp (_ To(t) — ooc)] ©) that is appropriate to investigate long-term climate dynamics.

where tyarm [°C] is the inverse of the decay rate (the sub-
script “warm” refers to the casgy, > 7;: direct stratification)
andD, indicates the maximum thickness of the mixed layer.
With the aim to consider the variation @ when the lake

is inversely stratified (i.e.Tw < Ty, the subscript “cold”), a
modified version of Eq.4) has been derived,

The model has been tested on Lake Superior (surface area:
82103 kn?; volume: 12 000 krd; maximum depth: 406 m),
wherezcoig [°C] andrice [°C] are the inverse of decay rates. the largest of the five Great Lakes of North America (see
In principle, tcolg iS Not necessarily equal tayarm, Since  Fig. 3), and the largest freshwater basin on Earth by surface
the evolution of D below and abovd; is possibly differ-  area. Lake Superior is a dimictic lake: the temperature of the
ent. In addition, the second term in the exponential functionepilimnion is warmer than 2C in summer and cools below
has been introduced to account for the potential formationd°C in winter. While the surface water temperature varies
of the ice cover at the surface. A tends to OC, the air—  seasonally, the temperature of the hypolimnion is almost con-
water heat flux is inhibited due to the presence of ice andstant over the year at about@. Twice a year, in December
show covers. Our scheme indirectly takes this into accountind in June, surface water reaches this temperature, and thus
by a fictitious increase of the depth. It is worth noting  the thermal stratification weakens. Under these conditions,
that rice Should have an upper bound (approximately equaland in the presence of a sufficiently strong wind blowing at
to 0.5°C) in order to include the effect of ice only when the the surface, the entire lake can mix (i.e., lake’s turnover).

D(t) = Dy [exp (—

Tcold Tice
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0[] Fictitious
increase of . 5=
thickness due to <«—— Maximum depth: 6=1

ice formation

¥

Warm season
direct stratification

Cold season
0 inverse stra‘tification
0 4 Tw [°C] B 45004 - Marquette (buoy)
A STDM4 - Stannard Rock (C-MAN) A
Fig. 2. Seasonal evolution of the dimensionless thicknes$ the
surface well-mixed layer for the general case of a dimictic lake. 0 100 200 300 400 km N

Fig. 3.Lake Superior with the location of the NDBC stations (45004
Long-term temperature data (both for air and surface wa— Marquette and STDM4 — Stannard Rock) used in this work. The
ter) have been obtained from the National Data Buoy Centeinset shows the location of lake Superior in North America.
(NDBC) and from the Great Lakes Environmental Research
Laboratory (GLERL), which are part of the National Oceanic . . . o
and Atmospheric Administration (NOAA). In particular, the ViSible in the rising limb of the annual cycle of temperature
(i.e., between April and July; see Figa), which is likely to

NDBC provides historical meteorological and oceanographic : i
be a consequence of the different spatial scales of the two se-

data for a network of offshore buoys and coastal stations (i.e.; !
Coastal Marine Automated Network — C-MAN) that is in- ries of data: while the NDBC dataset represents surface wa-

stalled all over the world, while the GLERL, through the ter temperature measured nearly at the center of the basin,
CoastWatch program, releases daily digital maps of the Gredf'® GLERL dataset provides values averaged over the whole
Lakes' surface water temperature and ice cover (i.e. thdake. In the latter case, the spatial variability of surface water

Great Lakes Surface Environmental Analysis — GLSEA). temperature (e.qg., in spring, lake water heats from the shores

Concerning the NDBC dataset, two different stations havetowards the offshore deeper zones) is intrinsically included
been used in this work: (a) 45004 — Marquette, an offshord the estimates, thus determining smoother annual cycles of

mooring buoy that provides water temperature measured demperature. Despite this discrepanBghwab et al(1999
1m below the water surface; and (b) STDM4 — Stannardcompared GLERL data with measurements at some of the
Rock, a C-MAN station installed on a lighthouse that pro- NDBC buoys, finding overall good agreement. In particular,
vides air temperature series measured at about 35m aboJ@r the case of the 45004 — Marquette buoy used in this work,
the lake surface. These two stations have been chosen frofj€ mean difference between the two datasets for the period
the many that are available for Lake Superior (both offshorel992-1997 is less thanZ®°C, the root-mean-square error is
buoys and C-MAN) because of their central location (seel-10°C and the correlation coefficient is 0.96. .
Fig. 3) and long-term data availability, but time series regis- S custom’flry, the available datasets have been divided
tered in other stations present similar behavior (not presentelft0 tWo parts: the first part, containing around two-thirds of
here). The observational dataset cover a 27 yr long periodt,he available data, is used for model calibration and sensitiv-
from 1985 to 2011, and consists of measurements with 1 HYY analysis, while the second part, containing the remaining
temporal resolution. Since NDBC buoys in the Great Lakesone-third, is used for model validation. Missing data in the
are removed during winter to prevent damage from ice, noVater temperature series have not been replaced (they do not
measurements are available at the 45004 — Marquette duringPntribute to the evaluation of the efficiency of the model);
winter months (except for 1991), while the STDM4 — Stan- ON the other hand, gaps in the air temperature series have
nard Rock measurements do not show systematic gaps. been reconstructed with estimates obtained as an average of
Concerning GLERL dataset, daily temperatures have beef{'€ available data in the same day over the corresponding pe-
used for the period 1994 to 2011. Data refer to the da”yriod (i.e., calibration or validation). The datasets used in this
lake average surface water temperature obtained from NOA Avork are listed i_n Tabld, together with their main s'Fatistics.
polar-orbiting satellite imagery. The series does not present | he differential Eq. §) has been solved numerically by

systematic gaps (missing data, see Tdblere concentrated USing the Euler explicit numerical scheme (see, &gtcher
in the initial warm-up year, and hence do not contribute to the2003, with a daily time step (concerning NDBC data, mean

evaluation of the model efficiency; see Settl), thus pro- daily temperatures have been preliminary calculated from the
viding surface water temperature also in winter, which, on©riginal data).

the contrary, is almost completely uncovered by the NDBC

dataset. A mismatch between NDBC and GLERL datasets is
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Table 1. Summary of the datasets adopted in this study, and their main statistics.

Source  Variable Device Period Duration (cal + val) Frequency Missingdata Mean 9@le [Std PC]
NDBC T Offshore buoy ~ 1985-2011 27yr (18 +9) Hourly 46 % 7.18 4.66
NDBC Ta C-MAN station 1985-2011 27yr (18 +9) Hourly 9% 5.39 8.97
GLERL Ty Satellite 1994-2011 18yr (12 +6) Daily 5% 6.52 5.26
4 Results The Nash-Sutcliffe efficiency index ranges fremo to 1.

An efficiency equal to 1 £ =1) corresponds to a perfect
match between measured and simulated values, whisO

indicates that the model prediction is as accurate as the mean

Inverse modeling of complex systems, as such as those enst gpservations. Efficiency values lower than® < 0) oc-
countered in hydrological applications, is an inherently ill- . \vheno2 is larger thans2, and thus when the mean of
posed problem, as the information provided by observational,ceryations is a better estimator than the model itself.

data is insufficient to identify the parameters without un-  gince its introduction in 1992, GLUE has found wide
certainty. In a typical situation many different combinations applications and it is recognized as a useful methodology
of the parameters may provide similar fitting to the obser-¢,, uncertainty assessment in many fields of study espe-
vationalldata. For example, even a simple modeI.with °”|ycially in non-ideal situations (e.gBeven 2006. Neverthe-
four or five parameters to be estimated may require at leaskgg, the goal of this work is not to adopt a complete, informal
10 hydrographs for a robust calibration (e.glornberger  pgayesian approach to estimate uncertainty of model predic-
et al, 1989. This identification problem can be alleviated qns pyt rather to assess the impact of changes in uncertain
by reducing the number of parameters used in the model,ameter values on model output. Hence, the purpose is to
for example through sensitivity analysis, which is the typi- set yp a general and effective strategy to select which are the

4.1 Sensitivity analysis and model calibration

cal methodology used for this purpose (eldajone et al.
2010.

In this work we perform sensitivity analysis by using
generalized likelihood uncertainty estimation (GLUE), a

most sensitive parameters of the model, and to define which
should be suitably adjusted in a calibration process. Indeed,
the GLUE methodology is a powerful and effective tool that

can be also used for model calibration besides uncertainty

methodology proposed teven and Binley1992 thatre-  agtimation procedures and sensitivity analysis.

quires the identification of a validity range for each param- 54 of the most acknowledged limitations of the GLUE
eter, a strategy for sampling the parameter space and finally,eihodology is the dependence on the number of Monte
a likelihood measure to be l_Jsed in order to rank the differ-~4 simulation, especially in the presence of complex mod-
ent parameter sets. We carried out 100 000 000 Monte Carlg,q \uith high computational demand. However, in our case

model realizations using uniform random sampling acrossye \vere able to fully explore parameter response surfaces by
specified parameter ranges selected according to physicglyqniing a significantly high number of realizations. There-

limitations of the model's parameters. Indeed, the physicak, e the use of the GLUE methodology

meaning of the parameters allowed for a reasonable defini
tion of the possible range of variability of each of them. Fi-

nally, we used as a likelihood measure the Nash—Sutcliffe,

model efficiency coefficientt, which is a widely used met-
ric adopted in hydrological applications (e.jash and Sut-
cliffe, 197Q Majone et al.2012 and many others):

(fw,z‘ - Tw,i)2

(Twi — Twi)’

(8)

wheren is the number of datasZ andoZ are the variance of
the residuals and of the observations, respectivily,and

not only for param-
eter identifiability purposes but also as a calibration tool, ap-
pears appropriate. Just as a side note, 100 000 000 model runs
ver a period of 18 yr with a daily time step and adopting In-
tel(R) Xeon(R) CPU X5680 at 3.33 GHz took around 2 h; the
code is written in Fortran 90.

Furthermore, in the attempt to test reliability and predic-
tive capability of the model, a validation procedure was un-
dertaken by running the model on validation datasets (see
Table 1) by using the sets of parameters that maximize the
efficiency E during the calibration periods (i.e., the set of
parameters with the highest likelihood obtained through the
GLUE methodology).

In the ensuing sections, the GLUE methodology is pre-
sented for different model configurations (from eight to

Ty are the observed and simulated surface water temperatufgyr parameters), with reference to the calibration periods of

attimer;, andT, is the average cﬁ“\wyi. Note that the residual

the NDBC and GLERL datasets, respectively (see Taple

is defined as the difference between the observational data as a final comment, we point out that the first year of each
and the model's prediction, and a parameter set identifies §me series is used as warm-up period (i.e., excluding the

point in the space of parameters.
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Table 2. Estimated model parameters for NDBC, GLERL and GLEfgL(mean year) simulations, and their estimated physical range of
variation.

npar. pi[°Cd™]  pp[] psleCd™l]  pald7Y ps[d~1 pe[°Cl  p7[°Cl pgl°Cl

min  0.00 0.00 -0.12 0.00 -0.02 0 0 0

max  0.33 1.00 0.28 0.01 —0.00 15 15 0.5
NDBC

8 1.35x 1072 2.62x10°1 1.47x103 6.18x103 —3.26x104 3.08 14.41 0.31

6 1.56x 1072 2.83x1071 123x103 595x10°3 -2.36x10°% 3.01 - -

4 - - 1.41x 1072 587x10°3 -—2.23x10°3 277 - -
GLERL

8 1.75x 1002 4.67x1071 230x102 6.55x10°3 -—2.57x103 3.50 13.32 0.44

6 236x 1072 4.37x10°1 1.93x102 591x10°3 -2.16x10"3 3.65 -

4 - - 257x 1072 9.63x 1073 —2.73x10°3 3.54 - -

GLERLmyr

8 1.31x 1072 2.32x10°1 155x1072 8.47x10°3 —1.09x10°3 3.26 11.93 0.45

6 2.01x 1072 2.06x10°1 1.49x102 969x103 —758x104 3.75 - -

4 - - 277x 1072 9.16x 103 -2.87x10°3 3.13 - -

Table 3. Efficiency index ), root-mean-square error (RMSE) and recall here that each of the eight parameters has been al-
mean error (ME) during calibration and validation periods (NDBC, |lowed to vary over physically reasonable ranges of values,

GLERL and GLERImyr simulations). which have been previously determined through E4$2j—
(A16) in AppendixA by considering the lake location prop-

calibration validation erties (e.qg., latitude, climate, typical temperatures) and by us-

npar. E[-] RMSE[’C] ME[°C] E[-] RMSE[C] ME[C] ing coefficients available in the literature (e.Blenderson-
NDBC (cal: 1985-2002; val: 2003-2011) Sellers 1986 Imboden and Wiest 1995 Martin and Mc-

8 0.91 140  —0.07 0.90 171 -0.01 Cutcheon1998. As far as the exponential decay laws are

6 0.91 135 -0.09 0.90 171 -0.02 concerned, parametergs and p7; have been allowed to

4 0.89 1.50 —-0.25 0.89 1.77 -0.01

range within a wide interval comprised between 0 anéid5
and pg between 0 and 0.XC. As already mentioned in

GLERL (cal: 1994-2005; val: 2006—-2011)

8 0.95 117 -013 0.97 102 030 Sect.2, the range ofpg has been set narrower (more strin-
6 0.95 116  —-0.07 0.97 1.01 0.33 . - .
2 0.95 121 —005 0.97 108 0oa3s gent upper bound), aimed at confining the correction due

to ice only when the lake is inversely stratifieet /05 =

GLERLmyr (cal: mean year 1994-2005; val: 2006-2011) 4 X X
0(107%) « 1). In the light of the results obtained from the

8 0.99 0.48 0.06 0.97 1.07 0.23 . . . .
6 0.99 043 001 0.97 0.98 015 first-step analysis, the ranges of variability of each parame-
4 0.99 0.47 0.03 0.97 111 029  ter were narrowed, thus allowing for a detailed investigation

of parameter space regions associated with high valugs of

Subsequently, a second-step sensitivity analysis has been un-
period from the calculation of the Nash—Suitcliffe efficiency dertaken by sampling further 100 000 000 sets of parameters
index E) in order to remove any transient effect due to the from the narrowed parameter ranges.

initial condition. Figure4 shows the dotty plots of the efficiency indéx
for each of the eight parameters of the model, corresponding
4.2 Eight-parameter model to the narrowed ranges (second-step performance analysis).

For the sake of clarity in the presentation of results, Big.
As discussed in the previous section, the performance ofas well as Fig6) shows only the set of parameters with
the model has been tested in the framework of the GLUElarger than 0.8. Model simulation during the calibration pe-
methodology, using the time series of air and surface wateriod 1985-2002 using the best set of parameters is illustrated
temperatures provided by the NDBC center (see Tapla in Fig. 5, which shows noticeable agreement between simu-
first-step sensitivity analysis has been carried out by solvdated and observed values, with an efficiency index 0.9
ing Eq. 6) over the calibration period (18yr, from 1985 (see Table® and3for a summary of the results).
to 2002) using randomly sampled sets of parameters. We
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Fig. 4. Dotty plots of efficiency indexesK) for the eight-parameter model during the calibration period 1985-2002 (NDBC simulation).
Highest efficiency is presented with an orange dot.

A visual inspection of dotty plots of model efficiency can parameters, together with the fact that both appear in the def-
provide useful information on the identifiability of each pa- inition of the mixing depthD when the lake is inversely strat-
rameter. According to Fig4, all the parameters are charac- ified, suggests that a simplification of the model may be pos-
terized by a good identifiability with the exception of param- sible by considering a different (simpler) expression far
etersp7 and pg. This can be explained if we consider that The parametepg is not significant for the model, and can be
the NDBC dataset presents only a few values of water temeasily neglected, thus eliminating the effect of ice formation.
perature during winter periods. In particular, no data (exceptOn the other hand, according to EQ®),(high values ofp7
for one single year out of 18) are available when surface waimean small decay rates &f, and thus thick mixing depths
ter temperature approache8@ which corresponds to the when the lake is inversely stratified. In the light of these con-
period of the year when the parametgris relevant. We re-  siderations, we have derived a first simplified version of the
mark here thapg is the parameter associated to ice formation model, where the mixing depth is assumed to be constant and
at the surface of the lake. Although to a minor extent, alsoat its maximum thicknes® = D, when the lake is inversely
p7 does not show a clear identifiability, probably as a con-stratified (i, < 7y). Thanks to this simplificatiop; and pg
sequence of the importance that this parameter assumes ondye removed and the number of parameters diminishes from
during winter time (it plays a role only whefy, <4°C); that  eight to six.
is, when water temperature measurements are not available. As for the case of the full eight-parameter version of the
However, by analyzing the dotty plot an important informa- model, the same sensitivity analysis described in Segt.
tion can be inferred: efficiency increases for higher values othas been carried out also for the simplified six-parameter
p7, and approaches a nearly asymptotic high-efficiency trendrersion. The set of parameters presenting the highest effi-
when p7 2 5°C. Looking at the physical meaning of the pa- ciency index during the calibration period is summarized in
rameter (see Ed), this means that model performance im- Table 2, whilst dotty plots deriving from the application of
proves as the mixed depfh approaches its maximum value GLUE methodology and the comparison between simulated
D, when the lake is inversely stratifie@,{ < 4°C). and measured surface water temperature during the same pe-

In the light of these evidences, in the ensuing section theriod are not presented here for the sake of brevity. Indeed,
full eight-parameter version of the model has been simplifiedresults are essentially equivalent to those obtained using the

by neglecting parametegs and ps. full eight-parameter model, which is confirmed by the close
similarity between the best set of parameters and the effi-
4.3 From eight to four parameters ciency indexes obtained in the two cases (see Tabkasd

3). The similarity of results supports the idea that the six-
On the basis of the results discussed in the previous segarameter model is a reasonable simplification, at least in the
tion, not all the model parameters seem to be significantase considered herein where the winter data are not abun-
and Clearly identifiable. In particular, the param%rhas dant (See also Seet.5for further discussion)_
been found to be insensitive to the model, and parameter  The number of parameters can be further diminished from

prOVideS an overall hlgh performance over most of its vari- six to four by e|iminating the parameter and, as a direct
ability domain (p7 = 5°C). The peculiar behavior of these
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Fig. 5. Comparison between simulated and observed surface water temperature during the calibration period 1985-2002 (NDBC simulation).
Simulated curves refer to the full eight-parameter and the simplified four-parameter models. Observed air temperature data are also presente
with cyan line.
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Fig. 6. Dotty plots of efficiency indexesH) for the four-parameter model during the calibration period 1985-2002 (NDBC simulation).
Highest efficiency is presented with an orange dot.

consequencey», in addition topy and pg. This simplifica-  is distorted, as the processes that were accounted are

tion is justified since three periodic terms appear in the modehow included inp4 and ps.

as characterized by an annual periodicity: the forcing term Figure6 shows the dotty plots of the efficiency indexgs
p1COS2n(t/tyr — p2)), the exchange terms(Ta— Tw) and  for the four-parameter version of the model, where only the
the residual correctiopsTy. The simultaneous co-presence parametergs, pa, ps and pg are retained. In this case, since
of all these terms may be considered redundant in those cas#ise number of random samplings has been kept unchanged
in which the annual cycles dfy, and/or ofT,— T,y can be  (i.e., 100000 000), the predictions of the Monte Carlo real-
suitably approximated as sinusoids. Indeed, the sum of sinuizations appear much less sparse (i.e., denser dotty plots) if
soidal functions with the same frequency, but different am-compared to the case of the eight-parameter version. Notice
plitude and phase, yields another sinusoid with different am-that all the parameters are characterized by high identifiabil-
plitude and phase but the same frequency. Therefore, two sity and the model does not present signs of overparameteri-
nusoids are sufficient, and the forcing tepacos(27 (¢ / tyr — zation. Figureb shows the comparison between observed and
p2)) can be removed, relieving the overall annual variationssimulated surface water temperatures during the calibration
on the periodic terms controlled by the model varigiyleand period 1985—-2002 for the four-parameter and the full eight-
the external forcinda. Following this logic, the ternps T,y parameter models, respectively. The difference is small, and
could be neglected alternatively (on the contraw(7Ta—Tw) mainly localized during the winter period, when no surface
cannot be neglected since it is the only term that includesvater temperature data are available for comparison. Dur-
information about the external forcing), but this assumptioning the rest of the year, when measurements are available
would remove only one parameteps| instead of two p; and E index can be effectively calculated, the two solutions
andpy), thus making it less attractives co(2r (¢ /tyr — p2)) are comparable and the efficiency indexes are similar (just
and psTy, cannot be neglected contemporaneously, becausslightly lower for the simplified four-parameter version of the
in this case the phase of the overall periodic term would bemodel; see Tabl8).

forced to that of the temperature difference. It is worth not-

ing that in the four-parameter version of the model (retaining

P3, P4, ps and pg), the physical meaning of the parameters
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Fig. 7. Comparison between simulated and observed surface water temperature during the validation period 2003—-2011 (NDBC simulation).
Simulated curves refer to the full eight-parameter and the simplified four-parameter models. Observed air temperature data are also presente
with cyan line.

4.4 Model validation 4.5 Satellite data

The best set of parameters obtained during the calibratioWe have seen that results are remarkable both using the
period for the different versions of the model (with eight, full eight-parameter version and the simplified six- and four-
six and four parameters; see Talle have been used to parameter versions of the model. In particular, little differ-
run the model during the validation period 2003-2011 (seeence has been found regarding the best set of parameters
Table1). In all the cases, simulations have been characterand the efficiency indexes obtained using the eight- and the
ized by high efficiency indexes, comparable to those ob-six-parameter versions (see Tab®and3). Therefore, one
tained with the best simulations during the calibration periodmay infer that no significant advantages can be expected
(E ~0.9; see Tabl&). In Fig. 7 simulated water tempera- by using a more accurate expression foiduring the win-
tures (for the versions with the eight and four parametersier period (eight-parameter version), instead of a constant
are compared with observations showing overall very goodvalue (six-parameter version). However, it is not possible to
agreement. Results confirm the reliability of the model as astate this conclusion by simply analyzing results presented in
valuable tool for surface water estimation over long-term pe-Sects4.2, 4.3and4.4. Indeed, no surface water temperature
riods with different model configurations. measurements are available during the winter period for the
Besides the evaluation of the surface water temperatureNDBC dataset except for the year 1991, and thus the model
the model provides additional qualitative information regard- efficiency has not been tested during the period of inverse
ing the annual evolution of the epilimnion thickness. In fact, stratification.
as discussed in Se&.the model explicitly includes a simpli- Aimed at overcoming this limitation, the GLERL dataset
fied parameterization of the seasonal behavior of the mixinchas been used, which provides daily lake-averaged surface
depth through Eq.7). In particular, the normalized thick- water temperature based on satellite imagery, and covers
ness of the epilimniod = D/ Dy is automatically determined the whole year (see Tabl®. The same GLUE procedure
once the parameteys, p7 andpg are defined. Furthermore, discussed in Sec#.1 has been performed by adopting the
it is evident that if an estimate of the reference mixing depthGLERL dataset as reference surface water temperature data
D, were known, the actual thickness of the well-mixed layerand by repeating the implementation details described in
D could be evaluated as well. With reference to the NDBC Sect.4.2 The simulations (hereafter referred to as GLERL)
dataset, Fig8b shows the evolution aof over the validation  have been run over the calibration period 1994-2005, using
period 2003-2011 for the eight- and four-parameter versionss input forcing the air temperature data retrieved from the
of the model (continuous lines). In the first case (eight pa-NDBC dataset (C-MAN station; see Talle The eight-, six-
rameters) the fictitious increase of depth due to the presencand four-parameter versions of the model have been tested,
of ice is evident (peaks at values greater than 1). Such awbtaining remarkable efficiency indexeg & 0.95), which
increase is related to the presence of a larger water volumare higher with respect to the previous applications (i.e., us-
involved in the heat balance (see F&). Thanks to this as- ing the NDBC dataset). A validation procedure has been con-
sumption the model accounts for the insulation effect dueducted with reference to the period 2006—2011, confirming
to the presence of ice, which may be even more significanhigh performances of the modet (= 0.97). The parameter
when the ice surface is snow covered and the penetration adets providing the highest efficiencies during the calibration
solar radiation is strongly attenuated. period and the associatéflvalues are given in Tablesand
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Fig. 8. Evolution of the dimensionless depttover the period 2003—2011: comparison between results for the full eight- and simplified four-
parameter versions of the model obtained from NDBC and GLERL simulatia@p€omparison of observed water temperature time series
during the period 2003—-2011 for the NDBC and GLERL data&gtEvolution of the dimensionless depttover the period 2003-2011 for

the full eight- and simplified four-parameter versions of the model (NDBC and GLERL simulations).

3, while comparison between simulated and observed surfacébias) is observed, and the dispersion along the diagonal does
water temperature data for the eight- and four-parameter vemot exhibit significant trends. Both these characteristics are
sions of the model are shown in Figsand 10 for the cali- confirmed by the small values of mean error (ME) and root-
bration and validation periods, respectively. Finally, the sea-mean-square error (RMSE) listed in TaBld-igureslla and
sonal evolution of§ is shown in Fig.8b for both versions 11b also illustrate that the model is able to adequately de-
of the model (dashed lines), and it is compared with thosescribe interannual fluctuations, as is indicated by the range
obtained from the application of the model to the NDBC of variability of monthly averaged temperatures associated
dataset. Results are consistent, with the slight difference ino the coldest (March, blue dots) and warmest (August, red
the onset of summer stratification being due to the earlier in-dots) months. This evidence is also confirmed by Figmd
crease of water temperature in the GLERL dataset comparedlO, where the model coherently reproduces the occurrence of
to the NDBC dataset (see Fign). relatively colder (e.g., 2004) and warmer (e.g., 1998) periods.
So far, the model has been tested with long-term series
) ) of data (NDBC: 27 yr; GLERL: 18yr); however, long-term
5 Discussion records are often not available, or are characterized by signif-

icant gaps due to missing data. Instead, it is relatively easier

The physically based, semi-empirical model presented herg, paye access to mean annual cycles of temperature (both
has been shown to provide an accurate description of SUlsf surface water and air), whose determination also repre-

face water temperature of lakes, with high values of Nash—e g 4 vajuable strategy to overcome the possible lack of

Sutcliffe efficiency index£'~0.9, and a root-mean-square a5 Therefore, a conversion model that could be calibrated
error between observations and simulations of the order OBn mean annual cycles, and successively applied over long-
1°C (see Tabl@). This error in prediction capability is cOm- 1oy periods without compromising the correct estimation of

parable to those obtainable using process-based numericgle interannual fluctuations, would represent a valuable tool.
models (e.g.Fang and Stefanl99§ Stefan et al. 1998, For this purpose, the mean annual cycle of surface water tem-

which, however, have the strong limitation of requiring high- perature has been derived from GLERL data during the cal-
resolution weather data and the calibration of numerous in'lbration period 1994-2005, and the corresponding cycle of
ternal parameters. air temperature from the NDBC dataset (C-MAN station).

The close agreement between measurements and modgly;onte Carlo sensitivity analysis (hereafter referred to as

estimates is fur.ther. confirmed in Figsla and11b, which il- GLERLyr, the subscript “myr” standing for mean year) has
lustrate the parity diagrams for monthly averaged surface Wagpaan carried out following the same procedure adopted in

ter temperature during the calibration and validation periodsy,o previous sections, but using mean annual cycles of air
of GLERL simulation, respectively. No systematic deviation
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Fig. 9. Comparison between simulated and observed surface water temperature during the calibration period 1994-2005 (GLERL simulation).
Simulated curves refer to the full eight-parameter and the simplified four-parameter models. Observed air temperature data are also presente
with cyan line.
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Fig. 10. Comparison between simulated and observed surface water temperature during the validation period 2006—-2011 (GLERL simula-
tion). Simulated curves refer to the full eight-parameter and the simplified four-parameter models. Observed air temperature data are also
presented with cyan line.

and water temperature as forcing and reference data, respesinulations presented in the previous sections. Indeed, the
tively. In order to eliminate the influence of initial conditions, model calibrated on the mean year is able to capture the in-
the temperature cycles have been replicated for two yearterannual variabilities well, producing remarkable results not
with the first one used as a “warm-up”. Results obtained bydissimilar from those shown in Fid.0 (for this reason they
adopting the parameters providing the highest efficiency (seare not presented here). Furthermore, parameter values are
Table?2) are presented in Fig.2, which shows the hysteresis significantly similar to those obtained calibrating the model
cycles between air and surface water temperatures derivedith the whole 12 yr series of data (GLERL simulation; see
from measurements and model estimates (eight- and fourTable2).
parameter versions). A very high efficiency indéx< 1.0) In the light of the results presented in this section, we as-
is achieved, and both versions of the model are able to satsert that the model can be calibrated and adopted using data
isfactorily capture the seasonal pattern of thermal hystereef different origins (measurements at buoys and coastal sta-
sis. The parameter sets providing the highest efficiency durtions, satellite estimates) and nature (long-term series of data,
ing the calibration process with the mean annual temperaturenean annual cycle of temperature). This conclusion is cor-
data and the associatétvalue are summarized in Tablds roborated by the excellent results (not shown here for the
and3. sake of brevity) of the performance analysis (entirely com-
Subsequently, a validation procedure has been conducteparable to those presented in the present paper) obtained us-
for GLERLmyr during the period 2006-2011 (the same asing different datasets: (a) air temperature from a different C-
GLERL simulations; thus results can be compared). ResultdMAN station (the PILM4 — Passage Island), whose sensor is
are characterized by remarkable efficiency indexBs~( installed at a different height (22 m) with respect to the Stan-
0.97), only slightly lower than the values obtained with the nard Rock station (35 m); (b) air temperature data measured
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Fig. 11. Parity diagram for monthly averaged surface water tem-
perature (eight-parameter version of the modgl)calibration and
(b) validation period of the GLERL simulation. Blue dots refer to
March, red dots to August and gray dots to the remaining months of
the year. Fig. 12. Comparison of the hysteresis cycles between daily air and
surface water temperatures, as derived by the data and by the eight-
at the 45004 — Marquette offshore buoy station at only 4 rnand four-parameter versions of the mo_del. Hysteresis cy(_:les refer to
from the lake surface; and (c) water temperature measureEP(zlmean ye;r, ca:(lculated(;)verthe per'9d|1994_2005’ us_|ng|GLERL
at a different offshore buoy (the 45001 — Hancock). Further—;’jilgn)NDBC ata foff and T, respectively (GLERkyr simula
more, in all cases, even if the calibration is performed consid-

ering mean annual cycles of temperature, the model suitably , ,

captures the interannual variations that are likely to occurYcles of the main heat flux components, eight parameters
On the basis of this evidence, we can assert that this Simp|gave begn identified, which can be calibrated if te'mporal se-
model may be used with different air temperature datasets 24€S Of air and surface water temperature are available. Such
input and, unlike process-based models, it can be calibrate@ c@liPrationis supported by the physical interpretation of the
using any water temperature dataset, independent of its physp_arameters, which provides reasonable initial conditions for
ical representativeness (e.g., point measurements vs. spatidle Parameters ranges. ,

averages). Therefore, in principle, air temperature series pro- The relative |mport§1nce of the model's parameters have
vided by GCMs and RCMs can be used as well. In this re_be_en evalu_ated by using the G_LUE _methodology. Thanks to
gard, the model is particularly attractive for climate change!his analysis we were able to identify and neglect parame-
impact studies, since predictions of air temperature are usul€'S that, under different conditions, appears less significant
ally more reliable and available than other meteorological! the model formulation, leading to two simplified versions
variables (e.g Gleckler et al, 2008. Based upon these con- 'et@ining six and four parameters, respectively. ,
siderationsPiccolroaz(2013 exploited the same approach The model has 'been applied to t'he case of Lake Superior
to reproduce the current status and to predict future modificalYSA-Canada) with reference to different types of datasets,

tions of surface water temperature of Lake Baikal (Siberia).21d all the versions of the model have shown to perform well
in reproducing the measured water temperature data. This

model has proved to be robust and able to suitably simulate
the lake’s response to meteorological forcing, including in-
terannual variability, representation of the variability of the
epilimnion thickness and the inverse stratification process
In this work a simple, physically based model has been develthat typically occurs in dimictic lakes. In our view, Air2Water
oped to estimate surface water temperature from air tempemepresents a valuable alternative tool to correlation models,
ature. In particular, we show that our modeling framework is which require the same data in input as our model but are not
able to reproduce the observed water temperature data withble to address some fundamental processes (e.g., the hys-
limited information on external meteorological forcing over teresis cycle between air and water temperature). Further-
long timescales, ranging from monthly to interannual. more, it can be used in place of full process-based models

Starting from the zero-dimensional heat budget, we de-when meteorological data are not sufficient for their proper
rived a simplified first-order differential equation for water application. In principle, the simple model presented here is
temperature forced by a few terms representing the combinetikely to be effectively applied to lakes with different charac-
effects of the seasonally varying external terms and the exteristics, although some inconsistencies could arise in those
change terms explicitly dependent on the difference betweerases where the assumptions on which the model formulation
air and water temperatures. Assuming annual sinusoidahas been based (see Appendixare no longer valid (e.qg.,

Water Temperature [°C]

6 Conclusions
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tropical lakes characterized by intense evaporation, basins in Longwave radiation terms are calculated according to the
which the through-flow is consistent, lakes located in regionsStefan—Boltzmann law, yielding the following formulations
where the variability of meteorological forcing is significant

at sub-annual frequency). Ha= (1 - ra) €ao (Tx + T)*, (A3)
In the light of these results, the model can represent a valu- 4
able tool in climate change impact studies, allowing for pre- Hw = —€éwo (Tk +Tw)", (A4)

dictions of future trends of lake surface water temperature, ) o

given future projections of air temperature only. Finally, itis WNeré ra is the longwave reflectivity, generally assumed
worth noting that if the model is calibrated using air tempera-1© have a constant valuesi¢nderson-Sellers1989; ea
ture series from climate models (global or regional scale) andNd éw are the emissivities of atmosphere and lake sur-
measured records of water temperature (lake scale), a dowri@ce: Trespectively,o is the Stefan-Boltzmann constant

B\ a2 k-4 T — .
scaling operation is implicitly implemented in the conversion (3-67> 107°Wm™=K™), Tic =273.15K; and/z andT, are
procedure Riccolroaz 2013. the temperatures of air and water expressed in Cel8Cis [

The emissivityey, is essentially constant and close to unity,
as water is nearly a black body, whigis more variable and

Appendix A depends on several factors among which the most important
are air temperature, humidity and cloud coventjoden and
Simplified heat fluxes Wilest 19995.

Air and water temperatures can be decomposed into a ref-
Indicating with H the generic heat flux per unit surface erence value representative of the specific case siydynd
[Wm~—?], defined as positive when it is directed towards the Tw) and a fluctuation®} and 7;;,). Hence, considering that
considered layer, the net flux is assessed accounting for the/ /(T + Ta) and T},/(Tk + Tw) are small parameters, the
following main terms: longwave fluxes EqsAQB) and A4) can be linearized using

a Taylor expansion as
Hnet = Hs + Ha+ Hw + He+ Hc + Hp + Hi + Hqy, (A1)

/

where Hs is the net shortwave radiative heat flux due to so- Ha >~ éa0 (TK + Ta)4 <1+4T a—) ) (A5)
e . . . L . K+ Ta

lar radiation (considering only the incoming radiation that is

actually absorbed)H, is the net longwave radiation emit- 4 T

ted from the atmosphere toward the la#&y is the long-  Hw =~ —ewo (Tk + Tw) (1+4 W—>, (A6)

wave radiation emitted from the watét, is the latent heat T+ Tw

flux (due to evaporation/condensation processHg)is the

sensible heat flux (due to convectiorj, is the heat flux

due to precipitation onto the water surfadd, is the ef-

fect of the throughflow of water by inlets and outlets, and

Hy is the heat flux exchanged with deep water. Figlire

shows a schematic representation of the heat exchanges

whereéa = (1-ra)ea By choosingly = Ty, = T (henceT, =
Ta—T andTy, = Ty —T), the termsH, and Hy, can be easily
combined to yield the following equation:

- 3 [€éa—¢€
Ha+ Hy ~40&(Tk +T) [ a4gaW(TK+ﬂ

the epilimnion—atmosphere and epilimnion—hypolimnion in- Ea— €w

terfaces. All the components of EcpX) are analyzed in de- +—=——(Tw—T) + Ta— Tw:| . (A7)
tail below to point out the main variables and physical pa- ‘a

rameters involved in the heat exchange process. The sensible K¢) and latent {e) heat fluxes are calcu-

The incident shortwave solar radiation approximately fol- lated through bulk semi-empirical relations that can be de-
lows a sinusoidal annual cycle. Considering the shortwaveived from turbulence theoryHenderson-Seller4986:
reflectivity rs (albedo), which is a function of the solar zenith
angle and of the lake surface conditions (e.g., water wavefde = o (Ta— Tw) , (A8)

height), the net solar radiatiafis reads
He =, (ea—ew), (A9)

2w (t — s2

Hs = (1 —rs) [sl COS(#) + S3} ’ (A2)  \wherea, Wm~2K~1] anda, [Wm~2hPa 1] are transfer
functions primarily depending on wind speed and other me-

wherer is time; fy, is the duration of a year in the units of time  teorological parameters, is the vapor pressure in the atmo-

considered in the analysis; ang s, s3 are coefficients that sphere ana,, is the water vapor saturation pressure at the

primarily depends on the latitude and the shadowing effectavater temperature (both in [hPa]). The radig/«. is known

of the local topography. The effects of cloud cover, which as the Bowen coefficient, and is often taken to be constant

could be accounted for by means of empirical relationships(~ 0.61 hPa K ) (Imboden and Wiest 1995. The saturated

are not explicitly considered in the present analysis. water pressurey, is a function of temperature, and can be
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calculated through several empirical formulas, as, for exam<s ~ 4o (TK + 7)3 (€a— €w)

ple, the exponential law bT be
bTo —0.a exp(T_i_ c) ( — 2) . (A16)
eW=anp<C+T > (A10) (T +c)
v A straightforward quantification of this set of coefficients
where ¢ =6.112hPa,b=17.67 andc=243.5°C (Bolton, is not trivial. In fact, most of the physical parameters involved
1980. do not have a single unambiguous value, but rather they span

In order to keep the formulation of the model as simple asa range of values that depends on several factors that are dif-
possible, Eq.A10) can be linearized by Taylor series expan- ficult to specify (e.g., cloud cover).
sion around a reference temperatiire As a final remark, it is worth noting that the first term
_ on the right-hand side of Eql)is a periodic term account-
ew ~ a exp (_bT ) <1+ bc . (TW —ﬂ) . (A1) ing for_all seasonal patterns o_f meteorolog_ical va_riz_ibles oth_er
T +c¢ (TJFC) than air temperat_ureT (e.g., wind speed, air r_]uml_d|ty, cloudi-
ness; see the definition of). As a first approximation, these
Finally, the heat exchange with deep-wakkycan be for-  components have been treated as sinusoidal functions having
mulated, as a first approximation, as the combination of athe same frequency of the solar radiation (i.e., a period equal
constant contribution and a contribution depending on theto one year), but possibly different amplitudes and phases.
gradient of temperature between surface and hypolimnetidThe sum of such a set of functions produces another sinusoid
water. Considering that deep water has a temperature that isaving the same frequency but different amplitudg,and
approximately constant during the year, the second compophasecs.
nent of Hy is essentially dependent on surface water tem-
peraturely,. The termHy is usually small with respect to the
flux components exchanged with the atmosphere, which hav&cknowledgementsThe authors are grateful to the NOAA
been described above. Analogously, the contribufiynof (thlonal Oceanic ar_ld A_tmosphenc Admlmstrat_lon) for_ pro-
precipitation onto the lake surface and the heéag¢xchanged viding the data used in this work. We thank Martin Schmid for
. . L a careful reading of a preliminary version of the manuscript.
with the inflows and the outflows are only rarely significant

L . " We also acknowledge Masataka Okabe and Kei Ito for the
and thus are not explicitly included in the baIance.Asamat—he|pfu| guideline on how to make colorblind-friendly fig-

ter of fact, changes in surface temperature during rainy periyres, which we followed for producing the plots (web link:
ods generally result from changes of the main tefigs Hc http://jfly.iam.u-tokyo.ac.jp/html/colablind).
andHe, andHi is only important in lakes with a high flushing
rate (mboden and Wiest 1995. Edited by: M. Gooseff

Under these hypotheses, and adopting the heat flux terms
provided above, the net heat flux at the surféfg; intro-
duced in Eq. A1) can be suitably written as the combination

O,f the linear and Si”“S‘?i‘_"a' function_s in Eq')’(Where_Ci Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen,
(@i fror_n .1 to 5) are coefﬁuentg resulting from approprlately_ D. 0., Keller, W., Livingstone, D. M., Sommaruga, R., Straile,
combining together the physical parameters that appear in p. Dponk, E. V., Weyhenmeyer, G. A., and Winder, M.: Lakes as
Egs. A2)—-(A11). sentinels of climate change, Limnol. Oceanogr., 54, 2283—-2297,
By assuming the parameters inherently influenced by me- 2009.

teorological (e.g., wind, cloudiness and precipitation) and as-Arhonditsis, G. B., Brett, M. T., DeGasperi, C. L., and Schindler,
tronomical phenomena (i.es, a., a., eg) as the combination D. E.: Effects of climatic variability on the thermal properties of
of a mean (indicated by an overline) and a periodic (indicated Lake Washington, Limnol. Oceanogr., 49, 256-270, 2004.

by a prime) component, the coefficiertscan be expressed Benyahya, L Cassie,_F.', St-Hilaire, A., Ourada, T. B., andé&ggb
as follows: B.: A Review of Statistical Water Temoerature Models, Can. Wa-

ter Resour. J., 32, 179-192, 2007.
1~ (1—Fos1i+ f (rg aé,a;, e/a)’ (A12) Be;/{eer;, K:gz‘]o ?Snglfgg’E)OGfor the equifinality thesis, Water Resour.

Beven, K. J. and Binley, A. M.: The future of distributed models:
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