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Abstract. Water temperature in lakes is governed by a com-
plex heat budget, where the estimation of the single fluxes
requires the use of several hydro-meteorological variables
that are not generally available. In order to address this issue,
we developed Air2Water, a simple physically based model
to relate the temperature of the lake superficial layer (epil-
imnion) to air temperature only. The model has the form of
an ordinary differential equation that accounts for the over-
all heat exchanges with the atmosphere and the deeper layer
of the lake (hypolimnion) by means of simplified relation-
ships, which contain a few parameters (from four to eight in
the different proposed formulations) to be calibrated with the
combined use of air and water temperature measurements.
The calibration of the parameters in a given case study al-
lows for one to estimate, in a synthetic way, the influence
of the main processes controlling the lake thermal dynamics,
and to recognize the atmospheric temperature as the main
factor driving the evolution of the system. In fact, under cer-
tain hypotheses the air temperature variation implicitly con-
tains proper information about the other major processes in-
volved, and hence in our approach is considered as the only
input variable of the model. In particular, the model is suit-
able to be applied over long timescales (from monthly to in-
terannual), and can be easily used to predict the response
of a lake to climate change, since projected air tempera-
tures are usually available by large-scale global circulation
models. In this paper, the model is applied to Lake Supe-
rior (USA–Canada) considering a 27 yr record of measure-
ments, among which 18 yr are used for calibration and the
remaining 9 yr for model validation. The calibration of the
model is obtained by using the generalized likelihood un-
certainty estimation (GLUE) methodology, which also al-
lows for a sensitivity analysis of the parameters. The results

show remarkable agreement with measurements over the en-
tire data period. The use of air temperature reconstructed by
satellite imagery is also discussed.

1 Introduction

Water temperature is crucial for lakes physical, chemical and
biological dynamics: temperature is the primary driver of
the vertical stratification, and thus directly affects vertical
exchanges of mass, energy and momentum within the wa-
ter column. Water temperature plays a key role in influenc-
ing the aquatic ecosystem of lakes, which usually adapts to
a specific range of physical and environmental conditions.
As a matter of fact, water temperature can affect both the
chemical (e.g., dissolved oxygen concentration) and biologi-
cal (e.g., fish growth) processes occurring in the water body
(e.g.,Wetzel, 2001). Recent studies demonstrate that lakes
are highly sensitive to climate, and their physical, chemical
and biological properties respond rapidly to climate-related
changes (Adrian et al., 2009). In the light of these considera-
tions, it is evident that any significant modification to current
environmental conditions may influence the limnic system,
with direct impacts on the composition and richness of its
ecosystem (MacKay et al., 2009). There are indeed several
reasons to look for a reliable tool to have information about
the dependence of water temperature on the various factors
influencing the heat balance of the lake compartments.

Water temperature in lakes follows complex dynamics
and is the result of a combination of different fluxes,
whose sum is often small compared to the single terms
(e.g.,Imboden and Ẅuest, 1995). Therefore, relatively small
errors in the estimate of the single contributions may result
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in a significantly large error in the evaluation of the net heat
flux. This is particularly true for the well-mixed surface layer,
usually termed as epilimnion during stratified conditions,
which experiences strong oscillations at a variety of tempo-
ral scales: from short (hourly and daily) to long (annual and
interannual) up to climatic (decades to centuries). Closing
the heat balance correctly at the different scales and predict-
ing the future trend of surface water temperature is therefore
challenging, and not always possible (e.g., if meteorologi-
cal data are not sufficient). As a consequence, some hydro-
dynamic lake models prescribe surface water temperature as
surface boundary condition instead of computing the net heat
flux at the water–atmosphere interface (e.g.,Goudsmit et al.,
2002; Piccolroaz and Toffolon, 2013; Piccolroaz, 2013). In
general, large uncertainties are associated with the estimates
of the various heat exchange components; however, the vari-
ables involved in the different processes are either not all in-
dependent from each other or do not present strong inter-
annual variations, suggesting that some simplifications can
be possibly adopted. For instance, shortwave solar radia-
tion substantially depends on the latitude of the lake and
on cloudiness, with the former presenting a rather regular
annual trend and the latter being important mainly at short
timescales (from hourly to weekly). Deep-water temperature
typically changes on timescales much longer than surface
water, and thus the heat exchanged with the hypolimnion can
be reasonably assumed as constant in many situations. Dif-
ferently, air temperature is a significant index of the overall
meteorological conditions, and can be reasonably assumed as
the main variable influencing the heat balance of the surface
layer of the lake (Livingstone and Padisák, 2007).

Thankfully, long-term, high-resolution air temperature ob-
servational datasets are in general available, both for histor-
ical periods adopted to calibrate general circulation models
(GCMs) and regional climate models (RCMs), and for fu-
ture periods where air temperature is a variable commonly
derived from GCM or RCM projections. Conversely, water
temperature measurements are far less available, and future
projections could be only obtained through the adoption of
predictive models fully coupled with atmospheric and land
surface models, which at the present stage is not a common
practice (MacKay et al., 2009). In order to overcome these
limitations (i.e., scarce availability and difficult estimation),
several simple models have been formulated that use air tem-
perature (widely accessible both for past and future periods)
to derive surface water temperature of lakes.

Regression models (seeSharma et al., 2008, for a review)
are typically adopted for this scope, but their use may be
questionable, especially when it is necessary to extrapolate
temperature values beyond the maximum (or minimum) limit
of the measured time series. This is often the case in cli-
mate change studies, where the regression relationships built
upon current climate condition are applied to estimate sur-
face water temperature for different climate change scenar-
ios, with the possibility that the projected air temperature

may cover a wider interval of values. Regression-type mod-
els, either linear or non-linear, have been successfully applied
to estimate the temperature of rivers and streams, giving rise
to a rich literature (e.g.,Kothandaraman and Evans, 1972;
Crisp and Howson, 1982; Webb et al., 2003; Benyahya et al.,
2007; Morrill et al., 2005). Nevertheless, these models can-
not straightforwardly be extended to the case of lakes, espe-
cially for those water basins that have a significant seasonal
hysteresis. As a matter of fact, the variety of processes of
heat exchange across the lake surface and the thermal inertia
of the water mass cause an annual phase lag between air and
water temperatures, which is hard to consider in regressions.
In many cases, simplistic linear regressions are adopted for
the conversion, following the assumption of a direct mono-
tonic relationship between air temperature and surface wa-
ter temperature (e.g.,Shuter et al., 1983; Livingstone and
Lotter, 1998; Livingstone et al., 1999), which do not allow
for capturing the hysteresis cycle. In other cases, seasonal
hysteresis is solved by estimating different seasonal regres-
sion relationships, one for each branch of the hysteresis loop
(e.g., one for the ascending and another for the descending
branch) (e.g.,Webb, 1974), or by using linear regressions
to estimate the monthly means of surface water temperature
from the monthly means of measured air temperature data
(McCombie, 1959).

Besides regression analysis, water temperature of lakes
can be estimated by means of process-based numerical mod-
els (e.g.,Arhonditsis et al., 2004; Fang and Stefan, 1999;
Peeters et al., 2002; Martynov et al., 2010), possibly cou-
pled with an atmospheric model (e.g.,Goyette and Perroud,
2012; Martynov et al., 2012) aimed at including the mutual
interaction between water and atmosphere. These kinds of
models can provide exhaustive information about the ther-
mal structure of lakes, and accurately characterize the differ-
ent energy fluxes involved in the lake temperature dynamics.
The major drawback of the process-based models is the re-
quirement of detailed time series of meteorological data in
input (e.g., wind speed, humidity, cloudiness, etc., in addi-
tion to air temperature), which are often not available or not
accurate enough.

In order to overcome the limitations of traditional ap-
proaches (both regression- and process-based models), semi-
empirical models based on physical principles may repre-
sent a valid alternative, having the key advantage of requiring
fewer data in input than deterministic models, whilst preserv-
ing a clear physical basis. Recently,Kettle et al.(2004) pro-
posed a simple empirical model to estimate mean daily water
temperature, using only air temperature and the theoretical
clear-sky solar radiation as input information. The model is
based on the sensible heat exchange model ofRodhe(1952)
(see alsoBilello, 1964), and implicitly accounts for the main
heat exchange processes through four parameters. The model
performs well, but its application is limited to specific peri-
ods of the year with nearly uniform stratification conditions
(it has been applied to small lakes in Greenland from late
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June to early September, long after ice melts, when water
temperature is always above 4◦C). However, it does not ac-
count for the seasonal evolution of the thermal structure of
the lake, and hence of the mixing depth (i.e., the depth of the
epilimnion), which determines the volume of water respond-
ing to meteorological forcing, and has a significant influence
on the seasonal patterns of atmosphere–lake heat exchange.

In the attempt to reliably estimate the cycle of surface
water temperature of lakes from air temperature measure-
ments/projections only, both under past, current and pro-
jected climate conditions, a simplified model has been de-
veloped. Such a model is primarily based on the energy bal-
ance between atmosphere and lake surface water (Fig.1), but
avoids the need to take into account all heat budget terms ex-
plicitly. A simple parameterization of the seasonal evolution
of the mixing depth is included in the model equations, which
only depend upon air temperature. The key objective of the
present work is thus the definition of a modeling framework
that could allow for a consistent description of the physical
principles governing lake surface temperature, and ensures
general applicability of the model (e.g., over the entire year).

The paper is structured as follows. In Sect.2 the govern-
ing equations are presented, and the model is formulated. The
heat budget is presented in detail in AppendixA. Section3
provides a general description of the data used in this study.
The results concerning model calibration and validation are
presented in Sect.4 with reference to the different versions
of the model and the various dataset used in this work. Re-
sults are discussed in Sect.5, and finally we draw the main
conclusions in Sect.6.

2 Formulation of the model

The net heat fluxHnet in the surface layer of a lake re-
sults from the combination of the different fluxes entering
and exiting the upper water volume (see Fig.1). The main
heat exchanges occur at the interface between the epilimnion
and atmosphere, and between the epilimnion and deep wa-
ter (i.e., hypolimnion). According to the simplifications dis-
cussed in AppendixA, a simplified version of the net heat
flux can be expressed as

Hnet = c1 cos

[
2π (t − c2)

tyr

]
+ c3

+c4 (Ta − Tw) + c5Tw, (1)

wheret is time, tyr is the duration of the year expressed in
suitable time units,Ta and Tw are air and water tempera-
ture (expressed in [◦C] for simplicity), respectively, andci (i
from 1 to 5) are coefficients with a physical correspondence,
whose definition is detailed in AppendixA. Note that Eq. (1)
accounts for a sinusoidal annual forcing term with amplitude
c1 and phasec2 (which result from a combination of the sea-
sonal fluctuations of solar radiation and of sensible and latent
heat fluxes), an air–water exchange termc4(Ta−Tw) (where
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Fig. 1. Main heat exchange affecting the surface layer. For the de-
scription of the single terms, refer to AppendixA.

c4 is a coefficient that is primarily ascribable to a transfer
function of sensible heat flux), a constant termc3 and a resid-
ual correctionc5Tw dependent on the water temperature (the
last two terms combined together basically account for the
contribution of the latent heat flux). The only meteorolog-
ical variable explicitly included in the model isTa, while
the remaining meteorological forcing (e.g., wind speed, solar
radiation, humidity and cloudiness, which besides air tem-
perature are the major factors controlling the heat budget of
lakes) are inherently accounted for in the model’s parame-
ters. In particular, the formulation of the model implicitly
accounts for the seasonal patterns of these external forcing
terms through the data-driven calibration of the parameters.
Consistent with the main aim of the model (i.e., to repro-
duce the evolution ofTw at long timescales, e.g., monthly,
annual, interannual), higher frequency fluctuations are not
considered.

Considering the upper layer of the lake, the volume-
integrated heat equation can be expressed as follows

ρcp V
dTw

dt
= HnetA, (2)

whereρ is the water density,cp is the specific heat at con-
stant pressure andV andA are the volume and the surface
area of the layer, respectively. BothV andA can be left un-
determined in the analysis if we define the depth of the well-
mixed surface layer (i.e., the epilimnion thickness) as follows

D =
V

A
. (3)

The depthD typically depends on the stratification of the
water column, and is characterized by a clear seasonal be-
havior. In order to include this essential feature, a suitable
parameterization ofD in time is required. The most appro-
priate choice is to estimateD as a function of the thermal
stratification, and thus of the vertical temperature gradient.
As a first approximation, the strength of the stratification
can be evaluated as proportional to the difference between
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the surface water temperatureTw and a reference valueTr.
Tr is representative of deep-water temperature, and thus can
be suitably chosen depending on the thermal regime of the
lake (for a classification of lakes refer to, e.g.,Hutchinson
and L̈offler, 1956; Lewis, 1983). In the case of cold mo-
nomictic lake (i.e., never over the temperature of maximum
densityTρ,max≈ 4◦C, stably stratified in winter and circu-
lating in summer; in these lakes the thermal stratification is
referred to as inverse since water temperature at the surface,
Tw, is colder than in the hypolimnion),Tr can be assumed as
the maximum surface temperature registered during the year.
In the case of warm monomictic lakes (i.e., always above
4◦C, circulating in winter and stably stratified in summer;
in these lakes the thermal stratification is referred to as di-
rect since water temperature at the surface,Tw, is warmer
than in the hypolimnion),Tr can be assumed as the mini-
mum surface temperature registered during the year. Finally
Tr can be assumed equal to the temperature of maximum
densityTρ,max≈ 4◦C for the case of dimictic lakes (i.e., in-
versely stratified in winter, stably stratified in summer and
circulating twice a year at the transition between the two
states, at about 4◦C). In all cases, when the water column
is nearly isothermal (i.e.,Tw → Tr), close to the onset of the
seasonal turnover, the thermal stratification weakens and, as
a consequence, the surface mixed layerD reaches its maxi-
mum thicknessDr. In general, we assume that the stronger
the stratification (i.e.,|Tw − Tr| � 0), the thinner the surface
mixed layerD.

For the period of direct stratification (Tw > Tr), the evo-
lution of D is described using the simple exponential decay
law

D(t) = Dr exp

(
−

Tw(t) − Tr

τwarm

)
, (4)

whereτwarm [◦C] is the inverse of the decay rate (the sub-
script “warm” refers to the caseTw > Tr: direct stratification)
andDr indicates the maximum thickness of the mixed layer.
With the aim to consider the variation ofD when the lake
is inversely stratified (i.e.,Tw < Tr, the subscript “cold”), a
modified version of Eq. (4) has been derived,

D(t) = Dr

[
exp

(
−

Tr − Tw(t)

τcold

)
+ exp

(
−

Tw(t) − 0◦C

τice

)]
, (5)

whereτcold [◦C] andτice [◦C] are the inverse of decay rates.
In principle, τcold is not necessarily equal toτwarm, since
the evolution ofD below and aboveTr is possibly differ-
ent. In addition, the second term in the exponential function
has been introduced to account for the potential formation
of the ice cover at the surface. AsTw tends to 0◦C, the air–
water heat flux is inhibited due to the presence of ice and
snow covers. Our scheme indirectly takes this into account
by a fictitious increase of the depthD. It is worth noting
that τice should have an upper bound (approximately equal
to 0.5◦C) in order to include the effect of ice only when the

lake is inversely stratified, and avoid a discontinuity inD at
the transition from direct to inverse stratification (i.e., when
Tw = 4◦C).

By substituting Eqs. (1), (3), (4) and (5) into Eq. (2), we
obtain

dTw

dt
=

1

δ

{
p1 cos

[
2π

(
t

tyr
− p2

)]
+ p3

+p4 (Ta − Tw) + p5Tw} , (6)

with

δ = exp

(
Tr − Tw

p6

)
, (Tw ≥ Tr)

δ = exp

(
Tw − Tr

p7

)
+ exp

(
−

Tw

p8

)
, (Tw < Tr) , (7)

where the model parameterspi (i = 1, 3, 4, 5) are the
coefficientsci present in Eq. (1) divided by the product
ρcpDr, p2 = c2/tyr, p6 = τwarm, p7 = τcold, p8 = τice, and
δ = D/Dr is the normalized depth, whose seasonal evolution
is schematically represented in Fig.2 for the case of dimictic
lakes (monomictic regimes are particular cases of the dimic-
tic regime, which represents the most general case).

In conclusion, we propose a semi-empirical lumped
model, which solves the temporal evolution of surface wa-
ter temperature of lakes, using only air temperature as input
forcing. The model requires the calibration of eight phys-
ically based parameters, whose range of variation can be
reasonably estimated according to their definitions (see Ap-
pendixA).

3 Study site

In order to apply the model described in Sect.2, only two
series of data are required: air temperature as input forcing,
and surface water temperature for calibration purpose. A suf-
ficiently long dataset (i.e., more than one year) is an essential
prerequisite to perform a robust model calibration and vali-
dation procedure. Moreover, a long-term dataset provides a
clear picture of the possible interannual temperature variabil-
ity, thus allowing for the identification of a set of parameters
that is appropriate to investigate long-term climate dynamics.

The model has been tested on Lake Superior (surface area:
82 103 km2; volume: 12 000 km3; maximum depth: 406 m),
the largest of the five Great Lakes of North America (see
Fig. 3), and the largest freshwater basin on Earth by surface
area. Lake Superior is a dimictic lake: the temperature of the
epilimnion is warmer than 4◦C in summer and cools below
4◦C in winter. While the surface water temperature varies
seasonally, the temperature of the hypolimnion is almost con-
stant over the year at about 4◦C. Twice a year, in December
and in June, surface water reaches this temperature, and thus
the thermal stratification weakens. Under these conditions,
and in the presence of a sufficiently strong wind blowing at
the surface, the entire lake can mix (i.e., lake’s turnover).
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Fig. 2. Seasonal evolution of the dimensionless thicknessδ of the
surface well-mixed layer for the general case of a dimictic lake.

Long-term temperature data (both for air and surface wa-
ter) have been obtained from the National Data Buoy Center
(NDBC) and from the Great Lakes Environmental Research
Laboratory (GLERL), which are part of the National Oceanic
and Atmospheric Administration (NOAA). In particular, the
NDBC provides historical meteorological and oceanographic
data for a network of offshore buoys and coastal stations (i.e.,
Coastal Marine Automated Network – C-MAN) that is in-
stalled all over the world, while the GLERL, through the
CoastWatch program, releases daily digital maps of the Great
Lakes’ surface water temperature and ice cover (i.e., the
Great Lakes Surface Environmental Analysis – GLSEA).

Concerning the NDBC dataset, two different stations have
been used in this work: (a) 45004 – Marquette, an offshore
mooring buoy that provides water temperature measured at
1 m below the water surface; and (b) STDM4 – Stannard
Rock, a C-MAN station installed on a lighthouse that pro-
vides air temperature series measured at about 35 m above
the lake surface. These two stations have been chosen from
the many that are available for Lake Superior (both offshore
buoys and C-MAN) because of their central location (see
Fig. 3) and long-term data availability, but time series regis-
tered in other stations present similar behavior (not presented
here). The observational dataset cover a 27 yr long period,
from 1985 to 2011, and consists of measurements with 1 h
temporal resolution. Since NDBC buoys in the Great Lakes
are removed during winter to prevent damage from ice, no
measurements are available at the 45004 – Marquette during
winter months (except for 1991), while the STDM4 – Stan-
nard Rock measurements do not show systematic gaps.

Concerning GLERL dataset, daily temperatures have been
used for the period 1994 to 2011. Data refer to the daily
lake average surface water temperature obtained from NOAA
polar-orbiting satellite imagery. The series does not present
systematic gaps (missing data, see Table1, are concentrated
in the initial warm-up year, and hence do not contribute to the
evaluation of the model efficiency; see Sect.4.1), thus pro-
viding surface water temperature also in winter, which, on
the contrary, is almost completely uncovered by the NDBC
dataset. A mismatch between NDBC and GLERL datasets is
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Fig. 3.Lake Superior with the location of the NDBC stations (45004
– Marquette and STDM4 – Stannard Rock) used in this work. The
inset shows the location of lake Superior in North America.

visible in the rising limb of the annual cycle of temperature
(i.e., between April and July; see Fig.8a), which is likely to
be a consequence of the different spatial scales of the two se-
ries of data: while the NDBC dataset represents surface wa-
ter temperature measured nearly at the center of the basin,
the GLERL dataset provides values averaged over the whole
lake. In the latter case, the spatial variability of surface water
temperature (e.g., in spring, lake water heats from the shores
towards the offshore deeper zones) is intrinsically included
in the estimates, thus determining smoother annual cycles of
temperature. Despite this discrepancy,Schwab et al.(1999)
compared GLERL data with measurements at some of the
NDBC buoys, finding overall good agreement. In particular,
for the case of the 45004 – Marquette buoy used in this work,
the mean difference between the two datasets for the period
1992–1997 is less than 0.28◦C, the root-mean-square error is
1.10◦C and the correlation coefficient is 0.96.

As customary, the available datasets have been divided
into two parts: the first part, containing around two-thirds of
the available data, is used for model calibration and sensitiv-
ity analysis, while the second part, containing the remaining
one-third, is used for model validation. Missing data in the
water temperature series have not been replaced (they do not
contribute to the evaluation of the efficiency of the model);
on the other hand, gaps in the air temperature series have
been reconstructed with estimates obtained as an average of
the available data in the same day over the corresponding pe-
riod (i.e., calibration or validation). The datasets used in this
work are listed in Table1, together with their main statistics.

The differential Eq. (6) has been solved numerically by
using the Euler explicit numerical scheme (see, e.g.,Butcher,
2003), with a daily time step (concerning NDBC data, mean
daily temperatures have been preliminary calculated from the
original data).
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Table 1.Summary of the datasets adopted in this study, and their main statistics.

Source Variable Device Period Duration (cal + val) Frequency Missing data Mean value [◦C] Std [◦C]

NDBC Tw Offshore buoy 1985–2011 27 yr (18 + 9) Hourly 46 % 7.18 4.66
NDBC Ta C-MAN station 1985–2011 27 yr (18 + 9) Hourly 9 % 5.39 8.97
GLERL Tw Satellite 1994–2011 18 yr (12 + 6) Daily 5 % 6.52 5.26

4 Results

4.1 Sensitivity analysis and model calibration

Inverse modeling of complex systems, as such as those en-
countered in hydrological applications, is an inherently ill-
posed problem, as the information provided by observational
data is insufficient to identify the parameters without un-
certainty. In a typical situation many different combinations
of the parameters may provide similar fitting to the obser-
vational data. For example, even a simple model with only
four or five parameters to be estimated may require at least
10 hydrographs for a robust calibration (e.g.,Hornberger
et al., 1985). This identification problem can be alleviated
by reducing the number of parameters used in the model,
for example through sensitivity analysis, which is the typi-
cal methodology used for this purpose (e.g.,Majone et al.,
2010).

In this work we perform sensitivity analysis by using
generalized likelihood uncertainty estimation (GLUE), a
methodology proposed byBeven and Binley(1992) that re-
quires the identification of a validity range for each param-
eter, a strategy for sampling the parameter space and finally
a likelihood measure to be used in order to rank the differ-
ent parameter sets. We carried out 100 000 000 Monte Carlo
model realizations using uniform random sampling across
specified parameter ranges selected according to physical
limitations of the model’s parameters. Indeed, the physical
meaning of the parameters allowed for a reasonable defini-
tion of the possible range of variability of each of them. Fi-
nally, we used as a likelihood measure the Nash–Sutcliffe
model efficiency coefficient,E, which is a widely used met-
ric adopted in hydrological applications (e.g.,Nash and Sut-
cliffe, 1970; Majone et al., 2012, and many others):

E = 1 −
σ 2

e

σ 2
o

= 1 −

n∑
i=1

(
T̂w,i − Tw,i

)2
n∑

i=1

(
T̂w,i − T w,i

)2 , (8)

wheren is the number of data,σ 2
e andσ 2

o are the variance of
the residuals and of the observations, respectively,T̂w,i and
Tw are the observed and simulated surface water temperature
at timeti , andT w is the average of̂Tw,i . Note that the residual
is defined as the difference between the observational data
and the model’s prediction, and a parameter set identifies a
point in the space of parameters.

The Nash–Sutcliffe efficiency index ranges from−∞ to 1.
An efficiency equal to 1 (E = 1) corresponds to a perfect
match between measured and simulated values, whilstE = 0
indicates that the model prediction is as accurate as the mean
of observations. Efficiency values lower than 0 (E < 0) oc-
cur whenσ 2

e is larger thanσ 2
o , and thus when the mean of

observations is a better estimator than the model itself.
Since its introduction in 1992, GLUE has found wide

applications and it is recognized as a useful methodology
for uncertainty assessment in many fields of study espe-
cially in non-ideal situations (e.g.,Beven, 2006). Neverthe-
less, the goal of this work is not to adopt a complete, informal
Bayesian approach to estimate uncertainty of model predic-
tions but rather to assess the impact of changes in uncertain
parameter values on model output. Hence, the purpose is to
set up a general and effective strategy to select which are the
most sensitive parameters of the model, and to define which
should be suitably adjusted in a calibration process. Indeed,
the GLUE methodology is a powerful and effective tool that
can be also used for model calibration besides uncertainty
estimation procedures and sensitivity analysis.

One of the most acknowledged limitations of the GLUE
methodology is the dependence on the number of Monte
Carlo simulation, especially in the presence of complex mod-
els with high computational demand. However, in our case
we were able to fully explore parameter response surfaces by
adopting a significantly high number of realizations. There-
fore, the use of the GLUE methodology, not only for param-
eter identifiability purposes but also as a calibration tool, ap-
pears appropriate. Just as a side note, 100 000 000 model runs
over a period of 18 yr with a daily time step and adopting In-
tel(R) Xeon(R) CPU X5680 at 3.33 GHz took around 2 h; the
code is written in Fortran 90.

Furthermore, in the attempt to test reliability and predic-
tive capability of the model, a validation procedure was un-
dertaken by running the model on validation datasets (see
Table1) by using the sets of parameters that maximize the
efficiency E during the calibration periods (i.e., the set of
parameters with the highest likelihood obtained through the
GLUE methodology).

In the ensuing sections, the GLUE methodology is pre-
sented for different model configurations (from eight to
four parameters), with reference to the calibration periods of
the NDBC and GLERL datasets, respectively (see Table1).

As a final comment, we point out that the first year of each
time series is used as warm-up period (i.e., excluding the
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Table 2. Estimated model parameters for NDBC, GLERL and GLERLmyr (mean year) simulations, and their estimated physical range of
variation.

n par. p1 [◦C d−1] p2 [–] p3 [◦C d−1] p4 [d−1] p5 [d−1] p6 [◦C] p7 [◦C] p8 [◦C]

min 0.00 0.00 −0.12 0.00 −0.02 0 0 0
max 0.33 1.00 0.28 0.01 −0.00 15 15 0.5

NDBC

8 1.35× 10−2 2.62× 10−1 1.47× 10−3 6.18× 10−3
−3.26× 10−4 3.08 14.41 0.31

6 1.56× 10−2 2.83× 10−1 1.23× 10−3 5.95× 10−3
−2.36× 10−4 3.01 – –

4 – – 1.41× 10−2 5.87× 10−3
−2.23× 10−3 2.77 – –

GLERL

8 1.75× 10−2 4.67× 10−1 2.30× 10−2 6.55× 10−3
−2.57× 10−3 3.50 13.32 0.44

6 2.36× 10−2 4.37× 10−1 1.93× 10−2 5.91× 10−3
−2.16× 10−3 3.65 –

4 – – 2.57× 10−2 9.63× 10−3
−2.73× 10−3 3.54 – –

GLERLmyr

8 1.31× 10−2 2.32× 10−1 1.55× 10−2 8.47× 10−3
−1.09× 10−3 3.26 11.93 0.45

6 2.01× 10−2 2.06× 10−1 1.49× 10−2 9.69× 10−3
−7.58× 10−4 3.75 – –

4 – – 2.77× 10−2 9.16× 10−3
−2.87× 10−3 3.13 – –

Table 3.Efficiency index (E), root-mean-square error (RMSE) and
mean error (ME) during calibration and validation periods (NDBC,
GLERL and GLERLmyr simulations).

calibration validation

n par. E [–] RMSE [◦C] ME [◦C] E [–] RMSE [◦C] ME [◦C]

NDBC (cal: 1985–2002; val: 2003–2011)

8 0.91 1.40 −0.07 0.90 1.71 −0.01
6 0.91 1.35 −0.09 0.90 1.71 −0.02
4 0.89 1.50 −0.25 0.89 1.77 −0.01

GLERL (cal: 1994–2005; val: 2006–2011)

8 0.95 1.17 −0.13 0.97 1.02 0.30
6 0.95 1.16 −0.07 0.97 1.01 0.33
4 0.95 1.21 −0.05 0.97 1.08 0.38

GLERLmyr (cal: mean year 1994–2005; val: 2006–2011)

8 0.99 0.48 0.06 0.97 1.07 0.23
6 0.99 0.43 0.01 0.97 0.98 0.15
4 0.99 0.47 0.03 0.97 1.11 0.29

period from the calculation of the Nash–Sutcliffe efficiency
index E) in order to remove any transient effect due to the
initial condition.

4.2 Eight-parameter model

As discussed in the previous section, the performance of
the model has been tested in the framework of the GLUE
methodology, using the time series of air and surface water
temperatures provided by the NDBC center (see Table1). A
first-step sensitivity analysis has been carried out by solv-
ing Eq. (6) over the calibration period (18 yr, from 1985
to 2002) using randomly sampled sets of parameters. We

recall here that each of the eight parameters has been al-
lowed to vary over physically reasonable ranges of values,
which have been previously determined through Eqs. (A12)–
(A16) in AppendixA by considering the lake location prop-
erties (e.g., latitude, climate, typical temperatures) and by us-
ing coefficients available in the literature (e.g.,Henderson-
Sellers, 1986; Imboden and Ẅuest, 1995; Martin and Mc-
Cutcheon, 1998). As far as the exponential decay laws are
concerned, parametersp6 and p7 have been allowed to
range within a wide interval comprised between 0 and 15◦C,
and p8 between 0 and 0.5◦C. As already mentioned in
Sect.2, the range ofp8 has been set narrower (more strin-
gent upper bound), aimed at confining the correction due
to ice only when the lake is inversely stratified (e−4/0.5

=

O(10−4) � 1). In the light of the results obtained from the
first-step analysis, the ranges of variability of each parame-
ter were narrowed, thus allowing for a detailed investigation
of parameter space regions associated with high values ofE.
Subsequently, a second-step sensitivity analysis has been un-
dertaken by sampling further 100 000 000 sets of parameters
from the narrowed parameter ranges.

Figure4 shows the dotty plots of the efficiency indexE

for each of the eight parameters of the model, corresponding
to the narrowed ranges (second-step performance analysis).
For the sake of clarity in the presentation of results, Fig.4
(as well as Fig.6) shows only the set of parameters withE

larger than 0.8. Model simulation during the calibration pe-
riod 1985–2002 using the best set of parameters is illustrated
in Fig. 5, which shows noticeable agreement between simu-
lated and observed values, with an efficiency indexE > 0.9
(see Tables2 and3 for a summary of the results).
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Fig. 4. Dotty plots of efficiency indexes (E) for the 8-parameters model during the calibration period 1985-2002 (NDBC simulation). Highest
efficiency is presented with an orange dot.
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Fig. 5. Comparison between simulated and observed surface water temperature during the calibration period 1985-2002 (NDBC simulation).
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Fig. 4. Dotty plots of efficiency indexes (E) for the eight-parameter model during the calibration period 1985–2002 (NDBC simulation).
Highest efficiency is presented with an orange dot.

A visual inspection of dotty plots of model efficiency can
provide useful information on the identifiability of each pa-
rameter. According to Fig.4, all the parameters are charac-
terized by a good identifiability with the exception of param-
etersp7 andp8. This can be explained if we consider that
the NDBC dataset presents only a few values of water tem-
perature during winter periods. In particular, no data (except
for one single year out of 18) are available when surface wa-
ter temperature approaches 0◦C, which corresponds to the
period of the year when the parameterp8 is relevant. We re-
mark here thatp8 is the parameter associated to ice formation
at the surface of the lake. Although to a minor extent, also
p7 does not show a clear identifiability, probably as a con-
sequence of the importance that this parameter assumes only
during winter time (it plays a role only whenTw < 4◦C); that
is, when water temperature measurements are not available.
However, by analyzing the dotty plot an important informa-
tion can be inferred: efficiency increases for higher values of
p7, and approaches a nearly asymptotic high-efficiency trend
whenp7 & 5◦C. Looking at the physical meaning of the pa-
rameter (see Eq.7), this means that model performance im-
proves as the mixed depthD approaches its maximum value
Dr when the lake is inversely stratified (Tw < 4◦C).

In the light of these evidences, in the ensuing section the
full eight-parameter version of the model has been simplified
by neglecting parametersp7 andp8.

4.3 From eight to four parameters

On the basis of the results discussed in the previous sec-
tion, not all the model parameters seem to be significant
and clearly identifiable. In particular, the parameterp8 has
been found to be insensitive to the model, and parameterp7
provides an overall high performance over most of its vari-
ability domain (p7 & 5◦C). The peculiar behavior of these

parameters, together with the fact that both appear in the def-
inition of the mixing depthD when the lake is inversely strat-
ified, suggests that a simplification of the model may be pos-
sible by considering a different (simpler) expression forD.
The parameterp8 is not significant for the model, and can be
easily neglected, thus eliminating the effect of ice formation.
On the other hand, according to Eq. (7), high values ofp7
mean small decay rates ofD, and thus thick mixing depths
when the lake is inversely stratified. In the light of these con-
siderations, we have derived a first simplified version of the
model, where the mixing depth is assumed to be constant and
at its maximum thicknessD =Dr when the lake is inversely
stratified (Tw < Tr). Thanks to this simplificationp7 andp8
are removed and the number of parameters diminishes from
eight to six.

As for the case of the full eight-parameter version of the
model, the same sensitivity analysis described in Sect.4.2
has been carried out also for the simplified six-parameter
version. The set of parameters presenting the highest effi-
ciency index during the calibration period is summarized in
Table2, whilst dotty plots deriving from the application of
GLUE methodology and the comparison between simulated
and measured surface water temperature during the same pe-
riod are not presented here for the sake of brevity. Indeed,
results are essentially equivalent to those obtained using the
full eight-parameter model, which is confirmed by the close
similarity between the best set of parameters and the effi-
ciency indexes obtained in the two cases (see Tables2 and
3). The similarity of results supports the idea that the six-
parameter model is a reasonable simplification, at least in the
case considered herein where the winter data are not abun-
dant (see also Sect.4.5for further discussion).

The number of parameters can be further diminished from
six to four by eliminating the parameterp1 and, as a direct
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Fig. 6. Dotty plots of efficiency indexes (E) for the four-parameter model during the calibration period 1985–2002 (NDBC simulation).
Highest efficiency is presented with an orange dot.

consequence,p2, in addition top7 andp8. This simplifica-
tion is justified since three periodic terms appear in the model
as characterized by an annual periodicity: the forcing term
p1cos(2π(t/tyr − p2)), the exchange termp4(Ta− Tw) and
the residual correctionp5Tw. The simultaneous co-presence
of all these terms may be considered redundant in those cases
in which the annual cycles ofTw and/or ofTa− Tw can be
suitably approximated as sinusoids. Indeed, the sum of sinu-
soidal functions with the same frequency, but different am-
plitude and phase, yields another sinusoid with different am-
plitude and phase but the same frequency. Therefore, two si-
nusoids are sufficient, and the forcing termp1cos(2π(t/tyr−

p2)) can be removed, relieving the overall annual variations
on the periodic terms controlled by the model variableTw and
the external forcingTa. Following this logic, the termp5Tw
could be neglected alternatively (on the contrary,p4 (Ta−Tw)
cannot be neglected since it is the only term that includes
information about the external forcing), but this assumption
would remove only one parameter (p5) instead of two (p1
andp2), thus making it less attractive.p1cos(2π(t/tyr−p2))

andp5Tw cannot be neglected contemporaneously, because
in this case the phase of the overall periodic term would be
forced to that of the temperature difference. It is worth not-
ing that in the four-parameter version of the model (retaining
p3, p4, p5 andp6), the physical meaning of the parameters

is distorted, as the processes that were accounted inp1 are
now included inp4 andp5.

Figure6 shows the dotty plots of the efficiency indexesE

for the four-parameter version of the model, where only the
parametersp3, p4, p5 andp6 are retained. In this case, since
the number of random samplings has been kept unchanged
(i.e., 100 000 000), the predictions of the Monte Carlo real-
izations appear much less sparse (i.e., denser dotty plots) if
compared to the case of the eight-parameter version. Notice
that all the parameters are characterized by high identifiabil-
ity and the model does not present signs of overparameteri-
zation. Figure5 shows the comparison between observed and
simulated surface water temperatures during the calibration
period 1985–2002 for the four-parameter and the full eight-
parameter models, respectively. The difference is small, and
mainly localized during the winter period, when no surface
water temperature data are available for comparison. Dur-
ing the rest of the year, when measurements are available
andE index can be effectively calculated, the two solutions
are comparable and the efficiency indexes are similar (just
slightly lower for the simplified four-parameter version of the
model; see Table3).
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4.4 Model validation

The best set of parameters obtained during the calibration
period for the different versions of the model (with eight,
six and four parameters; see Table2) have been used to
run the model during the validation period 2003–2011 (see
Table1). In all the cases, simulations have been character-
ized by high efficiency indexes, comparable to those ob-
tained with the best simulations during the calibration period
(E ' 0.9; see Table3). In Fig. 7 simulated water tempera-
tures (for the versions with the eight and four parameters)
are compared with observations showing overall very good
agreement. Results confirm the reliability of the model as a
valuable tool for surface water estimation over long-term pe-
riods with different model configurations.

Besides the evaluation of the surface water temperature,
the model provides additional qualitative information regard-
ing the annual evolution of the epilimnion thickness. In fact,
as discussed in Sect.2, the model explicitly includes a simpli-
fied parameterization of the seasonal behavior of the mixing
depth through Eq. (7). In particular, the normalized thick-
ness of the epilimnionδ =D/Dr is automatically determined
once the parametersp6, p7 andp8 are defined. Furthermore,
it is evident that if an estimate of the reference mixing depth
Dr were known, the actual thickness of the well-mixed layer
D could be evaluated as well. With reference to the NDBC
dataset, Fig.8b shows the evolution ofδ over the validation
period 2003–2011 for the eight- and four-parameter versions
of the model (continuous lines). In the first case (eight pa-
rameters) the fictitious increase of depth due to the presence
of ice is evident (peaks at values greater than 1). Such an
increase is related to the presence of a larger water volume
involved in the heat balance (see Fig.2). Thanks to this as-
sumption the model accounts for the insulation effect due
to the presence of ice, which may be even more significant
when the ice surface is snow covered and the penetration of
solar radiation is strongly attenuated.

4.5 Satellite data

We have seen that results are remarkable both using the
full eight-parameter version and the simplified six- and four-
parameter versions of the model. In particular, little differ-
ence has been found regarding the best set of parameters
and the efficiency indexes obtained using the eight- and the
six-parameter versions (see Tables2 and3). Therefore, one
may infer that no significant advantages can be expected
by using a more accurate expression forD during the win-
ter period (eight-parameter version), instead of a constant
value (six-parameter version). However, it is not possible to
state this conclusion by simply analyzing results presented in
Sects.4.2, 4.3and4.4. Indeed, no surface water temperature
measurements are available during the winter period for the
NDBC dataset except for the year 1991, and thus the model
efficiency has not been tested during the period of inverse
stratification.

Aimed at overcoming this limitation, the GLERL dataset
has been used, which provides daily lake-averaged surface
water temperature based on satellite imagery, and covers
the whole year (see Table1). The same GLUE procedure
discussed in Sect.4.1 has been performed by adopting the
GLERL dataset as reference surface water temperature data
and by repeating the implementation details described in
Sect.4.2. The simulations (hereafter referred to as GLERL)
have been run over the calibration period 1994–2005, using
as input forcing the air temperature data retrieved from the
NDBC dataset (C-MAN station; see Table1). The eight-, six-
and four-parameter versions of the model have been tested,
obtaining remarkable efficiency indexes (E > 0.95), which
are higher with respect to the previous applications (i.e., us-
ing the NDBC dataset). A validation procedure has been con-
ducted with reference to the period 2006–2011, confirming
high performances of the model (E > 0.97). The parameter
sets providing the highest efficiencies during the calibration
period and the associatedE values are given in Tables2 and
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Fig. 8.Evolution of the dimensionless depthδ over the period 2003–2011: comparison between results for the full eight- and simplified four-
parameter versions of the model obtained from NDBC and GLERL simulations.(a) Comparison of observed water temperature time series
during the period 2003–2011 for the NDBC and GLERL dataset.(b) Evolution of the dimensionless depthδ over the period 2003–2011 for
the full eight- and simplified four-parameter versions of the model (NDBC and GLERL simulations).

3, while comparison between simulated and observed surface
water temperature data for the eight- and four-parameter ver-
sions of the model are shown in Figs.9 and10 for the cali-
bration and validation periods, respectively. Finally, the sea-
sonal evolution ofδ is shown in Fig.8b for both versions
of the model (dashed lines), and it is compared with those
obtained from the application of the model to the NDBC
dataset. Results are consistent, with the slight difference in
the onset of summer stratification being due to the earlier in-
crease of water temperature in the GLERL dataset compared
to the NDBC dataset (see Fig.8a).

5 Discussion

The physically based, semi-empirical model presented here
has been shown to provide an accurate description of sur-
face water temperature of lakes, with high values of Nash–
Sutcliffe efficiency indexE ' 0.9, and a root-mean-square
error between observations and simulations of the order of
1◦C (see Table3). This error in prediction capability is com-
parable to those obtainable using process-based numerical
models (e.g.,Fang and Stefan, 1996; Stefan et al., 1998),
which, however, have the strong limitation of requiring high-
resolution weather data and the calibration of numerous in-
ternal parameters.

The close agreement between measurements and model
estimates is further confirmed in Figs.11a and11b, which il-
lustrate the parity diagrams for monthly averaged surface wa-
ter temperature during the calibration and validation periods
of GLERL simulation, respectively. No systematic deviation

(bias) is observed, and the dispersion along the diagonal does
not exhibit significant trends. Both these characteristics are
confirmed by the small values of mean error (ME) and root-
mean-square error (RMSE) listed in Table3. Figures11a and
11b also illustrate that the model is able to adequately de-
scribe interannual fluctuations, as is indicated by the range
of variability of monthly averaged temperatures associated
to the coldest (March, blue dots) and warmest (August, red
dots) months. This evidence is also confirmed by Figs.9 and
10, where the model coherently reproduces the occurrence of
relatively colder (e.g., 2004) and warmer (e.g., 1998) periods.

So far, the model has been tested with long-term series
of data (NDBC: 27 yr; GLERL: 18 yr); however, long-term
records are often not available, or are characterized by signif-
icant gaps due to missing data. Instead, it is relatively easier
to have access to mean annual cycles of temperature (both
of surface water and air), whose determination also repre-
sents a valuable strategy to overcome the possible lack of
data. Therefore, a conversion model that could be calibrated
on mean annual cycles, and successively applied over long-
term periods without compromising the correct estimation of
the interannual fluctuations, would represent a valuable tool.
For this purpose, the mean annual cycle of surface water tem-
perature has been derived from GLERL data during the cal-
ibration period 1994–2005, and the corresponding cycle of
air temperature from the NDBC dataset (C-MAN station).
A Monte Carlo sensitivity analysis (hereafter referred to as
GLERLmyr, the subscript “myr” standing for mean year) has
been carried out following the same procedure adopted in
the previous sections, but using mean annual cycles of air
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Fig. 11. Parity diagram for monthly-averaged surface water temperature (8-parameters version of the model): a) calibration and b) validation
period of the GLERL simulation. Blue dots refer to March, reddots to August and grey dots to the remaining months of the year.

Fig. 10.Comparison between simulated and observed surface water temperature during the validation period 2006–2011 (GLERL simula-
tion). Simulated curves refer to the full eight-parameter and the simplified four-parameter models. Observed air temperature data are also
presented with cyan line.

and water temperature as forcing and reference data, respec-
tively. In order to eliminate the influence of initial conditions,
the temperature cycles have been replicated for two years
with the first one used as a “warm-up”. Results obtained by
adopting the parameters providing the highest efficiency (see
Table2) are presented in Fig.12, which shows the hysteresis
cycles between air and surface water temperatures derived
from measurements and model estimates (eight- and four-
parameter versions). A very high efficiency index (E ' 1.0)
is achieved, and both versions of the model are able to sat-
isfactorily capture the seasonal pattern of thermal hystere-
sis. The parameter sets providing the highest efficiency dur-
ing the calibration process with the mean annual temperature
data and the associatedE value are summarized in Tables2
and3.

Subsequently, a validation procedure has been conducted
for GLERLmyr during the period 2006–2011 (the same as
GLERL simulations; thus results can be compared). Results
are characterized by remarkable efficiency indexes (E '

0.97), only slightly lower than the values obtained with the

simulations presented in the previous sections. Indeed, the
model calibrated on the mean year is able to capture the in-
terannual variabilities well, producing remarkable results not
dissimilar from those shown in Fig.10 (for this reason they
are not presented here). Furthermore, parameter values are
significantly similar to those obtained calibrating the model
with the whole 12 yr series of data (GLERL simulation; see
Table2).

In the light of the results presented in this section, we as-
sert that the model can be calibrated and adopted using data
of different origins (measurements at buoys and coastal sta-
tions, satellite estimates) and nature (long-term series of data,
mean annual cycle of temperature). This conclusion is cor-
roborated by the excellent results (not shown here for the
sake of brevity) of the performance analysis (entirely com-
parable to those presented in the present paper) obtained us-
ing different datasets: (a) air temperature from a different C-
MAN station (the PILM4 – Passage Island), whose sensor is
installed at a different height (22 m) with respect to the Stan-
nard Rock station (35 m); (b) air temperature data measured
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Fig. 11. Parity diagram for monthly-averaged surface water temperature (8-parameters version of the model): a) calibration and b) validation
period of the GLERL simulation. Blue dots refer to March, reddots to August and grey dots to the remaining months of the year.
Fig. 11. Parity diagram for monthly averaged surface water tem-
perature (eight-parameter version of the model):(a) calibration and
(b) validation period of the GLERL simulation. Blue dots refer to
March, red dots to August and gray dots to the remaining months of
the year.

at the 45004 – Marquette offshore buoy station at only 4 m
from the lake surface; and (c) water temperature measured
at a different offshore buoy (the 45001 – Hancock). Further-
more, in all cases, even if the calibration is performed consid-
ering mean annual cycles of temperature, the model suitably
captures the interannual variations that are likely to occur.
On the basis of this evidence, we can assert that this simple
model may be used with different air temperature datasets as
input and, unlike process-based models, it can be calibrated
using any water temperature dataset, independent of its phys-
ical representativeness (e.g., point measurements vs. spatial
averages). Therefore, in principle, air temperature series pro-
vided by GCMs and RCMs can be used as well. In this re-
gard, the model is particularly attractive for climate change
impact studies, since predictions of air temperature are usu-
ally more reliable and available than other meteorological
variables (e.g.,Gleckler et al., 2008). Based upon these con-
siderations,Piccolroaz(2013) exploited the same approach
to reproduce the current status and to predict future modifica-
tions of surface water temperature of Lake Baikal (Siberia).

6 Conclusions

In this work a simple, physically based model has been devel-
oped to estimate surface water temperature from air temper-
ature. In particular, we show that our modeling framework is
able to reproduce the observed water temperature data with
limited information on external meteorological forcing over
long timescales, ranging from monthly to interannual.

Starting from the zero-dimensional heat budget, we de-
rived a simplified first-order differential equation for water
temperature forced by a few terms representing the combined
effects of the seasonally varying external terms and the ex-
change terms explicitly dependent on the difference between
air and water temperatures. Assuming annual sinusoidal
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Fig. 12.Comparison of the hysteresis cycles between daily air and
surface water temperatures, as derived by the data and by the eight-
and four-parameter versions of the model. Hysteresis cycles refer to
the mean year, calculated over the period 1994–2005, using GLERL
and NDBC data forTw andTa, respectively (GLERLmyr simula-
tion).

cycles of the main heat flux components, eight parameters
have been identified, which can be calibrated if temporal se-
ries of air and surface water temperature are available. Such
a calibration is supported by the physical interpretation of the
parameters, which provides reasonable initial conditions for
the parameters ranges.

The relative importance of the model’s parameters have
been evaluated by using the GLUE methodology. Thanks to
this analysis we were able to identify and neglect parame-
ters that, under different conditions, appears less significant
in the model formulation, leading to two simplified versions
retaining six and four parameters, respectively.

The model has been applied to the case of Lake Superior
(USA–Canada) with reference to different types of datasets,
and all the versions of the model have shown to perform well
in reproducing the measured water temperature data. This
model has proved to be robust and able to suitably simulate
the lake’s response to meteorological forcing, including in-
terannual variability, representation of the variability of the
epilimnion thickness and the inverse stratification process
that typically occurs in dimictic lakes. In our view, Air2Water
represents a valuable alternative tool to correlation models,
which require the same data in input as our model but are not
able to address some fundamental processes (e.g., the hys-
teresis cycle between air and water temperature). Further-
more, it can be used in place of full process-based models
when meteorological data are not sufficient for their proper
application. In principle, the simple model presented here is
likely to be effectively applied to lakes with different charac-
teristics, although some inconsistencies could arise in those
cases where the assumptions on which the model formulation
has been based (see AppendixA) are no longer valid (e.g.,

www.hydrol-earth-syst-sci.net/17/3323/2013/ Hydrol. Earth Syst. Sci., 17, 3323–3338, 2013



3336 S. Piccolroaz et al.: Air to water temperature in lakes

tropical lakes characterized by intense evaporation, basins in
which the through-flow is consistent, lakes located in regions
where the variability of meteorological forcing is significant
at sub-annual frequency).

In the light of these results, the model can represent a valu-
able tool in climate change impact studies, allowing for pre-
dictions of future trends of lake surface water temperature,
given future projections of air temperature only. Finally, it is
worth noting that if the model is calibrated using air tempera-
ture series from climate models (global or regional scale) and
measured records of water temperature (lake scale), a down-
scaling operation is implicitly implemented in the conversion
procedure (Piccolroaz, 2013).

Appendix A

Simplified heat fluxes

Indicating with H the generic heat flux per unit surface
[W m−2], defined as positive when it is directed towards the
considered layer, the net flux is assessed accounting for the
following main terms:

Hnet = Hs + Ha + Hw + He+ Hc + Hp + Hi + Hd, (A1)

whereHs is the net shortwave radiative heat flux due to so-
lar radiation (considering only the incoming radiation that is
actually absorbed),Ha is the net longwave radiation emit-
ted from the atmosphere toward the lake,Hw is the long-
wave radiation emitted from the water,He is the latent heat
flux (due to evaporation/condensation processes),Hc is the
sensible heat flux (due to convection),Hp is the heat flux
due to precipitation onto the water surface,Hi is the ef-
fect of the throughflow of water by inlets and outlets, and
Hd is the heat flux exchanged with deep water. Figure1
shows a schematic representation of the heat exchanges at
the epilimnion–atmosphere and epilimnion–hypolimnion in-
terfaces. All the components of Eq. (A1) are analyzed in de-
tail below to point out the main variables and physical pa-
rameters involved in the heat exchange process.

The incident shortwave solar radiation approximately fol-
lows a sinusoidal annual cycle. Considering the shortwave
reflectivityrs (albedo), which is a function of the solar zenith
angle and of the lake surface conditions (e.g., water wave
height), the net solar radiationHs reads

Hs = (1 − rs)

[
s1 cos

(
2π (t − s2)

tyr

)
+ s3

]
, (A2)

wheret is time;tyr is the duration of a year in the units of time
considered in the analysis; ands1, s2, s3 are coefficients that
primarily depends on the latitude and the shadowing effects
of the local topography. The effects of cloud cover, which
could be accounted for by means of empirical relationships,
are not explicitly considered in the present analysis.

Longwave radiation terms are calculated according to the
Stefan–Boltzmann law, yielding the following formulations

Ha = (1 − ra) εaσ (TK + Ta)
4 , (A3)

Hw = −εw σ (TK + Tw)4 , (A4)

where ra is the longwave reflectivity, generally assumed
to have a constant values (Henderson-Sellers, 1986); εa
and εw are the emissivities of atmosphere and lake sur-
face, respectively;σ is the Stefan–Boltzmann constant
(5.67× 10−8 W m−2 K−4), TK = 273.15 K; andTa andTw are
the temperatures of air and water expressed in Celsius [◦C].
The emissivityεw is essentially constant and close to unity,
as water is nearly a black body, whileεa is more variable and
depends on several factors among which the most important
are air temperature, humidity and cloud cover (Imboden and
Wüest, 1995).

Air and water temperatures can be decomposed into a ref-
erence value representative of the specific case study (Ta and
Tw) and a fluctuation (T ′

a andT ′
w). Hence, considering that

T ′
a/(TK + Ta) and T ′

w/(TK + Tw) are small parameters, the
longwave fluxes Eqs. (A3) and (A4) can be linearized using
a Taylor expansion as

Ha ' ε̃aσ
(
TK + Ta

)4(
1+ 4

T ′
a

TK + Ta

)
, (A5)

Hw ' −εwσ
(
TK + Tw

)4(
1+ 4

T ′
w

TK + Tw

)
, (A6)

whereε̃a = (1−ra)εa. By choosingTa = Tw = T (henceT ′
a =

Ta−T andT ′
w = Tw −T ), the termsHa andHw can be easily

combined to yield the following equation:

Ha + Hw ' 4σ ε̃a
(
TK + T

)3
·

[
ε̃a − εw

4ε̃a

(
TK + T

)
+

ε̃a− εw

ε̃a

(
Tw − T

)
+ Ta − Tw

]
. (A7)

The sensible (Hc) and latent (He) heat fluxes are calcu-
lated through bulk semi-empirical relations that can be de-
rived from turbulence theory (Henderson-Sellers, 1986):

Hc = αc (Ta− Tw) , (A8)

He = αe (ea− ew) , (A9)

whereαc [W m−2 K−1] and αe [W m−2 hPa−1] are transfer
functions primarily depending on wind speed and other me-
teorological parameters,ea is the vapor pressure in the atmo-
sphere andew is the water vapor saturation pressure at the
water temperature (both in [hPa]). The ratioαc/αe is known
as the Bowen coefficient, and is often taken to be constant
(≈ 0.61 hPa K−1) (Imboden and Ẅuest, 1995). The saturated
water pressureew is a function of temperature, and can be
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calculated through several empirical formulas, as, for exam-
ple, the exponential law

ew = a exp

(
bTw

c + Tw

)
, (A10)

where a = 6.112 hPa,b = 17.67 andc = 243.5◦C (Bolton,
1980).

In order to keep the formulation of the model as simple as
possible, Eq. (A10) can be linearized by Taylor series expan-
sion around a reference temperatureT :

ew ≈ a exp

(
bT

T + c

)(
1+

bc(
T + c

)2 (Tw − T
))

. (A11)

Finally, the heat exchange with deep-waterHd can be for-
mulated, as a first approximation, as the combination of a
constant contribution and a contribution depending on the
gradient of temperature between surface and hypolimnetic
water. Considering that deep water has a temperature that is
approximately constant during the year, the second compo-
nent of Hd is essentially dependent on surface water tem-
peratureTw. The termHd is usually small with respect to the
flux components exchanged with the atmosphere, which have
been described above. Analogously, the contributionHp of
precipitation onto the lake surface and the heatHi exchanged
with the inflows and the outflows are only rarely significant,
and thus are not explicitly included in the balance. As a mat-
ter of fact, changes in surface temperature during rainy peri-
ods generally result from changes of the main termsHw, Hc
andHe, andHi is only important in lakes with a high flushing
rate (Imboden and Ẅuest, 1995).

Under these hypotheses, and adopting the heat flux terms
provided above, the net heat flux at the surfaceHnet intro-
duced in Eq. (A1) can be suitably written as the combination
of the linear and sinusoidal functions in Eq. (1), whereci

(i from 1 to 5) are coefficients resulting from appropriately
combining together the physical parameters that appear in
Eqs. (A2)–(A11).

By assuming the parameters inherently influenced by me-
teorological (e.g., wind, cloudiness and precipitation) and as-
tronomical phenomena (i.e.,rs, αc, αe, ea) as the combination
of a mean (indicated by an overline) and a periodic (indicated
by a prime) component, the coefficientsci can be expressed
as follows:

c1 ≈ (1− rs)s1 + f
(
r ′
s,α

′
c,α

′
e, e′

a

)
, (A12)

c2 ∈ [0, 1], (A13)

c3 ≈ (1− rs)s3 + σ (ε̃a− εw)
(
TK + T

)3(
TK − 3T

)
−αe

[
ea− a exp

(
bT

T + c

)(
1−

bc(
T + c

)2T

)]
, (A14)

c4 ≈ 4σ ε̃a
(
TK + T

)3
+ αc, (A15)

c5 ≈ 4σ
(
TK + T

)3
(ε̃a− εw)

−αea exp

(
bT

T + c

)(
bc(

T + c
)2
)

. (A16)

A straightforward quantification of this set of coefficients
is not trivial. In fact, most of the physical parameters involved
do not have a single unambiguous value, but rather they span
a range of values that depends on several factors that are dif-
ficult to specify (e.g., cloud cover).

As a final remark, it is worth noting that the first term
on the right-hand side of Eq. (1) is a periodic term account-
ing for all seasonal patterns of meteorological variables other
than air temperature (e.g., wind speed, air humidity, cloudi-
ness; see the definition ofc1). As a first approximation, these
components have been treated as sinusoidal functions having
the same frequency of the solar radiation (i.e., a period equal
to one year), but possibly different amplitudes and phases.
The sum of such a set of functions produces another sinusoid
having the same frequency but different amplitude,c1, and
phase,c2.
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