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Abstract. Proper specification of model parameters is criti-
cal to the performance of land surface models (LSMs). Due
to high dimensionality and parameter interaction, estimating
parameters of an LSM is a challenging task. Sensitivity anal-
ysis (SA) is a tool that can screen out the most influential
parameters on model outputs. In this study, we conducted pa-
rameter screening for six output fluxes for the Common Land
Model: sensible heat, latent heat, upward longwave radiation,
net radiation, soil temperature and soil moisture. A total of 40
adjustable parameters were considered. Five qualitative SA
methods, including local, sum-of-trees, multivariate adaptive
regression splines, delta test and Morris methods, were com-
pared. The proper sampling design and sufficient sample size
necessary to effectively screen out the sensitive parameters
were examined. We found that there are 2–8 sensitive param-
eters, depending on the output type, and about 400 samples
are adequate to reliably identify the most sensitive parame-
ters. We also employed a revised Sobol’ sensitivity method
to quantify the importance of all parameters. The total ef-
fects of the parameters were used to assess the contribution
of each parameter to the total variances of the model outputs.
The results confirmed that global SA methods can generally
identify the most sensitive parameters effectively, while lo-
cal SA methods result in type I errors (i.e., sensitive param-
eters labeled as insensitive) or type II errors (i.e., insensitive
parameters labeled as sensitive). Finally, we evaluated and
confirmed the screening results for their consistency with the
physical interpretation of the model parameters.

1 Introduction

A land surface model (LSM) is an integral component of any
numerical weather prediction (NWP) and climate models.
The ability of an LSM to represent the land surface processes
accurately and reliably depends on several factors (Duan et
al., 2006). The first factor is the authenticity of the model
structure (e.g., the equations or parameterization schemes of
the model). The second is the quality of external forcing data
and the initial and boundary conditions. The third is the ap-
propriateness of the model parameter specification. How to
estimate model parameters has received increasing attention
from the hydrology and land surface modeling community
over recent years (Franks and Beven, 1997; Gupta et al.,
1999; Duan et al., 2001, 2003; Jackson et al., 2003; Liu et
al., 2005; Hou et al., 2012).

In traditional hydrological modeling, model parameters
are often estimated through model calibration, i.e., a pro-
cess of matching model simulation with observation by
tuning model parameters. However, calibrating the param-
eters of complicated LSMs is a challenging task because
of high dimensionality and nonlinear parameter interaction.
With water, energy and, in some cases, carbon and nitro-
gen cycles being considered concurrently, a typical LSM
usually has a large number of adjustable parameters (from
O(10) to O(100)) that govern the model equations. Typically
105

× 106 or even more model runs are required to calibrate
a high-dimensional (> 10) model (Vrugt et al., 2008; Deb et
al., 2002). To compound the problem, running an LSM at a
large spatiotemporal scale can be very time-consuming, mak-
ing traditional parameter calibration methods (e.g., genetic
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3280 J. Li et al.: Parameter importance assessment of the Common Land Model

algorithm (GA) (Goldberg, 1989) and shuffled complex evo-
lution method (Duan et al., 1993)) impractical.

For the reasons above, we need to reduce the dimensional-
ity by identifying which parameters have the most influence
on model performance. Sensitivity analysis (SA) is a family
of methods that are designed to identify the most sensitive
(namely, influential) parameters from the insensitive ones
(Saltelli et al., 2004). A good SA method is able to screen
out the most sensitive parameters in a relatively low number
of model runs (Tong and Graziani, 2008).

There are two types of SA methods: qualitative and quan-
titative. Qualitative methods provide a heuristic score to intu-
itively represent the relative sensitivity of parameters, while
quantitative methods tell how sensitive the parameter is by
computing the impact of the parameter on the total variance
of model output. Qualitative methods usually need fewer
model runs while quantitative methods require a large num-
ber of model runs. Therefore, for a specific problem, choos-
ing which kind of SA methods is very important. In recent
decades, there are several comparisons of different SA meth-
ods, of which seven examples are shown in Table 1. We can
see that researchers have drawn different conclusions: some
have suggested the quantitative SA methods are more re-
liable, some maintain that the qualitative SA methods can
achieve consistent results with the quantitative methods; and
others have supposed that applying multiple SA methods
would lead to more robust conclusions. This lack of con-
sensus implies that more work is needed to answer how to
choose the most appropriate SA method.

SA methods have been applied to practical problems in
many fields (Campolongo and Saltelli, 1997; De Pauw et al.,
2008; Yamwong and Achalakul, 2011). For hydrological and
land surface models, Collins and Avissar (1994) employed
the Fourier amplitude sensitivity test (FAST) to evaluate the
parameter importance to the sensible heat and latent heat
in the LAID (land–atmosphere interactive dynamic) land
surface scheme. Bastidas et al. (1999) proposed the multi-
objective generalized sensitivity analysis (MOGSA) method
and screened out 18 sensitive parameters from a total of
25 parameters in the BATS (biosphere–atmosphere transfer
scheme) model. It was demonstrated that the degradation in
the quality of the calibrated model performance is negligi-
ble if the insensitive parameters were not calibrated. Tang
et al. (2007) applied local and global SA methods on the
lumped Sacramento soil moisture accounting model (SAC-
SMA). Their aim was to identify sensitivity tools that would
advance the understanding of lumped hydrologic models.
The relative efficiency and effectiveness of several SA meth-
ods have been analyzed and compared. Hou et al. (2012)
introduced an uncertainty quantification framework to ana-
lyze the sensitivity of 10 hydrologic parameters in CLM4SP
(Community Land Model Version 4 with satellite phenology)
with a generalized linear model (GLM) method. They found
that the simulation of sensible heat and latent heat is sensi-
tive to subsurface runoff generation parameters. In the afore-

mentioned work, many SA methods have shown their effec-
tiveness in screening out important parameters. However, for
large complex dynamic system models, which are expensive
to run, we need to be able to screen out important parameters
with as few model runs as possible. Therefore, the goal of
this study is to investigate the effectiveness and efficiency of
different qualitative SA methods for parameter screening.

Several SA methods were used to evaluate the importance
of 40 adjustable parameters in the Common Land Model
(CoLM). The work has two objectives: (1) to test and com-
pare different qualitative SA methods for separating sensi-
tive parameters from insensitive ones; and (2) to validate the
screening results using a quantitative SA method. Towards
these objectives, this study first screened out the sensitive
parameters qualitatively with a small amount of samples,
and then quantified the sensitivity of all parameters using a
quantitative SA method.

The paper is organized as follows. Section 2 presents a
brief introduction of the qualitative SA methods for param-
eter screening and the quantitative SA method for comput-
ing the parameter importance. Section 3 introduces the model
used, CoLM, and its adjustable parameters. The study area,
the forcing and validation data, and the design of the sensi-
tivity study are also described. Section 4 presents the results
and discusses the performance of qualitative and quantitative
SA methods. The physical interpretations of the screening re-
sults are also examined. Section 5 provides the conclusions.

2 Methods

This study employed five qualitative SA methods to do pa-
rameter screening: local method (Turányi, 1990; Capaldo and
Pandis, 1997), sum-of-trees (SOT) (Breiman, 2001; Chip-
man et al., 2010), multivariate adaptive regression splines
(MARS) (Friedman, 1991), delta test (DT) (Pi and Peterson,
1994) and Morris method (Morris, 1991). Moreover, to val-
idate the parameter screening results obtained by qualitative
methods, the revised Sobol’ method (Sobol’, 1993, 2001),
was applied to compute the total effects of parameters. Be-
low, we provide a brief description of these methods. For
detailed descriptions, please refer to related literature.

2.1 Local method

Local method is a derivative-based sensitivity method. The
sensitivity of variableXi ∈ [aibi] is computed as the nor-
malized local sensitivity scaled by the variable range:si =

1
(bi−ai )

∂Y
∂Xi

|Xi=αi
, wheresi is the local sensitivity measure,Y

is the model output,αi is a value ofXi at which the sensitiv-
ity is evaluated, andai andbi are the lower and upper bounds
of Xi . The variable with a highsi value is considered to have
a high impact on the model output. Obviously the value ofsi
is dependent on locationαi .
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Table 1.Comparison of different SA methods.

Number of
Author(s) and year Model type parameters SA method(s) and conclusions

Patil and Frey (2004) food safety risk assessment model 9 ANOVA, mutual information index, and scatter plots were expected
to be more robust than others methods.

Ravalico et al. (2005) integrated assessment model of the
Namoi River

11 FAST method was shown to meet the criteria most effectively.

Pappenberger et al. (2008) flood inundation model 6 Different methods lead to completely different results.
Confalonieri et al. (2010) water accounting rice model 11 Morris method, the simplest among the SA methods used, produced

results comparable to those obtained by methods more computa-
tionally expensive.

Massmann and Holzmann (2012) rainfall–runoff model 11 The mutual entropy and the RSA methods give more robust results
than Sobol’s method.

Neumann (2012) micropollutant degradation model 10 Applying multiple SA methods with multiple objectives was ex-
pected to lead to more robust conclusions.

Sun et al. (2012) water quality model 6 RSA (regional sensitivity analysis) was more appropriate for com-
plex models where system nonlinearities and parameter interac-
tions were more likely to be important.

2.2 Sum-of-trees (SOT) method

The SOT method is a tree-based method. A single regression
tree model is a step function, which is obtained by recur-
sively partitioning the data space and fitting a simple predic-
tion model (generally, the average value) within each parti-
tion (Breiman et al., 1984). In the process of recursively par-
titioning, the variables are split to cause maximum decrease
in impurity function (residual sum of squares) until the impu-
rity function falls below a threshold. The SOT model uses a
certain number of bootstrapped samples to build independent
regression trees and then averages them (Breiman, 2001).
The total number of splits for each variable in the model
stands for the importance of this variable, i.e., the variable
with the most splits in the model is considered to be the most
important one.

2.3 Multivariate adaptive regression splines (MARS)
method

The MARS method (Friedman, 1991; Shahsavani et al.,
2010) is an extension of the regression tree method. After
recursively partitioning the data space, it builds localized re-
gression models (first-order linear or second-order nonlinear)
instead of step functions. Therefore, this method can produce
continuous models with continuous derivatives and has bet-
ter fitting ability. This method includes a forward procedure
and a backward procedure. The forward procedure builds
an over-fitted model by considering all variables, while the
backward procedure prunes the over-fitted model by remov-
ing one variable at a time. For each modelM, a generalized
cross-validation (GCV) score can be computed:

GCV(M) =
1

N

N∑
i=1

(
Yi − Ŷi

)2

[
1−

C(M)
N

]2
(1)

whereN is the number of observations,Yi is theith obser-
vation,Ŷi is the estimated value ofYi , C (M), which is equal
to 1+ c (M)d, is the number of effective parameters, where
d is the effective degrees of freedom, andc (M) is a penalty
for adding a basic function.

To screen out the important variables, the increase in GCV
values between the pruned model and the over-fitted model is
considered as the importance measure of the removed vari-
able (Steinberg et al., 1999). The larger the GCV increase,
the more important is the removed variable.

The MARS method is actually a surrogate-model method.
Shahsavani et al. (2010) showed that MARS provides accept-
able estimates of total sensitivity indices at a much lower cost
than using only runs of the original model.

2.4 Delta test (DT) method

DT method is a variable selection method based on the near-
est neighbor approach. LetY = F (X) = F (X1, . . . ,Xm) +

ε, where the noiseε = (ε1, . . . ,εm), εi(i = 1, . . . ,m) is
independent identically distributed random variable with
zero mean. The DT criterion of a variable subsetS ⊆

{X1, . . .,Xm}, δ (S), can be computed as

δ (S) =
1

2N

N∑
i=1

(YNS (i) − Yi)
2 (2)

whereNS (i) = argmink 6=i

∥∥Xi
−Xk

∥∥2
S

represents the nearest
neighbors of the input pointXi for the subsetS, YNS (i) is the
function value corresponding toNS (i), Yi is the function
value corresponding toXi , andN is the sample size.δ (S)

is an estimate of the variance of the residual (converges to
the true residual in the limitN → ∞) when only the vari-
ables inS are selected for regression. It has been demon-
strated that either adding the unrelated variables or omit-
ting the related ones will increase theδ value (Eirola et al.,
2008). Therefore, the variable subsetS with the smallest DT

www.hydrol-earth-syst-sci.net/17/3279/2013/ Hydrol. Earth Syst. Sci., 17, 3279–3293, 2013
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Table 2.Adjustable parameters and their ranges.

Index Parameter Physical meaning Category Unit Range

P1 dewmx maximum ponding of leaf area canopy – [0.05, 0.15]
P2 hksati saturated hydraulic conductivity soil mm s−1 [0.001, 1]
P3 porsl Porosity, fraction of soil mass that is voids soil – [0.25, 0.75]
P4 phi0 minimum soil suction soil mm [50, 500]
P5 wtfact fraction of shallow groundwater area soil – [0.15, 0.45]
P6 bsw Clapp and Hornberger “b” parameter soil – [2.5, 7.5]
P7 wimp a factor for controlling whether water is impermeable soil – [0.01, 0.1]
P8 zlnd roughness length for soil surface soil m [0.005, 0.015]
P9 pondmx maximum ponding depth for soil surface soil mm [5, 15]
P10 csoilc drag coefficient for soil under canopy soil – [0.002, 0.006]
P11 zsno roughness length for snow snow – [0.0012, 0.0036]
P12 capr tuning factor of soil surface temperature soil – [0.17, 0.51]
P13 cnfac Crank Nicholson factor canopy – [0.25, 0.5]
P14 slti slope of low temperature inhibition function canopy – [0.1, 0.3]
P15 hlti 1/2 point of low temperature inhibition function canopy – [278, 288]
P16 shti slope of high temperature inhibition function canopy – [0.15, 0.45]
P17 sqrtdi the inverse of square root of leaf dimension canopy – [2.5, 7.5]
P18 effcon quantum efficiency of vegetation photosynthesis canopy molCO2/molquanta [0.035, 0.35]
P19 vmax25 maximum carboxylation rate at 25◦ canopy – [10e-06, 200e-06]
P20 hhti 1/2 point of high temperature inhibition function canopy – – [305, 315]
P21 trda temperature coefficient of conductance-photosynthesis model canopy – [0.65,1.95]
P22 trdm temperature coefficient of conductance-photosynthesis model canopy – [300, 350]
P23 trop temperature coefficient of conductance-photosynthesis model canopy – [250, 300]
P24 gradm slope of conductance-photosynthesis model canopy – [4, 9]
P25 binter intercept of conductance-photosynthesis model canopy – [0.125, 0.375]
P26 extkn coefficient of leaf nitrogen allocation canopy – [0.5, 0.75]
P27 chil leaf angle distribution factor canopy – [-0.3, 0.1]
P28 ref(1,1) shortwave reflectance of living leaf canopy – [0.07, 0.105]
P29 ref(1,2) shortwave reflectance of dead leaf canopy – [0.16, 0.36]
P30 ref(2,1) longwave reflectance of living leaf canopy – [0.35, 0.58]
P31 ref(2,2) longwave reflectance of dead leaf canopy – [0.39, 0.58]
P32 tran(1,1) shortwave transmittance of living leaf canopy – [0.04, 0.08]
P33 tran(1,2) shortwave transmittance of dead leaf canopy – [0.1, 0.3]
P34 tran(2,1) longwave transmittance of living leaf canopy – [0.1, 0.3]
P35 tran(2,2) longwave transmittance of dead leaf canopy – [0.3, 0.5]
P36 z0m aerodynamic roughness length canopy m [0.05, 0.3]
P37 ssi irreducible water saturation of snow snow – [0.03, 0.04]
P38 smpmax wilting point potential canopy mm [−2.e5,−1.e5]
P39 smpmin restriction for min of soil potential soil mm [−1.e8,−9.e7]
P40 trsmx0 maximum transpiration for vegetation canopy mm s−1 [1.e-4, 100. e-4]

Table 3.The objective functions.

Objective
function Description

RMSE1 sensible heat
RMSE2 latent heat
RMSE3 upward longwave radiation
RMSE4 net radiation
RMSE5 soil temperature (average of 4 layers)
RMSE6 soil moisture (average of 4 layers)

criterion corresponds to the most important subset of vari-
ables, i.e., the most sensitive parameters.

For high dimensional problems, it is impractical to com-
pute all possible combinations of variable subsets (e.g., for
40 variables, the total configuration of subsets is 240

− 1).
Therefore, to speed up the search for the variable subset with
a minimumδ (S), search algorithms such as GA are often
used (Guillen et al., 2008). Thus, the reliability of DT results
depends on the effectiveness of the search algorithm applied.

2.5 Morris method

Morris method is a gradient-based SA method using an in-
dividually randomized Morris one-factor-at-a-time (MOAT)
design (Morris, 1991). This study employed an enhanced
Morris method (Campolongo et al., 2007). Consider a model

Hydrol. Earth Syst. Sci., 17, 3279–3293, 2013 www.hydrol-earth-syst-sci.net/17/3279/2013/
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Fig. 1.The location of study area.

Table 4.The forcing data and validation data taken from A’rou observation station.

Forcing data Downward shortwave Downward longwave Precipitation Air temperature (2 m) Relative humidity (2 m) Air pressure Wind speed (10 m)

Unit w m−2 w m−2 mm ◦ % hpa m s−1

Time period 1 January 2008 to 12 December 2009
Time step 0.5 h 0.5 h 1 h 0.5 h 0.5 h 1 h 0.5 h

Validation data Sensible heat Latent heat Upward longwave Net radiation Soil temperature Soil moisture

Unit w m−2 w m−2 w m−2 w m−2 ◦ cm3 cm−3

Time period 11 June 2008 to 31 December 2009 1 June 2008 to 31 December 2009 1 January 2008 to 31 December 2009
Time step 0.5 h 0.5 h 10 min 10 min 0.5 h 0.5 h

Note: the soil temperature and moisture data contain the data of 10, 20, 40, 80 and 120 cm, respectively.

with k independent inputsXi (i = 1, . . . ,k), whose ranges
are normalized to [0, 1]. The experimentation region� is
a discretek-dimensionalp level grid. For a given value of
pointX0

= (x1,x2, . . . ,xk), the elementary effect of variable
Xj is defined as

dj=
f

(
x1, . . .,xj + 1,. . .,xk

)
−f (x1, . . .,xj , . . .,xk

)

1
, (3)

where1 is a value in 1/p − 1, . . .,p − 2/p − 1. The sam-
pling strategy generates a random starting point for each tra-
jectory and then completes it by perturbing one input vari-
able by+1 or −1 at a time in a random order. At the end
of process, a trajectory spanningk+1 points is evaluated to
compute the elementary effects for allk input variables. After
repeating this procedurer times to constructr trajectories of
k+1 points in the input space, the total cost of the experiment
is thusr × (k+1). The mean of|dj |, µj , and the standard de-
viation of dj , σj , can be construed as the sensitivity indices
of input variableXj :

µj =

r∑
i=1

|dj (i)|/r and σj =

√√√√√√ r∑
i=1

(dj (i) −

r∑
i=1

dj (i)

r
)2/r (4)

Table 5.The depth of each layer.

layer 1 2 3 4 5 6 7 8 9 10

depth(cm) 0.71 2.79 6.23 11.89 21.22 36.61 61.98 103.80 172.76 286.46

whereµj assesses the overall influence ofXj on the output,
while σj estimates the higher order effects (i.e., effects due
to interactions) ofXj .

Because of its characteristics of small computational de-
mands, Morris method has been widely applied. Herman et
al. (2013) demonstrated that it was able to correctly identify
sensitive and insensitive parameters for a highly parameter-
ized, spatially distributed watershed model with 300 times
fewer model evaluations than the Sobol’ method.

2.6 Sobol’ method

Sobol’ method (Sobol’, 1993) is a quantitative SA
method based on the variance decomposition the-
ory, which decomposes the variance of the output as

V =

n∑
i=1

Vi+
∑

1≤i<j≤n

Vij+ . . .+V1,2...,n, where n denotes

www.hydrol-earth-syst-sci.net/17/3279/2013/ Hydrol. Earth Syst. Sci., 17, 3279–3293, 2013
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Fig. 2. The sensitivity score of sensible heat given by SOT. The
length of needles, which range from 0 to 100, represents the sensi-
tivity score of each parameter.

Fig. 3. The sensitivity score of sensible heat given by MARS. The
length of needles represents the sensitivity score.

the total number of variables, andVi represents the part
of variance of output which can be explained by theith
variable only,Vij represents the part of variance of output
which can be explained by the interaction of theith and
j th variables,V1,2...,n represents the part of variance of

Table 6. The experiment designs to confirm the proper sampling
methods and sample size for SA methods.

SA methods SOT MARS DT Morris

Sampling methods MC, LH, LPTAU MOAT
Sample sizes 200, 400, 1000 205, 410, 1025

output which can be explained by the interaction of all
the variables. The Sobol’ sensitivity index is defined as
Si1,...,is = Vi1,...,is

/
V , where Vi1,...,is denotes the variance

corresponding to (i1, . . . , is), and the integers is called the
order or the dimension of the index. All the values ofSi1,...,is

are nonnegative, and their sum is

n∑
i=1

Si+

∑
1≤i<j≤n

Sij+ . . .+S1,2...,n = 1 (5)

whereSi = Vi

/
V is the main effect (first order effect) of the

ith variable, andSij = Vij

/
V is the interaction effect (sec-

ond order effect) of theith andj th variables (Sobol’, 2001).
The total effect of theith variable can be obtained by Eq. (6),
whereV−i is the variance without considering thei-th vari-
able (Homma and Saltelli, 1996):

STi
= 1−

V−i

V
. (6)

The total effect reflects the variable’s contribution to the vari-
ance of model output. The values of those indices for impor-
tant variables are generally much higher than those for unim-
portant ones.

The Sobol’ method can provide reliable quantitative sensi-
tivity information of the input variables. However, for a high
dimensional problem, it needs a large number of model runs
(104 to 105 or more). For example, Rosolem et al. (2012)
used 45 000 model runs to assess the Sobol’ sensitivity in-
dices of 42 parameters in the Simple Biosphere 3 (SiB3)
model. Zhang et al. (2013) used 60 000 model runs to study
the sensitivities of 28 parameters in the Soil and Water As-
sessment Tool (SWAT) model through Sobol’ method. If a
small number of model runs is used, the estimates of the to-
tal effects vary greatly around the analytical values, and at
times can take on unphysical negative values (Saltelli et al.,
2000). To avoid unphysical variance values and to reduce the
need for extremely large number of model runs, we carried
out Sobol’ analysis on the response surface model instead
of the original model. The response surface model here is
constructed by the MARS method, introduced in Sect. 2.3.
The effectiveness of the response surface model based Sobol’
method (RSMSobol) has been demonstrated by Storlie et
al. (2009).

Hydrol. Earth Syst. Sci., 17, 3279–3293, 2013 www.hydrol-earth-syst-sci.net/17/3279/2013/
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Fig. 4. The sensitivity score of sensible heat given by DT. The
length of needles represents the sensitivity score.

Fig. 5. The sensitivity score of sensible heat given by Morris
method. The length of needles represents the sensitivity score.

To assess the importance of parameterP (i), we computed
the relative values of the total effects of parameterP (i):

C (i)=STi
/

n∑
k=1

STk
. (7)

The cumulative importance of a subset of parameters,A, can
be computed as

C̃ (A) =

∑
A

C (i). (8)

3 Experimental setup

3.1 CoLM and adjustable parameters

CoLM (Dai et al., 2003) is a widely used land surface
model. It combines the advantages of three existing land sur-
face models: Land Surface Model (LSM) (Bonan, 1996),
Biosphere-atmosphere transfer scheme (BATS) (Dickinson

et al., 1993) and Institute of Atmospheric Physics land-
surface model (IAP94) (Dai and Zeng, 1997). In recent
years, it has incorporated different physical processes such
as glacier, lake, wetland and dynamic vegetation. It has also
been successfully implemented in several global atmospheric
models (Yuan and Liang, 2010).

CoLM considers the biophysical, biochemical, ecological
and hydrological processes. The energy and water transmis-
sion among soil, vegetation, snow and atmosphere is well
described. The model contains one vegetation layer, 10 un-
evenly distributed vertical soil layers, and up to five snow
layers (depending on the snow depth). The parameteriza-
tion scheme of soil thermal and hydraulic properties are de-
rived from Farouki (1986), Clapp and Hornberger (1978) and
Cosby et al. (1984). The parameterization scheme of snow is
synthesized from Anderson (1976), Jordan (1991) and Dai et
al. (1997).

In this study, forty of the time-invariant coefficients and
exponents in CoLM, i.e., model parameters, are chosen as pa-
rameters that can be adjusted according to local conditions.
Their physical meanings and value ranges are shown in Ta-
ble 2. These adjustable parameters can be classified into three
categories: canopy, soil and snow. The default parameters
of canopy depend on the vegetation type in the 24-category
(USGS) vegetation dataset. Soil parameters depend on the
soil texture in the 17-category (FAO-STATSGO) soil dataset.
Snow parameters depend on the snow depth. In this paper,
the parameter ranges are the lower and upper bounds among
all the possible types of canopy, soil and snow types (Ji and
Dai, 2010). Note that the initial parameter ranges can have
significant influence on the result of sensitivity analysis. For
example,y = (a2

+ b)x where the range of input “x” and
parameter “b” are both [0,1]. Obviously, parameter “a” is
sensitive when the absolute value of “a” is very large, and
insensitive when “a” is close to zero. The initial parameter
ranges must be carefully selected and the analysis result may
be valid only for these ranges. For convenience, these param-
eters are index numbered from P1 to P40.

This study screens sensitive parameters for six land sur-
face fluxes: sensible heat, latent heat, upward longwave radi-
ation, net radiation, soil temperature and soil moisture. The
objective function is the root-mean squared error normalized
by the geometric mean (Parada et al., 2003):

RMSEi =

√
N∑

j=1

(
ysim
i,j − yobs

i,j

)2

√
N∑

j=1

(
yobs
i,j

)2
(9)

whereN is the number of observations,j indexes the time
step,ysim

i,j andyobs
i,j are the simulated and observed values,

andi ranges from one to six, standing for different flux types,
respectively. All the objective functions and their descrip-
tions are shown in Table 3. Objective function represents
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Fig. 6. The qualitative sensitivity analysis results of different methods for sensible heat. The sensitivity scores are normalized to [0,
1]; 1 means most sensitive and 0 means least sensitive.

Fig. 7.The qualitative sensitivity analysis results of different methods for latent heat. The sensitivity scores are normalized to [0, 1]; 1 means
most sensitive and 0 means least sensitive.

the performance of simulation, so a smaller RMSE means
a better performance.

3.2 Study area and datasets

The Heihe River basin, the second largest inland river
basin in the arid region of northwest China, is located be-
tween 96◦42′–102◦00′ E and 37◦41′–42◦42′ N, and covers an
area of approximately 130 000 km2. The Heihe River basin,
whose altitude varies approximately from 0 to 5500 m, is
covered by a variety of land use types, including desert, farm-
land, forest, grassland, snow cap, etc. Therefore, it is an ideal
region for the study of LSM. In this paper, A’rou observation
station, which is located upstream of the Heihe River basin,
is chosen for the study area. The results of SA methods inter-
comparison will be helpful for following up research projects
of the whole region. The geographic coordinate of A’rou
is 100◦28′ E, 30◦08′ N (see Fig. 1); its altitude is 3032.8 m
above sea level. It belongs to the typical continental climate.
The underlying surface type is alpine steppe.

The forcing data and validation data is shown in Table 4.
The forcing data of CoLM includes downward shortwave
and longwave radiation, precipitation, air temperature, rel-
ative humidity, air pressure and wind speed (Hu et al., 2008).
The validation data contains observations of six fluxes. These
six fluxes are all important physical quantities between land
surface and atmosphere. Soil temperature and moisture data
are available for depths of 10, 20, 40 and 80 cm. Because the
soil column in CoLM is divided into 10 layers (the depths are

shown in Table 5), we used the linear interpolation method
to achieve soil temperature and moisture calculations for the
observed depths.

The data for year 2008 was used to spin up CoLM. Model
simulations from 1 January 2009 to 31 December 2009 with a
3 h time step are used to evaluate model parameter sensitivity.

3.3 Design of sensitivity study

This study used a newly developed software package
named Problem Solving environment for Uncertainty Anal-
ysis and Design Exploration (PSUADE) (Tong, 2005) for
all SA analyses. PSUADE implements various uncertainty
quantification (UQ) tools such as design of experiments,
sampling methods, qualitative and quantitative sensitiv-
ity analysis, response surface, uncertainty assessment, and
numerical optimization.

We conducted the SA study in two stages: qualitative pa-
rameter screening and quantitative validation. In the first
stage, the study investigates the proper sampling designs and
sample sizes for different qualitative SA methods. Once the
proper sampling design and sample size are determined for
each qualitative method, the most sensitive parameters that
control each of the six flux simulations are identified. In the
second stage, the quantitative method, RSMSobol, is used to
validate the parameter screening results from the first stage
based on the contributions of screened parameters to the total
variances of model outputs. The parameter screening results
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Fig. 8. The qualitative sensitivity analysis results of different methods for upward longwave radiation. The sensitivity scores are normalized
to [0, 1]; 1 means most sensitive and 0 means least sensitive.

Fig. 9. The qualitative sensitivity analysis results of different methods for net radiation. The sensitivity scores are normalized to [0,
1]; 1 means most sensitive and 0 means least sensitive.

are also checked for their consistency with the parameters’
physical interpretations.

4 Results and discussion

4.1 Qualitative parameter screening

4.1.1 Sampling methods and sample sizes

We tested and compared different sampling methods and
sample sizes (see Table 6). For SOT, MARS and DT, three
sampling methods were evaluated: Monte Carlo (MC) (Hast-
ings, 1970), Latin Hypercube (LH) (McKay et al., 2000) and
LPTAU (quasi random sequences) (Statnikow and Matusov,
2002). For each sampling method, different sample sizes,
200, 400 and 1000 (i.e., 5, 10 and 25 times of the number of
parameters, respectively), were investigated. Morris method
has its own sampling method. The sample size of Morris
method is generally set as a multiple ofn + 1, wheren is
the number of parameters. Therefore this study tested three
sample sizes: 205, 410 and 1025 for Morris method.

Take the results of SOT for example, which examines pa-
rameters most sensitive to sensible heat flux. The SOT sen-
sitivity scores of 40 parameters given by different sampling
designs are shown in Fig. 2. The numbers along each cir-
cle represent different parameters, with the length of the
needles, which range from 0 to 100, indicating the relative
sensitivities of different parameters.

From Fig. 2, we can see the most important parameters
based on SOT method. With 1000 samples, all sampling
methods identified the same sensitive parameters: P36, P6,
P30, P2, P34 and P17. When the sample size is reduced to
400 for LH and LPTAU, the results are similar to those at
1000 samples, suggesting that a sample size of 400 is ade-
quate for identifying the most sensitive parameters. With 400
samples, SOT based on MC sampling method can still screen
out the same parameters, but the medium sensitive parame-
ters, P2, P34 and P17, are not as clearly identified. With 200
samples, even though SOT using all the three sampling meth-
ods can still find all sensitive parameters, the relative sensi-
tivities of the medium sensitive parameters are too small to
be seen clearly (e.g., P17). This suggests that 200 samples
may not be enough for SOT method. Thus, LH and LPTAU
are considered to be better sampling designs for SOT, and
400 samples are enough for these sampling designs.

Similarly, Figs. 3–5 show the results of MARS, DT and
Morris methods. We have the following observations: (1) for
MARS method, the results based on MC, LH and LPTAU
are nearly the same, 400 samples are enough for all sampling
methods; (2) LH is more suitable for DT, 400 samples are
enough; and (3) for Morris method, 410 samples are enough.

Based on the above results, it seems clear that 10 times the
number of parameters are approximately enough for qualita-
tive SA methods to screen 40 parameters of CoLM. In the
following study, LH is chosen for SOT, LPTAU is chosen for
MARS, and LH is chosen for DT. The sample size is set to
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Fig. 10.The qualitative sensitivity analysis results of different methods for soil temperature. The sensitivity scores are normalized to [0, 1]; 1
means most sensitive and 0 means least sensitive.

Fig. 11. The qualitative sensitivity analysis results of different methods for soil moisture. The sensitivity scores are normalized to [0,
1]; 1 means most sensitive and 0 means least sensitive.

400 for these three designs. For Morris method, the sample
size is set to 410.

4.1.2 Intercomparison of qualitative SA methods

The parameter screening results by all qualitative SA meth-
ods for all fluxes are summarized in Figs. 6–11. The sensitiv-
ity scores of 40 parameters are normalized to [0, 1]. The most
sensitive parameters get a score of 1, while the least sensitive
ones get a 0 score. The vertical axis in these figures denotes
different SA methods and the horizontal axis denotes the 40
parameters. The grey scale of each grid indicates the sensi-
tivity level of each parameter by each SA method. In Fig. 6,
for example, the dark grey color for P6 and P36 indicates that
they are the most sensitive parameters for sensible heat flux.

From these figures we have three interesting findings.
First, for each land surface flux, the number of sensitive pa-
rameters appears to be less than 10. For latent heat and sen-
sible heat fluxes, there are more sensitive parameters as com-
pared to other fluxes, which have only 2–3 sensitive parame-
ters. Second, the results of SOT, MARS and Morris methods
are consistent with each other except for the case of latent
heat. For latent heat, the number of sensitive parameters is
relatively larger than that of other fluxes (this is confirmed
in the following quantitative SA). SOT, MARS and Morris
methods got similar results for the most sensitive parameters,
but there are some discrepancies in identifying the medium
sensitive parameters for latent heat. Third, the results of Lo-
cal method and DT appear very different from that of other

methods. Local method often takes sensitive parameters as
insensitive ones (type I error, e.g., P3 for soil moisture) or
the insensitive parameters as sensitive ones (type II error,
e.g., P20 and P27 for sensible heat). The possible reason is
that the local behavior near one specific parameter set is dif-
ferent from the global behavior. The most sensitive param-
eters given by DT are similar to other methods, but results
for medium sensitive parameters are significantly different,
especially when there are a large number of sensitive param-
eters (e.g., in the cases of sensible heat and latent heat). We
suspected that the GA used in DT failed to find the optimal
parameter subset in those cases.

4.2 Validation of parameter screening results

The qualitative SA methods identified the most sensitive pa-
rameters for different fluxes data, as shown in the previ-
ous section. Here we use RSMSobol method to confirm if
these findings are reasonable. The total effect is computed
by RSMSobol using 2000 samples to assess the importance
of each parameter. The results are shown in Fig. 12, in which
each slice of the pie chart indicates the relative importance
of the parameter, as computed by Eq. (7). The RSMSobol
results obtained are deemed reliable since the training and
testing errors of the response surface are below 2.5 %. The
training error is computed by the training samples, which are
used to construct the response surface, while the testing error
is computed by the other samples. We note from Fig. 12 that
the number of important parameters for each flux is indeed
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Fig. 12.The relative importance of parameters obtained by RSMSobol’ total effect analysis.

Table 7.The cumulative importance of the 10 most sensitive parameters screened by different qualitative SA methods.

SA method Sensible heat Latent heat Upward longwave Net radiation Soil temperature Soil moisture

Local 79.74 % 70.86 % 51.57 % 85.71 % 96.15 % 98.00 %
SOT 98.86 % 87.24 % 98.69 % 98.66 % 97.49 % 99.71 %
MARS 99.15 % 84.33 % 99.82 % 99.96 % 97.93 % 99.98 %
DT 96.86 % 85.80 % 98.67 % 99.12 % 95.09 % 99.73 %
Morris 99.06 % 82.99 % 99.68 % 99.51 % 98.70 % 99.93 %

less than 10 (i.e., 2–8). This confirms that the results of qual-
itative SA methods are reasonable.

Table 7 shows the cumulative importance of the 10 most
sensitive parameters selected by different qualitative SA
methods, as computed according Eq. (8). The SA method
is regarded as effective if the cumulative importance of
the 10 most sensitive parameters is close to 100 %. Ob-
viously, local method is ineffective in screening the im-
portant parameters for sensible heat (79.74 %), latent heat
(57.98 %), upward longwave radiation (51.57 %) and net ra-
diation (85.71 %); while the other methods are effective be-
cause the cumulative importance of the 10 most sensitive pa-
rameters are close to 100 %. Furthermore, to confirm the ef-
fectiveness of global SA methods, Fig. 13 shows the cumu-
lative importance of the top 10 sensitive parameters screened
by different SA methods. According to Fig. 13, the SOT,
MARS and Morris methods performed well for all the land
surface fluxes as their cumulative importance curves are
always higher than others.

DT is prone to selecting more parameters than other meth-
ods (committing type II error) and does not distinguish the
medium sensitive from highly sensitive parameters. But the
result of validation shows that the most sensitive parameters
selected by DT are nearly the same to that given by the other
global methods, even though the medium sensitive parame-

ters may differ from the ones identified by other SA methods.
This suggests that a type II error possibly committed by DT
is not as damaging as a type I error, as in the case of local
method.

In summary, global SA methods, SOT, MARS, DT and
Morris methods, are effective to reliably screen the most sen-
sitive parameters with only 400 samples for a 40-parameters
problem, even though DT may commit a type II error. Local
gradient SA is helpful if we are interested in particular events
or a special parameter set, but it might give misleading results
when we are concerned about analyzing global behavior.

4.3 The consistency of the screening results and
physical interpretations

In previous sections, we used five different qualitative SA
methods to identify the most sensitive parameters for all flux
types. The quantitative RSMSobol method confirms that the
qualitative SA results are reasonable. Here we try to ex-
plain the SA results based on physical interpretations of the
screened parameters.

P6 and P3 are shown to be the most important param-
eters for soil moisture (see Figs. 11 and 12). From Clapp
and Hornberger (1978), P6 (Clapp and Hornberger “b” pa-
rameter) is the exponent of wetness in the formulas for soil
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Fig. 13. The relationship between the number of screened parameters and cumulated relative importance for different sensitivity analysis
methods.

hydraulic conductivity and water potential, and P3 (poros-
ity) is a part of the denominator in the formulas that compute
wetness. A small perturbation in these values would result in
much change to soil moisture. Therefore these two param-
eters are sensitive for soil moisture. It should be mentioned
that P2 (saturated hydraulic conductivity) and P4 (minimum
soil suction) will also affect the simulation of soil moisture
(see Fig. 11), but they are not as sensitive as P6 and P3, which
have an exponential relationship with soil moisture.

Besides soil moisture, P6 is also important for other land
surface fluxes (see Fig. 12). This is because soil moisture is
an important model output that is tied to sensible heat flux, la-
tent heat flux and radiant fluxes (Henderson-Sellers, 1996). A
parameter that exerts great influence on soil moisture should
have an important impact on related fluxes. This finding is
consistent with those of Lettenmaier et al. (1996).

P36 (aerodynamic roughness length) is another important
parameter for sensible heat, latent heat, upward longwave
radiation, net radiation and soil temperature (see Fig. 12).
Through its influence on friction velocity, P36 affects the
magnitude of aerodynamic resistance and near-surface drag
force for the simulation of sensible heat, latent heat, and ra-
diant fluxes, and therefore indirectly affects estimates of soil
temperature (Dorman and Sellers, 1989). P17 (the inverse of
square root of leaf dimension), P30 (longwave reflectance of
living leaf) and P34 (longwave transmittance of living leaf)
are sensitive to the simulations of surface temperature and
air temperature. Accordingly, they are important for sensible
heat and net radiation. The sensitivity of other parameters,

including P18 (quantum efficiency of vegetation photosyn-
thesis) and P4 (minimum soil suction), to latent heat can be
explained by their influence on evapotranspiration.

But not all the parameters in the screening results can
be explained based on physical interpretations (e.g., P12 in
screening result for latent heat). Possible reasons are (1) due
to the limitation of the SA methods and the sample sizes
as the insensitive parameters might be regarded as sensitive
ones; (2) due to a lack of authenticity of the model struc-
ture as the physical processes might not be described per-
fectly; (3) due to local conditions or a lack of appropriate ob-
servations for sensitivity evaluation (e.g., saturated hydraulic
conductivity P2 is not sensitive because there is no runoff
observations); (4) input uncertainty caused by observation
error possibly having non-ignorable influence on the sensi-
tivity analysis; (5) screening the sensitive parameters for a
complex model may be a non-uniqueness issue.

5 Conclusions

In this study, we first identified the most sensitive param-
eters for sensible heat, latent heat, upward longwave radi-
ation, net radiation, soil temperature and soil moisture us-
ing five different qualitative SA methods. We investigated
the proper sampling design and sample size necessary for
screening the parameters effectively. Based on the SA re-
sults, there are 2–8 parameters that are deemed as most sen-
sitive in CoLM, depending on the flux type. We employed a
quantitative SA method to confirm the screening results. The
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results of the quantitative method are consistent with those
of qualitative methods. Moreover, the screening results are
generally consistent with the physical interpretations of the
model parameters.

By using meteorological and land surface observation data
in A’rou for the Heihe River basin in northwestern China,
this study demonstrates the feasibility of employing differ-
ent qualitative global SA methods to find the most important
parameters in a complex model, which is similar to methods
used by Massmann and Holzmann (2012). Though different
methods are compared, we confirmed that global SA meth-
ods are more suitable for complex models to screen out the
most sensitive parameters from the insensitive ones. Because
there exist some differences among the rank of screened pa-
rameters given by different SA methods, we suggest that
multiple SA methods be applied for a complex problem,
which is also supported by Neumann (2012).

For a 40-parameter CoLM, we were able to screen out the
most important parameters using only about 400 samples,
which is similar to Confalonieri et al. (2010). The kind of
parameter screening approach studied here should be appli-
cable to other complicated models. However, caution must be
exercised in interpreting these results. The parameters iden-
tified in this study were obtained with data of limited length
and at a single site with particular geographical conditions.
Results from a different location or a different condition can
be quite different from the ones shown in this study. The
screened parameters are also tied to available land surface
fluxes used in the study. Parameters such as saturated hy-
draulic conductivity (P2) were not considered important pa-
rameters because we did not examine parameter sensitivity to
runoff generation. To truly understand the parameter sensitiv-
ity for CoLM, we need to conduct a more comprehensive SA
study by including more geographical locations, more ob-
servation data types and longer datasets. In future research,
parameter screening of CoLM will be extended to regional
and even global scale by using more available data.

Even though we identified the most important parame-
ters for CoLM, we did not perform model calibration to
obtain the most appropriate estimates for these parameters.
Model calibration for complex multi-flux, high-dimensional
LSMs such as CoLM can be extremely complicated. To
do model calibration in such cases, future studies must ex-
plore more mathematical tools, including the surrogate mod-
eling approach, to save computational resources and there-
fore feasibly achieve a multi-objective optimization strategy
for model calibration of multi-physics models.
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