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Abstract. Uncertainty of groundwater model predictions has
in the past mostly been related to uncertainty in the hydraulic
parameters, whereas uncertainty in the geological structure
has not been considered to the same extent. Recent devel-
opments in theoretical methods for quantifying geological
uncertainty have made it possible to consider this factor in
groundwater modeling. In this study we have applied the
multiple-point geostatistical method (MPS) integrated in the
Stanford Geostatistical Modeling Software (SGeMS) for ex-
ploring the impact of geological uncertainty on groundwa-
ter flow patterns for a site in Denmark. Realizations from
the geostatistical model were used as input to a groundwa-
ter model developed from Modular three-dimensional finite-
difference ground-water model (MODFLOW) within the
Groundwater Modeling System (GMS) modeling environ-
ment. The uncertainty analysis was carried out in three sce-
narios involving simulation of groundwater head distribution
and travel time. The first scenario implied 100 stochastic ge-
ological models all assigning the same hydraulic parameters
for the same geological units. In the second scenario the same
100 geological models were subjected to model optimiza-
tion, where the hydraulic parameters for each of them were
estimated by calibration against observations of hydraulic
head and stream discharge. In the third scenario each geolog-
ical model was run with 216 randomized sets of parameters.
The analysis documented that the uncertainty on the concep-
tual geological model was as significant as the uncertainty
related to the embedded hydraulic parameters.

1 Introduction

With the prevalent application of groundwater modeling, the
inherent uncertainties associated with model simulation are
well acknowledged (Delhomme, 1979; Beven and Binley,
1992; Feyen et al., 2001; Hassan et al., 2008). Dettinger and
Wilson (1981) divided uncertainty in groundwater systems
into two classes: intrinsic uncertainty and information uncer-
tainty. A subsurface property, such as hydraulic conductiv-
ity, is considered as intrinsic uncertainty due to its spatial
stochastic variations. The spatial variation is affected by dif-
ferences in large-scale parameter values between geological
units superimposed by smaller-scale variation within the in-
dividual units. Webb and Anderson (1996), Journel and Al-
abert (1990), Carle et al. (1998) and Mariethoz et al. (2009)
have suggested to incorporate these two contributions in a
modeling framework by first defining the overall geologi-
cal structure and then incorporating the smaller-scale spa-
tial heterogeneity of the hydrogeological parameters within
the units.

A common approach to simulate spatial heterogeneity
in hydrogeology is to use geostatistics, and the traditional
method is to employ variogram-based techniques (Del-
homme, 1979; Wingle and Poeter, 1993; Johnson, 1995;
Klise et al., 2009). Despite that these traditional methods
have been applied extensively during the last three decades,
they only consider correlation between two spatial locations,
which often fails to depict distinct largely connected geolog-
ical structures. Further, due to mathematical simplifications
these methods can only capture a limited number of data
types (Caers and Zhang, 2004; Journel, 2005). Renard (2007)
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proposed three alternative techniques: the truncated pluri-
Gaussian method, the continuous-lag Markov chain, and
the multiple-point geostatistical approach (MPS), where the
latter was viewed as the most appealing method. The ad-
vantages of MPS have been demonstrated by, e.g., Stre-
belle (2002), Caers and Zhang (2004), Liu et al. (2005), Jour-
nel and Zhang (2006), Liu (2006), and Strebelle (2006). Even
though the ability of using MPS for 3-D simulations was ac-
knowledged, only 2-D simulations were presented in these
studies. Fundamental to the application of MPS is the defini-
tion of an appropriate training image (TI), which is a 2-D or
3-D image of the geological characteristics or patterns of the
model area (Caers and Zhang, 2004). In the study of Lake
Chad Basin, Le Coz et al. (2011) made a 3-D TI by replicat-
ing a single horizontal 2-D TI. However, they also realized
that in this way the degree of similarity between two succes-
sive layers is maximized vertically, resulting in a very high
nugget effect from 3-D simulations. Comunian et al. (2011)
demonstrated a hierarchical multiple-point method with a
complicated framework, which includes breaking large-scale
structures into a number of subregions and application of
3-D MPS to each heterogeneous subregion. Overall, their
three-dimensional TI was generated by object-based tech-
niques for which the parameters were estimated manually by
trial and error from 2-D observed sections. Honarkhah and
Caers (2012) demonstrated a new MPS modeling paradigm
with 3-D TI, but the data source and method of generating
the 3-D TI was not mentioned. Multiple-point geostatistics is
indeed appealing in stochastic hydrogeology, but so far the
application to 3-D problems seems to be constrained by the
difficulty of acquiring a full 3-D TI.

Parameter uncertainty is usually analyzed by applying
Monte Carlo-based stochastic approaches, and the Gener-
alized Likelihood Uncertainty Estimation (GLUE) (Beven
and Binley, 1992) is one of the most popular methodolo-
gies due to its conceptual simplicity and ease of implemen-
tation. However, the method has been subject to criticism
as the likelihood measure is “less formal” (Mantovan and
Todini, 2006; Mantovan et al., 2007), the choice of like-
lihood measure is subjective and the updating process re-
quires abundant observations (Feyen et al., 2001). Recently,
several formal Bayesian methods for highly parameterized
groundwater models have emerged (Hendricks Franssen et
al., 2004; Tonkin and Doherty, 2005; Vrugt et al., 2008).
These global search methods have the advantage of providing
a more robust uncertainty analysis but they are also highly-
CPU demanding and time-consuming.

Several studies have been reported in the literature on the
impact of parameter and geological uncertainty on ground-
water modeling. Freeze et al. (1990) were among the first to
jointly consider both geological and parameter uncertainty.
Abbaspou et al. (1998) proposed the uncertainty analysis
framework BUDA (Bayesian Uncertainty Development Al-
gorithm). Despite its ability to quantify uncertainty by con-
ditioning on both hard and soft data, the approach for analyz-

ing uncertainty is based on two-point-based kriging. Feyen
et al. (2001) presented a study on stochastic capture zone
delineation by using the GLUE method. The stochastic hy-
draulic conductivity distribution was generated by sequen-
tial Gaussian simulation, but the distribution was still gov-
erned by a two-point covariance-based function. Harrar et
al. (2003) also conducted flow model uncertainty analysis
considering both geological and parameter uncertainty, but
only two deterministic geological models were used. The two
models were defined from maps of cross sections and geolo-
gists’ experience without applying any geostatistical method.
Fleckenstein et al. (2006) used the transition probability-
based geostatistic simulation TPROGS (Carle, 1999) to gen-
erate geological models. Each model was calibrated individ-
ually to elucidate the impact of hydrogeofacies attributes on
river–aquifer exchange processes. However, only six models
were analyzed since their attempt was not to carry out a full
stochastic uncertainty analysis. Feyen and Caers (2006) pre-
sented a study in which the uncertainty on flow and trans-
port modeling was quantified. For a relatively small two-
dimensional synthetic fluvial system they generated 6500
geological realizations using MPS and 286 000 realizations
of intrafacies hydraulic conductivity distribution using a bi-
modal distribution. In their analysis the effect of uncertainty
on large-scale or effective parameters was not addressed.
This factor may be a significant source of uncertainty; see,
e.g., Refsgaard et al. (2012).

The objective of this study is to apply the multiple-point
geostatistical approach to analyze the contribution from the
two sources of uncertainty in groundwater modeling: geolog-
ical model uncertainty and effective parameter uncertainty.
The parameter uncertainty considered here is related to the
estimation uncertainty of hydraulic conductivity of the con-
sidered geological units. These units are assumed homoge-
neous and not subject to intrafacies variability. We apply the
MPS method to a real field system and use a full 3-D TI
based on field measurements from an airborne geophysical
campaign, which provides detailed 3-D data on the geolog-
ical composition. Using such data for defining the TI intro-
duces more field evidence in the geological characterization
than in most other MPS studies, which is fundamental to the
credibility of this particular stochastic approach.

2 Study area

The study area is situated near Ølgod in the western part of
Jutland, Denmark, and covers an area of about 14.5 km by
13.9 km (Fig. 1). The regional topography is gently flat, rang-
ing from 63.4 m above mean sea level (m a.s.l) at Bavnshøj in
the northwestern part of the area to 17.4 m a.s.l. along stream
valleys. Seven streams originate in this region, which drains
to Skjern River to the north and Varde River to the south.
Groundwater is the main source of domestic and agricul-
tural water supply in the area. The predominant land use
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Fig. 1.Topography, stream network and observation stations around
Ølgod. “BoreholeShallow” are boreholes with bottom elevation
higher than−70 m a.s.l., while “BoreholeDeep” are boreholes with
bottom elevation lower than−70 m a.s.l. The red line indicates the
location of the cross section in Fig. 2.

is agriculture, which is featured by a well-developed sub-
surface drainage system. Weather in this area is influenced
by both the North Sea and the European continent. The
average annual temperature is 8.2◦C, with a maximum of
16.5◦C in August and a minimum of 1.4◦C in January.
The mean annual precipitation in the area is approximately
1050 mm yr−1, with frequent intense rain in autumn and
winter and less rain in spring (Stisen et al., 2011).

2.1 Geology

The lower boundary of the aquifers in the area is consti-
tuted by thick impermeable Paleogene clay deposited in
hemipelagic environments and located at depths of 260–
320 m (Høyer et al., 2013). The Paleogene clay is covered by
Miocene clay, silt and sand deposits mainly originating from
deltaic and shallow marine environments (Rasmussen et al.,
2010). The thickness of these Miocene deposits increases
from east to west in the study area and attains thicknesses of
up to approximately 150 m. During the Pleistocene, phases
of erosion, deposition and deformation resulted in a highly
heterogeneous glaciotectonic complex above the Paleogene
and Miocene. Buried tunnel valleys were deeply incised and
subsequently filled, glacial and interglacial sediments were
deposited and the entire setting was finally heavily deformed
by one or more glaciers in the Late Pleistocene (Jørgensen
and Sandersen, 2006). The resulting Pleistocene sequence is
therefore highly variable in thickness and ranges from 0 to
more than 300 m. Borehole data and seismic data collected
in the study area confirm a highly heterogeneous setting of
the Pleistocene sediments above−100 m a.s.l. (Høyer et al.,
2011). Groundwater reservoirs in this region are often found

Table 1.Observations of groundwater head and river flow.

Number of Standard Observation
Observations observations deviation period

Head Obs. 1 68 2 m 2009–2010
Head Obs. 2 151 4 m 1960–2009
River Flow 1 812 m3 d−1 1990–2005

in the Miocene sand deposits or within the heterogeneous
Pleistocene setting.

2.2 Data collection and processing

2.2.1 Geological and geophysical data

The three-dimensional geostatistical models developed in
the study are based on multiple data sources, includ-
ing borehole description, seismic data and SkyTEM (air-
borne transient electromagnetic method) data (Høyer et al.,
2011). Borehole data are obtained from the Danish national
geological database JUPITER (http://www.geus.dk/jupiter/
index-dk.htm). JUPITER contains over 240 000 boreholes
with information regarding geology, geography, hydrogeol-
ogy, and groundwater chemistry. 525 boreholes with geolog-
ical description are located within the study area; however,
96 % of them are shallow wells with bottom elevation above
−70 m a.s.l. (Fig. 1), and only 22 boreholes have data deeper
than−70 m a.s.l. In the subsequent analysis the geological
descriptions from JUPITER have been simplified and catego-
rized into four main geological units: Quaternary sand, Qua-
ternary clay, pre-Quaternary sand and pre-Quaternary clay.

2.2.2 Construction of training image (TI)

The training image was indirectly constructed from SkyTEM
data collected in the study area. The SkyTEM system
(Sørensen and Auken, 2004) measures the electrical resis-
tivity of the subsurface down to about−250 m, and this pa-
rameter can be utilized for determining the clay content if
groundwater salinity does not change considerably across the
survey area. The data were collected with a flight line spacing
of only 125 to 270 m (Høyer et al., 2011), providing a dense
data coverage. Data processing and inversion is described in
Høyer et al. (2011). For the conversion from electrical resis-
tivity to clay content a geostatistical estimation concept in-
volving borehole information and SkyTEM data was devel-
oped (Jørgensen et al., 2012). This concept uses non-linear
inversion to estimate clay content in all cells of a regular 3-D
grid by optimizing a translator function for the conversion.
The final result was a binary sand–clay model discretized in
a regular 3-D grid covering the entire study area (Jørgensen
et al., 2012).
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http://www.geus.dk/jupiter/index-dk.htm
http://www.geus.dk/jupiter/index-dk.htm


3248 X. He et al.: Prediction of groundwater head and travel time

2.2.3 Hydrological data

Two groups of hydraulic head data are available (Table 1).
Group 1 includes 68 observations, which were obtained dur-
ing the latest sampling campaigns in 2009 and 2010 (Alectia,
2011), and Group 2 includes 151 observations retrieved from
the JUPITER database. Group 1 data were considered to be
more accurate than Group 2 data, hence the standard devia-
tion for the uncertainty of the two types of data was assumed
2 and 4 m, respectively.

Stream discharge is only available from one station,
Q25.32, located slightly outside the study area in the north-
eastern part (Fig. 1). The topographical catchment area to
the station is around 64 km2. Based on the historical daily
data from 1990–2005, river discharge ranges from less than
0.1 m3 s−1 during summer to more than 5.0 m3 s−1 dur-
ing late autumn, and the 16 yr daily average discharge is
0.8 m3 s−1 (69 000 m3 d−1).

Estimates of groundwater recharge are extracted from the
Danish national water resources model, the DK-model (Hen-
riksen et al., 2003). The net recharge (precipitation minus ac-
tual evapotranspiration) varies between 0 to 2.5 mm d−1, and
on average the net groundwater recharge in the model area is
computed to 611 mm yr−1.

Groundwater abstraction data are extracted from the
JUPITER database. 165 pumping wells for domestic use, ir-
rigation, fish farms and industry consumption are located in
the study area, with a total abstraction of 3.2× 106 m3 yr−1

for the period 2000 to 2010.

3 Modeling methodology

3.1 Geostatistical simulation

An important part of this study is the generation of stochas-
tic geological models using the multiple-point geostatisti-
cal approach (MPS) (Guardiano and Srivastava, 1993; Stre-
belle, 2002; Journel and Zhang, 2006), which has been in-
tegrated in the Stanford Geostatistical Modeling Software
(SGeMS) (Remy et al., 2009). We apply the single normal
equation simulation algorithm (SNESIM) (Strebelle, 2002)
of MPS, which has reconciled the strengths of traditional
object-based and pixel-based simulation algorithms (Liu et
al., 2005). Object-based geostatistics is advantageous in cap-
turing spatial pattern and structure but encounters difficulty
when conditioned to large amounts of local data. In con-
trast, traditional pixel-based algorithms honor local data by
reproducing a variogram or covariance model with two-point
statistics, and in this process it eludes the geostatistical infor-
mation concealed in large-scale patterns. The newly devel-
oped pixel-based algorithm, SNESIM, maintains the flexibil-
ity of data conditioning and directly collects the probability
distribution from a training image (TI) with multiple points,
hereby overcoming the limitation of two-point geostatistics.

Geostatistical simulations primarily depend on the condi-
tional probability distribution function (cpdf). In SNESIM,
the cpdf is set equal to the corresponding training image
proportions (Strebelle, 2002). This training proportion is ob-
tained by scanning one or several training images (TI) with
a multiple-node training template. The classical sequential
simulation paradigm (Goovaerts, 1997, p. 376) is used to
draw the stochastic images. The main step is to first assign
hard data to the closest node of the simulation grid, while all
the unknown nodes are visited once and only once by a ran-
dom path. At each unknown node, all the surrounding hard
data presented within a certain search template are retained
as conditioning data events, with which the corresponding
conditional probability is computed.

The crucial requisite of applying SNESIM is to provide
a TI which represents the geological characteristics of the
study area. As the TI is the primary source of uncertainty
when using MPS, an important step is to obtain the ap-
propriate TI (Comunian et al., 2011). Previous applications
of MPS have mostly been constrained to 2-D TIs (Caers,
2001; Strebelle, 2002; Comunian et al., 2012). In this study
we use the 3-D training image mainly based on the de-
tailed geophysical data collected during the flight campaign
(Jørgensen et al., 2012).

3.2 Groundwater and optimization models

A steady-state groundwater flow model was constructed us-
ing the groundwater modeling computer code MODFLOW-
2000 (Harbaugh et al., 2000) within the framework of the
Groundwater Modeling System (GMS). To enable an ac-
curate representation of the geological heterogeneity in the
stochastic realizations, the Hydrogeologic-Unit Flow (HUF)
package (Evan and Mary, 2000) was used. The HUF package
allows the vertical stratigraphy to be defined independently
of the numerical model layers by using hydrogeologic units.
For the groundwater flow process, the HUF package com-
putes the hydraulic properties of the model grid according to
the hydrogeologic units within the model grid. The cell-to-
cell flow conductance in horizontal and vertical directions is
calculated as the arithmetic and harmonic mean, respectively,
as discussed by McDonald and Harbaugh (1988). Other ac-
tivated packages are specified head, recharge (RCH), river
(RIV), drain (DRT) and well (WEL).

Although several advanced inverse modeling methods
based on global search algorithms have been presented re-
cently, they are mostly quite time-consuming. Since we only
focus on hydraulic conductivities for steady-state flow con-
ditions, advanced algorithms designed for multi-objective
optimizations are not required. Instead, we use the Model-
independent parameter estimation & uncertainty analysis
(PEST) inversion code (Doherty, 2005) for parameter es-
timation and for parameter sensitivity assessment. PEST
uses a local search algorithm and has the advantage of fast
convergence. Additionally, besides estimating the optimum
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parameter (Brauchler et al., 2007; Cheng and Chen, 2007;
Baalousha, 2012), we also considered the equifinality of dif-
ferent parameter sets by sampling within parameters’ distri-
bution space.

Based on the flow solutions generated by MODFLOW, the
particle-tracking post-processing code MODPATH (David,
1994) was used to simulate particle travel time distributions.
The backward particle tracking option simulates the path-
ways of particles from a certain cell to the possible corre-
sponding groundwater recharge points reversely along the
flow direction. By sampling the group of particles in a cell,
one can compute the probability distribution of travel time
using basic statistical analysis.

3.3 Uncertainty analysis

The uncertainty associated with geological structure was an-
alyzed by utilizing 100 stochastic geological realizations
generated by SNESIM as input to MODFLOW. To distin-
guish between parameter and geological uncertainty, three
scenarios were defined:

Scenario 1: GeoModel-I: In the first scenario fixed hy-
draulic parameters were specified for the individual ge-
ological units for all MODFLOW models. The param-
eter values were taken as the median of the values ob-
tained by calibration of each individual model.

Scenario 2: GeoModel-II: In this scenario each model
was calibrated by PEST. The parameters included in the
optimization were horizontal hydraulic conductivity of
Quaternary sand, Quaternary clay and pre-Quaternary
sand.

Scenario 3: GeoParModel: In the third scenario param-
eter uncertainty was added. Each MODFLOW model
based on GeoModel-II was subject to a stochastic pa-
rameter analysis. Only the uncertainty of the hydraulic
conductivity of Quaternary sand, Quaternary clay and
pre-Quaternary sand was considered, since the sensitiv-
ity analysis documented that the groundwater flow sim-
ulations were mostly sensitive to these parameters.

In the analysis, the uncertainty of hydraulic conductivity was
assumed to be log-normally distributed (Freeze, 1975; Hoek-
sema and Kitanidis, 1985). The variation of hydraulic con-
ductivity between the realizations was generated based on
the optimization results, where the optimized values repre-
sent the mean values and the standard deviations are derived
from the 95 % confidence intervals (CI) estimated by PEST.

Random sampling in the parameter space was carried out
using the Latin hypercube approach (McKay et al., 1979).
Latin Hypercube Sampling (LHS) is a stratified sampling
method where the parameter spaceS is divided intoN seg-
ments of equal marginal probability 1/N and sampled val-
ues from different parameters are randomly combined. In

Fig. 2. Cross section with model grid and training image geolog-
ical structure. Location on plain view is shown in Fig. 1. Vertical
exaggeration is 15.

this way LHS captures the full parameter space in a simpli-
fied manner and requires much fewer model runs compared
to normal random sampling. In our study, the distribution
space for each of the three hydraulic parameters was divided
into six segments of equal probability, and therefore the to-
tal number of simulations for each geological realization is
63 = 216. We refer to the set of simulations for each geolog-
ical realization based on sampling in the parameter space as
ParModel, while the ensemble of simulations for all geolog-
ical realizations and all parameter variations (90× 216 sim-
ulations in total) is referred to as GeoParModel.

For all scenarios backward particle tracking was applied
to four selected wells using MODPATH.

4 Groundwater model setup

4.1 Geological structure

The groundwater model extends from land surface to
−300 m a.s.l., where the Paleogene clay occupies the whole
area and is therefore taken as lower boundary of the model
(Fig. 2). The corresponding geological setup consists of two
parts. The upper part includes layers from the land surface
to −70 m a.s.l. This part contains only heterogeneous Qua-
ternary sediments and has abundant borehole data for condi-
tioning simulation; hence this part is subject to the geosta-
tistical simulations by SNESIM on a 100 m× 100 m× 5 m
grid. The lower part is generally dominated by comparably
more homogeneous pre-Quaternary sediments. The geolog-
ical structure of the pre-Quaternary sediments is described
by a manual interpretation of mainly seismic data (Høyer et
al., 2011; Jørgensen et al., 2012), since only few boreholes
reach this deeper part and the SkyTEM data show limited
resolution capability here (Høyer et al., 2011). At the places
where Quaternary sediments are located between the pre-
Quaternary surface and−70 m a.s.l., the geological model is
defined by the SkyTEM-based training image (Fig. 2).

www.hydrol-earth-syst-sci.net/17/3245/2013/ Hydrol. Earth Syst. Sci., 17, 3245–3260, 2013
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Fig. 3.Transition probability of Quaternary sediments.(a) Borehole data in lateral direction;(b) data from 3-D training image (TI) in lateral
direction;(c) borehole data in vertical direction;(d) data from 3-D TI in vertical direction.

Fig. 4. 3-D training image (left) and an example of a geological
realization (right). Red and blue indicate Quaternary sand and clay,
respectively.(a) Horizontal view of 3-D training image at elevation
of −10 m a.s.l.;(b) X-Z cross section of 3-D TI with Z exaggeration
of 15; (c) Y-Z cross section of 3-D TI with Z exaggeration of 15;(d)
horizontal view of realization at elevation of−10 m a.s.l.;(e) X-Z
cross section of realization with Z exaggeration of 15;(f) Y-Z cross
section of realization with Z exaggeration of 15.

4.2 Model discretization

The geological model was imported to the groundwater
model using the HUF package. As discussed above the HUF
package computes the hydraulic properties of a numerical
grid by averaging hydraulic parameters of all hydrogeologic
units present in that cell. Therefore, in order to avoid exten-
sive averaging of geological properties from the geostatisti-
cal simulations, the numerical groundwater model grid was

Fig. 5. E-type estimation maps generated from 100 SNESIM real-
izations.(a) Horizontal view at an elevation of−10 m a.s.l.;(b) X-Z
cross section with Z exaggeration of 15;(c) Y-Z cross section with
Z exaggeration of 15.

created to match the discretization of the geological model in
nearly all layers expect for the upper five layers (Fig. 2).

The horizontal discretization was specified to
100 m× 100 m while 63 layers were used in vertical
direction. A cross section showing the vertical discretization
is presented in Fig. 2. To avoid the problem of dry cells in
the numerical simulations, the top layer was set to be thicker
than any other layer; on average the depth of the top layer
was 13 m. Average thickness of layers 2 to 5 was 4 m, while
layers 6 to 63 had thicknesses of 5 m each in correspondence
with the geological model. In total there were 792 603 active
cells in the MODFLOW setup.

4.3 Boundary conditions

No natural hydrological boundaries could be identified for
the groundwater model. Instead, the available observations of
groundwater head were used to interpolate the groundwater

Hydrol. Earth Syst. Sci., 17, 3245–3260, 2013 www.hydrol-earth-syst-sci.net/17/3245/2013/
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Fig. 6.Standard deviation of groundwater head distribution derived
from 90 GeoModel-I models (first row) and from 90 GeoModel-II
models (second row).(a) and(c) 1st layer,(b) and(d) 4th layer.

head variation along the boundary. The interpolated heads
were specified as fixed head boundaries to the MOD-
FLOW model, and the lower boundary was assigned as
no-flow boundary.

4.4 Sources and sinks

Groundwater recharge from the DK-model (Henriksen et al.,
2003) was used as input to the local model. The grid size of
the DK-model is 500 m× 500 m. In order to fit the model,
which has a discretization of 100 m× 100 m, the recharge
data were downscaled by linear interpolation.

Large parts of the model area are drained by subsurface
tile drains (Henriksen et al., 2003). Therefore, drains were
specified in the entire model area using the drain package
(DRT) (Harbaugh et al., 2000). Drain elevation was taken as
1 m below land surface, and the drain time constant was set
to 1.7× 10−2 s−1 in accordance with the DK-model (Hen-
riksen et al., 2003). The river package (RIV) (Harbaugh et
al., 2000) in MODFLOW was used to simulate the discharge
in streams. The river network was determined from Geo-
graphic information system (GIS) data, while the river level
was taken from the national digital elevation model with a
resolution of 1.6 m, and the river bottom elevation was as-
sumed to be 1 m below river level. The river conductance
was set to 16.8 m d−1 according to the DK-model (Henrik-
sen et al., 2003). River discharge station Q25.32 was used
for model calibration. The average discharge for the period
1990 to 2005 was 69 000 m3d−1. Since only part of the catch-
ment area to the discharge station was included in the model,

Table 2. Hydraulic conductivity of the geological units. Values
for Quaternary sand, Quaternary clay and pre-Quaternary sand are
found as the medians of 90 estimated parameter values from PEST
and used in GeoModel-I. Values for pre-Quaternary clay and Pale-
ogene clay are inferred from the DK-model.

Hydraulic Standard
conductivity deviation

Geological unit (K) (m d−1) Log10 (K) of Log10 (K)

Quaternary sand 2.0 0.3 0.1
Quaternary clay 0.09 −1.0 0.5
Pre-Quaternary sand 4.6 0.7 0.4
Pre-Quaternary clay 0.005 −5.3 –
Paleogene clay 8.6× 10−4

−7.1 –

the discharge data were downscaled according to the model
area, leading to a value of 59 900 m3 d−1. The well package
(WEL) (Harbaugh et al., 2000) was used to simulate ground-
water abstraction with a total pumping rate of 8900 m3 d−1.

5 Results and discussion

5.1 Geostatistical analysis and geological realizations

The geostatistical analysis presented in this section refers to
Quaternary sediments from the land surface to−70 m a.s.l.
The primary geostatistical information required in SNESIM
is the radius of the search template and target proportion,
which is related to the mean length, and the proportion of
each sedimentary unit. These values can be inferred from
transition probabilities, which represent the spatial variabil-
ity and structure of geological units in terms of conditional
probabilities of occurrence. The transition probability model
has the ability to quantitatively translate concepts and subjec-
tive observations into a spatial variability model with infor-
mation of categorical variables’ proportion, mean length and
juxtapositional tendency (Carle and Fogg, 1996). The “sill”
of a transition probability curve implies the proportion of the
category, while the distance where the slope line intersects
with the lag axis corresponds to the mean length of the cate-
gory.

Figure 3a shows the lateral transition probabilities of the
borehole data. The mean lengths of the two categories can be
inferred from the intersections of the slope lines at lag dis-
tance 0 with thex axis. The mean length of Quaternary sand
bodies is estimated to be around 400 m in lateral direction,
while that of Quaternary clay bodies is around 200 m. Based
on borehole data the proportions of Quaternary sand and clay
are around 67 and 33 %, respectively, which is confirmed by
Fig. 3a.

Figure 3b shows the lateral transition probability based on
the 3-D training image. The estimated mean lengths of Qua-
ternary sand and clay bodies are around 1600 and 800 m,
respectively, and the proportions of these units are 59 and
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Table 3. Travel time based on backward particle tracking for four wells for GeoModel-I, GeoModel-II, GeoParModel, and median of Par-
Models.R denotes the fraction of the 95 % confidence interval to the one from GeoParModel. Location of the four wells is shown in Fig. 8.

W1 W2 W3 W4

GeoModel-I

Median (year) 50 29 46 31
95 % Interval (year) 29 34 171 14
R 91 % 83 % 87 % 70 %
Skewness 0.3 1.6 2.3 6.0

GeoModel-II

Median (year) 51 31 47 31
95 % Interval (year) 33 41 282 36
R 103 % 98 % 143 % 183 %
Skewness 0.7 1.2 3.5 3.8

GeoParModel

Median (year) 52 31 47 31
95 % Interval (year) 32 41 196 19
R 100 % 100 % 100 % 100 %
Skewness 0.8 1.3 10.5 8.1

Median of 90 ParModels

Median (year) 52 31 48 31
95 % Interval (year) 6 5 21 5
R 18 % 12 % 11 % 26 %
Skewness 1.1 0.4 −0.4 −0.1

Fig. 7. Standard deviation of simulated groundwater head at se-
lected cells (GeoModel-I).

41 %. The diagonal graphs also indicate similar information,
but the proportions are not strictly the same. It should be no-
ticed that the relationship between proportions and the “sill”
of the diagram is not rigorous, especially when the diagram is
derived from raw data. Consider the expression of transition
probability (Carle and Fogg, 1996):

tjk(x,h) = {Pr categoryk occurs at(x + h) |

categoryj occurs atx} . (1)

Whenh approaches infinity,tjk(x,h) equals the proportion of
categoryk for all categoriesj . Therefore, for the limited lag
distance, this proportion–sill relationship is more a guide to
fit the sill of a spatial variability model than an indicator of
category proportion from sill of raw data.

Fig. 8.Location of four wells for backward particle tracking (back-
ground shows geological structure of the training image at the depth
of the well screen):(a) W1, well screen at 3.66 to−4.96 m a.s.l.;
(b) W2, well screen at−4.98 to−10 m a.s.l.;(c) W3, well screen at
0.44 to−4.91 m a.s.l.;(d) W4, well screen at−4.93 to−10 m a.s.l.
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Fig. 9.Histogram of travel time of four wells for GeoModel-I (left column), GeoModel-II (middle column) and GeoParModel (right column).
The green line indicates the mean value and the red line represents the median value.

Table 4. Simulated heads for four observation points for GeoModel-I, GeoModel-II, GeoParModel, and the median of 90 ParModels. R
denotes the fraction of the 95 % confidence interval to the one from GeoParModel. Location of the four points is shown in Fig. 1.

Obs 10 Obs 34 Obs 50 Obs 57

GeoModel-I
Median (m) 36.4 26.6 27.9 30.0
95 % Interval (m) 2.5 2.3 1.0 1.7
R 114 % 70 % 45 % 121 %

GeoModel-II
Median (m) 38.7 28.5 29.7 30.8
95 % Interval (m) 1.3 1.7 0.9 1.2
R 59 % 52 % 41 % 86 %

GeoParModel
Median (m) 38.8 28.4 29.6 30.8
95 % Interval (m) 2.2 3.3 2.2 1.4
R 100 % 100 % 100 % 100 %

Median of 90 ParModels
Median (m) 38.8 28.4 29.6 30.8
95 % Interval (m) 1.8 2.5 1.5 0.7
R 82 % 76 % 68 % 50 %

Figure 3c and d show the vertical transition probability
based on borehole data and TI, respectively. The mean length
of Quaternary sand bodies is around 25 m as indicated by
borehole data and around 60 m from 3-D TI data. For Qua-
ternary clay bodies, the mean length is 12.5 and 30 m, corre-
spondingly. Hence, both sources of data show that the mean

length of Quaternary sand bodies is twice the corresponding
mean length of Quaternary clay, in both lateral and vertical
directions.

Strebelle (2002) recommends that the global proportions
of the training image should be similar to the desired propor-
tion in the final model. In our case, borehole data show 67 %
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Fig. 10.Boxplot of simulated hydraulic heads against 68 observa-
tions from head obs. group 1. Green dots are observed groundwater
head, yellow color plots represent simulations from 90 GeoModel-
I, red color plots represent simulations from 90 GeoModel-II, and
blue color plots represent simulations from GeoParModel. The
edges of the boxes are the 25th and 75th percentiles, and the
whiskers extend to the 2.5th and 97.5th percentiles.

of Quaternary sand and 33 % of Quaternary clay, while the
proportions extracted from the 3-D training image are 59 and
41 %, respectively. Considering that borehole data are com-
paratively sparse in this area (approximately 0.04 boreholes
per km2) and 80 % of the boreholes do not penetrate through
the whole model depth, the proportions from borehole data
hold a higher uncertainty than those based on the 3-D train-
ing image. Therefore, 59 and 41 % were defined as propor-
tions for Quaternary sand and clay, respectively, in the MPS
simulations. Since both borehole data and 3-D TI show lat-
erally isotropic geometry, the maximum and medium ranges
for the search template ellipsoid were both set to 2000 m,
and the minimum range in vertical direction was set to 80 m
to capture the facies’ heterogeneities. Figure 4 illustrates one
of the MPS simulations. By visual comparison, the figures to
the right (simulations) generally have similar patterns as the
TI shown to the left, except that there appear to be slightly
more small clay lenses in the simulation. However, Fig. 4
only shows three slices of one of the 100 3-D simulations.
The 100 realizations are equally probable representations of
the unknown reality. A broad overall view is shown in an

Fig. 11. Boxplot of simulated groundwater head at four selected
observation points:(a) Obs10,(b) Obs34,(c) Obs50,(d) Obs57.
The dashed green line is the observed groundwater head, the yel-
low color plots represent 90 simulations from GeoModel-I, the red
color plots represent 90 simulations from GeoModel-II, the blue
color plots represent GeoParModel, and the gray color plots rep-
resent simulations of the individual ParModels, each consisting of
216 simulations. The edges of the boxes are the 25th and 75th per-
centiles, and the whiskers extend to the 2.5th and 97.5th percentiles
(values are listed in Table 4).

E-type map in Fig. 5. The E-type map is constructed as the
arithmetic mean of all realizations, where E stands for “ex-
pected value” or precisely “conditional expectation” (Remy
et al., 2009, p. 37). The heavy red or red dots are found at
places where boreholes are located, and that indicates that the
hard data have been honored in all 100 simulations. Except
for those hard data spots, there are no remarkable scattered
small size clay lenses on the E-type map, and the pattern of
clay lenses in the E-type map shows a similar trend as in the
training image.

5.2 Scenario I: geological uncertainty with constant
parameter values (GeoModel-I)

The geological realizations simulated by SNESIM formed
the basis for a series of MODFLOW models all having the
same hydrogeological boundary conditions. In GeoModel-I
the models were not calibrated and the same hydraulic pa-
rameters were specified to all models (only 90 geological
models in total were considered, as 10 were judged non-
behavioral and are listed with star marks in Table A1). The
parameters used in this scenario were the median of the cal-
ibrated parameter values, see Table 2. Figure 6 (first row)
shows the standard deviation of hydraulic head of the 1st
and 4th numerical layer based on simulations of GeoModel-I.
The variation in the top layer is affected by the external and
internal boundary conditions, see Fig. 6a. As expected the
variation of hydraulic head tends to be stable towards river
courses and boundaries, while a maximum standard variation
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Fig. 12. Boxplot of simulated travel times for four wells:(a) W1,
(b) W2, (c) W3, (d) W4. The yellow color plots represent 90 sim-
ulations from GeoModel-I, the red color plots represent 90 simu-
lations from GeoModel-II, the blue color plots represent GeoPar-
Model, and the gray color plots represent simulations of individual
ParModels, each consisting of 216 simulations. The edges of the
boxes are the 25th and 75th percentiles, and the whiskers extend to
the 2.5th and 97.5th percentiles (values are listed in Table 3).

of nearly 3 m is found at the higher elevation in the northern
part. For a further analysis of the convergence of the 90 mod-
els, standard deviation was computed for ten cells for differ-
ent numbers of model runs. These ten cells were randomly
selected in the top layer, since this layer has the highest hy-
draulic head variation. Further, the locations of the cells were
in sufficient distances from the model boundary and river
courses such that the standard deviation was not constrained.
Figure 7 shows the development of the standard deviation
of simulated groundwater head with the number of models.
The standard deviation of groundwater head seems to stabi-
lize after 30 model runs, and 90 simulations seem more than
sufficient to collect the statistics information.

Backward particle tracking was applied to four abstrac-
tion wells having different positions and with the well screen
at different levels (Fig. 8). Each well was assigned 100 par-
ticles, which were backtracked and travel time distributions
computed using MODPATH. Table 3 lists median travel time,
95 % confidence interval, and skewness for these four wells.
In Fig. 9 (left column) histograms of simulated particle travel
time are shown. For wells located in the northwestern part,
the distributions of simulated particle travel time are less
skewed due to the primarily downward flow resulting in cap-
ture zones located close to the wells. For W1 the travel times
are in the range of 25–70 yr with a median value of 50 yr and
a skewness value of 0.3. For W2 the travel times are mostly
in the range of 20–75 yr with a median value of 29 yr and
a skewness value of 1.6. For the wells in the southeastern
part, the distributions of travel time become more skewed, as
this region is dominated by horizontal flow resulting in elon-

gated capture zones and therefore larger travel distances and
spreading in travel times. For W3 the simulated travel time
spans from 25 yr to 325 yr, with a median value of 46 yr and a
skewness of 2.3. For W4 the range is 20–90 yr with a median
value of 31 yr and a skewness of 6.0.

5.3 Scenario II: geological uncertainty with optimized
parameter values (GeoModel-II)

In this scenario (GeoModel-II) we analyze to which extent
parameter optimization affects the uncertainty of the model
predictions. Each model was calibrated by PEST, and param-
eters included in the optimization were horizontal hydraulic
conductivity of Quaternary sand, Quaternary clay and pre-
Quaternary sand. The estimated values together with 95 %
confidence limit of these 100 models are listed in Table A1.
Abnormal parameter estimates as well as extreme confidence
limits appear in 10 of the models (those marked with a star
in the list). These models were taken out, and the analysis
was applied on the remaining 90 models. Table 2 lists the
median and the standard deviation of the 90 estimated pa-
rameter sets from the PEST analysis. As a result of the opti-
mization the uncertainty is expected to decrease at least for
hydraulic head, as each model is calibrated against head ob-
servations. The second row of Fig. 6 shows the results in the
form of standard deviation of groundwater head for the same
two computational layers as shown in the first row. Compar-
ing the two sets of results it is apparent that for both layers
the standard deviation has reduced for GeoModel-II, imply-
ing that the uncertainty reduces when the model parameters
are conditioned on hydraulic head data. In Table 4 statis-
tics of simulated groundwater head for four selected obser-
vation points are listed (see location in Fig. 1). As shown in
Fig. 6, the uncertainty range differs at different layers, and
to cover an appropriate range of groundwater head distribu-
tions, the observation points were selected to represent each
of the layers 1 to 4. Using the 95 % confidence interval of
the GeoParModel simulation as reference, it is apparent that
GeoModel-I is subject to higher uncertainty than GeoModel-
II as reflected by theR values. When calibrating against head
measurements the simulations of heads obviously improve
and the calibrated parameter values partially compensate for
possible biases embedded in the different geological realiza-
tions.

Backward particle tracking was applied to the same cells
as in scenario GeoModel-I. Figure 9 (middle column) shows
the histogram of travel time for 90 simulations of each well,
and associated statistics are listed in Table 3. Compared to
simulations of GeoModel-I the median travel times are quite
similar for all four wells and the distributions for W3 and
W4 are also more skewed than for W1 and W2. In contrast to
the groundwater head simulations, the uncertainty ranges of
travel time for GeoModel-I are smaller than for GeoModel-
II as indicated by theR values. The higher variability in
the simulated travel time of GeoModel-II is a result of the
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calibration process. When calibrating against head measure-
ments the resulting variation in parameter values gives rise
to a higher variability in flow pathlines and velocities, and
realizations with extreme travel time are introduced. Similar
results were obtained by Refsgaard et al. (2012).

5.4 Scenario III: geological and parameter uncertainty
(ParModel and GeoParModel)

The parameters included in the parameter uncertainty anal-
ysis were the same three parameters which were optimized
by the PEST code in the previous scenarios. For each of
the 90 models developed in the GeoModel-II scenario, 216
parameter sets were sampled and each sampled parameter
set served as input to MODFLOW simulations. Figure 10
shows boxplots of the distribution of simulated heads based
on GeoModel-I, GeoModel-II, and GeoParModel for each of
the 68 observation points from Head Obs. Group 1 in Ta-
ble 1. The edges of the boxes represent the 25th and 75th
percentiles, while the whiskers extend to the 2.5th and 97.5th
percentiles, respectively. The observed groundwater heads
for each well are shown by green dots. The simulations based
on GeoModel-I (yellow boxes) are generally lower than the
corresponding observations. This bias is a result of the im-
posed constant parameter values. As expected, the results
from GeoModel-II are in better agreement with observations
and the associated uncertainties (red boxes) are less than for
GeoModel-I. When parameter uncertainty is added repre-
sented by GeoParModel (blue boxes) the uncertainty of the
simulated heads is increased and is higher compared to the
two other scenarios.

To illustrate the impact of parameter uncertainty explic-
itly, boxplots for heads at four randomly selected observation
points (same as in Table 4) are shown in Fig. 11. The green
dashed lines in the figures represent the observed groundwa-
ter heads, while the yellow, red and blue boxplots represent
the same scenarios as in Fig. 10. The gray boxplots show the
results from the ParModels. As stated above, each ParModel
represents the results of 216 simulations, which are generated
from random sampling in the parameter spaces derived from
the PEST analysis of each GeoModel-II. The median values
and 95 % uncertainty ranges for all scenarios for these four
points are listed in Table 4. The results listed in the last row
of the table are the median values of the results of all the 90
ParModels, i.e., median of the medians and 95 % intervals.
We take these results as a representation of the impact of pa-
rameter uncertainty. Using the uncertainty range of GeoPar-
Model as reference, theR values for the GeoModel-II are
much lower than 100 %, indicating that the uncertainty from
GeoModel-II is less than that from GeoParModel. The differ-
ence between the two scenarios is that parameter uncertainty
has been added to GeoParModel, suggesting that uncertainty
on hydraulic head is increased when parameter uncertainty
is considered. The median values of the 90 ParModels listed
in Table 4 show that the median of the uncertainty intervals

of all 90 ParModels is slightly higher than the corresponding
interval for GeoModel-II for three of the observation points.
This suggests that the effect of parameter uncertainty is com-
parable to the effect of geological uncertainty with respect to
hydraulic head uncertainty.

Backward particle tracking was applied to the 216 param-
eter realizations of each ParModel. The travel time distribu-
tion of 90× 216 realizations is plotted in Fig. 9 (right col-
umn), and the corresponding values of median, 95 % interval
and skewness are listed in Table 3. By introducing parame-
ter uncertainty in the GeoParModel, the uncertainty ranges
of travel time have increased somewhat, as more extreme
travel times are found when comparing the right and mid-
dle columns of Fig. 9. However, this is not necessarily re-
flected in theR values. TheR values are computed from
the 95 % confidence intervals and when the skewness is not
comparable between the scenarios as for W3 and W4, the
R values may be misleading. Nevertheless, in contrast to hy-
draulic head simulation, parameter uncertainty has much less
effect on travel time simulation. This can be inferred from the
very lowR values based on the median of the 90 ParModels
and also evidenced from the boxplots of the individual Par-
Model simulations shown in Fig. 12. Although there are a
few outliers, overall the uncertainty intervals of the individ-
ual ParModels are generally shorter than the corresponding
intervals for GeoModel-I and GeoModel-II, suggesting that
the effect of parameter uncertainty is relatively low with re-
spect to travel time. In this regard the geological architecture
is the most critical factor.

6 Conclusions

This study has examined the impact of geological and pa-
rameter uncertainty on real case simulations of groundwater
heads and travel time using the multiple-point geostatistical
method (MPS). A 3-D training image derived from geophys-
ical data was used as basis for the MPS simulations. Usually
geophysical data are used as soft data for conditioning; how-
ever, as used here it was possible to develop a reliable 3-D
geological model as a training image input to the MPS.

Generally one would expect that the uncertainty range
will decrease when calibrating models, but our results show
that this is not always the case. Although the uncertainty of
groundwater head simulations is reduced when the parame-
ters are calibrated against hydraulic head observations, the
opposite is the case for the uncertainty of travel time simu-
lations. Calibration implies that biases in the realizations of
geological architecture are compensated by errors in param-
eter values which lead to a larger range of variation in travel
time. This also underpins previous findings that when using
models outside the calibrated regime, which indeed is the
case when simulating travel time, the prediction uncertainty
is high.
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Table A1. Estimated hydraulic conductivity and confidence limits from PEST.

Model No.
HK Quaternary Sand (m d−1) HK Quaternary Clay (m d−1) HK pre-Quaternary Sand (m d−1)

Estimated Value
95 % Confidence Limits

Estimated Value
95 % Confidence Limits

Estimated Value
95 % Confidence Limits

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

1 1.75 1.23 2.50 2.25× 10−1 5.65× 10−2 8.92× 10−1 5.37 1.23 2.36× 101

2 2.93 2.28 3.76 6.10× 10−2 2.60× 10−2 1.43× 10−1 9.91× 10−1 5.62× 10−3 1.75× 102

3 2.10 1.71 2.58 1.49× 10−2 3.18× 10−3 6.98× 10−2 1.71× 101 3.43 8.55× 101

4 2.06 1.63 2.60 3.11× 10−2 3.03× 10−3 3.19× 10−1 1.30 2.46× 10−2 6.89× 101

5 2.20 1.78 2.71 6.52× 10−2 2.92× 10−2 1.45× 10−1 6.63 1.82 2.42× 101

*6 3.13 2.66 3.67 2.16× 10−5 6.30× 10−20 7.43× 109 2.33× 102 2.71× 101 2.01× 103

7 2.16 1.70 2.76 9.57× 10−2 4.15× 10−2 2.21× 10−1 3.59 3.63× 10−1 3.55× 101

8 1.94 1.51 2.50 1.21× 10−1 5.34× 10−2 2.72× 10−1 6.10 1.47 2.54× 101

9 1.11 6.49× 10−1 1.89 8.57× 10−1 2.19× 10−1 3.35 4.50 1.71 1.19× 101

10 2.41 1.68 3.46 7.06× 10−2 1.71× 10−2 2.92× 10−1 1.05 4.80× 10−3 2.31× 102

11 2.19 1.82 2.63 6.73× 10−2 2.65× 10−2 1.71× 10−1 1.86 1.29× 10−1 2.69× 101

*12 3.34 2.81 3.96 8.39× 10−6 6.39× 10−253 1.10+242 8.29 6.22× 10−1 1.11× 102

13 1.95 1.43 2.65 7.59× 10−2 2.24× 10−2 2.56× 10−1 5.30 1.11 2.54× 101

*14 3.25 2.69 3.91 2.11× 10−7 2.11× 10−307 2.11× 10293 4.57× 102 3.77× 101 5.53× 103

15 2.16 1.69 2.76 7.30× 10−2 2.84× 10−2 1.88× 10−1 5.39 1.16 2.49× 101

16 2.12 1.65 2.71 9.22× 10−2 3.70× 10−2 2.29× 10−1 6.30 1.54 2.57× 101

17 2.27 1.91 2.71 3.89× 10−2 5.11× 10−3 2.97× 10−1 1.80 1.79× 10−1 1.81× 101

18 1.73 1.34 2.22 2.01× 10−1 6.56× 10−2 6.14× 10−1 4.88 1.11 2.14× 101

19 1.29 8.87× 10−1 1.87 4.54× 10−1 1.23× 10−1 1.67 6.46 2.29 1.82× 101

20 2.82 2.27 3.49 5.92× 10−2 2.16× 10−2 1.62× 10−1 2.21 1.74× 10−1 2.80× 101

*21 3.28 2.87 3.75 3.92× 10−5 6.58× 10−35 2.33× 1025 6.19× 10−1 3.61× 10−4 1.06× 103

22 1.99 1.41 2.81 1.83× 10−1 7.47× 10−2 4.48× 10−1 6.30 1.73 2.29× 101

23 2.99 2.49 3.60 1.81× 10−2 5.44× 10−3 6.02× 10−2 3.05 1.65× 10−1 5.61× 101

24 2.00 1.57 2.55 1.26× 10−1 4.79× 10−2 3.31× 10−1 4.95 1.21 2.03× 101

25 1.95 1.57 2.41 9.91× 10−2 4.02× 10−2 2.45× 10−1 1.03× 101 3.07 3.44× 101

26 1.75 1.34 2.29 8.01× 10−2 3.77× 10−2 1.70× 10−1 2.18× 101 8.29 5.73× 101

27 1.80 1.30 2.51 2.11× 10−1 5.17× 10−2 8.64× 10−1 2.97 7.31× 10−1 1.21× 101

28 2.09 1.78 2.46 2.13× 10−2 4.71× 10−3 9.63× 10−2 1.03× 101 3.41 3.13× 101

29 2.05 1.59 2.64 1.45× 10−1 5.61× 10−2 3.75× 10−1 2.44 4.07× 10−1 1.46× 101

30 2.77 2.29 3.36 4.06× 10−2 1.49× 10−2 1.11× 10−1 2.64 3.83× 10−1 1.81× 101

31 1.79 1.36 2.35 1.55× 10−1 4.37× 10−2 5.51× 10−1 4.24 1.08 1.67× 101

32 2.67 2.23 3.18 2.11× 10−2 6.29× 10−3 7.06× 10−2 2.91 1.68× 10−1 5.05× 101

33 2.47 2.05 2.99 3.41× 10−2 6.68× 10−3 1.74× 10−1 1.19 1.22× 10−2 1.17× 102

34 2.39 1.86 3.07 6.21× 10−2 2.45× 10−2 1.57× 10−1 3.20 4.23× 10−1 2.42× 101

35 2.20 1.71 2.83 6.43× 10−3 2.47× 10−4 1.67× 10−1 4.84× 102 1.98× 101 1.18× 104

36 2.58 2.08 3.20 3.72× 10−2 1.77× 10−2 7.80× 10−2 3.44 2.51× 10−1 4.72× 101

37 1.69 1.29 2.21 2.06× 10−1 7.09× 10−2 6.00× 10−1 4.23 1.08 1.66× 101

38 1.81 1.41 2.32 1.53× 10−1 5.35× 10−2 4.35× 10−1 5.96 1.61 2.21× 101

39 2.12 1.68 2.69 9.02× 10−2 2.72× 10−2 2.99× 10−1 3.27 6.72× 10−1 1.59× 101

40 2.60 2.11 3.21 2.88× 10−2 1.14× 10−2 7.28× 10−2 4.33 2.53× 10−1 7.43× 101

41 2.21 1.79 2.74 2.27× 10−2 5.95× 10−3 8.67× 10−2 2.62× 101 6.39 1.07× 102

42 2.03 1.58 2.60 7.55× 10−2 3.53× 10−2 1.62× 10−1 1.05× 101 3.23 3.40× 101

43 2.23 1.80 2.76 5.90× 10−2 2.22× 10−2 1.57× 10−1 2.76 2.21× 10−1 3.45× 101

44 2.14 1.60 2.86 1.41× 10−1 5.06× 10−2 3.93× 10−1 7.14 1.55 3.30× 101

45 2.41 1.90 3.07 8.51× 10−2 3.55× 10−2 2.04× 10−1 2.08 1.95× 10−1 2.22× 101

46 1.23 7.18× 10−1 2.10 8.01× 10−1 3.22× 10−1 2.52 3.38 1.13 1.01× 101

47 2.33 1.85 2.93 1.75× 10−2 5.79× 10−3 5.31× 10−2 2.62× 101 7.36 9.30× 101

48 1.71 1.36 2.16 8.46× 10−2 3.41× 10−2 2.10× 10−1 9.84 3.09 3.14× 101

49 1.52 1.12 2.05 2.26× 10−1 7.58× 10−2 6.72× 10−1 4.60 1.38 1.54× 101

*50 2.63 2.28 3.02 8.79× 10−5 3.65× 10−13 2.12× 104 5.77 3.85× 10−1 8.66× 101

51 2.12 1.79 2.53 2.96× 10−2 7.24× 10−3 1.21× 10−1 1.13× 101 3.21 4.00× 101

52 2.06 1.68 2.54 7.03× 10−2 3.30× 10−2 1.50× 10−1 5.84 1.71 2.00× 101

53 2.13 1.65 2.76 1.08× 10−1 3.21× 10−2 3.61× 10−1 2.64 4.29× 10−1 1.63× 101

54 2.84 2.39 3.36 1.81× 10−2 4.95× 10−3 6.62× 10−2 5.31 8.85× 10−1 3.19× 101

55 1.90 1.39 2.61 8.20× 10−2 2.93× 10−2 2.30× 10−1 4.64 1.01 2.14× 101

56 1.87 1.41 2.49 1.48× 10−1 3.80× 10−2 5.75× 10−1 3.72 8.09× 10−1 1.71× 101

57 1.87 1.41 2.49 1.27× 10−1 4.18× 10−2 3.85× 10−1 5.46 1.36 2.19× 101

58 1.84 1.29 2.60 2.39× 10−1 5.65× 10−2 1.01 2.49 5.60× 10−1 1.11× 101

59 2.60 2.07 3.26 3.19× 10−2 7.24× 10−3 1.41× 10−1 1.20 2.88× 10−2 5.04× 101

*60 1.27 7.93× 10−1 2.03 1.35 4.75× 10−1 3.81 4.98× 10−1 3.80× 10−3 6.54× 101
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Table A1. Estimated hydraulic conductivity and confidence limits from PEST.

ModelNo.
HK Quaternary Sand (m d−1) HK Quaternary Clay (m d−1) HK pre-Quaternary Sand (m d−1)

Estimated Value
95 % Confidence Limits

Estimated Value
95 % Confidence Limits

Estimated Value
95 % Confidence Limits

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

61 1.92 1.54 2.38 1.03× 10−1 4.37× 10−2 2.43× 10−1 7.94 2.16 2.92× 101

62 2.04 1.53 2.71 1.48× 10−1 6.02× 10−2 3.63× 10−1 4.48 9.00× 10−1 2.23× 101

63 2.20 1.74 2.77 5.54× 10−3 2.77× 10−4 1.11× 10−1 4.55× 102 1.18× 101 1.76× 104

64 1.49 9.54× 10−1 2.32 4.89× 10−1 1.53× 10−1 1.56 2.85 8.13× 10−1 1.00× 101

65 3.26 2.78 3.82 1.62× 10−2 1.89× 10−3 1.39× 10−1 3.43 2.11× 10−1 5.57× 101

66 1.82 1.48 2.24 7.83× 10−2 3.90× 10−2 1.57× 10−1 9.30 2.75 3.14× 101

67 2.59 2.19 3.05 1.04× 10−3 4.25× 10−9 2.57× 102 2.64 4.38× 10−2 1.59× 102

68 1.95 1.52 2.52 1.10× 10−1 3.75× 10−2 3.20× 10−1 5.40 8.20× 10−1 3.55× 101

69 1.45 9.58× 10−1 2.19 2.79× 10−1 8.50× 10−2 9.19× 10−1 3.85 1.28 1.16× 101

70 2.28 1.73 3.02 6.56× 10−2 2.53× 10−2 1.70× 10−1 2.56 1.24× 10−1 5.29× 101

71 1.91 1.36 2.69 1.67× 10−1 6.97× 10−2 3.99× 10−1 7.67 2.32 2.54× 101

72 2.40 2.03 2.85 3.43× 10−2 1.00× 10−2 1.17× 10−1 8.03 1.65 3.91× 101

73 1.89 1.43 2.49 6.38× 10−2 2.86× 10−2 1.43× 10−1 2.46× 101 8.03 7.57× 101

74 2.78 2.28 3.39 4.18× 10−2 1.96× 10−2 8.91× 10−2 3.82 5.62× 10−1 2.60× 101

75 1.22 7.54× 10−1 1.98 6.50× 10−1 1.62× 10−1 2.61 4.87 1.86 1.28× 101

*76 2.60 2.29 2.95 2.42× 10−6 7.95× 10−115 7.36× 10102 1.74 1.12× 10−1 2.70× 101

77 2.00 1.62 2.46 9.80× 10−2 4.29× 10−2 2.24× 10−1 4.92 1.33 1.82× 101

78 2.72 2.17 3.41 3.45× 10−2 1.32× 10−2 9.01× 10−2 6.54 1.07 4.02× 101

79 1.74 1.19 2.53 3.71× 10−1 1.08× 10−1 1.28 3.26 8.25× 10−1 1.28× 101

80 1.88 1.52 2.34 8.17× 10−2 2.47× 10−2 2.71× 10−1 4.24 8.27× 10−1 2.17× 101

81 1.36 8.44× 10−1 2.18 8.34× 10−1 2.74× 10−1 3.18 1.88 1.53× 10−1 2.31× 101

82 1.37 8.71× 10−1 2.14 6.92× 10−1 2.08× 10−1 2.30 2.73 8.30× 10−1 8.99
83 2.52 2.04 3.10 6.98× 10−2 3.02× 10−2 1.61× 10−1 3.28 3.47× 10−1 3.10× 101

84 1.70 1.33 2.18 1.97× 10−1 8.92× 10−2 4.35× 10−1 9.54 3.61 2.52× 101

85 1.74 1.27 2.38 2.26× 10−1 7.16× 10−2 7.16× 10−1 4.00 1.11 1.45× 101

86 1.35 8.72× 10−1 2.08 5.39× 10−1 1.87× 10−1 1.55 5.29 1.84 1.52× 101

*87 2.85 2.47 3.29 1.42× 10−5 6.97× 10−30 2.88× 1019 8.47× 101 1.90× 101 3.78× 102

88 1.77 1.23 2.55 2.98× 10−1 7.45× 10−2 1.19 2.93 7.02× 10−1 1.22× 101

89 1.03 5.57× 10−1 1.89 7.01× 10−1 1.96× 10−1 2.51 4.19 1.65 1.06× 101

90 1.43 1.01 2.01 2.52× 10−1 9.36× 10−2 6.80× 10−1 6.86 2.23 2.11× 101

91 2.60 2.09 3.23 1.70× 10−2 5.88× 10−3 4.91× 10−2 3.26× 101 6.70 1.59× 102

92 1.29 8.74× 10−1 1.91 3.02× 10−1 9.21× 10−2 9.93× 10−1 6.21 2.07 1.86× 101

93 1.95 1.51 2.51 1.05× 10−1 4.10× 10−2 2.70× 10−1 6.61 1.83 2.39× 101

*94 2.92 2.28 3.74 2.61× 10−2 6.00× 10−3 1.14× 10−1 7.78× 10−1 1.01× 10−10 5.99× 109

95 1.58 1.21 2.07 2.62× 10−1 6.78× 10−2 1.01 4.37 1.27 1.50× 101

*96 3.18 2.54 3.97 5.23× 10−2 1.97× 10−2 1.39× 10−1 1.31 2.29× 10−5 7.47× 104

97 1.13 6.60× 10−1 1.95 8.40× 10−1 2.76× 10−1 3.20 3.58 1.33 9.65
98 1.64 1.27 2.11 1.74× 10−1 6.73× 10−2 4.48× 10−1 8.05 2.17 2.98× 101

99 1.86 1.38 2.50 1.34× 10−1 4.22× 10−2 4.25× 10−1 6.24 2.07 1.89× 101

100 2.28 1.81 2.88 5.74× 10−2 1.69× 10−2 1.95× 10−1 2.81 4.27× 10−1 1.85× 101

* Denotes models with abnormal parameter estimates or extreme confidence limits.

The results further show that prediction uncertainty of hy-
draulic head increases when including parameter uncertainty
in the realizations of geological architecture. Although pa-
rameter uncertainty has generally been recognized as the
main source of uncertainty for groundwater head simu-
lations, our results show that geological heterogeneity is
equally important. Parameter uncertainty has some effects on
prediction uncertainty of travel time by introducing more ex-
treme travel times, but the bulk part of the travel time is still
within the same range, suggesting that geological uncertainty
is the critical factor in relation to travel time. Differences in
the geological architecture lead to vastly different travel path-
ways and hence travel time.
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