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Abstract. Uncertainty of groundwater model predictions has 1  Introduction

in the past mostly been related to uncertainty in the hydraulic

parameters, whereas uncertainty in the geological structure

has not been considered to the same extent. Recent devélVith the prevalent application of groundwater modeling, the
opments in theoretical methods for quantifying geo|ogica|inherent uncertainties associated with model simulation are
uncertainty have made it possible to consider this factor inwell acknowledged (Delhomme, 1979; Beven and Binley,
groundwater modeling. In this study we have applied thel992; Feyen et al., 2001; Hassan et al., 2008). Dettinger and
multiple-point geostatistical method (MPS) integrated in the Wilson (1981) divided uncertainty in groundwater systems
Stanford Geostatistical Modeling Software (SGeMS) for ex- into two classes: intrinsic uncertainty and information uncer-
ploring the impact of geological uncertainty on groundwa- tainty. A subsurface property, such as hydraulic conductiv-
ter flow patterns for a site in Denmark. Realizations from ity, is considered as intrinsic uncertainty due to its spatial
the geostatistical model were used as input to a groundwastochastic variations. The spatial variation is affected by dif-
ter model developed from Modular three-dimensional finite- ferences in large-scale parameter values between geological
difference ground-water model (MODFLOW) within the units superimposed by smaller-scale variation within the in-
Groundwater Modeling System (GMS) modeling environ- dividual units. Webb and Anderson (1996), Journel and Al-
ment. The uncertainty analysis was carried out in three sce@Pert (1990), Carle et al. (1998) and Mariethoz et al. (2009)
narios involving simulation of groundwater head distribution have suggested to incorporate these two contributions in a
and travel time. The first scenario implied 100 stochastic ge/nodeling framework by first defining the overall geologi-
ological models all assigning the same hydraulic parameter§@l structure and then incorporating the smaller-scale spa-
for the same geological units. In the second scenario the sanfé@l heterogeneity of the hydrogeological parameters within
100 geological models were subjected to model optimiza-he units. _ . _
tion, where the hydraulic parameters for each of them were A common approach to simulate spatial heterogeneity
estimated by calibration against observations of hydraulicn hydrogeology is to use geostatistics, and the traditional
head and stream discharge. In the third scenario each geologj’athOd is to employ variogram-based techniques (Del-
ical model was run with 216 randomized sets of parametershomme, 1979; Wingle and Poeter, 1993; Johnson, 1995;
The analysis documented that the uncertainty on the concedﬁ”se et al., 2009). Despite that these traditional methods
tual geological model was as significant as the uncertainty?ave been applied extensively during the last three decades,

related to the embedded hydraulic parameters. they only consider correlation between two spatial locations,
which often fails to depict distinct largely connected geolog-

ical structures. Further, due to mathematical simplifications
these methods can only capture a limited number of data
types (Caers and Zhang, 2004; Journel, 2005). Renard (2007)
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proposed three alternative techniques: the truncated pluriing uncertainty is based on two-point-based kriging. Feyen
Gaussian method, the continuous-lag Markov chain, ancet al. (2001) presented a study on stochastic capture zone
the multiple-point geostatistical approach (MPS), where thedelineation by using the GLUE method. The stochastic hy-
latter was viewed as the most appealing method. The addraulic conductivity distribution was generated by sequen-
vantages of MPS have been demonstrated by, e.g., Straéial Gaussian simulation, but the distribution was still gov-
belle (2002), Caers and Zhang (2004), Liu et al. (2005), Jourerned by a two-point covariance-based function. Harrar et
nel and Zhang (2006), Liu (2006), and Strebelle (2006). Everal. (2003) also conducted flow model uncertainty analysis
though the ability of using MPS for 3-D simulations was ac- considering both geological and parameter uncertainty, but
knowledged, only 2-D simulations were presented in theseonly two deterministic geological models were used. The two
studies. Fundamental to the application of MPS is the defini-models were defined from maps of cross sections and geolo-
tion of an appropriate training image (TI), which is a 2-D or gists’ experience without applying any geostatistical method.
3-D image of the geological characteristics or patterns of theFleckenstein et al. (2006) used the transition probability-
model area (Caers and Zhang, 2004). In the study of Lakdrased geostatistic simulation TPROGS (Carle, 1999) to gen-
Chad Basin, Le Coz et al. (2011) made a 3-D Tl by replicat-erate geological models. Each model was calibrated individ-
ing a single horizontal 2-D TI. However, they also realized ually to elucidate the impact of hydrogeofacies attributes on
that in this way the degree of similarity between two succes-river—aquifer exchange processes. However, only six models
sive layers is maximized vertically, resulting in a very high were analyzed since their attempt was not to carry out a full
nugget effect from 3-D simulations. Comunian et al. (2011) stochastic uncertainty analysis. Feyen and Caers (2006) pre-
demonstrated a hierarchical multiple-point method with asented a study in which the uncertainty on flow and trans-
complicated framework, which includes breaking large-scaleport modeling was quantified. For a relatively small two-
structures into a number of subregions and application ofdimensional synthetic fluvial system they generated 6500
3-D MPS to each heterogeneous subregion. Overall, theigeological realizations using MPS and 286 000 realizations
three-dimensional Tl was generated by object-based techef intrafacies hydraulic conductivity distribution using a bi-
niques for which the parameters were estimated manually bynodal distribution. In their analysis the effect of uncertainty
trial and error from 2-D observed sections. Honarkhah andon large-scale or effective parameters was not addressed.
Caers (2012) demonstrated a new MPS modeling paradignthis factor may be a significant source of uncertainty; see,
with 3-D TI, but the data source and method of generatinge.g., Refsgaard et al. (2012).
the 3-D Tl was not mentioned. Multiple-point geostatisticsis  The objective of this study is to apply the multiple-point
indeed appealing in stochastic hydrogeology, but so far thegeostatistical approach to analyze the contribution from the
application to 3-D problems seems to be constrained by théwo sources of uncertainty in groundwater modeling: geolog-
difficulty of acquiring a full 3-D TI. ical model uncertainty and effective parameter uncertainty.
Parameter uncertainty is usually analyzed by applyingThe parameter uncertainty considered here is related to the
Monte Carlo-based stochastic approaches, and the Geneestimation uncertainty of hydraulic conductivity of the con-
alized Likelihood Uncertainty Estimation (GLUE) (Beven sidered geological units. These units are assumed homoge-
and Binley, 1992) is one of the most popular methodolo-neous and not subject to intrafacies variability. We apply the
gies due to its conceptual simplicity and ease of implemenMPS method to a real field system and use a full 3-D TI
tation. However, the method has been subject to criticismbased on field measurements from an airborne geophysical
as the likelihood measure is “less formal” (Mantovan and campaign, which provides detailed 3-D data on the geolog-
Todini, 2006; Mantovan et al., 2007), the choice of like- ical composition. Using such data for defining the Tl intro-
lihood measure is subjective and the updating process reduces more field evidence in the geological characterization
quires abundant observations (Feyen et al., 2001). Recentlyhan in most other MPS studies, which is fundamental to the
several formal Bayesian methods for highly parameterizeccredibility of this particular stochastic approach.
groundwater models have emerged (Hendricks Franssen et
al., 2004; Tonkin and Doherty, 2005; Vrugt et al., 2008).
These global search methods have the advantage of providing Study area
a more robust uncertainty analysis but they are also highly-
CPU demanding and time-consuming. The study area is situated near @lgod in the western part of
Several studies have been reported in the literature on thdutland, Denmark, and covers an area of about 14.5km by
impact of parameter and geological uncertainty on ground-13.9 km (Fig. 1). The regional topography is gently flat, rang-
water modeling. Freeze et al. (1990) were among the first tang from 63.4 m above mean sea level (m a.s.l) at Bavnshgj in
jointly consider both geological and parameter uncertainty.the northwestern part of the areato 17.4 ma.s.l. along stream
Abbaspou et al. (1998) proposed the uncertainty analysivalleys. Seven streams originate in this region, which drains
framework BUDA (Bayesian Uncertainty Development Al- to Skjern River to the north and Varde River to the south.
gorithm). Despite its ability to quantify uncertainty by con- Groundwater is the main source of domestic and agricul-
ditioning on both hard and soft data, the approach for analyziural water supply in the area. The predominant land use
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Table 1. Observations of groundwater head and river flow.

7‘L Number of Standard  Observation
Observations  observations deviation period
Head Obs. 1 68 2m  2009-2010
L?"gb © Head Obs. 2 151 4m 1960-2009
o omx River Flow 1 812md~!  1990-2005
) Obz57
@ Q2532
© Borehole_Shallow
® Borehole_Deep
A Bavnshgj
s in the Miocene sand deposits or within the heterogeneous
Elevationmas) Pleistocene setting.

- Low: 17

1

Stometors 2.2 Data collection and processing
Fig. 1. Topography, stream network and observation stations around-2-1 ~ Geological and geophysical data

@Dlgod. “BoreholeShallow” are boreholes with bottom elevation ) ) o i
higher than-70 m a.s.l., while “Borehol®eep” are boreholes with ~ The three-dimensional geostatistical models developed in

bottom elevation lower thar 70 ma.s.l. The red line indicates the the study are based on multiple data sources, includ-
location of the cross section in Fig. 2. ing borehole description, seismic data and SkyTEM (air-
borne transient electromagnetic method) data (Hayer et al.,
2011). Borehole data are obtained from the Danish national
geological database JUPITERtip://www.geus.dk/jupiter/
is agriculture, which is featured by a well-developed sub-index-dk.htn). JUPITER contains over 240000 boreholes
surface drainage system. Weather in this area is influenceq,ith information regarding ge0|ogy, geography, hydrogeo|_
by both the North Sea and the European continent. Theygy, and groundwater chemistry. 525 boreholes with geolog-
average annual temperature is 82 with a maximum of  jcal description are located within the study area; however,
16.5°C in August and a minimum of 1% in January. 96 % of them are shallow wells with bottom elevation above
The mean annual precipitation in the area is approximately_70ma.s.I. (Fig. 1), and only 22 boreholes have data deeper
1050 mmyr?, with frequent intense rain in autumn and than —70ma.s.l. In the subsequent analysis the geological

winter and less rain in spring (Stisen et al., 2011). descriptions from JUPITER have been simplified and catego-
rized into four main geological units: Quaternary sand, Qua-
2.1 Geology ternary clay, pre-Quaternary sand and pre-Quaternary clay.

2.2.2 Construction of training image (TI
The lower boundary of the aquifers in the area is consti- g ge (T

tuted by thick impermeable Paleogene clay deposited inThe training image was indirectly constructed from SkyTEM
hemipelagic environments and located at depths of 260qata collected in the study area. The SKkyTEM system
320m (Hayer et al., 2013). The Paleogene clay is covered bysgrensen and Auken, 2004) measures the electrical resis-
Miocene clay, silt and sand deposits mainly originating from tivity of the subsurface down to about250 m, and this pa-
deltaic and shallow marine environments (Rasmussen et alrameter can be utilized for determining the clay content if
2010). The thickness of these Miocene deposits increasegroundwater salinity does not change considerably across the
from east to west in the study area and attains thicknesses @frvey area. The data were collected with a flight line spacing
up to approximately 150 m. During the Pleistocene, phasegf only 125 to 270 m (Hayer et al., 2011), providing a dense
of erosion, deposition and deformation resulted in a highlygata coverage. Data processing and inversion is described in
heterogeneous glaciotectonic complex above the Paleogenggyer et al. (2011). For the conversion from electrical resis-
and Miocene. Buried tunnel valleys were deeply incised andiyity to clay content a geostatistical estimation concept in-
subsequently filled, glacial and interglacial sediments wereyolving borehole information and SkyTEM data was devel-
deposited and the entire setting was finally heavily deformeobped (Jorgensen et al., 2012). This concept uses non-linear
by one or more glaciers in the Late Pleistocene (Jargensefyersion to estimate clay content in all cells of a regular 3-D
and Sandersen, 2006). The resulting Pleistocene sequencegfid by optimizing a translator function for the conversion.
therefore highly variable in thickness and ranges from 0 toThe final result was a binary sand—clay model discretized in

more than 300 m. Borehole data and seismic data CO"eCtea regu]ar 3-D gr|d Covering the entire study area (Jgrgensen
in the study area confirm a highly heterogeneous setting ogt al., 2012).

the Pleistocene sediments aboev&00 ma.s.l. (Hayer et al.,
2011). Groundwater reservoirs in this region are often found
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2.2.3 Hydrological data Geostatistical simulations primarily depend on the condi-
tional probability distribution function (cpdf). In SNESIM,
Two groups of hydraulic head data are available (Table 1)the cpdf is set equal to the corresponding training image
Group 1 includes 68 observations, which were obtained durproportions (Strebelle, 2002). This training proportion is ob-
ing the latest sampling campaigns in 2009 and 2010 (Alectiatained by scanning one or several training images (T1) with
2011), and Group 2 includes 151 observations retrieved frony multiple-node training template. The classical sequential
the JUPITER database. Group 1 data were considered to b§mulation paradigm (Goovaerts, 1997, p. 376) is used to
more accurate than Group 2 data, hence the standard devigraw the stochastic images. The main step is to first assign
tion for the uncertainty of the two types of data was assumechard data to the closest node of the simulation grid, while all
2 and 4m, respectively. the unknown nodes are visited once and only once by a ran-
Stream discharge is only available from one station,dom path. At each unknown node, all the surrounding hard
Q25.32, located slightly outside the study area in the north-data presented within a certain search template are retained
eastern part (Fig. 1). The topographical catchment area t@s conditioning data events, with which the corresponding
the station is around 64 kinBased on the historical daily conditional probability is computed.
data from 1990-2005, river discharge ranges from less than The crucial requisite of app|y|ng SNESIM is to provide
0.1m*s™* during summer to more than 5.Gw* dur-  a T| which represents the geological characteristics of the
ing late autumn, and the 16yr daily average discharge isstudy area. As the Tl is the primary source of uncertainty
0.8m*s™* (69000n¥d™1). when using MPS, an important step is to obtain the ap-
Estimates of groundwater recharge are extracted from th@ropriate TI (Comunian et al., 2011). Previous applications
Danish national water resources model, the DK-model (Henof MPS have mostly been constrained to 2-D TIs (Caers,
riksen et al., 2003). The net recharge (precipitation minus ac2001; Strebelle, 2002; Comunian et al., 2012). In this study
tual evapotranspiration) varies between 0to 2.5mmdnd e use the 3-D training image mainly based on the de-
on average the net groundwater recharge in the model area {gjled geophysical data collected during the flight campaign

computed to 611 mmyr. (Jergensen et al., 2012).
Groundwater abstraction data are extracted from the

JUPITER database. 165 pumping wells for domestic use, ir3.2  Groundwater and optimization models
rigation, fish farms and industry consumption are located in

the study area, with a total abstraction of .20°m®yr~* A steady-state groundwater flow model was constructed us-
for the period 2000 to 2010. ing the groundwater modeling computer code MODFLOW-
2000 (Harbaugh et al., 2000) within the framework of the
Groundwater Modeling System (GMS). To enable an ac-
curate representation of the geological heterogeneity in the
stochastic realizations, the Hydrogeologic-Unit Flow (HUF)
package (Evan and Mary, 2000) was used. The HUF package

An important part of this study is the generation of stochas-allows the vertical stratigraphy to be defined independently
tic geological models using the multiple-point geostatisti- Of the numerical model layers by using hydrogeologic units.
cal approach (MPS) (Guardiano and Srivastava, 1993; StreFor the groundwater flow process, the HUF package com-
belle, 2002; Journel and Zhang, 2006), which has been inputes the hydraulic properties of the model grid according to
tegrated in the Stanford Geostatistical Modeling Softwarethe hydrogeologic units within the model grid. The cell-to-
(SGeMS) (Remy et al., 2009). We apply the single normalcell flow conductance in horizontal and vertical directions is
equation simulation algorithm (SNESIM) (Strebelle, 2002) calculated as the arithmetic and harmonic mean, respectively,
of MPS, which has reconciled the strengths of traditional@s discussed by McDonald and Harbaugh (1988). Other ac-
object-based and pixel-based simulation algorithms (Liu ettivated packages are specified head, recharge (RCH), river
al., 2005). Object-based geostatistics is advantageous in cafRIV), drain (DRT) and well (WEL).

turing spatial pattern and structure but encounters difficulty Although several advanced inverse modeling methods
when conditioned to large amounts of local data. In con-based on global search algorithms have been presented re-
trast, traditional pixel-based algorithms honor local data bycently, they are mostly quite time-consuming. Since we only
reproducing a variogram or covariance model with two-pointfocus on hydraulic conductivities for steady-state flow con-
statistics, and in this process it eludes the geostatistical inforditions, advanced algorithms designed for multi-objective
mation concealed in large-scale patterns. The newly developtimizations are not required. Instead, we use the Model-
oped pixel-based algorithm, SNESIM, maintains the flexibil- independent parameter estimation & uncertainty analysis
ity of data conditioning and directly collects the probability (PEST) inversion code (Doherty, 2005) for parameter es-
distribution from a training image (TI) with multiple points, timation and for parameter sensitivity assessment. PEST

hereby overcoming the limitation of two-point geostatistics. Uses a local search algorithm and has the advantage of fast
convergence. Additionally, besides estimating the optimum

3 Modeling methodology

3.1 Geostatistical simulation
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parameter (Brauchler et al., 2007; Cheng and Chen, 2007 f

Baalousha, 2012), we also considered the equifinality of dif-

ferent parameter sets by sampling within parameters’ distri-

bution space.
Based on the flow solutions generated by MODFLOW, the

particle-tracking post-processing code MODPATH (David,

1994) was used to simulate particle travel time distributions.

The backward particle tracking option simulates the path- comodel crid m Quaternary Sand = Quaternary Clay

ways of particles from a certain cell to the possible corre- =pre-Quaternarysand  mpre-Quaternary Clay - m Paleogene Clay

sponding groundwater recharge points reversely along theiy > cross section with model grid and training image geolog-

flow direction. By sampling the group of particles in a cell, jca| structure. Location on plain view is shown in Fig. 1. Vertical
one can compute the probability distribution of travel time exaggeration is 15.

using basic statistical analysis.

3.3 Uncertainty analysis this way LHS captures the full parameter space in a simpli-

fied manner and requires much fewer model runs compared
The uncertainty associated with geological structure was antg normal random sampling. In our study, the distribution
alyzed by utilizing 100 stochastic geological realizations space for each of the three hydraulic parameters was divided
generated by SNESIM as input to MODFLOW. To distin- jnto six segments of equal probability, and therefore the to-
guish between parameter and geological uncertainty, thregy| number of simulations for each geological realization is
scenarios were defined: 63=216. We refer to the set of simulations for each geolog-
ical realization based on sampling in the parameter space as
. - o ParModel, while the ensemble of simulations for all geolog-
drau-||c pargmeters were specified for the individual 9€ical realizations and all parameter variations {9R16 sim-
ological units for all MODFLOW models. The param- ulations in total) is referred to as GeoParModel.

ft?r \(/jatl)ues \INE ret'take]rc] as Lh_e (;ngglar; of tdhel values ob- For all scenarios backward particle tracking was applied
ained by calibration of each individual modet. to four selected wells using MODPATH.

Scenario 1: GeoModel:lin the first scenario fixed hy-

Scenario 2: GeoModel-ilIn this scenario each model

was calibrated by PEST. The parameters included inthe;  Groundwater model setup
optimization were horizontal hydraulic conductivity of

Quaternary sand, Quaternary clay and pre-Quaternary.1 Geological structure

sand.
The groundwater model extends from land surface to

Scenario 3: GeoParModeln the third scenario param- —300ma.s.l., where the Paleogene clay occupies the whole
eter uncertainty was added. Each MODFLOW model area and is therefore taken as lower boundary of the model
based on GeoModel-Il was subject to a stochastic pa{Fig. 2). The corresponding geological setup consists of two
rameter analysis. Only the uncertainty of the hydraulic parts. The upper part includes layers from the land surface
conductivity of Quaternary sand, Quaternary clay andto —70ma.s.l. This part contains only heterogeneous Qua-
pre-Quaternary sand was considered, since the sensititernary sediments and has abundant borehole data for condi-
ity analysis documented that the groundwater flow sim-tioning simulation; hence this part is subject to the geosta-
ulations were mostly sensitive to these parameters. tistical simulations by SNESIM on a 100100 mx 5m
_ ) ) o grid. The lower part is generally dominated by comparably
Inthe analysis, the uncertainty of hydraulic conductivity was ore homogeneous pre-Quaternary sediments. The geolog-
assumed to be log-normally distributed (Freeze, 1975; Hoekjcq) structure of the pre-Quaternary sediments is described
sema and Kitanidis, 1985). The variation of hydraulic con- ,y 4 manual interpretation of mainly seismic data (Hayer et
ductivity between the realizations was generated based 0§ 2011; Jargensen et al., 2012), since only few boreholes
the optimization results, where the optimized values repreyeach this deeper part and the SKyTEM data show limited
sent the mean values and the standard deviations are derivegdso|ytion capability here (Hayer et al., 2011). At the places
from the 95 % confidence intervals (CI) estimated by PEST. \yhere Quaternary sediments are located between the pre-
Random sampling in the parameter space was carried Oy aternary surface ané70 ma.s.l., the geological model is

using the Latin hypercube approach (McKay et al., 1979).4¢fined by the SkyTEM-based training image (Fig. 2).
Latin Hypercube Sampling (LHS) is a stratified sampling

method where the parameter spacis divided intoN seg-
ments of equal marginal probabilityy ¥ and sampled val-
ues from different parameters are randomly combined. In
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Fig. 3. Transition probability of Quaternary sedimer(&) Borehole data in lateral directiofl)) data from 3-D training image (TI) in lateral
direction;(c) borehole data in vertical directio(d) data from 3-D Tl in vertical direction.

Sand Probability

d) 0 5 10 Kile te
e) ’ . L
A a Fig. 5. E-type estimation maps generated from 100 SNESIM real-
M izations.(a) Horizontal view at an elevation 6f10 ma.s.l.{b) X-Z
K 5 1 cross section with Z exaggeration of 16) Y-Z cross section with

¢ : 1 Klometers Z exaggeration of 15.

Fig. 4. 3-D training image (left) and an example of a geological
realization (right). Red and blue indicate Quaternary sand and clay, ] o ) .
respectively(a) Horizontal view of 3-D training image at elevation ~Ccreated to match the discretization of the geological model in

of —10ma.s.l.{b) X-Z cross section of 3-D Tl with Z exaggeration nearly all layers expect for the upper five layers (Fig. 2).

of 15;(c) Y-Z cross section of 3-D Tl with Z exaggeration of 18) The horizontal discretization was specified to
horizontal view of realization at elevation efl0 ma.s.l.;(e) X-Z 100mx 100m while 63 layers were used in vertical
cross section of realization with Z exaggeration of §pY-Z cross  direction. A cross section showing the vertical discretization
section of realization with Z exaggeration of 15. is presented in Fig. 2. To avoid the problem of dry cells in
the numerical simulations, the top layer was set to be thicker
than any other layer; on average the depth of the top layer
was 13 m. Average thickness of layers 2 to 5 was 4 m, while
layers 6 to 63 had thicknesses of 5m each in correspondence
with the geological model. In total there were 792 603 active
The geological model was imported to the groundwatercells in the MODFLOW setup.

model using the HUF package. As discussed above the HUF

package computes the hydraulic properties of a numerica#t.3 Boundary conditions

grid by averaging hydraulic parameters of all hydrogeologic

units present in that cell. Therefore, in order to avoid exten-No natural hydrological boundaries could be identified for
sive averaging of geological properties from the geostatisti-the groundwater model. Instead, the available observations of
cal simulations, the numerical groundwater model grid wasgroundwater head were used to interpolate the groundwater

4.2 Model discretization
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Table 2. Hydraulic conductivity of the geological units. Values
for Quaternary sand, Quaternary clay and pre-Quaternary sand are
found as the medians of 90 estimated parameter values from PEST
and used in GeoModel-I. Values for pre-Quaternary clay and Pale-
ogene clay are inferred from the DK-model.

Hydraulic Standard
conductivity deviation
Geological unit (K) (md1) Log10 (K) of Log10 (K)
Quaternary sand 2.0 0.3 0.1
Quaternary clay 0.09 -1.0 0.5
Pre-Quaternary sand 4.6 0.7 0.4
Pre-Quaternary clay 0.005 -5.3 -
Paleogene clay 861074 -71 -

the discharge data were downscaled according to the model
area, leading to a value of 59908 dr!. The well package

: (WEL) (Harbaugh et al., 2000) was used to simulate ground-
0 : 10 flometars water abstraction with a total pumping rate of 890tdn?.

Fig. 6. Standard deviation of groundwater head distribution derived
from 90 GeoModel-I models (first row) and from 90 GeoModel-Il 5 Results and discussion
models (second rowja) and(c) 1st layer,(b) and(d) 4th layer.
5.1 Geostatistical analysis and geological realizations

head variation along the boundary. The interpolated headd he geostatistical analysis presented in this section refers to
were specified as fixed head boundaries to the MOD-Quaternary sediments from the land surface-tma.s.|.
FLOW model, and the lower boundary was assigned asfhe primary geostatistical information required in SNESIM

no-flow boundary. is the radius of the search template and target proportion,
which is related to the mean length, and the proportion of
4.4 Sources and sinks each sedimentary unit. These values can be inferred from

transition probabilities, which represent the spatial variabil-

Groundwater recharge from the DK-model (Henriksen et al.,ity and structure of geological units in terms of conditional
2003) was used as input to the local model. The grid size oforobabilities of occurrence. The transition probability model
the DK-model is 500 mx 500 m. In order to fit the model, has the ability to quantitatively translate concepts and subjec-
which has a discretization of 100100 m, the recharge tive observations into a spatial variability model with infor-
data were downscaled by linear interpolation. mation of categorical variables’ proportion, mean length and

Large parts of the model area are drained by subsurfac@ixtapositional tendency (Carle and Fogg, 1996). The “sill”
tile drains (Henriksen et al., 2003). Therefore, drains wereof a transition probability curve implies the proportion of the
specified in the entire model area using the drain packageategory, while the distance where the slope line intersects
(DRT) (Harbaugh et al., 2000). Drain elevation was taken aswith the lag axis corresponds to the mean length of the cate-
1 m below land surface, and the drain time constant was segory.
to 1.7x 10~2s~1 in accordance with the DK-model (Hen- Figure 3a shows the lateral transition probabilities of the
riksen et al., 2003). The river package (RIV) (Harbaugh etborehole data. The mean lengths of the two categories can be
al., 2000) in MODFLOW was used to simulate the dischargeinferred from the intersections of the slope lines at lag dis-
in streams. The river network was determined from Geo-tance 0 with ther axis. The mean length of Quaternary sand
graphic information system (GIS) data, while the river level bodies is estimated to be around 400 m in lateral direction,
was taken from the national digital elevation model with a while that of Quaternary clay bodies is around 200 m. Based
resolution of 1.6 m, and the river bottom elevation was as-on borehole data the proportions of Quaternary sand and clay
sumed to be 1 m below river level. The river conductanceare around 67 and 33 %, respectively, which is confirmed by
was set to 16.8 mdt according to the DK-model (Henrik-  Fig. 3a.
sen et al., 2003). River discharge station Q25.32 was used Figure 3b shows the lateral transition probability based on
for model calibration. The average discharge for the periodthe 3-D training image. The estimated mean lengths of Qua-
1990 to 2005 was 69 0003d 2. Since only part of the catch- ternary sand and clay bodies are around 1600 and 800 m,
ment area to the discharge station was included in the modetespectively, and the proportions of these units are 59 and
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Table 3. Travel time based on backward particle tracking for four wells for GeoModel-I, GeoModel-1l, GeoParModel, and median of Par-
Models.R denotes the fraction of the 95 % confidence interval to the one from GeoParModel. Location of the four wells is shown in Fig. 8.

w1 w2 w3 w4

Median (year) 50 29 46 31
95 % Interval (year) 29 34 171 14
GeoModel-| R 91% 83% 87% 70%
Skewness 0.3 1.6 2.3 6.0
Median (year) 51 31 a7 31
95 % Interval (year) 33 41 282 36
GeoModel-Ii R 103% 98% 143% 183%
Skewness 0.7 1.2 35 3.8
Median (year) 52 31 a7 31
95 % Interval (year) 32 41 196 19
GeoParModel R 100% 100% 100% 100%
Skewness 0.8 1.3 10.5 8.1
Median (year) 52 31 48 31
) 95 % Interval (year) 6 5 21 5
Median of 90 ParModels R 18 % 12% 11% 26 %
Skewness 1.1 04 -04 -0.1

* Cell1

* Cell2

* Cell3

5 . Cell4

* Cell5

Cell6

. . Cell7

4 * Cell8

* Cell9
+ Cell 10

Std of simulated groundwater head (m/d)

a) Wi b) W2

0 10 20 30 40 50 60 70 80 90
Number of simulations

Fig. 7. Standard deviation of simulated groundwater head at se- - o
lected cells (GeoModel-1).

41 %. The diagonal graphs also indicate similar information, i
but the proportions are not strictly the same. It should be no- .
ticed that the relationship between proportions and the “Sill” o o .emary send = uatemary ciay g . 10 Kiomaters
of the diagram is not rigorous, especially when the diagram is : ‘

derived from raw data. Consider the expression of transitiongig g. | ocation of four wells for backward particle tracking (back-

probability (Carle and Fogg, 1996): ground shows geological structure of the training image at the depth
of the well screen)(a) W1, well screen at 3.66 te-4.96 ma.s.l.;
tjk(x.ny = {Pr category occurs at(x +h) | (b) W2, well screen at-4.98 to—10 ma.s.l.{c) W3, well screen at
categoryj occurs atr}. (1) 0.44 to—4.91 ma.s.l.(d) W4, well screen at-4.93 to—10ma.s.l.

Whenh approaches infinity;;x (. ») equals the proportion of
categoryk for all categories. Therefore, for the limited lag
distance, this proportion—sill relationship is more a guide to
fit the sill of a spatial variability model than an indicator of
category proportion from sill of raw data.

Hydrol. Earth Syst. Sci., 17, 3245326Q 2013 www.hydrol-earth-syst-sci.net/17/3245/2013/



X. He et al.: Prediction of groundwater head and travel time 3253

Mean Mean Mean

— Median — Median — Median
w1 GeoModel-I w1 GeoModel-Il w1 GeoPariodel
03!
g
H
S02
g
[l
01
% 40 60 80 100 20 40 60 80 100 20 40 60 80 100
04
Mean Mean Mean
— Median — Median — Median
w2 GeoModel-1 OIw2 GeoModel-1l w2 GeoParModel

Frequency
'
S

30 50 70 10 30 50 70 10 30 50 70

Mean Mean Mean
— Median — Median — Median
08 w3 GeoModel-I w3 GeoModel-iI w3 GeoParModel

Frequency

0 100 200 300 400 0 100 200 300 400 0 1000 2000 3000

Mean Mean Mean
— Median — Median — Median
08 w4 GeoModel-I w4 GeoModel-Il w4 GeoParModel

Frequency

100 0 100 0 50 200 250

100 150
Groundwater Age (Year)

25 50 75 25 50 75
Groundwater Age (Year) Groundwater Age (Year)

Fig. 9. Histogram of travel time of four wells for GeoModel-I (left column), GeoModel-Il (middle column) and GeoParModel (right column).
The green line indicates the mean value and the red line represents the median value.

Table 4. Simulated heads for four observation points for GeoModel-I, GeoModel-Il, GeoParModel, and the median of 90 ParModels. R
denotes the fraction of the 95 % confidence interval to the one from GeoParModel. Location of the four points is shown in Fig. 1.

Obs10 Obs34 Obs50 Obs57

Median (m) 36.4 26.6 27.9 30.0
GeoModel-I 95 % Interval (m) 25 2.3 1.0 1.7
R 114% 70 % 45% 121%
Median (m) 38.7 28.5 29.7 30.8
GeoModel-ll 95 % Interval (m) 1.3 1.7 0.9 1.2
R 59% 52% 41% 86 %
Median (m) 38.8 28.4 29.6 30.8
GeoParModel 95 % Interval (m) 2.2 3.3 2.2 1.4
R 100% 100% 100% 100%
Median (m) 38.8 28.4 29.6 30.8
Median of 90 ParModels 95 % Interval (m) 1.8 2.5 15 0.7
R 82% 76 % 68 % 50%

Figure 3c and d show the vertical transition probability length of Quaternary sand bodies is twice the corresponding
based on borehole data and TI, respectively. The mean lengtimean length of Quaternary clay, in both lateral and vertical
of Quaternary sand bodies is around 25m as indicated bylirections.
borehole data and around 60 m from 3-D Tl data. For Qua- Strebelle (2002) recommends that the global proportions
ternary clay bodies, the mean length is 12.5 and 30 m, correef the training image should be similar to the desired propor-
spondingly. Hence, both sources of data show that the meation in the final model. In our case, borehole data show 67 %

www.hydrol-earth-syst-sci.net/17/3245/2013/ Hydrol. Earth Syst. Sci., 17, 32486Q 2013



3254 X. He et al.: Prediction of groundwater head and travel time

Observation No. 32

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 [ .
iy
AR

« Observation -
28 ||
27F

5
=]

50
GeoModel-I
GeoModel-II
GeoParModel

@
]
<]

IS

)
N
3

@
-]

nwmﬁmwwmmmhmwww

Groundwater Head (m)

=
_Hq.
e —
e——
-
.
—
o
—

g 37
! e T . K
%35 - + 2o ¥ 2 k)
5 - . : 31 32 |
O] 1 —_ ] |
o s i Akl
EF . E} B & % %%‘ E 'N‘"Iql|lhl‘||llﬂl|hill||1lllﬂll[||| Iﬂlli[ill|||]|r|||]ﬂlll|lmll|\|m| 5 | |l| “| ||||| | |I| ||I|| L ||| || |] ||| i
st 7 | <> Bl TR LALIEINAUR T
25 % £ . | 1 e
45 ‘ ‘ 2 * .
627
EE‘ q d)
40! I 4
% EVF Fig. 11. Boxplot of simulated groundwater head at four selected

+ . observation points(a) Obs10,(b) Obs34,(c) Obs50,(d) Obs57.

The dashed green line is the observed groundwater head, the yel-
L 1 % E*F . % low color plots represent 90 simulations from GeoModel-I, the red

pa 5‘9 Fep ﬁl % 17 color plots represent 90 simulations from GeoModel-1l, the blue

|

\

Groundwater Head (m)
&
I

. - & & |
s 43 % gﬁ 4+ &+ % %* Eé*qa color plots represent GeoParModel, and the gray color plots rep-
iE & ¥+ % e resent simulations of the individual ParModels, each consisting of
+ ‘ & 216 simulations. The edges of the boxes are the 25th and 75th per-
% ‘ ‘ ‘ L _— ‘ centiles, and the whiskers extend to the 2.5th and 97.5th percentiles
36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 . .
Observation No. (values are listed in Table 4).

Fig. 10.Boxplot of simulated hydraulic heads against 68 observa-

tions from head obs. group 1. Greeq dots are observed groundwatﬁ_type map in Fig. 5. The E-type map is constructed as the
Iherzg’ é’;‘c')cr’w |C°|°r plots reprgserln §|muI:1t|ons from 90 Gecl’MOde"arithmetic mean of all realizations, where E stands for “ex-
' plots represent simulations from 90 GeoModel-Il, and pected value” or precisely “conditional expectation” (Remy
blue color plots represent simulations from GeoParModel. The
edges of the boxes are the 25th and 75th percentiles, and thgt al., 2009, p. 37). The heavy red or red dqts fme found at
whiskers extend to the 2.5th and 97.5th percentiles. places where boreholes are located, and that indicates that the
hard data have been honored in all 100 simulations. Except
for those hard data spots, there are no remarkable scattered
. small size clay lenses on the E-type map, and the pattern of
of Quaternary sand and 33 % of Quaternary clay, while the,y |enses in the E-type map shows a similar trend as in the
proportions extracted from the 3-D training image are 59 a”dtraining image.
41 %, respectively. Considering that borehole data are com-
paratively sparse in this area (approximately 0.04 boreholeg 2  Scenario I: geological uncertainty with constant
per kn?) and 80 % of the boreholes do not penetrate through parameter values (GeoModel-)
the whole model depth, the proportions from borehole data
hold a higher uncertainty than those based on the 3-D trainThe geological realizations simulated by SNESIM formed
ing image. Therefore, 59 and 41 % were defined as proporthe basis for a series of MODFLOW models all having the
tions for Quaternary sand and clay, respectively, in the MPSsame hydrogeological boundary conditions. In GeoModel-I
simulations. Since both borehole data and 3-D Tl show lat-the models were not calibrated and the same hydraulic pa-
erally isotropic geometry, the maximum and medium rangesameters were specified to all models (only 90 geological
for the search template ellipsoid were both set to 2000 mmodels in total were considered, as 10 were judged non-
and the minimum range in vertical direction was set to 80 mbehavioral and are listed with star marks in Table Al). The
to capture the facies’ heterogeneities. Figure 4 illustrates on@arameters used in this scenario were the median of the cal-
of the MPS simulations. By visual comparison, the figures toibrated parameter values, see Table 2. Figure 6 (first row)
the right (simulations) generally have similar patterns as theshows the standard deviation of hydraulic head of the 1st
Tl shown to the left, except that there appear to be slightlyand 4th numerical layer based on simulations of GeoModel-I.
more small clay lenses in the simulation. However, Fig. 4 The variation in the top layer is affected by the external and
only shows three slices of one of the 100 3-D simulations.internal boundary conditions, see Fig. 6a. As expected the
The 100 realizations are equally probable representations ofariation of hydraulic head tends to be stable towards river
the unknown reality. A broad overall view is shown in an courses and boundaries, while a maximum standard variation
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5.3 Scenario Il: geological uncertainty with optimized
parameter values (GeoModel-11)

$ " In this scenario (GeoModel-Il) we analyze to which extent
$ w 123 parameter optimization affects the uncertainty of the model
g &0 % predictions. Each model was calibrated by PEST, and param-
£ | . o eters included in the optimization were horizontal hydraulic
S 2o 1 |I R conductivity of Quaternary sand, Quaternary clay and pre-
o : s Quaternary sand. The estimated values together with 95 %

Fig. 12. Boxplot of simulated travel times for four wellg) W1, confidence limit of these 100 models are listed in Table Al.
(b) W2, (c) W3, (d) W4. The yellow color plots represent 90 sim- Abnormal parameter estimates as well as extreme confidence
ulations from GeoModel-I, the red color plots represent 90 simu-limits appear in 10 of the models (those marked with a star
lations from GeoModel-Il, the blue color plots represent GeoPar-in the list). These models were taken out, and the analysis
Model, and the gray color plots represent simulations of individual was applied on the remaining 90 models. Table 2 lists the
ParModels, each consisting of 216 simulations. The edges of thegnedian and the standard deviation of the 90 estimated pa-
boxes are the 25th and 75th.percentiles, and. the vyhiskers extend @ meter sets from the PEST analysis. As a result of the opti-
the 2.5th and 97.5th percentiles (values are listed in Table 3). mization the uncertainty is expected to decrease at least for
hydraulic head, as each model is calibrated against head ob-
servations. The second row of Fig. 6 shows the results in the
of nearly 3m is found at the higher elevation in the northernform of standard deviation of groundwater head for the same
part. For a further analysis of the convergence of the 90 modtwo computational layers as shown in the first row. Compar-
els, standard deviation was computed for ten cells for differ-ing the two sets of results it is apparent that for both layers
ent numbers of model runs. These ten cells were randomlyhe standard deviation has reduced for GeoModel-II, imply-
selected in the top layer, since this layer has the highest hying that the uncertainty reduces when the model parameters
draulic head variation. Further, the locations of the cells wereare conditioned on hydraulic head data. In Table 4 statis-
in sufficient distances from the model boundary and rivertics of simulated groundwater head for four selected obser-
courses such that the standard deviation was not constrainedation points are listed (see location in Fig. 1). As shown in
Figure 7 shows the development of the standard deviatiorFig. 6, the uncertainty range differs at different layers, and
of simulated groundwater head with the number of modelsto cover an appropriate range of groundwater head distribu-
The standard deviation of groundwater head seems to stabtions, the observation points were selected to represent each
lize after 30 model runs, and 90 simulations seem more tharwf the layers 1 to 4. Using the 95 % confidence interval of
sufficient to collect the statistics information. the GeoParModel simulation as reference, it is apparent that
Backward particle tracking was applied to four abstrac- GeoModel-1 is subject to higher uncertainty than GeoModel-
tion wells having different positions and with the well screen Il as reflected by th& values. When calibrating against head
at different levels (Fig. 8). Each well was assigned 100 par-measurements the simulations of heads obviously improve
ticles, which were backtracked and travel time distributionsand the calibrated parameter values partially compensate for
computed using MODPATH. Table 3 lists median travel time, possible biases embedded in the different geological realiza-
95 % confidence interval, and skewness for these four wellstions.
In Fig. 9 (left column) histograms of simulated particle travel Backward particle tracking was applied to the same cells
time are shown. For wells located in the northwestern partas in scenario GeoModel-1. Figure 9 (middle column) shows
the distributions of simulated particle travel time are lessthe histogram of travel time for 90 simulations of each well,
skewed due to the primarily downward flow resulting in cap- and associated statistics are listed in Table 3. Compared to
ture zones located close to the wells. For W1 the travel timesimulations of GeoModel-I the median travel times are quite
are in the range of 25-70 yr with a median value of 50 yr andsimilar for all four wells and the distributions for W3 and
a skewness value of 0.3. For W2 the travel times are mostlyw4 are also more skewed than for W1 and W2. In contrast to
in the range of 20-75yr with a median value of 29 yr and the groundwater head simulations, the uncertainty ranges of
a skewness value of 1.6. For the wells in the southeastertravel time for GeoModel-I are smaller than for GeoModel-
part, the distributions of travel time become more skewed, asl as indicated by theR values. The higher variability in
this region is dominated by horizontal flow resulting in elon- the simulated travel time of GeoModel-1l is a result of the
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calibration process. When calibrating against head measuresf all 90 ParModels is slightly higher than the corresponding
ments the resulting variation in parameter values gives risenterval for GeoModel-1l for three of the observation points.
to a higher variability in flow pathlines and velocities, and This suggests that the effect of parameter uncertainty is com-
realizations with extreme travel time are introduced. Similar parable to the effect of geological uncertainty with respect to
results were obtained by Refsgaard et al. (2012). hydraulic head uncertainty.
Backward particle tracking was applied to the 216 param-
5.4 Scenario lll: geological and parameter uncertainty  eter realizations of each ParModel. The travel time distribu-
(ParModel and GeoParModel) tion of 90x 216 realizations is plotted in Fig. 9 (right col-

umn), and the corresponding values of median, 95 % interval
The parameters included in the parameter uncertainty analand skewness are listed in Table 3. By introducing parame-
ysis were the same three parameters which were optimizeter uncertainty in the GeoParModel, the uncertainty ranges
by the PEST code in the previous scenarios. For each obf travel time have increased somewhat, as more extreme
the 90 models developed in the GeoModel-Il scenario, 21@ravel times are found when comparing the right and mid-
parameter sets were sampled and each sampled parametie columns of Fig. 9. However, this is not necessarily re-
set served as input to MODFLOW simulations. Figure 10 flected in theR values. TheR values are computed from
shows boxplots of the distribution of simulated heads basedhe 95 % confidence intervals and when the skewness is not
on GeoModel-I, GeoModel-Il, and GeoParModel for each of comparable between the scenarios as for W3 and W4, the
the 68 observation points from Head Obs. Group 1 in Ta-R values may be misleading. Nevertheless, in contrast to hy-
ble 1. The edges of the boxes represent the 25th and 75tdraulic head simulation, parameter uncertainty has much less
percentiles, while the whiskers extend to the 2.5th and 97.5tleffect on travel time simulation. This can be inferred from the
percentiles, respectively. The observed groundwater headgery low R values based on the median of the 90 ParModels
for each well are shown by green dots. The simulations basednd also evidenced from the boxplots of the individual Par-
on GeoModel-I (yellow boxes) are generally lower than the Model simulations shown in Fig. 12. Although there are a
corresponding observations. This bias is a result of the imfew outliers, overall the uncertainty intervals of the individ-
posed constant parameter values. As expected, the resultsl ParModels are generally shorter than the corresponding
from GeoModel-1l are in better agreement with observationsintervals for GeoModel-I and GeoModel-Il, suggesting that
and the associated uncertainties (red boxes) are less than ftre effect of parameter uncertainty is relatively low with re-
GeoModel-I. When parameter uncertainty is added represpect to travel time. In this regard the geological architecture
sented by GeoParModel (blue boxes) the uncertainty of thés the most critical factor.
simulated heads is increased and is higher compared to the
two other scenarios.

To illustrate the impact of parameter uncertainty explic-
|tly, boxplots for h_eads at four randomly _sele.cted observatlonThiS study has examined the impact of geological and pa-
points (same as in Table 4) are shown in Fig. 11. The green ) . .

. . : rameter uncertainty on real case simulations of groundwater
dashed lines in the figures represent the observed groundwa-

: eads and travel time using the multiple-point geostatistical
ter heads, while the yellow, red and blue boxplots represen h L2 ved f h
the same scenarios as in Fig. 10. The gray boxplots show threnet od (MPS). A3-D tra|r_1|ng image derlv_ed rom geopnys-
L al data was used as basis for the MPS simulations. Usually

results from the ParModels. As stated above, each ParMode'?

represents the results of 216 simulations, which are generate%‘eolohyS'C(Jll data are used as soft data for conditioning, how-

o ; ever, as used here it was possible to develop a reliable 3-D
from random sampling in the parameter spaces derived from

the PEST analysis of each GeoModel-1l. The median vaIue:;geC)loglcaII model as a training image input to the MPS,

. . Generally one would expect that the uncertainty range

and 95 % uncertainty ranges for all scenarios for these four . Lo
) . ) ; . will decrease when calibrating models, but our results show
points are listed in Table 4. The results listed in the last row

of the table are the median values of the results of all the 9dhat this is not always the case. Although the uncertainty of

ParModels, i.e., median of the medians and 95 % intervalsgroundwate.r head S|mqlat|ons IS re_duced when the parame-
P . . ters are calibrated against hydraulic head observations, the

We take these results as a representation of the impact of pa-

rameter uncertainty. Using the uncertainty range of GeoPaerpOSlte Is the case for the uncertainty of travel time simu-

Model as reference, th& values for the GeoModel-Il are lations. Calibration implies that biases in the realizations of

much lower than 100 %, indicating that the uncertainty from geological architecture are compensated by errors in param-

GeoModel-Il is less than that from GeoParModel. The differ- gter values which lead to a larger range of variation in travel

S . Pme. This also underpins previous findings that when using
ence between the two scenarios is that parameter uncertaln[%oOIeIS outside the calibrated regime, which indeed is the
has been z;dded to Qe;oParModel, suggesting that uncerta}lné/ase when simulating travel time, the prediction uncertainty
on hydraulic head is increased when parameter uncertalnt\r/ hiah
is considered. The median values of the 90 ParModels liste® "9

in Table 4 show that the median of the uncertainty intervals

6 Conclusions
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Table Al. Estimated hydraulic conductivity and confidence limits from PEST.

3257

HK_Quaternary Sand (md)

HK_Quaternary Clay (md?)

HK _pre-Quaternary Sand (ntd)

Model No. Estimated Value 95 % Confidence Limits Estimated Value 95 % Confidence Limits Estimated Value 95 % Confidence Limits
Lower Limit  Upper Limit Lower Limit ~ Upper Limit Lower Limit ~ Upper Limit
1 1.75 1.23 2.50 2251071 5.65x 1072  8.92x 1071 5.37 1.23 23610
2 2.93 2.28 3.76 6.1 102 2.60x 1072 1.43x 1071 991x 1071 562x103  1.75x 102
3 2.10 1.71 2.58 1.49 1072 3.18x 103 6.98x 1072 1.71x 10 343 855« 10t
4 2.06 1.63 2.60 3.1% 102 3.03x103  3.19x 1071 130 2.46x1072  6.89x 10!
5 2.20 1.78 2.71 6.5 102 2.92x 1072 1.45x 1071 6.63 182 2.4x10
*6 3.13 2.66 3.67 2.16107°  6.30x10°20  7.43x10° 2.33x 102  2.71x 100  2.01x 103
7 2.16 1.70 2.76 9.5% 102 415%x 102 2.21x10°1 359 363x101  355x 10t
8 1.94 151 2.50 1.2%10°1 5.34x 1072 2.72x 1071 6.10 147 25410
9 1.11 6.49< 101 1.89 8.57x 1071 2.19x 1071 3.35 4.50 171 11910t
10 2.41 1.68 3.46 7.06 1072 1.71x 1072 2.92x 1071 1.05 4.80x1073  2.31x10?
11 2.19 1.82 2.63 6.78 1072 2.65x 1072 1.71x 1071 186 1.29x10°1  2.69x 10!
*12 3.34 2.81 3.96 8.3210°6% 6.39x 107253 1.10+242 829 62x%10°1 1.11x10?
13 1.95 1.43 2.65 7591072 2.24x 1072  2.56x 1071 5.30 111 25410
*14 3.25 2.69 3.91 2.1%1077 2.11x 107397 2.11x 10793 457x 102  3.77x10'  553x 103
15 2.16 1.69 2.76 7301072 2.84x 1072 1.88x 1071 5.39 116  2.4% 10
16 2.12 1.65 2.71 9.2210°2 3.70x 1072  2.29x 1071 6.30 154 25%10
17 2.27 1.91 2.71 3.8910°2 5.11x 1073 2.97x 1071 1.80 1.79% 1071 1.81x10!
18 1.73 1.34 2.22 2021071 6.56x 1072  6.14x 1071 4.88 111 21410
19 1.29 8.8% 1071 1.87 4.54¢ 1071 1.23x 1071 1.67 6.46 229 18210
20 2.82 2.27 3.49 5.92 1072 2.16x 1072 1.62x 1071 221 1.74<1071  2.80x 10!
*21 3.28 2.87 3.75 3.9210°5 6.58x10735 2.33x 10%° 6.19x 1071 361x1074  1.06x 10°
22 1.99 1.41 2.81 188101  7.47x102 4.48x1071 6.30 173 2.2% 10t
23 2.99 2.49 3.60 184102  544x103 6.02x 1072 305 1.65x10°1 5.61x10t
24 2.00 157 2.55 126101 479x102 3.31x10°1 4.95 121 2.0x10t
25 1.95 157 2.41 9951072  4.02x10°2 245x10°1 1.03x 10 307 3.44x 10
26 1.75 1.34 2.29 8.0£10°2  3.77x10°2 1.70x1071 2.18x 10! 829 57310t
27 1.80 1.30 2,51 2121071 517x102 8.64x107! 297 731x10°1  1.21x10t
28 2.09 1.78 2.46 2181072  4.71x10°3 9.63x 1072 1.03x 10 341 31310t
29 2.05 1.59 2.64 145101  561x102 3.75x10°1 244 407x10°1  1.46x 10t
30 2.77 2.29 3.36 4061072  1.49x1072 1.11x10! 264 383101 1.81x10t
31 1.79 1.36 2.35 155101  437x102 551x10°! 4.24 1.08 1.6% 10"
32 2.67 2.23 3.18 2121072  6.29x 103  7.06x 1072 291 168101 505x10t
33 2.47 2.05 2.99 34%£10°2  6.68x10°3 1.74x 107! 119 1.2 102  1.17x10?
34 2.39 1.86 3.07 6.241072  2.45x10°2 1.57x10°! 320 4231071  2.42x10t
35 2.20 1.71 2.83 6481073  247x104 1.67x101 484x 107  1.98x 100  1.18x10%
36 2.58 2.08 3.20 3721072  1.77x10°2 7.80x 1072 344 251x10°1  4.72x10t
37 1.69 1.29 2.21 2061071 7.09x102 6.00x 107! 4.23 1.08  1.66c 10"
38 1.81 1.41 2.32 1581071  535x102 4.35x10°! 5.96 161  2.2k10t
39 2.12 1.68 2.69 9.02 1072 2.72x1072  2.99x 1071 327 672101  1.59x 10t
40 2.60 2.11 3.21 2881072  1.14x10°2 7.28x 1072 433 253101  7.43x10
41 2.21 1.79 2.74 2271072  595x10°3 8.67x 102 2.62x 10 6.39  1.07x 107
42 2.03 1.58 2.60 7.55 1072 353x 1072  1.62x 1071 1.05x 10t 3.23  3.40x 10t
43 2.23 1.80 2.76 5.90 102 2.22x1072 157x10°1 276 221x1071  3.45x 10t
44 2.14 1.60 2.86 1.4% 1071 5.06x 1072 3.93x 1071 7.14 155 3.3 10!
45 241 1.90 3.07 8541072  355x10°2 2.04x 1071 208 1.95<10°1  2.22x10t
46 1.23 7.18¢1071 2.10 8.01x 1071 3.22x 1071 2.52 3.38 1.13  1.0% 10t
47 2.33 1.85 2.93 176102  579x103 531x10°2 2.62x 10 736  9.30x 10t
48 1.71 1.36 2.16 8461072  3.41x102 2.10x10°! 9.84 3.09 31410
49 1.52 1.12 2.05 2261071 758x 1072  6.72x 1071 4.60 1.38  1.5410!
*50 2.63 2.28 3.02 879105 365x10°18  212x10 577 3.85x10°1  8.66x 10!
51 2.12 1.79 2.53 2.9610°2 7.24x 1073 1.21x 1071 1.13x 10 321  4.00x 10
52 2.06 1.68 2.54 7.0810°2 3.30x1072 1.50x10°1 5.84 171 2.0 10!
53 2.13 1.65 2.76 1.0810°1 3.21x 1072 3.61x10°1 264 429101  1.63x10t
54 2.84 2.39 3.36 1.82 102 4.95%x 103  6.62x 1072 531 885x101  3.19x 10t
55 1.90 1.39 2.61 8.2010°2 2.93x 1072 2.30x 1071 4.64 101  2.1410
56 1.87 1.41 2.49 148101 3.80x 1072 5.75x10°1 372 809101 1.71x10t
57 1.87 1.41 2.49 1221071 418%x 1072 3.85x10°1 5.46 136 2.1% 10!
58 1.84 1.29 2.60 2391071 5.65x 1072 1.01 249 56101  1.11x10t
59 2.60 2.07 3.26 3191072 7.24x 1073 1.41x 1071 120 2.88x1072  5.04x 10!
*60 1.27 7.93< 1071 2.03 1.35 4751071 3.81 498<10°1 3.80x103  6.54x 10t
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Table Al. Estimated hydraulic conductivity and confidence limits from PEST.

HK_Quaternary Sand (nmd") HK_Quaternary Clay (md?) HK_pre-Quaternary Sand (ntd)
ModelNo. Estimated Value 95 % Confidence Limits Estimated Value 95 % Confidence Limits Estimated Value 95 % Confidence Limits
Lower Limit  Upper Limit Lower Limit ~ Upper Limit Lower Limit  Upper Limit
61 1.92 1.54 2.38 1.081071 437x10°2 2.43x 107! 7.94 216  2.9x10t
62 2.04 153 2.71 1.48 1071 6.02x 1072 3.63x 1071 448 9.00x10°1  2.23x 10t
63 2.20 1.74 2.77 5541073 277x 104 1.11x10°% 4.55% 102 1.18x 108 1.76x 10%
64 1.49 9.54¢ 1071 2.32 4.89x 1071 1.53x 1071 1.56 285 8.1%10°1  1.00x10
65 3.26 2.78 3.82 1.62 1072 1.89x 1073 1.39x 1071 343 211x10°1  557x 10t
66 1.82 1.48 2.24 7.8810°2 3.90x 102 157x10°1 9.30 275 31410t
67 2.59 2.19 3.05 1.04 1073 4.25% 1079 2.57x 102 264 4381072  1.59x 107
68 1.95 152 2.52 1101071 3.75x 102  3.20x 1071 540 820x10°!  355x10!
69 1.45 9.58¢ 1071 2.19 2.79% 1071 8.50x 1072 9.19x 1071 3.85 128 11610
70 2.28 1.73 3.02 6.56 1072 253x 1072 1.70x 1071 256 1.24<10°1  529x 10!
71 1.91 1.36 2.69 1.6% 1071 6.97x 102 3.99x 101 7.67 232 25410
72 2.40 2.03 2.85 3.4810°2 1.00x 1072  1.17x 1071 8.03 165 3.9k10
73 1.89 1.43 2.49 6.3810°2 2.86x 1072 1.43x10°1 2.46x 10! 8.03 75710
74 2.78 2.28 3.39 4181072 1.96x 1072  8.91x 1072 382 562101  2.60x 10
75 1.22 7.54¢ 1071 1.98 6.50x 10~1 1.62x 1071 2.61 4.87 1.86 1.28 10!
*76 2.60 2.29 2.95 242106 7.95%x107115 7.36x 10102 174 1121071 2.70x 10!
77 2.00 1.62 2.46 9.8010°2 429%x 1072 2.24x10°1 4.92 133  1.8x10
78 2.72 2.17 341 3.4510°2 1.32x 1072 9.01x 1072 6.54 1.07  4.0x10
79 1.74 1.19 2.53 3.7¢10°1 1.08x 1071 1.28 326 82x10°1  1.28x10!
80 1.88 1.52 2.34 8.1 1072 247x 1072  271x10°1 424 827x 101 2.17x 10t
81 1.36 8.44< 1071 2.18 8.34x 1071 2.74x 1071 3.18 1.88 15%10°1  231x 10t
82 1.37 8.71x 1071 2.14 6.92<10°1  2.08x1071 2.30 273 83x10°1 8.99
83 2.52 2.04 3.10 6.981072  3.02x10°2 1.61x10! 3.28 347x10°1  3.10x10
84 1.70 1.33 2.18 1.9¥10°1  8.92x102 4.35x10°1 9.54 361 25x10
85 1.74 1.27 2.38 2261071 7.16x102 7.16x1071! 4.00 111 1.45%10
86 1.35 8.721071 2.08 5.39% 1071 1.87x 1071 155 5.29 1.84 15210
*87 2.85 2.47 3.29 142105 6.97x10°30  2.88x 10 8.47x 10t 1.90x 10! 3.78x 10?
88 1.77 1.23 2.55 2981071  7.45x10°2 1.19 293 7.0x101 1.22x10!
89 1.03 5.5% 1071 1.89 7.01x 1071 1.96x 1071 251 4.19 165  1.06 10
90 1.43 1.01 2.01 2521071 9.36x102 6.80x 107! 6.86 223 21k10
91 2.60 2.09 3.23 179102  588x103 4.91x10°2 3.26x 10! 6.70  1.59% 107
92 1.29 8.74< 1071 1.91 3021071 9.21x1072 9.93x10°! 6.21 207  1.86 10
93 1.95 1.51 251 108101  410x102 2.70x10°1 6.61 1.83  2.3% 10!
*94 2.92 2.28 3.74 26%x1072  6.00x10°3 1.14x10°! 7.78x10°1  1.01x107°10  599x10°
95 158 1.21 2.07 2621071  6.78x10°2 1.01 4.37 127 15810
*96 3.18 2.54 3.97 5.23 1072 1.97x102  1.39x 1071 131 229% 105  7.47x10%
97 1.13 6.60< 10~1 1.95 8.40x 1071  2.76x 107! 3.20 3.58 1.33 9.65
98 1.64 1.27 2.11 174101 6.73x102 4.48x10°! 8.05 217 29810
99 1.86 1.38 2.50 134101 4.22x10°2 4.25x 1071 6.24 2.07 1.8%10!
100 2.28 1.81 2.88 574102  1.69x102 1.95x10°! 281 427x1071  1.85x 10!

* Denotes models with abnormal parameter estimates or extreme confidence limits.

The results further show that prediction uncertainty of hy- Acknowledgementsiould you like to write an acknowledgement?
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equally important. Parameter uncertainty has some effects 0Ofppaspour, K. C., Schulin, R., Van Genuchtena, M. T., and
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within the same range, suggesting that geological uncertaintylectia: Boringsregistrering og synkronpejling | oadet “@lgod-
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