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Abstract. The increase in spatially distributed hydrologic
modeling warrants a corresponding increase in diagnos-
tic methods capable of analyzing complex models with
large numbers of parameters. Sobol′ sensitivity analysis has
proven to be a valuable tool for diagnostic analyses of hy-
drologic models. However, for many spatially distributed
models, the Sobol′ method requires a prohibitive number
of model evaluations to reliably decompose output variance
across the full set of parameters. We investigate the potential
of the method of Morris, a screening-based sensitivity ap-
proach, to provide results sufficiently similar to those of the
Sobol′ method at a greatly reduced computational expense.
The methods are benchmarked on the Hydrology Laboratory
Research Distributed Hydrologic Model (HL-RDHM) over
a six-month period in the Blue River watershed, Oklahoma,
USA. The Sobol′ method required over six million model
evaluations to ensure reliable sensitivity indices, correspond-
ing to more than 30 000 computing hours and roughly 180
gigabytes of storage space. We find that the method of Mor-
ris is able to correctly screen the most and least sensitive
parameters with 300 times fewer model evaluations, requir-
ing only 100 computing hours and 1 gigabyte of storage
space. The method of Morris proves to be a promising di-
agnostic approach for global sensitivity analysis of highly
parameterized, spatially distributed hydrologic models.

1 Introduction

Distributed hydrologic models aim to improve simulations
of watershed behavior by allowing forcing data and model
parameters to vary across a spatial grid. Recent advances
in hydrologic data collection and computing power have in-
creased the appeal of distributed models while also allowing
further increases in complexity (Smith et al., 2004, 2012).
This added complexity is not without cost; a typical dis-
tributed model usually contains thousands more parameters
than a lumped model, causing a commensurate leap in com-
putational requirements as well as challenges in diagnosing
model behavior (van Griensven et al., 2006; Gupta et al.,
2008). Calibration of such highly parameterized models re-
mains difficult, not only due to the computation involved,
but also because of their highly interactive parameter spaces
and nonlinear, multimodal objective spaces (Gupta et al.,
1998; Carpenter et al., 2001). To address these challenges,
this study explores diagnostic methods capable of character-
izing the complex relationships between distributed model
parameters and objectives efficiently and accurately.

Sensitivity analysis has long been used to derive diagnos-
tic insight from hydrologic models by identifying the key in-
put factors controlling model performance (Hornberger and
Spear, 1981; Franchini et al., 1996; Freer et al., 1996; Wa-
gener et al., 2001; Muleta and Nicklow, 2005; Sieber and Uh-
lenbrook, 2005; Bastidas et al., 2006; Demaria et al., 2007;
Cloke et al., 2008; Van Werkhoven et al., 2008a, 2009; Wa-
gener et al., 2009; Reusser et al., 2011; Reusser and Zehe,
2011; Herman et al., 2013). The most common applications
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of sensitivity analysis include factor fixing, in which insensi-
tive inputs are assigned fixed values to simplify further anal-
ysis; factor prioritization, in which the most sensitive inputs
are identified; and factor mapping, which identifies the re-
gions of the input space in which a particular input is most
sensitive (Saltelli et al., 2008). A number of input factors can
be explored in a sensitivity analysis, including forcing vari-
ables, but in diagnostic applications it is common to analyze
model parameters directly. In this study, we aim to analyze
the ranking of sensitive model parameters (i.e., both those
that are sensitive and insensitive) as well as to compare their
quantitative measures of sensitivity.

Sensitivity methods can be broadly divided into local
methods and global methods. Local methods provide mea-
sures of importance around a single point in the param-
eter space. Global methods aim to reflect the importance
of a parameter throughout the full multivariate space of a
model. Relatively few studies have performed global sensi-
tivity analysis for spatially distributed models due to the se-
vere computational demands posed by sampling their high-
dimensional parameter spaces. Distributed sensitivity stud-
ies in hydrology and land surface modeling have often ad-
dressed this problem by aggregating parameter values across
the model grid or subgrids (e.g.,Carpenter et al., 2001; Hall
et al., 2005; Sieber and Uhlenbrook, 2005; Zaehle et al.,
2005; Alton et al., 2006). Fewer still are studies which have
performed a sensitivity analysis on a full set of spatially dis-
tributed parameters (e.g.,Muleta and Nicklow, 2005; van
Griensven et al., 2006; Tang et al., 2007a; Van Werkhoven
et al., 2008b). These studies clearly show the benefits of
performing a global sensitivity analysis on a distributed
model without sacrificing resolution in the parameter space.
This study hypothesizes that the need for such sacrifices
(i.e., to reduce computational demands) can be reduced with
a careful choice of sensitivity analysis method.

This study compares the efficiency and effectiveness
of two state-of-the-art global sensitivity analysis methods,
Sobol′ sensitivity analysis (Sobol′, 2001; Saltelli, 2002) and
the method ofMorris (1991). Sobol′ sensitivity analysis is
a variance-based method that attributes variance in the model
output to individual parameters and their interactions. In
a comparison of several widely used sensitivity methods, the
Sobol′ method was found to provide the most accurate and
robust sensitivity indices, particularly in nonlinear models
with strong parameter interactions (Tang et al., 2007b; Yang,
2011). However, the number of model evaluations required
for the Sobol′ indices to converge increases rapidly with the
number of parameters, making its efficiency questionable in
the distributed case. The method ofMorris (1991) measures
global sensitivity using a set of local derivatives (elemen-
tary effects) taken at points sampled throughout the parame-
ter space. The method of Morris can estimate parameter in-
teractions by considering both the mean and variance of the
elementary effects.

The two sensitivity analysis methods are implemented for
the Hydrology Laboratory Research Distributed Hydrologic
Model (HL-RDHM) (Koren et al., 2004; Reed et al., 2004;
Smith et al., 2004; Moreda et al., 2006), developed by the
United States National Weather Service (NWS). The model
is used to simulate the Blue River watershed, Oklahoma,
USA, over a 6 month period using hourly time steps and
forcing data. Sensitivity results from the Sobol′ and Mor-
ris methods are compared spatially and statistically to de-
termine the extent to which the method of Morris provides
computational savings while maintaining sensitivity indices
sufficiently similar to those of the Sobol′ method. In turn,
we investigate whether the method of Morris is a promis-
ing candidate to overcome the challenges to diagnostic anal-
ysis posed by the high-dimensional parameter spaces of
distributed hydrologic models.

2 Model and study area

2.1 HL-RDHM model

The HL-RDHM, developed by the United States NWS, is
a modeling framework for building lumped, semi-distributed,
and fully distributed hydrologic models (Koren et al., 2004;
Reed et al., 2004; Smith et al., 2004; Moreda et al., 2006).
The model is structured using a 4 km× 4 km grid resolu-
tion derived from the Hydrologic Rainfall Analysis Project
(HRAP), which corresponds to the NEXRAD (Next Genera-
tion Weather Radar) precipitation products developed by the
US NWS. The water balance within each grid cell is mod-
eled with the Sacramento Soil Moisture Accounting (SAC-
SMA) model (Burnash and Singh, 1995). Figure1c shows
the water balance components of the SAC-SMA model in
each grid cell. Routing between grid cells is modeled with
a kinematic wave approximation to the St. Venant equa-
tions. This study performs sensitivity analysis on 14 param-
eters of the SAC-SMA model within each cell of the HRAP
grid as shown in Fig.1c. Since the model contains 78 grid
cells, a total of 78× 14 = 1092 parameters are required to
perform sensitivity analysis without spatial aggregation. The
sampling ranges for these parameters are derived from prior
work (Van Werkhoven et al., 2008b) and in consultation with
the National Weather Service. Note that the correct choice
of sampling ranges is critical to ensure representative model
performance in sensitivity analyses (Sobol′, 2001; Nossent
and Bauwens, 2012a).

2.2 Study area: Blue River, Oklahoma

The computational experiments in this study were per-
formed for the Blue River basin in southern Oklahoma,
one of the basins included in the Distributed Model Inter-
comparison Project Phase 2 (DMIP2) (Smith et al., 2012).
Figure 1a shows the location of the Blue River. The wa-
tershed is represented by 78 HRAP grid cells, as shown in
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Fig. 1. (A) Location of the Blue River basin in southern Oklahoma, USA.(B) The 78 HRAP grid cells of the Blue River basin (shaded).
(C) The Sacramento Soil Moisture Accounting (SAC-SMA) model, which simulates the water balance in each grid cell.

Fig. 1b, resulting in a total basin area of 1248 km2. The
model was forced using hourly NEXRAD precipitation data
over the 6 month period from 16 November 2000 to 15 May
2001, preceded by a 3 week warmup period. Figure2 shows
the hourly precipitation and streamflow data for the Blue
River during the selected simulation period. As Fig.2 indi-
cates, the Blue River remains at low flow during much of
the simulation period, punctuated by a series of large rainfall
events.

3 Sensitivity analysis methods

3.1 Sobol′ sensitivity analysis

Sobol′ sensitivity analysis (Sobol′, 2001; Saltelli, 2002) is
a global, variance-based method that attributes variance in
the model output to individual parameters and the interac-
tions between parameters. In general, the attribution of to-
tal output variance to individual model parameters and their
interactions can be written as

D(f ) =

∑
i

Di +

∑
i<j

Dij +

∑
i<j<k

Dijk + D12...p, (1)

whereD(f ) represents the total variance of the output met-
ric f ; Di is the first-order variance contribution of thei-th
parameter,Dij is the second-order contribution of the inter-
action between parametersi andj ; andD12...p contains all
interactions higher than third-order, up top total parameters.

The first-order and total-order sensitivity indices are defined
as follows.

First-order index: Si =
Di

D
(2)

Total-order index: STi
= 1−

D∼i

D
(3)

The first-order index measures the fraction of the total output
variance caused by the parameteri apart from interactions
with other parameters. The total order index is one minus
the fraction of total variance attributed toD∼i , which repre-
sents all parameters excepti. The total order index removes
parameteri from the analysis and attributes the resulting re-
duction in variance to that parameter (Homma and Saltelli,
1996). The difference between a parameter’s first and total
order indices represents the effects of its interactions with
other parameters. In this study, we analyze the total order in-
dices to determine the ranking of the most sensitive model
parameters and compare these to the relatedµ∗ statistic from
the method of Morris.

Sobol′ sensitivity indices were calculated according to
the methods proposed by Sobol′ and Saltelli (Sobol′, 2001;
Saltelli, 2002; Saltelli et al., 2008), in which sensitivity
indices are approximated using numerical integration in
a Monte Carlo framework. A global sample of the param-
eter space is taken using a quasi-random Sobol′ sequence of
values to achieve a uniform coverage of the space (Sobol′,
2001). The parameter sets generated from these sampling
ranges are evaluated in the model, creating a distribution of
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Fig. 2. The hourly hydrograph of the 6 month simulation period for the Blue River basin, with a 3 week warm up period. The precipitation
amounts are based on the mean value across the 78 HRAP grid cells in the basin. The colors of the precipitation bars indicate the fraction of
grid cells receiving more than 0.1 mm precipitation, representing the spatial distribution of each hourly rainfall value.

output values,f , which have a total varianceD as follows:

f0 =
1

n

n∑
s=1

f (θs), (4)

D =
1

n

n∑
s=1

f 2(θs) − f 2
0 . (5)

Here,f0 is the mean of the distribution of model outputs
andθs represents the parameter set associated with sample
s. Equations (4) and (5) represent the mean and variance cal-
culations proposed inSaltelli et al.(2008). For adaptations
to these calculations, which aim to improve the convergence
of Sobol′ indices, the reader is referred toSaltelli (2002) and
Nossent and Bauwens(2012b).

The variance contributionsDi andD∼i are calculated ac-
cording toSobol′ (2001) andSaltelli et al.(2008). First, two
matricesA and B are each assignedN sampled parameter
sets. The sample setA is used to calculate the total variance
as shown in Eqs. (4) and (5). The sample setB is used to
resample or fix each parameter as necessary in the following
expressions:

Di =
1

n

n∑
s=1

f
(
θA
s

)
f

(
θB
∼is,θ

A
is

)
− f 2

0 , (6)

D∼i =
1

n

n∑
s=1

f
(
θA
s

)
f

(
θA
∼is,θ

B
is

)
− f 2

0 . (7)

In Eqs. (6) and (7), the parameter setsθi are superscripted
to indicate which parameters are sampled from which set.
The sample set is denoted by the superscriptA or B; the pa-
rameters taken from that set are denoted either byi (the i-th
parameter) or∼ i (all parameters excepti). This scheme al-
lows the estimation of first and total order sensitivity indices
with a total ofN(p + 2) model evaluations, wherep is the
number of parameters for which indices are to be calculated.

3.2 Method of Morris

The method ofMorris (1991) derives measures of global sen-
sitivity from a set of local derivatives, or elementary effects,
sampled on a grid throughout the parameter space. It is based
on one-at-a-time (OAT) methods, in which each parameter
xi is perturbed along a grid of size1i to create a trajec-
tory through the parameter space. For a given model with
p parameters, one trajectory will contain a sequence ofp

such perturbations. Each trajectory yields one estimate of the
elementary effect for each parameter (i.e., the ratio of the
change in model output to the change in that parameter).
Equation (8) shows the calculation of a single elementary
effect for thei-th parameter.

EEi =
f (x1, . . . ,xi + 1i, . . . ,xp) − f (x)

1i

(8)

wheref (x) represents the prior point in the trajectory. In al-
ternative formulations, both the numerator and denominator
are normalized by the values of the function and parameter
xi , respectively, at the prior pointx (van Griensven et al.,
2006). Using the single trajectory shown in Eq. (8), one can
calculate the elementary effects of each parameter with only
p + 1 model evaluations. However, by using only a single
trajectory, this OAT method is highly dependent on the lo-
cation of the initial pointx in the parameter space and does
not account for interactions between parameters. For this rea-
son, the method ofMorris (1991) performs the OAT method
overN trajectories through the parameter space. This study
employs the sampling approach originally proposed byMor-
ris (1991), in which trajectories through the parameter space
are generated by perturbing one factor at a time, beginning
at a randomly sampled point. Recent advances in this area
by Campolongo et al.(2007, 2011) andRuano et al.(2012)
provide trajectories that maximize coverage of the parame-
ter space, ensuring that the sampled elementary effects yield
accurate estimates of global sensitivity. These improvements

Hydrol. Earth Syst. Sci., 17, 2893–2903, 2013 www.hydrol-earth-syst-sci.net/17/2893/2013/
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Table 1. Sample sizes and number of model runs performed for
each of the sensitivity analysis methods.

Method Sample size Model evaluations

Sobol′
1000 1 094 000
6000 6 564 000

Morris

20 21 860
40 43 720
60 65 580
80 87 440

100 109 300

suggest promising directions for future investigation. Once
trajectories are sampled, the resulting set of elementary ef-
fects is then averaged to giveµ, which serves as an estimate
of total-order effects. Similarly, the standard deviation of the
set of elementary effectsσ describes the variability through-
out the parameter space and thus the extent to which parame-
ter interactions are present. This study uses the improvement
of Campolongo et al.(2007) in which an estimate of total-
order sensitivity of thei-th parameter,µ∗

i , is computed from
the mean of the absolute values of the elementary effects over
the set ofN trajectories as shown in Eq. (9).

µ∗

i =
1

N

N∑
j=1

∣∣∣EEj
i

∣∣∣ (9)

4 Computational experiment

The sensitivity analyses were performed on the 14 SAC-
SMA model parameters as indicated in Fig.1. The lower
and upper bounds for each parameter are based on the a pri-
ori gridded parameter values derived by the NWS (Ko-
ren et al., 2004) and extended for sensitivity analysis by
Van Werkhoven et al.(2008b). These parameter ranges are
included in the Supplement. Parameter values for each grid
cell were sampled separately from uniform distributions.
Rather than measure the sensitivity of the output stream-
flow directly, we measure the sensitivity of the root mean
squared error (RMSE) metric, calculated using the known
hourly streamflow values over the 6 month simulation pe-
riod. This ensures that our sensitivity indices are grounded
relative to the observed streamflow and describe the controls
on model performance.

The sample sizes and corresponding number of model
evaluations required for both the Sobol′ and Morris methods
are shown in Table1. For the Sobol′ method, sample sizes
of N = 1000 andN = 6000 were used, resulting in just over
1 million and 6 million model evaluations, respectively. The
latter value represents the limit of computational feasibility
for this model at an hourly time step, to derive maximally ac-
curate baseline values of the sensitivity indices. The two sam-
ple sizes were employed to verify convergence of the Sobol′

indices. Confidence intervals for the sensitivity indices de-
rived from the bootstrap method (Efron and Tibshirani, 1994;
Archer et al., 1997) were monitored to ensure convergence of
the Sobol′ method at theN = 6000 level. Convergence was
considered acceptable if the 95 % confidence interval repre-
sented less than 10 % of the sensitivity index value for the
most sensitive parameters. For the method of Morris, sam-
ple sizes ranging fromN = 20 to N = 100 were chosen to
determine if the approach can provide suitable results with
orders of magnitude fewer model evaluations. Open-source
implementations were used for the methods of Morris (Pu-
jol et al., 2013) and Sobol′ sensitivity analysis (Hadka and
Reed, 2012). The sensitivity analyses were performed us-
ing the CyberSTAR high-performance cluster at Penn State
University, which contains a combination quad-core AMD
Shanghai processors (2.7 GHz) and Intel Nehalem processors
(2.66 GHz). Approximately 50 000 computing hours were
required to complete the experiment.

5 Results and discussion

The results of the sensitivity analyses can be addressed
through the lens of two primary questions: (1) what is the
sample size required for the Sobol′ method to return reli-
able sensitivity indices; and (2) how suitable are the indices
returned by the method of Morris relative to the baseline
created by the Sobol′ method.

5.1 Convergence of Sobol′ indices

Figure3 shows the spatial maps of total-order Sobol′ sensi-
tivity indices for the sample sizesN = 1000 andN = 6000.
The four most sensitive parameters of the SAC-SMA model
are shown, as well as the cell-level sum of sensitivity in-
dices. The total-order indices vary over a small range since
the output variance must be distributed across the full set of
distributed parameters, 1092 in total.

Figure3 reveals several interesting spatial patterns of sen-
sitivity. First, the most sensitive parameters are primarily up-
per and lower storage zone maxima. The lower-zone storage
maxima, LZFPM (lower-zone free primary maximum) and
LZFSM (lower-zone free water supplemental maximum), are
most sensitive in the headwater portion of the basin, while
the upper-zone storage maximum UZFWM (upper-zone free
water storage) is most sensitive toward the outlet of the
basin. The resulting summation of sensitivity indices shows
a division of the most active cells, with one group in the
headwaters and another near the outlet.

From Fig.2, it is clear that most precipitation events dur-
ing the simulation period are distributed across nearly all grid
cells in the watershed. This suggests that much of the spatial
variability of sensitivity in Fig.3 is due to processes within
the model itself rather than forcing patterns. The RMSE met-
ric is most sensitive to errors in peak flows, so the sensitivity

www.hydrol-earth-syst-sci.net/17/2893/2013/ Hydrol. Earth Syst. Sci., 17, 2893–2903, 2013
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indices in Fig.3 can be interpreted in the context of the sev-
eral high-flow events shown in the hydrograph in Fig.2. To-
ward the outlet of the basin, the primary runoff-generating
mechanisms in the model are overflow exceeding UZFWM
and drainage from the upper zone (controlled by UZK, the
upper-zone drainage coefficient). The fact that the lower-
zone drainage constants LZPK (lower-zone primary coeffi-
cient) and LZSK (lower-zone secondary coefficient) are not
sensitive indicates that they act on a slower timescale and
thus do not affect RMSE. In the headwaters, the lower zone
storage maxima (LZFPM and LZFSM) and the rate constant
UZK are most sensitive, likely because these parameters
must not allow too much direct runoff from the headwater
region to prevent the model from overshooting the observed
flow peaks and causing poor RMSE performance. While the
temporal distribution of forcing can affect the sensitivity in-
dices shown in Fig.3, the spatial distribution can be restricted
to the processes occurring within the model.

Also visible in Fig.3 is the difference in Sobol′ sensitiv-
ity indices as a function of sample size. At a sample size
of N = 1000, the most sensitive cells are identified, but it is
clear that cells with intermediate sensitivity values largely
remain unidentified. For example, it is common to see sen-
sitive cells (red) adjacent to insensitive cells. Intuitively, we
should expect to see a smoother spatial gradient of sensitivity
in which the most sensitive cells are adjacent to intermediate-
sensitivity cells, which in turn are adjacent to low-sensitivity
cells. This is achieved to a larger extent with a sample size of
N = 6000. Here, the sensitivity indices vary more smoothly
in space, indicating that theN = 6000 case provides a base-
line for total-order sensitivity indices. The bootstrap confi-
dence intervals confirm convergence for theN = 6000 sam-
ple size. TheN = 1000 case would not be sufficient to cap-
ture the full range of sensitivity, a fact that underscores the
high computational requirements of the Sobol′ method. It is
worth noting that the slow convergence of the Sobol′ method
for this model is related to the large number of parame-
ters over which variance must be decomposed, leading to
small sensitivity values and a correspondingly narrow range
of acceptable confidence bounds (seeNossent et al., 2011).

5.2 Comparison of Sobol′ and Morris indices

The Sobol′ sensitivity indices from theN = 6000 case form
a set of target values against which the method of Morris will
be compared. Figure4 compares this target to the lowest-
sample Morris experiment,N = 20, for all 14 of the SAC-
SMA parameters and the sums of parameter indices for each
of the 78 grid cells. The Sobol′ indices offer a quantitative
interpretation as a fraction of total variance, but the Morris
indices do not; the latter are mapped from the range(0,0.1)

to (0,1) to avoid this misinterpretation.
Figure4 shows that the total-order indices calculated by

the method of Morris with onlyN = 20 samples success-
fully capture the spatial patterns of the Sobol′ indices with
N = 6000 samples. The Morris indices are able to isolate
the most sensitive parameters, along with their correct loca-
tions in the watershed: LZFPM, LZFSM, and UZK in the
headwaters, and UZFWM, UZK, and ADIMP (additional
impervious area) near the outlet. It also correctly identifies
the parameters that are insensitive over the simulation pe-
riod: LZTWM (lower zone tension water maximum), PC-
TIM (percent of impervious area), PFREE (percolation co-
efficient), UZTWM (upper-zone tension water maximum),
and RIVA (riparian vegetation area). The sums of indices
are also comparable between the Sobol′ and Morris methods,
with sensitive areas near the headwaters and outlet, and inter-
mediate sums of sensitivity in the rest of the basin. In gen-
eral, the Morris indices follow smooth spatial patterns, which
aligns with intuition regarding sensitive regions of the water-
shed. From the sensitivity maps in Fig.4, the method of Mor-
ris with a sample size ofN = 20 is able to correctly identify
sensitive and insensitive parameters, as well as their spatial

Hydrol. Earth Syst. Sci., 17, 2893–2903, 2013 www.hydrol-earth-syst-sci.net/17/2893/2013/
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sents a factor of 300 computational savings compared to the Sobol′

method withN = 6000.

patterns, at greatly reduced computational expense relative to
the Sobol′ method.

The Morris sensitivity indices can also be compared sta-
tistically to the Sobol′ indices for theN = 6000 case to en-
sure sufficient similarity. Figure5 compares the sensitivity

indices for each method, as well as the sensitivity ranks (1–
1092), for all of the Morris sample sizes fromN = 20 to
N = 100. The sensitivity indices are compared using a non-
linear Spearman correlation coefficient, because a one-to-one
correspondence between Sobol′ and Morris indices is not
necessary. The rankings are compared with a linear corre-
lation coefficient, because ideally these will exhibit a one-to-
one correspondence.

The top panels in Fig.5 show that the Morrisµ* values for
all sample sizes are well-correlated with the Sobol′ indices
with a sample size ofN = 6000. Importantly, there appears
to be little benefit in running the method of Morris for sam-
ple sizes greater thanN = 20, since the correlation remains
similar for higher sample sizes. The relationship between
Morris µ* values and Sobol′ indices is approximately linear
for low-sensitivity parameters. However, the relationship be-
comes nonlinear for high-sensitivity parameters, where the
Morris µ* values appear to flatten out. This suggests that
the method of Morris cannot reliably reproduce the precise
ranking of high-sensitivity parameters provided by the Sobol′

method. However, the method of Morris successfully distin-
guishes sensitive from insensitive parameters, and a sample
size ofN = 20 is clearly sufficient to achieve this.

The bottom panels in Fig.5 show that the sensitivity rank-
ings given by the method of Morris are well-correlated with
those given by the Sobol′ method withN = 6000. Again,
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a sample size ofN = 20 for the method of Morris appears suf-
ficient to achieve a good correlation, and little is gained by in-
creasing the sample size further. Of particular interest are the
clusters of highly correlated parameters ranked near the most
and least sensitive (ranks 1 and 1092, respectively). This in-
dicates that the method of Morris can isolate the most and
least sensitive parameters with high reliability, reinforcing its
utility as a screening method. The outliers in the bottom pan-
els in Fig.5 reinforce the difficulty for the method of Mor-
ris to distinguish between sensitive parameters; it correctly
identifies them as sensitive, but struggles to rank them quan-
titatively. The largest outliers occur in the upper-left of each
plot, where the method of Morris attributes erroneously high
rankings to certain parameters. These outliers correspond to
parameters of average rank, whose low (but non-zero) sen-
sitivity values are extremely difficult to differentiate from
one another. Thus, these points highlight the limitations of
the method of Morris for this model, but they do not detract
from the success of the approach in correctly classifying the
parameters with the highest and lowest sensitivity values.

Given that both the spatial and statistical comparisons be-
tween the Sobol′ and Morris sensitivity indices indicate the
success of the method of Morris, it is worth exploring the
amount of computation saved to achieve a highly similar set
of sensitivity results. Figure6 shows the location of each
experiment in the space defined by the computation time
and storage required. The largest Sobol′ experiment, with
N = 6000, required over 6 million model evaluations, lead-
ing to more than 30 000 h of computation time and approx-
imately 180 gigabytes of storage space to store the model
output. By contrast, the smallest Morris experiment, with
N = 20, required roughly 100 h of computation and 1 giga-
byte of storage space. This represents a factor of 300 sav-
ings in both the runtime and storage dimensions relative to
the Sobol′ method. As shown in Figs.4 and5, the sensitiv-
ity indices calculated by this lowest-sample Morris experi-
ment are spatially and statistically comparable to those cal-
culated by the highest-sample Sobol′ experiment. The Sobol′

method confers several advantages, including the first order
sensitivity indices, and a large ensemble of model evalua-
tions to be used in an uncertainty analysis or likelihood-based
optimization framework, which the method of Morris does
not provide. However, for the purpose of obtaining an ac-
curate distinction between sensitive and insensitive param-
eters, it is clear that the method of Morris provides signif-
icant computational savings without significant degradation
of solution quality.

6 Conclusions

The method of Morris is able to correctly screen the most
and least sensitive parameters for a highly parameterized,
spatially distributed watershed model with 300 times fewer
model evaluations than the Sobol′ method. Even for this

complex model, the efficient factorial sampling scheme of
the method of Morris is sufficient to isolate the controls on
model performance without any prior assumptions on the
form of the model output. For many distributed modeling ap-
plications, the Sobol′ method requires a prohibitive number
of model evaluations. In light of these results, the method
of Morris proves to be a promising way forward for effi-
cient global sensitivity analysis of distributed models. It also
holds promise as a screening technique, identifying parame-
ters that can safely be removed prior to more complex anal-
yses such as the Sobol′ method or model calibration. Future
work will include an investigation of time-varying sensitiv-
ity to determine the extent to which spatial sensitivity pat-
terns change during wet and dry periods. The increasing use
of spatially distributed hydrologic models requires that diag-
nostics such as these sensitivity analysis methods be evalu-
ated not only in terms of their statistical effectiveness but also
by their efficiency, to ensure that hydrologic modelers can
obtain maximally reliable diagnostic insights at a reasonable
computational cost.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
17/2893/2013/hess-17-2893-2013-supplement.pdf.
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