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Abstract. The increase in spatially distributed hydrologic 1 Introduction
modeling warrants a corresponding increase in diagnos-
tic methods capable of analyzing complex models with Distributed hydrologic models aim to improve simulations
large numbers of parameters. Sdls#nsitivity analysis has of watershed behavior by allowing forcing data and model
proven to be a valuable tool for diagnostic analyses of hy-parameters to vary across a spatial grid. Recent advances
drologic models. However, for many spatially distributed in hydrologic data collection and computing power have in-
models, the Sobblmethod requires a prohibitive number creased the appeal of distributed models while also allowing
of model evaluations to reliably decompose output variancgurther increases in complexitys(nith et al, 2004 2012.
across the full set of parameters. We investigate the potentialhis added complexity is not without cost; a typical dis-
of the method of Morris, a screening-based sensitivity ap-tributed model usually contains thousands more parameters
proach, to provide results sufficiently similar to those of the than a lumped model, causing a commensurate leap in com-
Sobol method at a greatly reduced computational expenseputational requirements as well as challenges in diagnosing
The methods are benchmarked on the Hydrology Laboratorynodel behavior an Griensven et al2006 Gupta et al.
Research Distributed Hydrologic Model (HL-RDHM) over 2008. Calibration of such highly parameterized models re-
a six-month period in the Blue River watershed, Oklahoma,mains difficult, not only due to the computation involved,
USA. The Sobdl method required over six million model but also because of their highly interactive parameter spaces
evaluations to ensure reliable sensitivity indices, correspondand nonlinear, multimodal objective spac&supta et al.
ing to more than 30000 computing hours and roughly 1801998 Carpenter et al.200]). To address these challenges,
gigabytes of storage space. We find that the method of Morthis study explores diagnostic methods capable of character-
ris is able to correctly screen the most and least sensitivézing the complex relationships between distributed model
parameters with 300 times fewer model evaluations, requirparameters and objectives efficiently and accurately.
ing only 100 computing hours and 1 gigabyte of storage Sensitivity analysis has long been used to derive diagnos-
space. The method of Morris proves to be a promising di-tic insight from hydrologic models by identifying the key in-
agnostic approach for global sensitivity analysis of highly put factors controlling model performandddrnberger and
parameterized, spatially distributed hydrologic models. Speay 1981, Franchini et al. 1996 Freer et al. 1996 Wa-
gener et a].2001; Muleta and Nicklow2005 Sieber and Uh-
lenbrook 2005 Bastidas et a).2006 Demaria et al.2007,
Cloke et al, 2008 Van Werkhoven et al2008a 2009 Wa-
gener et al.2009 Reusser et 312011, Reusser and Zehe
2011, Herman et a].2013. The most common applications
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of sensitivity analysis include factor fixing, in which insensi-  The two sensitivity analysis methods are implemented for
tive inputs are assigned fixed values to simplify further anal-the Hydrology Laboratory Research Distributed Hydrologic
ysis; factor prioritization, in which the most sensitive inputs Model (HL-RDHM) (Koren et al, 2004 Reed et al.2004
are identified; and factor mapping, which identifies the re-Smith et al, 2004 Moreda et al. 2006, developed by the
gions of the input space in which a particular input is most United States National Weather Service (NWS). The model
sensitive Galtelli et al, 2009. A number of input factors can is used to simulate the Blue River watershed, Oklahoma,
be explored in a sensitivity analysis, including forcing vari- USA, over a 6 month period using hourly time steps and
ables, but in diagnostic applications it is common to analyzeforcing data. Sensitivity results from the Sobahd Mor-
model parameters directly. In this study, we aim to analyzeris methods are compared spatially and statistically to de-
the ranking of sensitive model parameters (i.e., both thoseermine the extent to which the method of Morris provides
that are sensitive and insensitive) as well as to compare theicomputational savings while maintaining sensitivity indices
gquantitative measures of sensitivity. sufficiently similar to those of the Solainethod. In turn,
Sensitivity methods can be broadly divided into local we investigate whether the method of Morris is a promis-
methods and global methods. Local methods provide meaing candidate to overcome the challenges to diagnostic anal-
sures of importance around a single point in the param-ysis posed by the high-dimensional parameter spaces of
eter space. Global methods aim to reflect the importancalistributed hydrologic models.
of a parameter throughout the full multivariate space of a
model. Relatively few studies have performed global sensi-
tivity analysis for spatially distributed models due to the se-
vere computational demands posed by sampling their high-

dimensional parameter spaces. Distributed sensitivity stud-z'1 HL-RDHM model

ies in hydrplogy and land surfacg modeling have often ad-rpq HL-RDHM, developed by the United States NWS, is
dressed this problem by aggregating parameter values acrog§yqdeling framework for building lumped, semi-distributed,
the model grid or subgrids (e.garpenter et al2003 Hall 54 11y distributed hydrologic model&éren et al, 2004

et al, 2005 Sieber and Uhlenbrogk?005 Zaehle et al. Reed et a].2004 Smith et al, 2004 Moreda et al.2008.
2005 Alton et al, 2006. Fewer still are studies which have The model is structured using a 4 kavtkm grid resolu-
performed a sensitivity analysis on a full set of spatially dis-jo, gerived from the Hydrologic Rainfall Analysis Project
tributed parameters (e.gMuleta and Nicklow 2005 van (R AP), which corresponds to the NEXRAD (Next Genera-
Griensven et a).200§ Tang et al, 2007a Van Werkhoven  yion \weather Radar) precipitation products developed by the
et al, 2008). These studies clearly show the benefits of g Nws, The water balance within each grid cell is mod-
performing a global sensitivity analysis on a distributed gjoq With the Sacramento Soil Moisture Accounting (SAC-
model without sacrificing resolution in the parameter spacegyia) model @urnash and SingtL995. Figure 1c shows
This study hypothesizes that the need for such sacriﬁce§he water balance components of the SAC-SMA model in
(i-e., to reduce computational demands) can be reduced With,oh grig cell. Routing between grid cells is modeled with
acargful choice of sensitivity anally.3|s method. ) a kinematic wave approximation to the St. Venant equa-
This study compares the efficiency and effectiveness;gns This study performs sensitivity analysis on 14 param-

of two state-of-the-art global sensitivity analysis methods, atars of the SAC-SMA model within each cell of the HRAP
Sobol sensitivity analysisgobol, 2001, Saltelli 2003 and  gig a5 shown in Figlc. Since the model contains 78 grid

the method ofMorris (1993. Sobol sensitivity analysis is  cejis a total of 78 14=1092 parameters are required to
avariance-based method that attributes variance in the mod erform sensitivity analysis without spatial aggregation. The

output to individual parameters and the.ir. i.nteractions. 'nsampling ranges for these parameters are derived from prior
a comparison of several widely us_ed sensitivity methods, the, (Van Werkhoven et 12008 and in consultation with
Sobol method was found to provide the most accurate andpe National Weather Service. Note that the correct choice

robust sensitivity indices, particularly in nonlinear models 4t sampling ranges is critical to ensure representative model
with strong parameter interactioriBafng et al. 2007k Yang, performance in sensitivity analyseSabol, 2001 Nossent
2013. However, the number of model evaluations required 5,4 Bauwens20123.

for the Sobdlindices to converge increases rapidly with the

number of parameters, making its efficiency questionable ip 2 Study area: Blue River, Oklahoma

the distributed case. The methodMbrris (1991 measures

global sensitivity using a set of local derivatives (elemen-The computational experiments in this study were per-

tary effects) taken at points sampled throughout the parameformed for the Blue River basin in southern Oklahoma,

ter space. The method of Morris can estimate parameter inene of the basins included in the Distributed Model Inter-

teractions by considering both the mean and variance of theomparison Project Phase 2 (DMIPAn(ith et al, 2012).

elementary effects. Figure 1la shows the location of the Blue River. The wa-
tershed is represented by 78 HRAP grid cells, as shown in

Model and study area
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Fig. 1. (A) Location of the Blue River basin in southern Oklahoma, UE). The 78 HRAP grid cells of the Blue River basin (shaded).
(C) The Sacramento Soil Moisture Accounting (SAC-SMA) model, which simulates the water balance in each grid cell.

Fig. 1b, resulting in a total basin area of 1248%nThe  The first-order and total-order sensitivity indices are defined
model was forced using hourly NEXRAD precipitation data as follows.
over the 6 month period from 16 November 2000 to 15 May

. . D;
2001, preceded by a 3 week warmup period. Figuseows ~ First-order index: S; = ) (2
the hourly precipitation and streamflow data for the Blue _ D-;
River during the selected simulation period. As Rigndi-  Total-order index: Sz, =1— —— (3)

cates, the Blue River remains at low flow during much of ] ] b ]
the simulation period, punctuated by a series of large rainfallThe first-order index measures the fraction of the total output
events. variance caused by the parameteapart from interactions

with other parameters. The total order index is one minus
the fraction of total variance attributed 1®..;, which repre-

3 Sensitivity analysis methods sents all parameters exceapflhe total order index removes
o ) parametef from the analysis and attributes the resulting re-
3.1 Sobol sensitivity analysis duction in variance to that parametétgmma and Saltelli

bol L vsis Sobol - saltell , 1996. The difference between a parameter’s first and total
Sobol sensitivity analysis §obol, 2001, Saltelli, 2002 is order indices represents the effects of its interactions with

a global, varlance-bqseq .method that attributes vanance 1y, qr parameters. In this study, we analyze the total order in-
the model output to individual parameters and the INteracyices to determine the ranking of the most sensitive model

tions be‘WeeT‘ parameters, In general, the attribution of t(_)r'parameters and compare these to the relatestatistic from
tal output variance to individual model parameters and thei

. . be wri the method of Morris.
Interactions can be written as Sobol sensitivity indices were calculated according to

_ , - N the methods proposed by Sobahd Saltelli Sobol, 200%;
bts )_ZD i+ Dij+ ) Dijet Dz, D Sakel, 2002 Saltelli et al, 2008, in which sensitivity
indices are approximated using numerical integration in
whereD(f) represents the total variance of the output met-a Monte Carlo framework. A global sample of the param-
ric f; D; is the first-order variance contribution of tteh eter space is taken using a quasi-random Saegjuence of
parameterD;; is the second-order contribution of the inter- values to achieve a uniform coverage of the sp&mbol,
action between parametersand j; and D1» ., contains all ~ 2001). The parameter sets generated from these sampling
interactions higher than third-order, uppdotal parameters. ranges are evaluated in the model, creating a distribution of

i<j i<j<k
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Fig. 2. The hourly hydrograph of the 6 month simulation period for the Blue River basin, with a 3 week warm up period. The precipitation
amounts are based on the mean value across the 78 HRAP grid cells in the basin. The colors of the precipitation bars indicate the fraction of
grid cells receiving more than 0.1 mm precipitation, representing the spatial distribution of each hourly rainfall value.

output valuesf, which have a total varianc® as follows: 3.2 Method of Morris

1 The method oMorris (1997) derives measures of global sen-
fo= n Z S5, (4) sitivity from a set of local derivatives, or elementary effects,

. Snzl sampled on a grid throughout the parameter space. It is based
D= —Zfz(Qs) . f02~ (5) on.one—at—a—tlme (OAT) mgthods,_ in which each pargmeter

n ‘= x; is perturbed along a grid of siz&; to create a trajec-

tory through the parameter space. For a given model with
Here, fo is the mean of the distribution of model outputs p, parameters, one trajectory will contain a sequence of
and6s represents the parameter set associated with samplsuch perturbations. Each trajectory yields one estimate of the
s. Equations (4) and (5) represent the mean and variance caklementary effect for each parameter (i.e., the ratio of the
culations proposed iSaltelli et al.(200§. For adaptations change in model output to the change in that parameter).
to these calculations, which aim to improve the convergencequation 8) shows the calculation of a single elementary
of Sobol indices, the reader is referred$altelli (2002 and effect for thei-th parameter.
Nossent and Bauwer§2012h).

The variance contributiond; and D-; are calculated ac- g, — /%% F A0 Xp) = f(0) ®)

cording toSobol (2001 andSaltelli et al.(2008. First, two A

matricesA andB are each assignedl sampled parameter \here f(x) represents the prior point in the trajectory. In al-
sets. The sample sétis used to calculate the total variance ternative formulations, both the numerator and denominator
as shown in Egs. (4) and (5). The sample Bes used to  are normalized by the values of the function and parameter
resample or fix each parameter as necessary in the following; | respectively, at the prior point (van Griensven et al.

expressions: 2006. Using the single trajectory shown in E®)(one can
1 calculate the elementary effects of each parameter with only
D == pA 0B 9A) — £2. 6 p+1 model evaluations. However, by using only a single
"o ;f( * )f( " ”) /o © trajectory, this OAT method is highly dependent on the lo-

1 cation of the initial pointc in the parameter space and does
D= - Z f (9;*) f (9@.?,91@ ) — foz. @) not account for interactions between parameters. For this rea-
3 son, the method dflorris (1991 performs the OAT method

over N trajectories through the parameter space. This study
employs the sampling approach originally proposedi/ioy-

tis (1992, in which trajectories through the parameter space
are generated by perturbing one factor at a time, beginning
at a randomly sampled point. Recent advances in this area
by Campolongo et al2007, 2011 andRuano et al(2012
provide trajectories that maximize coverage of the parame-
ter space, ensuring that the sampled elementary effects yield
accurate estimates of global sensitivity. These improvements

In Egs. (6) and (7), the parameter sétsare superscripted
to indicate which parameters are sampled from which set
The sample set is denoted by the supersctipt B; the pa-
rameters taken from that set are denoted either (tlyei-th
parameter) or- i (all parameters excep}. This scheme al-
lows the estimation of first and total order sensitivity indices
with a total of N(p + 2) model evaluations, wherg is the
number of parameters for which indices are to be calculated
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Table 1. Sample sizes and number of model runs performed forindices. Confidence intervals for the sensitivity indices de-

each of the sensitivity analysis methods. rived from the bootstrap metho#ffon and Tibshiranil994
Archer et al, 1997 were monitored to ensure convergence of
Method Sample size  Model evaluations the Sobdl method at theVv =6000 level. Convergence was
1000 1094000 considered acceptable if the 95% <_:(_)r_1fid_ence interval repre-
Sobol 6000 6564000 sented less than 10 % of the sensitivity index value for the

most sensitive parameters. For the method of Morris, sam-

28 i; 328 ple sizes ranging fromV =20 to N =100 were chosen to
Mortis 60 65580 determine if the approach can provide suitable results with
80 87440 orders of magnitude fewer model evaluations. Open-source

100 109300 implementations were used for the methods of MorAg-(

jol et al, 2013 and Sobdl sensitivity analysisHladka and
Reed 2012. The sensitivity analyses were performed us-
suggest promising directions for future investigation. Oncel"d the CyberSTAR high-performance cluster at Penn State
trajectories are sampled, the resulting set of elementary er*-J”'VGrS'tY’ which contains a combination quad-core AMD
fects is then averaged to giye which serves as an estimate >hanghai processors (2.7 GHz) and Intel Nehalem processors
of total-order effects. Similarly, the standard deviation of the (2-66 GHz). Approximately 50000 computing hours were

set of elementary effects describes the variability through- "€duired to complete the experiment.

out the parameter space and thus the extent to which parame-

ter interactions are present. This study uses the improvement

of Campolongo et al(2007 in which an estimate of total- 5 Results and discussion

order sensitivity of thé-th parametery;, is computed from o

the mean of the absolute values of the elementary effects ovekhe results of the sensitivity analyses can be addressed

the set ofN trajectories as shown in Ec)( through the lens of two primary questions: (1) what is the
sample size required for the Sobahethod to return reli-

. 1 N EE/ 9 able sensitivity indices; and (2) how suitable are the indices
Hi = NZ‘ E," ) returned by the method of Morris relative to the baseline
j=1 created by the Sobainethod.

4 Computational experiment 5.1 Convergence of Sobbindices

The sensitivity analyses were performed on the 14 SAC-Figure3 shows the spatial maps of total-order Sotsansi-
SMA model parameters as indicated in Fig.The lower tivity indices for the sample size§¥ =1000 andN =6000.
and upper bounds for each parameter are based on the a pfithe four most sensitive parameters of the SAC-SMA model
ori gridded parameter values derived by the NW&-(  are shown, as well as the cell-level sum of sensitivity in-
ren et al, 2009 and extended for sensitivity analysis by dices. The total-order indices vary over a small range since
Van Werkhoven et al(2008l. These parameter ranges are the output variance must be distributed across the full set of
included in the Supplement. Parameter values for each gridlistributed parameters, 1092 in total.
cell were sampled separately from uniform distributions. Figure3 reveals several interesting spatial patterns of sen-
Rather than measure the sensitivity of the output streamsitivity. First, the most sensitive parameters are primarily up-
flow directly, we measure the sensitivity of the root mean per and lower storage zone maxima. The lower-zone storage
squared error (RMSE) metric, calculated using the knownmaxima, LZFPM (lower-zone free primary maximum) and
hourly streamflow values over the 6 month simulation pe-LZFSM (lower-zone free water supplemental maximum), are
riod. This ensures that our sensitivity indices are groundednost sensitive in the headwater portion of the basin, while
relative to the observed streamflow and describe the controlthe upper-zone storage maximum UZFWM (upper-zone free
on model performance. water storage) is most sensitive toward the outlet of the
The sample sizes and corresponding number of modebasin. The resulting summation of sensitivity indices shows
evaluations required for both the Sobahd Morris methods a division of the most active cells, with one group in the
are shown in Tabld. For the Sobdlmethod, sample sizes headwaters and another near the outlet.
of N =1000 andN =6000 were used, resulting in just over  From Fig.2, it is clear that most precipitation events dur-
1 million and 6 million model evaluations, respectively. The ing the simulation period are distributed across nearly all grid
latter value represents the limit of computational feasibility cells in the watershed. This suggests that much of the spatial
for this model at an hourly time step, to derive maximally ac- variability of sensitivity in Fig.3 is due to processes within
curate baseline values of the sensitivity indices. The two samthe model itself rather than forcing patterns. The RMSE met-
ple sizes were employed to verify convergence of the Sobolric is most sensitive to errors in peak flows, so the sensitivity

www.hydrol-earth-syst-sci.net/17/2893/2013/ Hydrol. Earth Syst. Sci., 17, 289803 2013
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Convergence of Sobol Indices Also visible in Fig.3 is the difference in Sobokensitiv-
ity indices as a function of sample size. At a sample size
N=1000  N=6000 of N =1000, the most sensitive cells are identified, but it is

clear that cells with intermediate sensitivity values largely
remain unidentified. For example, it is common to see sen-
sitive cells (red) adjacent to insensitive cells. Intuitively, we
should expect to see a smoother spatial gradient of sensitivity
in which the most sensitive cells are adjacent to intermediate-
0.005 sensitivity cells, which in turn are adjacent to low-sensitivity
0.004 cells. This is achieved to a larger extent with a sample size of
N =6000. Here, the sensitivity indices vary more smoothly
in space, indicating that th& =6000 case provides a base-
0.002 line for total-order sensitivity indices. The bootstrap confi-
dence intervals confirm convergence for tkies 6000 sam-
ple size. TheN =1000 case would not be sufficient to cap-
0.0 ture the full range of sensitivity, a fact that underscores the
high computational requirements of the Sdhlméthod. It is

LZFPM —

LZFSmM
0.003

UZFWM 0.001

S
P

Total-Order I
Sobol Index worth noting that the slow convergence of the Sobwthod
for this model is related to the large number of parame-
UZK - ters over which variance must be decomposed, leading to
small sensitivity values and a correspondingly narrow range
003 of acceptable confidence bounds (BEessent et a]2017).
Sum of 5.2 Comparison of Sobdland Morris indices
Sum of Total-Order
Indices Indices The Sobdl sensitivity indices from thev =6000 case form
0.0 a set of target values against which the method of Morris will

Fig. 3.M th Lorder Sobatensitivity indices for the f be compared. Figurd compares this target to the lowest-
'9. 3.Maps ofthe total-order Sob@ensitivity indices for the four o 116 ‘Morris experimenty =20, for all 14 of the SAC-
most sensitive parameters as well as the total sum in each grid cel Lo
MA parameters and the sums of parameter indices for each

The maps are shown for the =1000 andV =6000 sample sizes. . L o
The lower sample size shows a coarse identification of sensitive an8f the 78 grid cells. The Soboindices offer a quantitative

insensitive cells. Thev = 6000 sample size shows smoother spatial INt€Tpretation as a fraction of total variance, but the Morris
patterns of sensitivity indices, suggesting that this level of samplingindices do not; the latter are mapped from the ra@e.1)
is required for reliable Sobbindices. to (0, 1) to avoid this misinterpretation.
Figure4 shows that the total-order indices calculated by

the method of Morris with onlyN =20 samples success-
indices in Fig.3 can be interpreted in the context of the sev- fully capture the spatial patterns of the Sdliabices with
eral high-flow events shown in the hydrograph in FigTo- N =6000 samples. The Morris indices are able to isolate
ward the outlet of the basin, the primary runoff-generatingthe most sensitive parameters, along with their correct loca-
mechanisms in the model are overflow exceeding UZFWMtions in the watershed: LZFPM, LZFSM, and UZK in the
and drainage from the upper zone (controlled by UZK, theheadwaters, and UZFWM, UZK, and ADIMP (additional
upper-zone drainage coefficient). The fact that the lower-impervious area) near the outlet. It also correctly identifies
zone drainage constants LZPK (lower-zone primary coeffi-the parameters that are insensitive over the simulation pe-
cient) and LZSK (lower-zone secondary coefficient) are notriod: LZTWM (lower zone tension water maximum), PC-
sensitive indicates that they act on a slower timescale and’IM (percent of impervious area), PFREE (percolation co-
thus do not affect RMSE. In the headwaters, the lower zonesfficient), UZTWM (upper-zone tension water maximum),
storage maxima (LZFPM and LZFSM) and the rate constantand RIVA (riparian vegetation area). The sums of indices
UZK are most sensitive, likely because these parameterare also comparable between the Sbant Morris methods,
must not allow too much direct runoff from the headwater with sensitive areas near the headwaters and outlet, and inter-
region to prevent the model from overshooting the observednediate sums of sensitivity in the rest of the basin. In gen-
flow peaks and causing poor RMSE performance. While theeral, the Morris indices follow smooth spatial patterns, which
temporal distribution of forcing can affect the sensitivity in- aligns with intuition regarding sensitive regions of the water-
dices shown in Fig8, the spatial distribution can be restricted shed. From the sensitivity maps in Figthe method of Mor-
to the processes occurring within the model. ris with a sample size aV =20 is able to correctly identify

sensitive and insensitive parameters, as well as their spatial

Hydrol. Earth Syst. Sci., 17, 28932903 2013 www.hydrol-earth-syst-sci.net/17/2893/2013/
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Comparison of Sensitivity Indices and Parameter Ranks
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Fig. 5. Statistical comparison of sensitivity indices and sensitivity ranks (1-1092) between thé @etfad (v =6000) and the method of
Morris with sample sizes fronv =20 to N = 100. The sensitivity indices are compared using a nonlinear Spearman correlation coefficient
(), while the rankings are compared with a linear correlation coefficiefit. Each plot contains all 14 parameters from each grid cell, for

a total of 1092 points.

Time and Storage Requirements indices for each method, as well as the sensitivity ranks (1—
180 ‘ N=6000 2 1092), for all of the Morris sample sizes from =20 to
N =100. The sensitivity indices are compared using a hon-
linear Spearman correlation coefficient, because a one-to-one
correspondence between Sdbahd Morris indices is not
necessary. The rankings are compared with a linear corre-
sobol | ] lation coefficient, because ideally these will exhibit a one-to-
one correspondence.
The top panels in Fig show that the Morrig.* values for
all sample sizes are well-correlated with the Solmdices
with a sample size ofV =6000. Importantly, there appears
to be little benefit in running the method of Morris for sam-

Storage (GB)
]
o

(o)}
o

| Method of Morris O":.:N =1000

N =100 . . . .

P ple sizes greater thaN =20, since the correlation remains
e > s similar for higher sample sizes. The relationship between
Runtime (hours) Morris u* values and Soboindices is approximately linear

for low-sensitivity parameters. However, the relationship be-
Fig. 6. Computation time (hours) and storage (gigabytes) requiredcomes nonlinear for high-sensitivity parameters, where the
for each experiment. The method of Morris witi=20 repre-  Morris u* values appear to flatten out. This suggests that
sents afaptor of 300 computational savings compared to the 'Sobolhe method of Morris cannot reliably reproduce the precise
method with¥ = 6000. ranking of high-sensitivity parameters provided by the Sobol

method. However, the method of Morris successfully distin-

guishes sensitive from insensitive parameters, and a sample
patterns, at greatly reduced computational expense relative tize of N = 20 is clearly sufficient to achieve this.
the Sobalmethod. The bottom panels in Fid show that the sensitivity rank-

The Morris sensitivity indices can also be compared sta-ings given by the method of Morris are well-correlated with

tistically to the Sobdlindices for theN =6000 case to en- those given by the Sobomethod with N =6000. Again,
sure sufficient similarity. Figur® compares the sensitivity
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a sample size aV =20 for the method of Morris appears suf- complex model, the efficient factorial sampling scheme of

ficient to achieve a good correlation, and little is gained by in-the method of Morris is sufficient to isolate the controls on

creasing the sample size further. Of particular interest are thenodel performance without any prior assumptions on the

clusters of highly correlated parameters ranked near the mogorm of the model output. For many distributed modeling ap-

and least sensitive (ranks 1 and 1092, respectively). This inplications, the Sob6imethod requires a prohibitive number

dicates that the method of Morris can isolate the most andf model evaluations. In light of these results, the method

least sensitive parameters with high reliability, reinforcing its of Morris proves to be a promising way forward for effi-

utility as a screening method. The outliers in the bottom pan-cient global sensitivity analysis of distributed models. It also

els in Fig.5 reinforce the difficulty for the method of Mor- holds promise as a screening technique, identifying parame-

ris to distinguish between sensitive parameters; it correctiyters that can safely be removed prior to more complex anal-

identifies them as sensitive, but struggles to rank them quanyses such as the Sobahethod or model calibration. Future

titatively. The largest outliers occur in the upper-left of each work will include an investigation of time-varying sensitiv-

plot, where the method of Morris attributes erroneously highity to determine the extent to which spatial sensitivity pat-

rankings to certain parameters. These outliers correspond tterns change during wet and dry periods. The increasing use

parameters of average rank, whose low (but non-zero) semsf spatially distributed hydrologic models requires that diag-

sitivity values are extremely difficult to differentiate from nostics such as these sensitivity analysis methods be evalu-

one another. Thus, these points highlight the limitations ofated not only in terms of their statistical effectiveness but also

the method of Morris for this model, but they do not detract by their efficiency, to ensure that hydrologic modelers can

from the success of the approach in correctly classifying theobtain maximally reliable diagnostic insights at a reasonable

parameters with the highest and lowest sensitivity values. computational cost.

Given that both the spatial and statistical comparisons be-

tween the Soboland Morris sensitivity indices indicate the

success of the method of Morris, it is worth exploring the Supplementary material related to this article is

amount of computation saved to achieve a highly similar se@vailable online at: http://www.hydrol-earth-syst-sci.net/

of sensitivity results. Figuré shows the location of each 17/2893/2013/hess-17-2893-2013-supplement.pdf

experiment in the space defined by the computation time

and storage required. The largest Soldperiment, with

N =6000, required over 6 million model evaluations, lead- AcknowledgementsThe authors of this work were partially sup-

ing to more than 30000 h of computation time and approx-ported by the US National Science Foundation under grant EAR-

imately 180 gigabytes of storage space to store the mode?838357. The computational resources for this work were provided

output. By contrast, the smallest Morris experiment, with in part t_hrough instrumentation funded by the l\_la_tional _Sci_ence

N =20, required roughly 100 h of computation and 1 giga- Foundation _through grant OCI-0821527. Any opinions, flndm_gs,

byte of storage space. This represents a factor of 300 savalnd conclyswns are those of the aut.hors and do npt necessarily re-

. . . . . . flect the views of the US National Science Foundation.

ings in both the runtime and storage dimensions relative 19 jited by: F. Pappenberger
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