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Abstract. Large-scale hydrological modelling has become
an important tool for the study of global and regional wa-
ter resources, climate impacts, and water-resources manage-
ment. However, modelling efforts over large spatial domains
are fraught with problems of data scarcity, uncertainties and
inconsistencies between model forcing and evaluation data.
Model-independent methods to screen and analyse data for
such problems are needed. This study aimed at identifying
data inconsistencies in global datasets using a pre-modelling
analysis, inconsistencies that can be disinformative for sub-
sequent modelling. The consistency between (i) basin ar-
eas for different hydrographic datasets, and (ii) between cli-
mate data (precipitation and potential evaporation) and dis-
charge data, was examined in terms of how well basin ar-
eas were represented in the flow networks and the possibility
of water-balance closure. It was found that (i) most basins
could be well represented in both gridded basin delineations
and polygon-based ones, but some basins exhibited large area
discrepancies between flow-network datasets and archived
basin areas, (ii) basins exhibiting too-high runoff coefficients
were abundant in areas where precipitation data were likely
affected by snow undercatch, and (iii) the occurrence of
basins exhibiting losses exceeding the potential-evaporation
limit was strongly dependent on the potential-evaporation
data, both in terms of numbers and geographical distribution.
Some inconsistencies may be resolved by considering sub-
grid variability in climate data, surface-dependent potential-
evaporation estimates, etc., but further studies are needed
to determine the reasons for the inconsistencies found. Our
results emphasise the need for pre-modelling data analysis
to identify dataset inconsistencies as an important first step
in any large-scale study. Applying data-screening methods

before modelling should also increase our chances to draw
robust conclusions from subsequent model simulations.

1 Introduction

Large-scale hydrological modelling has become a focal point
in hydrological research in recent years and is of fundamen-
tal importance for understanding continental and global wa-
ter balances, impacts of climate and land-use changes, and
for water-resources management (e.g. Jung et al., 2012; Li et
al., 2012; Mulligan, 2012; Werth and Güntner, 2010). How-
ever, hydrological modelling and analysis of large spatial do-
mains is severely constrained by data availability and qual-
ity (Arnell, 1999a; Decharme and Douville, 2006; Döll and
Siebert, 2002; Fekete et al., 2004; Güntner, 2008; Hunger and
Döll, 2008; Peel et al., 2010; Widén-Nilsson et al., 2009). In
addition, the modellers’ knowledge of the quality and limi-
tations of large-scale datasets is often inevitably inadequate,
which restricts the possibility to distinguish informative from
disinformative data.

Several previous studies have emphasised the importance
of uncertainties and errors associated with input and evalu-
ation data for robust hydrological inference (e.g. Aronica et
al., 2006; Freer et al., 2004; McMillan et al., 2012; Montanari
and Di Baldassarre, 2012; Thyer et al., 2009). The possibil-
ity that data uncertainties may even render combinations of
model input and evaluation data disinformative has only re-
cently been discussed (Beven and Westerberg, 2011; Beven
et al., 2011). Disinformative data in a hydrological con-
text are data that are physically inconsistent and therefore
misleading for model inference and hydrological analyses.
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Beven et al. (2011) use a master recession curve to identify
rainfall-runoff events with inconsistent runoff coefficients for
a British catchment, i.e. events where the water balance be-
tween precipitation input and discharge output is not satis-
fied, periods that they show are “disinformative” in model
evaluation. Westerberg et al. (2011) develop a model evalua-
tion criterion that can be expected to be more robust to some
types of moderate disinformation and analyse the effect of
disinformative data periods on model inference in a posterior
analysis. Kuczera (1996) shows that rating curve errors can
“very substantially, indeed massively” corrupt design-flood
estimation. When accounting for precipitation errors in cali-
bration of a watershed model, Vrugt et al. (2008) found that
the posterior distribution of the parameters and the model
predictive uncertainty were significantly affected. Beven and
Westerberg (2011) discuss the difficulties in analysing in-
formation/disinformation content in hydrological data given
multiple sources of epistemic data errors and their interac-
tion with model-structural errors. They highlight the impor-
tance of isolating disinformative data periods independent of
a model and then excluding them from model calibration and
evaluation. Model-independent methods to identify disinfor-
mative data and to investigate the effect of different types of
disinformation on model inference need to be further devel-
oped. These research questions are particularly relevant for
global hydrological models (GHMs) that are severely data
constrained and where model fit is sometimes only anecdo-
tally described. Substantial correction and tuning factors are
reported for GHMs in order to achieve acceptable fit to ob-
served discharge data (e.g. Fekete et al., 1999; Hunger and
Döll, 2008; Palmer et al., 2008). At the large scale it is im-
possible for the modeller to have the same detailed knowl-
edge of the quality and limitations of the modelling datasets
as on the local catchment scale. This effectively restricts the
possibility to distinguish informative data from disinforma-
tive ones, and calls for new types of analysis methods.

GHMs are commonly evaluated against discharge since it
represents an aggregated hydrological response of a basin.
Selection of basins for calibration/evaluation purposes has
previously been done mainly on the grounds of basin size
and record-length thresholds (e.g. Döll et al., 2003; Fekete et
al., 1999).

Many GHMs operate at a spatial resolution of 0.5◦
× 0.5◦

longitude and latitude, which corresponds to a cell area of
approximately 3100 km2 at the Equator (e.g. Arnell, 1999a;
Döll et al., 2003; V̈orösmarty et al., 1989; Wid́en-Nilsson
et al., 2007, 2009), or even at a coarser resolution
(e.g. Hanasaki et al., 2008) and can therefore not be expected
to represent small basins very well. The low resolution of
GHMs leads to a trade-off between using discharge stations
with small basin areas for spatial coverage and excluding
them since their representation in coarse flow networks is
restricted. Previous global studies have set minimum area
thresholds to 9000 (D̈oll et al., 2003; Kaspar, 2004) and
10 000 km2 (Fekete et al., 1999, 2002), and further reduced

the number of basins based on interstation-area (i.e. area be-
tween river gauges) thresholds of 20 000 and 10 000 km2, re-
spectively. Hanasaki et al. (2008) use an area threshold of
200 000 km2, but their model works at a lower spatial res-
olution (1◦

× 1◦ longitude and latitude). Yet other studies
have limited the evaluation to only a few major river basins
(e.g. Nijssen et al., 2001).

Recent development of high-resolution hydrographic
datasets such as HydroSHEDS (Lehner et al., 2008) offers
the possibility to use high-resolution topographic data in
global modelling, e.g. for runoff routing (Gong et al., 2011)
and for representation of sub-grid-scale topography in flood-
plain inundation modelling (Yamazaki et al., 2009, 2011).
This has also led to development of new up-scaled datasets
and high-resolution basin delineations. This sparks the ques-
tion whether smaller basins than used in previous studies can
be utilised for calibration/evaluation of GHMs and what re-
strictions to basin size are imposed by input data, since pre-
cipitation for longer periods than the last decades is com-
monly only available at 0.5◦ × 0.5◦ resolution.

The global hydrological-modelling community lacks a
methodology to evaluate forcing and calibration data inde-
pendent of a specific model, which hampers comparisons of
results from different models. In order to be right for the
right reasons, a global modelling effort should start with
an evaluation of data quality and, especially, possible in-
consistencies between datasets. This paper presents a basic
pre-modelling analysis of large-scale hydrological datasets.
The overall goal of the paper was to address the problem of
physically inconsistent and therefore disinformative data in
large-scale hydrological modelling and to show the impor-
tance of a pre-modelling data analysis. The study was per-
formed in two steps. The first step was to evaluate how well
basin areas were represented in three gridded (0.5◦

× 0.5◦)
hydrography datasets and one high-resolution GIS dataset
(derived from 15 arc-second topography) for basins as small
as 5000 km2. The second was to analyse and identify in-
consistencies between GHM forcing and evaluation data by
comparing four precipitation datasets and three potential-
evaporation datasets (all gridded at 0.5◦ resolution) with ob-
served discharge.

2 Data

The hydrographic datasets defining basin areas consisted
of both gridded flow networks and a GIS-polygon dataset
from the Global Runoff Data Centre (GRDC; Lehner, 2011).
The gridded datasets were DDM30 (Döll and Lehner, 2002),
STN-30p (V̈orösmarty et al., 2000) and an early version (ob-
tained in May 2011) of the datasets developed by Wu et
al. (2012) using the automated dominant-river-tracing algo-
rithm (Wu et al., 2011). This dataset (from here on called
DRT) uses a high-resolution baseline, which is a merge be-
tween HYDRO1k (USGS EROS, 1996) for high latitudes
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Table 1.Summary of global datasets used in the study.

Dataset Temporal Spatial Coverage
resolution resolution

Basin delineation

DRT (Wu et al., 2012) N/A 0.5◦ Global
GIS polygons (Lehner, 2011) N/A ∼ 15′′ Selected stations
STN-30p (V̈orösmarty et al., 2000) N/A 0.5◦ Global
DDM30 (Döll and Lehner, 2002) N/A 0.5◦ Global

Precipitation

CRU TS 3.10.01 (Harris et al., 2013) Monthly 0.5◦ Global/1901–2009
WATCHCRU (Weedon et al., 2011) Daily 0.5◦ Global/1901–2001
WATCHGPCC(Weedon et al., 2011) Daily 0.5◦ Global/1901–2001
GPCC v6 (Becker et al., 2013) Monthly 0.5◦ Global/1901–2010

Potential evaporation

CRU TS 3.10.01 (Harris et al., 2013) Monthly 0.5◦ Global/1901–2009
WATCHPM (Weedon et al., 2011) Daily 0.5◦ Global/1901–2001
WATCHPT (Weedon et al., 2011) Daily 0.5◦ Global/1901–2001

(above 60◦ N) and HydroSHEDS (Lehner et al., 2008) for
the rest of the land surface. Digital elevation data from Hy-
droSHEDS (15′′ resolution) were used for visualisation pur-
poses. All gridded basin-delineation datasets covered the
whole globe, whereas the polygon dataset only covered se-
lected basins (Table 1).

Discharge data were obtained from GRDC in June 2011,
at which time the archive held records for 7763 discharge
stations worldwide. Record lengths varied considerably be-
tween stations. Only monthly data calculated by GRDC from
daily records were used because these data contain correc-
tions performed by the providers, such as changes in rating
curves, etc. (T. de Couet, GRDC, personal communication,
July 2011).

Precipitation datasets included in the study were the Cli-
mate Research Unit’s freely available CRU TS 3.10.01 cli-
mate data (Harris et al., 2013; see Mitchell and Jones, 2005,
for version 2.1), GPCC Full Data Reanalysis version 6 (data
provided by NOAA/OAR/ESRL PSD, Boulder, Colorado,
USA, from www.esrl.noaa.gov/psd/) and both the CRU and
the GPCC bias-corrected WATCH forcing data, from here on
called WATCHCRU and WATCHGPCC(Weedon et al., 2011).
The CRU TS 2.1 precipitation dataset is based on ground
observations from several sources and each station has been
subjected to an iterative homogenisation procedure to de-
tect and correct discontinuities (e.g. caused by changes in
instrumentation). Station records have then been converted
to relative anomalies compared to the 1961–1990 standard
period. The anomalies have been spatially interpolated to
a 0.5◦ latitude-longitude grid before being combined with
1961–1990 normals from New et al. (1999) to a grid of ab-
solute values (Mitchell and Jones, 2005). Gauge undercatch
has not been explicitly corrected, but the 1961–1990 normals

were based on both corrected and uncorrected stations, which
means some areas are implicitly corrected (Mitchell and
Jones, 2005; New et al., 1999). The major difference between
the CRU TS 3.10.01 precipitation dataset and the version de-
scribed in Mitchell and Jones (2005), apart from longer cov-
erage (up to the end of 2009 compared to 2002) and inclusion
of new station data, is that no new homogenisation has been
performed on CRU TS 3.10.01 (BADC, 2013).

The GPCC precipitation dataset is, just as CRU, a
rain-gauge-based dataset derived by spatially interpolat-
ing anomalies from quality-controlled station records and
combining them with a background climatology to obtain
monthly gridded precipitation. However, the number of sta-
tions on which the GPCC product is based (∼ 67 200) by far
exceeds the CRU collection (∼ 11 800). The GPCC precip-
itation dataset does not include corrections for gauge mea-
surement errors (Becker et al., 2013).

As opposed to the CRU and GPCC precipitation datasets,
the WATCH precipitation data are not based on observed
data, but on the European Centre for Medium-Range Fore-
casts (ECMWF) 40 yr reanalysis, ERA-40 (Uppala et al.,
2005). However, two earlier versions of the CRU (ver-
sion 2.1) and GPCC (version 4) data products have been
used to correct ERA-40 precipitation for known biases
(e.g. Hagemann et al., 2005). Bias correction has been done
in two steps: (i) the number of wet days has been adjusted
to match the observations in CRU if the number of wet days
in ERA-40 exceeded the number of wet days in CRU, and
(ii) the monthly precipitation totals have been adjusted to
match either CRU or GPCC, thereby creating two different
precipitation datasets (WATCHCRU and WATCHGPCC). Ad-
ditionally, both precipitation datasets have been corrected for
gauge-catch errors using separate average monthly gridded

www.hydrol-earth-syst-sci.net/17/2845/2013/ Hydrol. Earth Syst. Sci., 17, 2845–2857, 2013
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Fig. 1. Example of treatment of gridded climate data for the polygon basin delineations. Basin outline based on DRT and GIS-polygon
data for Berlin M̈uhlendamm UP discharge station on the Spree River (9707 km2) overlaid on 0.5◦ climate data grid (left panel). Basin
intersections with the climate grid cells labelled with the fraction of the intersecting grid area (right). For each climate grid cell, only the
intersecting fraction contributes to the basin average: e.g. for the yellow polygon 73 % of the precipitation falling in the climate grid cell is
assumed to fall within the basin. The red triangle indicates the location of the gauge according to the GRDC archive and the green triangle
the location after corrections made in the generation of the GIS-polygon dataset.

catch quotients for liquid and solid precipitation from Adam
and Lettenmaier (2003). Since the ERA-40 reanalysis prod-
uct only covers 1958–2001, reordered ERA-40 data have
been used for the period 1901–1957 (Weedon et al., 2011).

Potential evaporation is available from the CRU and the
WATCH datasets. Both the CRU and the WATCH datasets
provide estimates based on the Food and Agricultural Orga-
nization (FAO) reference-crop-evaporation equation (Allen
et al., 1994). In this version of the Penman–Monteith equa-
tion (Monteith, 1965), a hypothetical well-watered refer-
ence crop is defined with a height of 0.12 m, an albedo
of 0.23, a surface resistance of 70 s m−1 and an aerody-
namic resistance based on the crop height and wind speed.
The CRU estimates were calculated from monthly gridded
values of average/minimum/maximum temperatures, vapour
pressure and cloud cover, and fixed monthly wind speeds
for the standard period 1961–1990 (Harris et al., 2013).
The WATCH FAO Penman–Monteith (WATCHPM) dataset
is based on 3-hourly bias-corrected ERA-40 data (Weedon
et al., 2011). The WATCH dataset also provides estimates
based on the Priestley–Taylor equation (Priestley and Taylor,
1972) assuming an albedo of 0.23 and theα factor set to 1.26
(Weedon et al., 2011).

3 Method

3.1 Climate and discharge data

Climate data were attributed to grid cells defined as land
in the basin delineations, but not covered by the climate
datasets, in an iterative manner to an average of the clos-
est surrounding cells covered by the climate datasets until all

land areas were covered. For the GIS-polygon dataset, the in-
tersections with the half-degree climate-data grid cells were
used to calculate the fraction of precipitation and potential
evaporation of each cell contributing to the basin (Fig. 1).
Sub-grid variability was not taken into account, i.e. precipi-
tation and potential evaporation were assumed to be evenly
distributed over each grid cell.

Only data within the common period of the climate
datasets (1901–2001) were used in the analysis, and peri-
ods for individual basins varied depending on the discharge-
data records. The quality control of discharge data in this
study was limited to an elimination of clearly erroneous data
(i.e. wrongly set nulls such as 999 instead of the correct miss-
ing data value of−999). When these appeared in the daily
data, the monthly data were also excluded.

3.2 Hydrography representation of basin areas

Before the basin-area representation for the different hydro-
graphic datasets could be compared, the discharge stations
had to be connected (co-registered) to the gridded flow net-
works so that each station was assigned to the cell in the
hydrography for which the flow-accumulation area (i.e. the
sum of all upstream cell areas as defined by the flow net-
work) best corresponded to the basin area in question. For
DDM30, co-registrations of GRDC stations and the flow net-
work are available for 1235 stations (Hunger and Döll, 2008)
and for STN-30p for 663 stations (Fekete et al., 2002). No co-
registrations were available for the DRT dataset, and there-
fore GRDC stations were co-registered with the gridded hy-
drography in three steps. Firstly, each station was assigned
to the cell corresponding to the coordinates in the GRDC
database. Secondly, an automatic re-assignment was made

Hydrol. Earth Syst. Sci., 17, 2845–2857, 2013 www.hydrol-earth-syst-sci.net/17/2845/2013/
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if the flow-accumulation area of any of the closest eight sur-
rounding cells better corresponded to the basin area reported
by GRDC. And thirdly, all stations exhibiting a relative area
difference,εA , of more than 10% were manually inspected
and re-assigned if possible. The relative area difference was
calculated according to Eq. (1). This measure was adopted
since it has been used previously (Döll and Lehner, 2002;
Fekete et al., 1999) but under the name “symmetric error”.
It was termed relative area difference in this study to clarify
that no assumption was made about the error distribution.

εA =
AAcc − AGRDC

max (AAcc, AGRDC)
· 100%, (1)

AAcc is the flow-accumulation area of the assigned cell and
AGRDC is the GRDC basin area. Positive (negative) relative
area differences mean that calculated basin areas are larger
(smaller) than the ones reported to GRDC. The inspection
was done in Google Earth by using online map resources and
superimposing the flow network on a 1: 10 000 000 river net-
work (freely available fromwww.naturalearthdata.com; ac-
cessed on 17 October 2011).

We calculated cell areas for all the gridded hydrographic
datasets as quadrangles based on the World Geodetic Sys-
tem 1984 ellipsoid. The relative area differences for all hy-
drographic datasets were calculated and used to evaluate how
well the different datasets represented basin areas in compar-
ison to the areas reported in the GRDC database.

3.3 Evaluation of consistency between model forcing
and evaluation data

Similarly to Beven et al. (2011), the basic method used in this
study was to identify disinformative data as those that violate
the conservation equation, i.e. the water balance. In contrast
to their event-based approach we analysed the long-term wa-
ter balance and also analysed data for transgressions of the
potential-evaporation limit, similarly to Peel et al. (2010).
The change in basin storage can safely be ignored for suf-
ficiently long time periods, except for special cases such as
melting glaciers. The water-balance equation can then be
simplified to

P = EA + R, (2)

where P is precipitation,EA actual evaporation andR
runoff. For natural basins, runoff should not exceed the pre-
cipitation input to the system. Actual evaporation equals the
difference between precipitation and runoff and should not
exceed potential evaporation (EP). These were the funda-
mental assumptions on which the consistency checks be-
tween the forcing data (precipitation and potential evapora-
tion) and the evaluation data (discharge) were based.

All datasets are affected by different types of uncertainties.
Estimating them can be difficult because of lack of knowl-
edge about their nature and magnitude, both temporally

and spatially. There is a growing literature on quantifica-
tion of uncertainties connected to hydrological modelling,
reviewed by McMillan et al. (2012), concerning magni-
tudes of observational uncertainties of some key hydrolog-
ical variables. In the present study, a relative uncertainty
of ±10 % was assumed for long-term discharge (resulting
in a low, a high and a best (i.e. the original data) estimate
for each time series). Climate data were used as given in
their original sources, which means that potential evapora-
tion refers to FAO Penman–Monteith reference-crop esti-
mates for WATCHPM and CRU and to Priestley–Taylor es-
timates for WATCHPT and, hence that land cover is not ex-
plicitly taken into account.

The runoff coefficient (RC), i.e. the quotient of runoff to
precipitation, is a measure of how precipitation is partitioned
into runoff and evaporation. RCs are often calculated on an
event basis and for specific surfaces, but can also be de-
termined as a long-term response characteristic for a basin.
Long-term RCs were calculated for low, high and best es-
timated discharge values, resulting in a high, a low, and a
best-estimate RC value for each basin. Hence, the first test of
consistency between datasets, that runoff should not exceed
precipitation input, stated that RCs should not be higher than
one. In reality, a long-term basin RC even close to unity is
implausible if the basin definition is correct, since it means
that even over several years hardly any flux to the atmo-
sphere would occur. Even in very cold systems losses occur
through sublimation from intercepted snow and from snow
on the ground (e.g. Strasser et al., 2008). Unity was used
as a conservative threshold in this study to avoid classify-
ing datasets as inconsistent based on arbitrary RC thresholds.
When based on low estimates of RC values, this threshold
could be considered very conservative.

In order to investigate when time periods were “suffi-
ciently” long to determine long-term runoff coefficients, an
initial analysis was performed of the variation of RCs with
regards to record length. A subset (n = 37) was selected of
the co-registered GRDC stations with complete data through-
out the common period (January 1901–December 2001). For
each record length (1 to 15 yr of consecutive data), each dis-
charge record was randomly re-sampled 20 times (overlaps
occurred) and the runoff coefficient for each sample was cal-
culated. For each basin and sample length, the individual RC
estimates were divided by the median RC and plotted for all
37 basins (Fig. 2). It was assumed from the spread in the scat-
ter plot that 10 yr of data sufficed to estimate the long-term
runoff coefficients.

The discharge datasets analysed in this paper were not
screened for anthropogenic influences (e.g. reservoirs and
inter-basin transfers), which means that for some basins the
water balance according to Eq. (2) could not be expected to
be fulfilled. However, if those influences have an impact then
data would still be disinformative in subsequent modelling
unless additional data allow for explicit treatment of the an-
thropogenic influences in the model.

www.hydrol-earth-syst-sci.net/17/2845/2013/ Hydrol. Earth Syst. Sci., 17, 2845–2857, 2013
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Fig. 2. Variation of runoff-coefficient estimates as a function of
record length summarised for 37 basins with long data records. Esti-
mates are standardised by division with the basin median for a given
record length.

4 Results

4.1 Hydrography representation of basin area

Of the 7763 stations available in the GRDC data archive,
245 stations were excluded from the study because of in-
sufficient metadata records, i.e. missing coordinates or basin
areas. The remaining 7518 stations with sufficient metadata
were registered in the DRT flow network following only the
two automatic steps at first. Many stations in the database
represented basins smaller than a 0.5◦ cell and clear sys-
tematic errors because of overestimated areas for these small
basins were noticed in this initial stage (Fig. 3). Since man-
ual checking of station locations is very time consuming,
the study was limited to basins larger than 5000 km2. This
threshold is considerably smaller than those of previous stud-
ies but it still meant that most small basins with large relative
area differences were excluded. In total, there were 2,177
stations in the archive with basins larger than 5000 km2 for
which daily data were available. The remaining stations with
relative area differences larger than 10 % were subjected to
the third, manual co-registration step. Despite this check,
many stations could not be relocated to well-fitting cells and
the relative area differences remained large for some stations
(Fig. 4b).

Of the stations co-registered in DRT, 558 were also avail-
able as co-registered stations in the DDM30 and STN-30p
datasets. The relative area differences displayed a markedly
larger scatter for STN-30p (standard deviation ofεA 14.3 %)
and DRT (14.6 %) than for DDM30 (8.9 %) (Fig. 4a–c).
None of the datasets showed any general tendency to over-
or underestimate areas. There was little consistency in the
errors between datasets except for a few largely over- and
underestimated stations in DDM30 and STN-30p (Fig. 4d–
e). Relative area differences with absolute values over 70 %
were observed for all hydrographic datasets.
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Fig. 3. Relative area difference after automatic relocation for all
7518 GRDC stations with sufficient metadata. The dashed line in-
dicates the 5000 km2 threshold used to select the basins for the rest
of the analyses in the study.

The GIS-polygon dataset was compared to the stations co-
registered in DRT. Of these 2177 stations, 2005 were avail-
able in the GIS dataset. The GIS-polygon-based basin ar-
eas showed small errors compared to those of the gridded
dataset, but some stations exhibited markedly large errors
(Fig. 5a). As before, the errors showed little consistency be-
tween datasets (Fig. 5b). Visual inspection of the mapped
area discrepancies of the datasets revealed no geographical
pattern for any of the datasets.

4.2 Evaluation of consistency between forcing and
evaluation data

Long-term runoff coefficients could be calculated for 1561 of
the 2005 stations that were available in both the polygon
dataset and in DRT, given that there should be at least 10 yr
of consecutive data. To minimise the effect of area discrep-
ancies, results shown are based on the GIS-polygon basin
delineation. The scatter plot of GPCC and CRU precipita-
tion data (Fig. 6a) shows a higher relative difference in pre-
cipitation in drier basins. Runoff coefficients for the differ-
ent precipitation datasets generally show higher relative dis-
crepancies for high runoff coefficients, and implausibly high
RCs were mainly found in areas with relatively low precip-
itation (Fig. 6b–c). The general distributions of RCs did not
differ much between the precipitation datasets, and implau-
sibly high runoff coefficients were found for all four datasets
even when using the low discharge estimate (Fig. 7). How-
ever, RCs higher than one were more common for the CRU
and WATCHCRU precipitation datasets than for the other two.
Basins with high runoff coefficients were almost exclusively
located in high-latitude or high-altitude areas (Fig. 8). The
majority of the basins with RCs exceeding unity were found
in Alaska and north-western Canada.

The second data-consistency test, that actual evaporation
given as a residual in Eq. (1) should not exceed poten-
tial evaporation, was analysed graphically. Calculated ac-
tual evaporation was plotted against potential evaporation (a
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Table 2.Percent of basins (based on the GIS-polygon dataset) exhibiting potential data inconsistencies. Each basin is only accounted for in
the worst category that applies to it, e.g. a basin for which the lowest of the actual evaporation estimates exceed the potential evaporation is
accounted for in columnEAL > EP but notEAH > EP.

Precipitation Potential No remark EAL > EP EAH > EP P − RL < 0 P − RH < 0
evaporation

CRU CRU 85.6 4.5 2.9 3.6 3.4
CRU WATCHPM 71.7 12.2 9.1 3.6 3.4
CRU WATCHPT 62.6 19.8 10.6 3.6 3.4
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Fig. 4.Histograms of relative area differences for 558 basins with stations registered in the three gridded flow networks:(a) DDM30, (b) DRT
and(c) STN-30p. The lower panel shows comparisons of the relative area differences for each basin in the different flow networks.

simplified version of the Budyko, 1974, curve) for all com-
binations of precipitation and potential-evaporation datasets.
The geographical patterns were similar for all combinations
(Fig. 9 and Table 2 exemplify the results for the CRU pre-
cipitation). Uncertainty in the runoff is represented in colour
coding where red represents basins that exhibit actual evap-
oration (P − R) higher than potential evaporation even for
the high discharge estimate (i.e. when the calculated actual
evaporation is the lowest,EAL ) and orange represents basins
with actual evaporation higher than the potential-evaporation
values for discharge estimates between the low (i.e. when
the estimated actual evaporation is the highest,EAH) and the
high values. One noticeable difference between the different
potential-evaporation datasets was the greater frequency of
basins exhibiting actual evaporation values higher than the
potential-evaporation estimates for the two WATCH datasets
compared to the CRU dataset. Implausibly high actual evapo-
ration frequently appeared in the Amazon basin for all three

datasets, and for the two WATCH datasets also on the east
coast of North America, in Europe, equatorial Africa and
South East Asia. Blue dots in Fig. 9 indicate basins for which
the actual evaporation was negative (i.e. RC> 1) for both
the high and low discharge estimates and green dots where
this occurred only for the low estimates of actual evapora-
tion (i.e. high discharge estimates). The proportions of sta-
tions with actual evaporation exceeding potential evapora-
tion or implausibly high RCs were similar for all basin sizes
(Fig. 10).

5 Discussion

5.1 Hydrography representation of basin area

A correct basin area is a prerequisite for a correct water bal-
ance. The discrepancies between basin-area estimates in the
different hydrographies and the area reported in the GRDC
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Fig. 5. (a) Relative area differences for 2005 basins based on the
GIS-polygon definition and(b) comparison with relative area dif-
ferences exhibited in DRT.

database are likely attributable both to deficiencies in the
basin representations, and to varying quality of the GRDC
metadata. The accuracy of the areas given in the archive is not
reported by the different data providers (U. Looser, head of
GRDC, personal communication, October 2011). The larger
scatter observed for STN-30p and DRT compared to DDM30
can likely be explained by the extensive manual corrections
of the flow network (35 % of all cells) performed on the lat-
ter (Döll and Lehner, 2002). DDM30 outperforms both STN-
30p and DRT in representing basin areas close to the ones re-
ported in GRDC (at least for basins larger than 10 000 km2).
The advantage of DRT over the other two gridded hydro-
graphies would be the possibility to use the high-resolution
baseline to derive topographic basin information.

Some of the basin areas reported in the GRDC archive in
June 2011 are likely to be different to the ones reported at the
time of collection of data for co-registration with STN-30p
(Fekete et al., 2002) and DDM30 (Hunger and Döll, 2008)
since the GRDC archives have been continuously updated. A
comparison of Fig. 5 in D̈oll and Lehner (2002) and Fig. 4
in this paper showed that at least a few basin areas must
have been updated since no absolute relative area differences
above 30 % are reported for the DDM30 stations. Hence, the
consistency in errors between DDM30 and STN-30p noted
for a few largely over- and underestimated basin areas is an

indication that those stations had different basin areas re-
ported in the GRDC archive when those co-registrations were
done compared to the archive on 15 June 2011 (when data
were collected for this study). Changes in the reported areas
were also found between October 2010 (the time of data col-
lection for the GIS polygon dataset) and the time when data
were collected for this study. The changes were small in most
cases, but increases in basin area over 100 % were noted for
a few stations.

The GIS-polygon delineation of basins matched basin ar-
eas in the GRDC archive well in most cases, but there were
some clear discrepancies. Given the extensive manual checks
to verify station locations and basin areas during the devel-
opment of the dataset, it can be argued that the GIS dataset is
more likely correct in case of discrepancy. The area discrep-
ancies showed no geographical pattern, even though the GIS
dataset is based on a coarser hydrography above 60◦ N and
therefore could be expected to perform worse in those areas.

Among the 2005 stations common between the GIS
dataset and the stations co-registered with DRT, 584 stations
had a basin area of 10 000 km2 or less. Of those, 80 % exhib-
ited relative area differences with absolute values less than
25 % in the gridded hydrography compared to 92 % in the
GIS delineation. Corresponding figures for relative area dif-
ferences below 10 % were 45 and 84 %, respectively. Hence,
many small basin areas were well represented even in the
DRT 0.5◦ grid. Basin area was the only means of compari-
son in this study, however, even if the relative area difference
is small, it does not mean that the spatial extent (shape) of
a basin is correctly described and further checks on this is-
sue could be made. Uncertainty in the spatial representation
is likely to be most pronounced for small basins, and when
using gridded instead of GIS-polygon hydrographic datasets.

5.2 Consistency between forcing and evaluation data

Runoff coefficients greater than unity have been encountered
in several global studies (Fekete et al., 2002; Peel et al.,
2010; Wid́en-Nilsson et al., 2009). There could be several
reasons for this data mismatch: precipitation underestimation
because of poor spatial (and temporal) representativeness of
the data and/or measurement errors, discharge-data uncer-
tainties, and anthropogenic influences or subsurface inter-
basin transfers (Peel et al., 2010). In addition, poor represen-
tation of the basin in the up-scaled hydrography could lead to
a mismatch, especially for small basins in the gridded hydro-
graphic datasets. However, the effect of hydrography errors
should be small for most basins in the GIS-polygon dataset.
It was found that the vast majority of basins with implausible
runoff coefficients were located in areas where underestima-
tion of precipitation could be caused by snowfall undercatch.
Wind-induced solid precipitation undercatch can have a sub-
stantial effect on precipitation totals in high-latitude areas
(Adam and Lettenmaier, 2003). The geographical patterns
were similar for all precipitation datasets, even though the
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Fig. 7. Distribution of low-estimate RCs for the four precipitation
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WATCH precipitation datasets have been corrected for solid
undercatch. Hence, the results indicate that those corrections
might not be sufficient, assuming that the discharge data can
be trusted.

The evaluation of actual and potential evaporation pointed
to further inconsistencies between climate and discharge
data. Data inconsistencies led to transgression of the
potential-evaporation limit (i.e.EA > EP) in many basins.
Peel et al. (2010) report similar issues when analysing a
large set (n = 861) of basins worldwide using observed sta-
tion records rather than gridded data. Basins exhibiting ac-
tual evaporation higher than potential evaporation were more
abundant and appeared in more regions when potential evap-
oration from the WATCH rather than the CRU dataset was
used. Such inconsistencies could be possible for individual
basins as a result of e.g. irrigation and inter-basin trans-
fers, not accounted for here. However, a main reason for
these inconsistencies is likely limitations of the potential-
evaporation estimates.

It is common in GHMs to use potential-evaporation
estimates that do not explicitly consider vegetation type
(e.g. D̈oll et al., 2003; Fekete et al., 1999; Widén-Nilsson

 

 

+RC>1
0 0.2 0.4 0.6 0.8 1

Fig. 8. Spatial pattern of runoff coefficients for CRU precipitation.
Circles represent best RC estimates and crosses represent basins
with low RC estimates higher than one.

et al., 2007, 2009) or to use crop coefficients only to esti-
mate demand for irrigated crops (e.g. Döll and Seibert, 2002;
Wisser et al., 2008, 2010), although some modellers con-
sider vegetation type in the calculation of potential evapora-
tion (e.g. Arnell, 1999b; Gosling and Arnell, 2011). Our re-
sults suggest that it could be important to consider land cover
since inferred actual evaporation often exceeded potential-
evaporation estimates in areas like the Amazon basin where
the FAO reference crop estimates might underestimate po-
tential evaporation. It is reasonable to assume that taking
land-cover into account could alleviate some of the incon-
sistencies found. Accurate estimation of potential evapora-
tion on these large scales is a complex task both because of
spatial and temporal nonlinearities in the process description
and because of the feedback mechanisms between the surface
and the atmospheric boundary layer. The resolutions at which
data are available at the global scale often prevent consider-
ations of the highly heterogeneous and time-variable nature
of many of the variables determining the grid-average poten-
tial evaporation. The potential-evaporation datasets used in
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this study were all calculated using data of 0.5◦ spatial reso-
lution. The real-world variability can be very large within a
cell, and because of limited base data, the average cell val-
ues may be badly captured both in the input data and in the
resulting potential-evaporation estimates. Even if increasing
the potential evaporation estimates by 25 %, which would
correspond to a very high crop factor in all seasons (Allen et
al., 1998), many basins still exhibit actual evaporation higher
than the potential evaporation.

Sub-grid variability of precipitation can also be large,
e.g. in mountainous areas. Taking such variability into ac-
count could potentially alleviate inconsistencies found in
this study, although solid-precipitation undercatch appears
to be a main issue. Sub-grid variability could be important
on short timescales, e.g. when modelling runoff timing. We
used the climate data as are, since this study was intended
as an initial data screening to highlight the need to scrutinise
data before a modelling exercise. The discovery of incon-
sistent data should lead to a search of methods to resolve
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those issues (e.g. gauge-measurement corrections, surface-
dependent estimation of potential evaporation, and consid-
eration of anthropogenic influences), and we hope that such
studies will follow. As many as 8–43 % of all basins exhib-
ited inconsistencies for the best runoff estimate depending
on how the datasets were combined. The corresponding fig-
ures were 6–35 % when accounting conservatively for dis-
charge uncertainties and only counting basins falling com-
pletely outside of the physically reasonable limits.

These violations to fundamental consistency assumptions
pose a serious problem for model calibration and evalua-
tion (Beven and Westerberg, 2011; Beven et al., 2011), and
could cause bias in a subsequent model regionalisation. De-
pending on the evaluation criteria for the calibration, some
of these problems could go unnoticed, but model-parameter
values could be biased as a result of such long-term incon-
sistencies. It should be noted that there might be periods
of informative data in a dataset even if a long-term aver-
age is disinformative. Conversely, datasets found consistent
in this analysis might contain data that are disinformative on
short timescales. There is a need to develop methods to reli-
ably identify inconsistent events at short timescales for large
spatial-scale datasets.

6 Concluding remarks

This study has demonstrated that a pre-modelling data anal-
ysis should be an important first step in a large-scale hydro-
logical study. Scrutinising input and evaluation data is vital
to reveal inconsistencies between datasets and to highlight
basins where one should be cautious when making model in-
ferences based on these data. It could be concluded that

– a majority of basins with areas larger than 5000 km2

could be well represented (absolute relative area dif-
ference ≤ 25 %) in a 0.5◦ × 0.5◦ longitude-latitude
grid. The GIS-polygon delineation derived from a

high-resolution hydrographic baseline outperformed the
gridded delineation (DRT).

– large and frequent inconsistencies between climate
datasets and observed discharge showed clear spatial
patterns. Because of this, it was hypothesised that the
inconsistencies were mainly caused by limitations in
the forcing/evaluation data. Some inconsistencies could
also have been caused by anthropogenic influences not
considered in this study (e.g. inter-basin transfers, irri-
gation and reservoirs).

In light of the first point, it could be argued that global hydro-
logical models should use polygon-based basin delineations
rather than limiting delineation accuracy to the resolution of
the input data, as is common today. This is especially true
since large area discrepancies in coarse flow networks can
compensate (or aggravate) precipitation-input deficiencies.
Even if a model can perform well in such basins, it might
be for the wrong reasons. However, this would require devel-
opment of polygon delineations with full global coverage.

In light of the second point, some inconsistencies may be
solved by considering sub-grid variability in climate data,
surface-dependent potential-evaporation estimates, etc., but
it is likely that inconsistencies for many basins cannot be re-
solved based on available global data. Further studies will be
required to find out the reasons for these inconsistencies and
how they affect model inference. A model-independent data
analysis, such as the one presented in this study, is a useful
tool to identify and analyse inconsistent datasets – therefore
enabling more robust conclusions in subsequent hydrological
modelling and analyses (Juston et al., 2012).
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