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Abstract. Many karst aquifers are rapidly filled and depleted
and therefore are likely to be susceptible to changes in short-
term climate variability. Here we explore methods that could
be applied to model site-specific hydraulic responses, with
the intent of simulating these responses to different climate
scenarios from high-resolution climate models. We compare
hydraulic responses (spring flow, groundwater level, stream
base flow, and cave drip) at several sites in two karst aquifers:
the Edwards aquifer (Texas, USA) and the Madison aquifer
(South Dakota, USA). A lumped-parameter model simulates
nonlinear soil moisture changes for estimation of recharge,
and a time-variant convolution model simulates the aquifer
response to this recharge. Model fit to data is 2.4 % better
for calibration periods than for validation periods according
to the Nash–Sutcliffe coefficient of efficiency, which ranges
from 0.53 to 0.94 for validation periods. We use metrics that
describe the shapes of the impulse-response functions (IRFs)
obtained from convolution modeling to make comparisons in
the distribution of response times among sites and between
aquifers. Time-variant IRFs were applied to 62 % of the sites.
Principal component analysis (PCA) of metrics describing
the shapes of the IRFs indicates three principal components
that together account for 84 % of the variability in IRF shape:
the first is related to IRF skewness and temporal spread and
accounts for 51 % of the variability; the second and third
largely are related to time-variant properties and together ac-
count for 33 % of the variability. Sites with IRFs that domi-
nantly comprise exponential curves are separated geograph-
ically from those dominantly comprising lognormal curves
in both aquifers as a result of spatial heterogeneity. The use
of multiple IRF metrics in PCA is a novel method to charac-
terize, compare, and classify the way in which different sites

and aquifers respond to recharge. As convolution models are
developed for additional aquifers, they could contribute to
an IRF database and a general classification system for karst
aquifers.

1 Introduction

An understanding of how key hydrologic variables, such as
spring flow and groundwater levels, are likely to respond to
potential future climate scenarios is critical for water man-
agement. Karst aquifers are likely to be particularly suscep-
tible to changes in short-term climate variability, because the
cavernous porosity of these aquifers allows rapid replenish-
ment by focused recharge through streambeds and sinkholes
(White, 1988), the amount and timing of which is tightly
linked to precipitation and antecedent moisture conditions
(e.g., Long, 2009; Jukić and Deníc-Jukíc, 2011). The karstic
Edwards aquifer has been identified as being particularly vul-
nerable to climate-change effects because of high use, strong
links to climatic inputs, and large variability in precipitation
and multi-year droughts (Lóaiciga et al., 1996).

High-resolution weather-forecast models have been
adapted to simulate regional climate change on the basis of
boundary conditions taken from coarser-resolution general
circulation models (e.g., Mearns et al., 2009; Hostetler et al.,
2011). With regional climate models continually improving,
convolution modeling is a promising approach to estimate
how hydrologic systems will respond to local-scale climate
scenarios. Convolution is a time-series method that has been
widely used in rainfall-runoff models to simulate stream-
flow in response to infiltration on a watershed (Dooge, 1973;
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Jakeman and Hornberger, 1993; Pinault et al., 2001; Simoni
et al., 2011) and also has been applied to groundwater re-
sponse (Hall and Moench, 1972; Long and Derickson, 1999;
Von Asmuth et al., 2002; Jukić and Deníc-Jukíc, 2006).

Convolution is particularly useful for simulating karst hy-
drologic systems, which respond rapidly to changes in pre-
cipitation but for which site-specific response is difficult if
not impossible to simulate with physically based, distributed-
parameter models. Unsteady and nonuniform flow in vari-
ably saturated conduits and pressurized flow in filled con-
duits, as described by Reimann et al. (2011), are spatially
and temporally variable conditions that can be simulated by
convolution, even if the conduit network is not defined ex-
plicitly. There is interest in classifying different types of karst
aquifers (e.g., Smart and Worthington, 2004), but only a few
of the proposed approaches are quantitative (Covington et al.,
2009, 2012; Labat et al., 2011; Luhmann et al., 2011). Con-
volution modeling estimates the impulse-response function
(IRF), which characterizes the functioning of the groundwa-
ter system independently from system inputs. Other time-
series methods such as Fourier spectral analysis or wavelet
analysis are useful for characterizing hydraulic or hydro-
chemical responses in karst aquifers (e.g., Massei et al.,
2006), but these are dependent on system inputs.

Here we explore methods that could be applied to model
site-specific hydraulic responses with the intent of future
application to projected climate simulations from improved
high-resolution, dynamical climate models. We compare
hydraulic-response characteristics at several sites in two karst
aquifers: the Edwards aquifer (Texas, USA) and the Madison
aquifer (South Dakota, USA). We describe the application of
convolution models on a site-specific basis and quantifica-
tion of the predictive accuracy of model output. We exam-
ine and quantify time-variant properties, a condition com-
mon in karst systems especially when epiphreatic conduits
exist (Jeannin, 2001). The model simulates nonlinear soil-
moisture changes for estimation of recharge and uses a time-
variant convolution process to simulate the aquifer response
to this recharge. We use metrics that describe the shapes of
the IRFs obtained from convolution modeling to make com-
parisons among sites and between two aquifers in a novel
approach that could be useful for karst aquifer classification.

2 Methods

The model consists of simulating two processes in series. The
first is the process of precipitation becoming recharge; the
second is recharge transitioning into a system response (i.e.,
functioning of the groundwater system) such as spring flow
or groundwater level. The IRFs estimated by modeling were
then used in aquifer classification.

2.1 Estimating recharge

Effective and surplus precipitation are terms used in wa-
tershed modeling to describe the variable fraction of daily
precipitation that results in streamflow response. On karst
land surfaces, we assume that direct runoff is small or neg-
ligible (e.g., Miller and Driscoll, 1998; Carter and Driscoll,
2006), and groundwater recharge can be estimated similarly
to effective-precipitation methods, as described by Jakeman
and Hornberger (1993; Eqs. 1–4). First, a daily soil-moisture
index s is estimated, which is weighted by a backward-in-
time exponential decay function that operates on the past
daily rainfall record, as described by

si = cri +

(
1− κ−1

i

)
si−1 (1)

= c

[
ri +

(
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i

)
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)2
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]
i = 0,1, ..., N 0 ≥ s ≥ 1, (2)

wherec is a normalizing parameter that limitss to values
between 0 and 1 (dimensionless),κ adjusts the effect of an-
tecedent conditions and is related to evapotranspiration (di-
mensionless),r is total daily rainfall (cm), andi is the time
step (days).

In watershed modeling,c is calculated to satisfy an as-
sumption that effective precipitation within the watershed is
equal to outflow. However, the groundwater recharge area
that affects a well or spring is not precisely defined, and so
c cannot be determined empirically for groundwater appli-
cations, which also may be true for karst watersheds. There-
fore, we optimizec through model calibration. Air tempera-
ture, which affects evapotranspiration and soil drying rates,
is accounted for by adjustingκ by daily air temperature:

κi = αexp[(20− Ti)f ] f > 0, (3)

whereα is a scaling coefficient (dimensionless),T is daily
mean air temperature (◦C), andf is a temperature modu-
lation factor (◦C−1). Equation (3) has the primary effect of
increasing the value ofs during cool periods (0< T < 20◦C)
when evapotranspiration is low. Daily rechargeui (cm) is
then calculated as a fraction of daily precipitation by

ui = risi . (4)

Equations (1)–(4) describe a lumped-parameter model of
recharge, because several physical processes are lumped into
a few parameters. Only precipitation that occurs either as
rain or melting snow was included in the calculation ofs. A
method was established to estimate the occurrence of snow
precipitation and melting for future periods on the basis of
simulated air temperature. To determine the form of pre-
cipitation for each day, an air temperature threshold value
(Ts = 0◦C) was set, below which precipitation was assumed
to occur as snow. To determine days when melting occurs,
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a melting threshold valueTm was estimated. If daily snow-
depth data are available, this melting threshold can be de-
termined empirically as the average air temperature for days
when snow depth decreased to zero from a previous day with
a snow depth greater than zero. Sublimation was accounted
for by estimating the fraction of snow moisture remaining
after sublimation (Sf ; Long, 2009). Snow precipitation was
multiplied by Sf and summed for the continuous series of
snow-precipitation days prior to each snowmelt day. This
sum was added to each snowmelt day in the daily rainfall
record, because snowmelt was assumed to have the same ef-
fect as rainfall on the value ofs.

2.2 Convolution

If a system input, after being transported through a medium,
results in a system output that is dispersed in time accord-
ing to a characteristic waveform, either time variant or in-
variant, then this system can be simulated by convolution.
When applied to hydrologic modeling, this is another type
of lumped-parameter model that also has been described as
a transfer-function model and a linear-reservoir model (e.g.,
Nash, 1959; Von Asmuth et al., 2002). Convolution is de-
scribed by

y(t) =

∞∫
0

h(t − τ)u(τ)dτ , (5)

wherey(t) is the system output, or response;u(τ) is the
system input, or forcing function;h(t − τ) is an impulse-
response function (IRF);τ and t are time variables corre-
sponding to system input and output, respectively, where
t − τ represents the delay time from system input to output
(Dooge, 1973; Olsthoorn, 2008). For uniform time steps, the
discrete form of Eq. (5) is

yi =

i∑
j=0

hi−juj i = 0,1, ...,N, (6)

whereN is the number of time steps in the output record.
The IRF describes the system outputy that results from an
instantaneous unit inputuj . The IRF has been described by
many different terms, including instantaneous unit hydro-
graph, transfer function, and kernel (e.g., Nash, 1959; Beren-
drecht et al., 2003; Jukić and Deníc-Jukíc, 2006).

Exponential, lognormal, and Pearson type III (gamma)
functions, all of which are left skewed, have been used as ap-
proximations of IRFs (Nash, 1959; Von Asmuth et al., 2002;
Berendrecht et al., 2003). The exponential curve has a peak
response, or mode, at zero, whereas lognormal and Pearson
type III curves have peak responses> 0 and are similarly
shaped. We use exponential curves, lognormal curves, or a
combination of the two to approximate IRFs. The exponen-
tial curve is defined as

h(t) = aλexp(−λt), (7)

wherea is a scaling coefficient, andλ determines the mean
and variance of the system output timet as

µ = λ−1 (8)

and

σ 2
= λ−4, (9)

respectively. The lognormal curve is defined as

h(t) =
b

t
√

2πε
exp

[
−
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(ln t − ω)2

]
, (10)

whereb is a scaling coefficient, andω andε determine the
mean and variance oft as

µ = exp(ω + ε/2) (11)

and

σ 2
= µ2 [

exp(ε) − 1
]
, (12)

respectively. Parameters of Eqs. (1)–(12) are listed in Table 1.
The length of the IRF quantifies the system memory, or time
that the response to the impulse effectively persists. Because
exponential and lognormal curves are asymptotic and thus
have infinite length with infinitesimal magnitude after some
point in time, system memory is defined herein as timetm on
the IRF time scale at which 95 % of the curve area is between
time t = 0 andtm.

Numerical simulation of flow in karst settings is compli-
cated by the existence of quick-flow and slow-flow compo-
nents, e.g., flow through large conduits and through small
fractures (Pinault et al., 2001). In some cases, a single expo-
nential or lognormal IRF can adequately represent the quick-
flow and slow-flow components of karst groundwater flow,
where the first part of the curve, including the initial peak,
represents quick flow, and the tail of the curve represents
slow flow. In other cases, a secondary IRF with a long tail
that represents all or part of the slow-flow component may be
useful (e.g., Long, 2009). We combine the primary and sec-
ondary IRFs by superposition in a compound IRF. Pinault et
al. (2001) used a similar approach to represent the quick-flow
and slow-flow components in karst aquifers. Denić-Jukíc and
Jukíc (2003) used one function for the IRF peak and an-
other function for the tail in a composite IRF. In the approach
herein, the compound IRF can consist of any combination of
exponential or lognormal curves. A compound IRF consist-
ing of at least one lognormal curve can result in a bimodal, or
double-peaked, distribution of response times, which could
be a result of two-domain flow (Long and Putman, 2006). A
compound IRF consisting of two exponential curves is use-
ful when quick flow and slow flow are separated into a sharp
initial peak and long tail, respectively (Fig. 1).

If the scaling coefficientsa andb are set to unity, the ar-
eas under the IRFs also are equal to unity. Adjusting the
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Figure 1. 
Fig. 1. Examples of compound impulse-response functions (IRFs)
consisting of the superposition of an exponential and a lognormal
curve (a andb) and two exponential curves (c andd).

values of these coefficients allows their use as conversion
factors to account for the different dimensions between the
system input and output. This also allows for unequal curve
areas between the primary and secondary IRF and allows
the curve area for time-variant IRFs to change. For simula-
tion of groundwater levels, a datumh0 at which hydraulic
head equals zero must be established. Conceptually, this is
the level to which hydraulic head would converge if the lo-
cal system-input recharge was eliminated. This system input
is assumed to be the only source of recharge close enough
to cause hydraulic-head fluctuation and the only source that
causes hydraulic head to rise aboveh0.

2.3 Nonlinearity and time variance

Nonlinearity and time variance have distinct meanings
in time-series analysis as described by Jenkins and
Watts (1968). By this definition, the recharge estimation
method described by Eqs. (1)–(4) represents a nonlinear pro-
cess. Antecedent soil-moisture effects result in nonlinear wa-
tershed flow processes (Jakeman and Hornberger, 1993; Si-
moni et al., 2011). In contrast, convolution, which represents
groundwater flow in response to recharge, is defined as a
linear system that can be either time invariant or time vari-
ant, depending on whether the IRF is static or changing in
time (Jenkins and Watts, 1968). Most commonly, time invari-
ance is assumed in convolution models (e.g., Von Asmuth et
al., 2002; Deníc-Jukíc and Jukíc, 2003). Time-variant IRFs,
however, might be critical for simulating karst aquifers be-
cause of horizontal and vertical heterogeneity, where fluc-
tuating water levels saturate or desaturate different parts of
the aquifer having different conduit or fracture networks. For
application to karst watersheds, Pinault et al. (2001) used

Table 1.Model parameters [–, not applicable].

Parameter Description Equation Estimation method

c Soil moisture parameter 1 Optimized
κ Soil moisture parameter 3 Optimized
f Soil moisture parameter 3 Optimized
Ts Snow precipitation threshold – Assumed 0◦C
Tm Snowmelt threshold – Empirical
Sf Sublimation fraction – Optimized
λ Exponential IRF shape parameter 7 Optimized
a Exponential IRF curve area 7 Optimized
ω Lognormal IRF shape parameter 10 Optimized
ε Lognormal IRF shape parameter 10 Optimized
b Lognormal IRF curve area 10 Optimized
h0 Hydraulic-head datum – Optimized

time-variant IRFs that increased and decreased continuously
with hydraulic head, which allowed a change in IRF size;
a disadvantage of this method for our application is that
the IRF shape does not change. For karst aquifers, Jukić
and Deníc-Jukíc (2006) used IRFs that varied continuously
in size and also shape according to an index of antecedent
recharge; a disadvantage of this method is the large number
of parameters necessary to define the IRF.

We present a method to represent time-variant IRFs that
change in size and shape, but with a minimal number of
parameters, which is important for any lumped-parameter
model. First, the precipitation record was separated into wet
and dry periods, which were defined as years in which the
annual precipitation was either above or below the long-term
mean, respectively, determined for the period of record at
each site. Other methods for defining wet and dry periods
also might be useful, depending on the study area (e.g., use
of a drought index). Second, the shape parameters and scal-
ing coefficients of the IRFs were estimated separately for the
wet and dry periods, with the assumption of time invariance
within each of these two periods. This is a method not pre-
viously used and includes a simplifying assumption that the
IRF changes abruptly from wet to dry periods; model val-
idation indicates that this is not a detrimental assumption.
Further, the IRF change from wet to dry periods might occur
quickly in some cases because of large heterogeneities that
exist in karst aquifers. The main advantages of this method
are that it requires minimal parameters and is well suited
to aquifer classification, because wet-period and dry-period
IRFs are distinct and clearly defined.

As many as four IRFs were used to simulate the system
output: primary IRFs (IRFw1 and IRFd1) and secondary IRFs
(IRFw2 and IRFd2), where the subscripts, w and d, refer to
wet and dry periods, respectively. The IRF curve areas can
be different for wet and dry periods and primarily are mean-
ingful in their relative magnitudes for comparison of the re-
sponses of these two periods, which may provide insight into
system functioning. For example, if a wet-period IRF has
twice the area of a dry-period IRF, then the wet-period re-
sponse is twice that of the dry period for the same amount of
recharge.
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2.4 Classification of sites

Hydraulic-response characteristics can differ among sites,
which can represent different flow systems within an aquifer,
i.e., different networks of conduits, fractures, and other pore
spaces. Because the functioning of a groundwater system
can be characterized by its IRF (Von Asmuth and Knotters,
2004), a large number of physically based parameters that
describe an aquifer can largely be summarized by the IRF.
This lumping of a large and complex parameter set into a
few simple parameters is ideal for aquifer classification. The
IRF is suitable for comparison of sites and aquifers in cli-
matically different locations, because this method character-
izes the aquifer independently from system inputs; e.g., this
comparison does not depend on differences in rainfall fre-
quency, variability, or intensity between different locations.
Von Asmuth and Knotters (2004) combined moments of the
IRF with characteristics of the system input to determine four
metrics that can be used to classify the combined spatial and
temporal aspects of the groundwater system. Because of the
large variety and complexity of karst groundwater-flow sys-
tems and the challenges associated with their classification,
our focus is to isolate the spatial differences of these sys-
tems, and thus we use the IRF only for classification. Be-
cause of the large variety of IRF shapes that might apply
to karst aquifers, 16 metrics were used to fully describe this
shape. The use of principal component analysis (PCA) pro-
vided quantifiable relations among sites and helped describe
the meaning of these 16 metrics with only three principal
components that could be related to system functioning.

We used metrics, which can be determined for any para-
metric or nonparametric IRF, to quantify several character-
istics of the IRF shapes (Table 2). To define these met-
rics, the IRF was assumed to be a frequency distribution
of the transit times of the response quantity, either hy-
draulic head or flow, and moments of the distribution (i.e.,
mean, variance, skewness, and kurtosis) and other metrics
describing the shape of the distribution were computed. Met-
rics were selected that quantify the IRF shape indepen-
dently from scale so that comparisons were not weighted
by the overall IRF magnitude, which might vary for cli-
matically different locations or different distances from the
recharge area. Ratios were used for many of the metrics, be-
cause these are scale independent. Metrics include two scale-
independent moments, skewness (skw) and kurtosis (krt),
and five ratios: standard-deviation : mean (SDMn), standard-
deviation : memory (SDMm), mean : memory (MnMm),
mode : memory (MdMm), and peak-height : area (PHA; the
highest peak was used for bimodal distributions). These
seven metrics were quantified for wet and dry periods sep-
arately (Table 2), resulting in 14 metrics. For time-invariant
systems, wet and dry metrics are equal. In addition, the
wet : dry area ratio (WDA) was included, which is the ratio of
the wet-period to dry-period IRF area (WDA = 1.0 for time-
invariant systems). Finally, the metric WDD is the area that

Table 2. Impulse-response function (IRF) metrics. Metrics quanti-
fied separately for wet and dry periods are designated by the sub-
script “w” or “d”, respectively, at the end of the abbreviations.

IRF Metric Abbreviation

Skewness skw
Kurtosis krt
SD : mean ratio SDMn
SD : memory ratio SDMm
Mean : memory ratio MnMm
Mode : memory ratio MdMm
Peak-height : area ratio PHA
Wet : dry area ratio WDA∗

Wet-dry shape difference WDD∗

∗ Not defined separately for wet and dry periods.

the wet- and dry-period IRFs do not overlap divided by the
total area of both IRFs. This metric quantifies the difference
in IRF shape between wet and dry periods and results in a
total of 16 metrics (Table 2).

PCA was used to assess similarities, differences, and
groupings of sites on the basis of IRF shape, as described
by the 16 metrics. PCA is a linear transformation of data
in multidimensional space, where the transformed axes, or
principal components, align with the greatest variances in
the multivariate dataset (Davis, 2002). Each principal com-
ponent is a new variable that is a linear combination of all
the original variables. PCA is helpful for elucidating pat-
terns that would otherwise be obscured in attempting to
assess a large number of metrics. The software MATLAB
(http://www.mathworks.com) was used for PCA.

2.5 Modeling considerations

Convolution models provide a convenient way to assess sys-
tem memory, which is an important consideration in any hy-
drologic model. At a minimum, input corresponding to a time
period equal to the system memory is required prior to the
start of a calibration period. This initial time period is re-
ferred to as model spin-up, the output from which is of ques-
tionable validity, because antecedent effects of the system are
not fully accounted for.

The length of the observed record also must be considered
in light of the system memory. There is less confidence in
the predictive strength of a model if the observed record is
shorter than the system memory than if it is longer, because,
in the former case, the IRF tail is not fully tested against
observation. Ideally, the validation period alone should be
longer than the system memory, and if it is several times
longer, then the full range of the IRF is tested several times
over. Thememory ratiois defined as the ratio of the system
memory to the length of the observed record, where a value
of less than unity is desirable.
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The use of secondary IRFs, the choice of curve type, and
time variance were evaluated and selected for each site on the
basis of model fit for the validation period. Inclusion of sec-
ondary IRFs and simulating a system as time variant increase
model parameterization and complexity over the simpler op-
tions. In some cases the simplest model resulted in a better fit
for the validation period than one with added complexity. Al-
though model fit might improve for the calibration period as
parameters are added, if the validation period indicates that
this added complexity is not helpful, the model is overparam-
eterized (Von Asmuth et al., 2002). If the overall model fit is
poor, this model might not be appropriate, or the input data
might not represent the recharge area well.

3 Model application and results

Hydraulic responses at several sites with data for spring flow,
groundwater level, stream base flow, or cave drip (Table 3)
were simulated for two karst aquifers: the Edwards aquifer
in south-central Texas and the Madison aquifer in western
South Dakota (Fig. 2). Weather station data for precipitation
and air temperature were obtained from the National Cli-
matic Data Center (2012; Table S1 in the Supplement). Gen-
erally, the recharge areas for the sites simulated are small,
and data from a single weather station were used as model
input. The specific recharge area for each site was assumed
to be directly upgradient from the site (Fig. 2). The length
of each recharge area is not precisely defined, but we as-
sumed that the primary effect on the response at each site
does not extend a long distance along the length of the for-
mation outcrop. The weather station either within or nearest
the recharge area for each site was used, and the next near-
est station was used to fill periods of missing data if neces-
sary (Table S2 in the Supplement). Equations (1), (3), (4),
(6), (7), and (10) were programmed in MATLAB and exe-
cuted on a daily time step. The models were calibrated to
hydrologic data for the sites (Table 3; US Geological Survey,
2012). Model parameters (Table 1) were optimized by using
the “lsqcurvefit” function in MATLAB to minimize the dif-
ferences (residuals) between simulated and observed values.
This is a subspace trust-region method and is based on the
interior-reflective Newton method (Coleman and Li, 1994,
1996).

3.1 Study areas

The Edwards aquifer in south-central Texas is a well-
developed karst aquifer contained within the Edwards Group.
Surface recharge to the Edwards aquifer occurs from direct
precipitation and sinking streams that cross onto the out-
crop area of the Edwards Group from the west and north-
west (Fig. 2). The aquifer dips to the south and southeast be-
low the land surface. Groundwater flow generally is to the
east and northeast, and discharge from the aquifer occurs

Table 3.Sites simulated.

Site label (Fig. 2) Site name USGS site numbera Site type

Edwards aquifer sites
HCV Hill Country Village 293522098291201 Well
LVL Lovelady 8159000 Well
FM1796 Medina FM1796 292618099165901 Well
Bxr Bexar Co. Index well 292845098255401 Well
Dow Dowell well 300835097483401 Well
Bud Buda well 300510097504001 Well
BARsp Barton Springs 8155500 Spring
COMsp Comal Springs 8168710 Spring

Madison aquifer sites
LA88C Spearfish GC well 442854103505602 Well
Tilf Tilford well 441759103261202 Well
RG Reptile Gardens wellc 435916103161801 Well
RFsp Rhoads Fork Spring 06408700 Spring
FALr Fall River 06402000 Spring complex
WCL Windy City Lake 433302103281501b Cave water body
LScr Little Spearfish Creek 06430850 Base flow
SPFcr Spearfish Creek 06430900 Base flow

Cave drip
CTD Caving Tour drip 433302103281508d Cave drip
RmDr Room Draculum drip 433302103281509d Cave drip

Fractured-rock watershed
BEVcr Beaver Creek 06402430 Watershed

a Flow and water-level data from US Geological Survey (2012) unless otherwise
indicated.b Partial water-level record was estimated from water levels in well 7-11
MDSN (Fig. 2) with data from the South Dakota Department of the Environment and
Natural Resources in Pierre, South Dakota (R2

= 0.99 for correlation between the
two sites; Helsel and Hirsch, 2002).c Streamflow at USGS streamgage 06407500
(US Geological Survey, 2012) was used to estimate recharge.d Data were provided
by M. Ohms of Wind Cave National Park in 2012.

at several large springs. The hydrogeology of the Edwards
aquifer is described in detail in Maclay and Small (1983),
Small et al. (1996), and Lindgren et al. (2004).

The Madison aquifer in western South Dakota is a well-
developed karst aquifer composed of limestone and dolo-
stone (Greene and Rahn, 1995). It is contained within the re-
gionally extensive Madison limestone of Mississippian age,
referred to locally as the Pahasapa limestone. This formation
is exposed at the land surface on all flanks of the Black Hills
and dips radially outward in all directions below the land sur-
face (Fig. 2); the outcrop of the Madison limestone is the
recharge area for the Madison aquifer. The hydrogeology of
the Madison aquifer in the Black Hills area is described in
detail in Driscoll and Carter (2001).

3.2 Sites simulated

For the Edwards aquifer, groundwater levels in six wells and
flow from two large springs were simulated (Fig. 2, Table 3).
For the Madison aquifer, three wells, one spring, one spring
complex, one cave water body, and stream base flow for
two Madison limestone watersheds were simulated (Fig. 2,
Table 3). In addition, cave drip at two sites and stream-
flow in one fractured-rock watershed located in the Madi-
son study area were simulated for comparison to the aquifer
sites (Fig. 2, Table 3). The observed and simulated flows and
groundwater levels are shown for two of the sites in Fig. 3, as
examples, and for all of the sites in Fig. S1 in the Supplement.
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Fig. 2.Study areas showing the Madison and Edwards aquifers.
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Fig. 3.Modeling results for(a) Barton Springs and(b) the Tilford well showing observed and simulated values.

Daily precipitation and air temperature were used as model
input for all sites, except for the Reptile Gardens well
(site RG; Fig. 2, Table 3). This site is located in an area
where the primary recharge source is sinking streamflow
on the Madison limestone outcrop, which was estimated
as described in Hortness and Driscoll (1998) on a daily
time step for streamflow at streamgage 06407500 (Fig. 2).

These estimates of sinking-stream recharge were used as di-
rect input for convolution for site RG, without the use of
Eqs. (1)–(4).

Hydrologic-response data for all of the Edwards aquifer
sites consisted of direct water-level or spring flow measure-
ments, but additional description or data manipulation was
required for some of the Madison aquifer sites, e.g., because
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of indirect spring flow measurements. Observed streamflow
at Little Spearfish Creek and Spearfish Creek (sites LScr and
SPFcr) was used as an estimate of groundwater discharge,
which is 97 % and 86 %, respectively, of total streamflow
(Driscoll and Carter, 2001). Overland runoff in these water-
sheds rarely occurs because of the highly porous karst ter-
rain (Miller and Driscoll, 1998). Groundwater discharge to
the Fall River (site FALr) is about 96 % of streamflow, pri-
marily flowing from a complex of artesian springs (Rahn and
Gries, 1973; Back et al., 1983; Driscoll and Carter, 2001).
A 4-month moving average of streamflow for site FALr was
used as a surrogate for total observed spring flow to remove
anthropogenic variability resulting from municipal water use
and wastewater discharge affecting this site. Sinking-stream
recharge from Beaver Creek (site BEVcr) was used as a
source of recharge in addition to precipitation for simula-
tion of Windy City Lake (site WCL), and the model for this
site therefore included an additional IRF for sinking-stream
recharge. Simulated streamflow for site BEVcr at a daily time
step was used as model input for the period prior to 1991, be-
cause data were not available for that period.

3.3 Calibration and validation of models

The models were validated by (1) calibrating each model to
part of the record for the system output, (2) executing the
model under those conditions for the remaining observation
period (validation period), and (3) examining the similar-
ity between the simulated and observed system outputs for
the validation period. Calibration periods ranged from 0.9 to
70 yr, and validation periods ranged from 0 to 23.8 yr (Ta-
ble 4). Before parameter optimization could be executed ef-
fectively, initial values needed to be estimated so that the
true minimum of residuals could be achieved. Therefore,
model parameters were adjusted by trial and error until the
simulated and observed hydrographs were roughly similar.
These parameter values then were used as initial values in
parameter optimization for the calibration periods. Calibra-
tion and validation periods were evaluated on the basis of
the Nash–Sutcliffe coefficient of efficiency (Nash and Sut-
cliffe, 1970; Legates and McCabe, 1999), which is a measure
of the similarity between simulated and observed time-series
records, hereafter referred to asmodel fit. The coefficient of
efficiencyE is defined as

E = 1−

∑
(yobs− ysim)2∑
(yobs− ymean)

2
, (13)

whereyobs andysim are daily time series of the observed and
simulated system outputs, respectively, andymeanis the mean
of yobs. Theoretically,E could vary from−∞ (poorest fit) to
unity (perfect fit) and is the ratio of the magnitude of resid-
uals (numerator) to the overall variability in the observed
record (denominator) subtracted from unity. AnE value of
zero indicates that the observed mean (ymean) is an equally

good predictor as is the simulation (ysim; Legates and Mc-
Cabe, 1999).

Values ofE were calculated for the calibration and valida-
tion periods separately (Ec andEv, respectively; Table 4).
For comparison of residuals for different periods, the de-
nominator of the second term in Eq. (13) must be consis-
tent across all cases. Therefore, the denominator was calcu-
lated on the basis of the total period, and the numerator was
calculated on the basis of the period of interest only. Because
the total period is longer than the partial period of interest,
the denominator was scaled down to be consistent with the
time period of the numerator by

E = 1−

∑
(yobs− ysim)2∑

(yobs− ymean)
2
(

lp

/
lT

) , (14)

wherelp and lT are the lengths of the partial and total peri-
ods, respectively. This method provides a direct comparison
of residuals for different periods, even if these periods have
different fluctuation amplitudes, and thus is robust for com-
paring short periods, where fluctuation amplitudes might be
small in comparison to the overall record. Because parame-
ters were optimized for the calibration periods only,Ec val-
ues were 2.4 % higher on average thanEv values.

Primary and secondary IRFs were included in the initial
parameter optimization for all sites. Following this initial op-
timization, secondary IRFs were eliminated for some sites if
one or both of these IRFs were minimized to a small curve
area as a result of optimization. In these cases, the mini-
mized IRFs were omitted if this did not decrease theE for
the validation period (Ev) by more than 0.02. In some cases,
omitting secondary IRFs resulted in increasedEv values,
which indicated that secondary IRFs resulted in overparam-
eterization. For example, using secondary IRFs for the Med-
ina FM1796 well resulted in anEv value of 0.81, but using
only primary IRFs resulted in a higherEv value (0.91), even
though the two cases fit the calibration period equally well
(Ec = 0.97; Table 4). Using a similar approach, the particular
combination of exponential and lognormal curves to use as
primary and secondary IRFs was tested to determine the best
fit for each site (Table 4; Table S3 in the Supplement).

All models were assumed to be time variant for initial pa-
rameter optimization. Similar shapes for the wet-period and
dry-period IRFs indicated that the system might be time in-
variant. Time invariance for these cases was tested by using
the same IRFs for wet and dry periods. IfEv did not de-
crease by more than 0.02 as a result, then parsimony was
preferred, and the system was simulated as time invariant,
requiring fewer parameters than a time-variant model. For
some sites,Ev was highest for the time-invariant case; for
example,Ev for the Lovelady (LVL) well was 0.69 for the
time-variant case and 0.85 (Table 4) for the time-invariant
case, which indicated that the time-variant model was over-
parameterized. For other sites, time variance was critical; for
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Table 4.Summary of modeling results (E, coefficient of efficiency; IRF, impulse-response function; w1, wet-period primary; w2, wet-period
secondary; d1, dry-period primary; d2, dry-period secondary; Exp, exponential curve; Logn, lognormal curve; –, not applicable).

Site Calibration Validation Ec Ev
label period, in period, in (calibration (validation Time Memory Predictive
(Fig. 2) years years period)a period)a IRFw1 IRFw2 IRFd1 IRFd2 invariant ratiob strength

Edwards aquifer sites
HCV 32.1 15.7 0.85 0.70 Logn – Logn – Yes 0.25 Medium
LVL 4.2 10.4 0.90 0.85 Logn – Logn – Yes 0.12 High
FM1796 12.0 23.8c 0.97 0.91 Logn – Exp – No 2.44 Low
Bxr 20.0 21.0 0.69 0.53 Exp Logn Exp Logn Yes 0.73 Low
Dow 3.2 10.7 0.82 0.71 Exp – Exp – No 0.43 Medium
Bud 4.1 10.2 0.90 0.76 Exp – Exp – No 0.17 Medium
BARsp 11.8 21.0 0.87 0.74 Exp – Exp – No 0.10 Medium
COMsp 70.0 13.0 0.64 0.62 Exp – Exp – Yes 0.05 High

Madison aquifer sites
LA88C 14.4 7.8 0.90 0.78 Exp Logn Exp Logn No 0.32 Medium
Tilf 8.5 12.0 0.99 0.94 Exp Logn Exp – No 0.50 High
RG 2.0 22.6 1.00 0.92 Exp – Exp – Yes 0.13 High
RFsp 20.2 9.0 0.87 0.63 Exp Logn Exp Logn No 0.38 Low
FALr 61.9 10.9 0.85 0.77 Exp Logn Exp Logn No 0.66 Medium
WCL 9.3 16.0 0.99 0.91 Logn – Logn – No 5.01 Low
LScr 23.2 0.0 0.76 – Exp Exp Exp Exp No 0.27 Low
SPFcr 10.2 11.8 0.58 0.73 Exp Exp Exp Exp Yes 0.40 High

Cave drip
CTD 0.9 1.0 0.10 0.80 Exp Logn – – –d 0.05 High
RmDr 1.1 0.0 0.97 – Logn – – – –d 20.83 Low

Fractured-rock watershed
BEVcr 6.2 14.8 0.50 0.71 Exp Exp Exp – No 0.09 High

a Dimensionless; computed on a daily time step.b Ratio of system memory to full system-response period, dimensionless.c Also includes a backward validation period of
12.5 yr.d Period was too short to determine time variance. Simulation had one wet period and no dry period.

example,Ev for the Tilford (Tilf) well was 0.39 for the time-
invariant case and 0.94 (Table 4) for the time-variant case.

3.4 Assessing model fit and predictive strength

The length of the validation period is an indicator of the
length of time for which a model can be projected into the
future with confidence on the basis of climate-model predic-
tions. A goal here was to have the longest validation peri-
ods possible, while maintaining a minimum, or target,Ev. In
general,Ev increases with an increasing calibration period,
which decreases the length of the validation period. This in-
verse relation betweenEv and validation period length re-
sults in a compromise that must be considered when setting a
targetEv. Also, for time-variant systems, the calibration pe-
riods necessarily included both wet and dry periods. There-
fore, the length of the validation period was limited in some
cases by the occurrence of wet and dry periods for a particu-
lar system.

The value ofEv is an indicator of the expected model er-
ror for the future period, but does not account for error in
the output from a climate model that is used as input for the
hydraulic-response model. If simulated future precipitation

and temperature are not within the range of observation, then
the prediction accuracy of aquifer response is less certain
than if these inputs stay within the range of observation. The
only way to determineE for a future period is to test the
model when these data become available.

A targetEv was set at 0.70. Two of the sites (LScr and
RmDr) had very lowEv values (< 0.5) for any validation-
period length tested, and thus this period was set to zero with
noEv value listed (Table 4). Three other sites (Bxr, COMsp,
and RFsp) hadEv values that were less than the target (Ta-
ble 4). Two of these sites hadEc (calibration period) values
that also were less than 0.70, and achieving the targetEv was
not possible for any validation period. TheEv value for the
remaining sites ranged from 0.70 to 0.94 (Table 4).

An additional measure of predictive strength is the mem-
ory ratio, where a value of less than unity is desirable. Two
sites, Windy City Lake (WCL) and the Medina FM1796 well,
had memory ratios greater than unity (Table 4); a memory
ratio greater than unity is common for systems such as these
with long memories resulting from long-term groundwater
storage properties associated with these sites.

Most of the sites (62 %) were simulated as time variant
(Table 4), and model spin-up periods were at least as long as
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system memories for all sites. For Windy City Lake, Medina
FM1796 well, and Fall River, data were not available for the
first part of the spin-up period. Mean values of precipitation
and temperature, calculated from the periods of record, were
used as surrogates for the missing data for these three sites.
The lengths of these periods in years were 56 (1856–1911),
61 (1840–1900), and 24 (1887–1910) for these three sites,
respectively. The effects of using mean values were tested
by replacing the mean values with the subsequent period of
data, which changed theEv values by less than 0.02 for these
three sites. This indicates model insensitivity to precipitation
and temperature variability in the early parts of the spin-up
periods.

The predictive strength of each site was rated as high,
medium, or low on the basis of the memory ratio and the
E ratio, which is defined as (Ec − Ev) / Ec, or the fractional
difference inE between the calibration and validation peri-
ods (Table 4). A smallE ratio indicates that the model fit
degraded little for the validation period. Sites with a mem-
ory ratio ≤ 0.5 andE ratio ≤ 0.1 were rated as high; sites
with memory ratio≤ 1.0 andE ratio ≤ 0.2 were rated as
medium; and all other sites not meeting these criteria were
rated as low.

3.5 Classification of sites

Sixteen metrics that characterize the shapes of the IRFs for
the eight Edwards aquifer sites and eight Madison aquifer
sites were used in PCA (Table 2; Table S4 in the Supple-
ment). The values were log transformed and standardized to
a mean of zero and standard deviation of unity before apply-
ing PCA. Principal components 1, 2, and 3 (PC1, PC2, and
PC3) explain 51, 19, and 14%, respectively of the variance
in the dataset. The relations between the sites and the metrics
were plotted in principal component space (Fig. 4).

In general, the metrics are well distributed in principal
component space, indicating that each contains unique in-
formation related to the shape of the IRF and verifying their
inclusion in the analysis (Fig. 4). PC1, PC2, and PC3 de-
scribe three generalized variables that account for 84 % of the
variability in the IRF shapes. PC1 represents the IRF skew-
ness and temporal spread, i.e., the width of the main body
of the IRF. PC1 separates those metrics that include standard
deviation, skewness, and kurtosis from those that include the
mean or mode in relation to the memory (Fig. 4). PC2 rep-
resents differences in the wet- and dry-period counterparts
of each metric; for metrics on the positive side of PC1, the
dry-period counterparts plot more positively on PC2 than the
wet-period counterparts, and for those on the negative side
of PC1, the opposite is true (Fig. 4a). PC3 represents differ-
ences in wet and dry periods overall, with the metrics WDD
and WDA separated from other metrics on this axis (Fig. 4b).

To assess differences between the two aquifers, PCA was
done separately for each aquifer. Time-variant IRFs, which
have metrics that differ between wet and dry periods, were
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Fig. 4. Principal component biplots showing simulated sites and
metrics for the Edwards and Madison aquifers for(a) the first two
principal components and(b) the first and third principal compo-
nents. Plotting positions were scaled to range from−1 to 1 to show
sites and metrics on a similar scale. Site and metric labels are shown
in Tables 2 and 3. See Table S6 in the Supplement for plotting
positions.

applied to 50 % of the Edwards aquifer sites and 75 % of
the Madison aquifer sites (Table 4). The wet- and dry-period
counterparts of four metrics (krt, skw, SDMm, SDMn) plot-
ted farther apart for the Madison aquifer than for the Edwards
aquifer (Fig. 5), indicating that the largest differences be-
tween the wet- and dry-period IRFs are associated with the
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Fig. 5. Principal component biplots showing simulated sites and
metrics for the first two principal components for the(a) Edwards
aquifer and(b) Madison aquifer. Plotting positions were scaled to
range from−1 to 1 to show sites and metrics on a similar scale. Site
and metric labels are shown in Tables 2 and 3.

Madison aquifer. These metrics dominate the positive side of
PC1 for both aquifers (Fig. 5). The wet and dry counterparts
for the remaining metrics (primarily negative on PC1) plot-
ted about the same distance apart for the two aquifers. Differ-
ences in the IRF shapes for wet and dry periods (Fig. 6) are
likely the result of different parts of a heterogeneous aquifer
being saturated during these different climatic periods; large
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Fig. 6. Impulse-response functions (IRFs) plotted for scale-
independent comparison. The vertical axes extend from zero to the
maximum peak height, and the horizontal axes extend from zero to
the system memory.

differences in IRF shape for the Madison aquifer suggest that
this aquifer has the larger heterogeneity of the two aquifers.

Similar IRF shapes plot in similar locations in principal
component space; large separation indicates large differences
in IRF shape. The separation of each site to every other site
was quantified by the Euclidean distance in principal com-
ponent space for the analysis that included both aquifers
(Fig. 4). The mean separation distance for Madison aquifer
sites was 2.4 times greater than for the Edwards. This differ-
ence was statistically significant at the 95 % confidence level
according to the rank sum test (Helsel and Hirsch, 2002).
This indicates that the IRFs are more similar for the Edwards
aquifer than for the Madison aquifer, which is further evi-
dence that the Madison aquifer has the larger heterogeneity
of the two.

The sites compose two groups whose IRFs dominantly
comprise either lognormal or exponential curves, on the ba-
sis of curve area. Seven sites have dominantly lognormal
IRFs; nine sites have dominantly exponential IRFs; and the
differences are evident in their plotting positions in princi-
pal component space (Figs. 4 and 5). Exponential IRFs de-
scribe hydraulic-response types that have an immediate peak
response, whereas lognormal IRFs describe a lagged peak
response. Therefore, exponential IRFs describe a rapid trans-
fer of pressure from the recharge area to the well or spring,
which is delayed for lognormal IRFs. Minimal displacement
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of water in confined aquifers can result in a rapid transfer
of pressure, but the larger displacement of water in uncon-
fined aquifers can result in a delayed transfer of pressure. In
karst aquifers, however, confined and unconfined conditions
can exist in the same area, because partially and fully satu-
rated conduits and fractures can exist at different levels in the
aquifer. For some of the sites, double-peaked IRFs resulted
from a combination of an exponential and a lognormal curve
(Fig. 6), which might be the result of this dual nature of karst
aquifers but also might result from another dual aspect of
karst aquifers, i.e., quick conduit flow and slow flow in sur-
rounding fracture networks. The Madison aquifer has four
double-peaked sites, whereas the Edwards aquifer has none
(Fig. 6), which is a third line of evidence that the Madison
aquifer has the larger heterogeneity of the two aquifers.

Although it is difficult to determine the specific aquifer
characteristics that will result in a particular IRF shape, the
spatial distribution in the aquifer of the two major cate-
gories of IRFs (exponential and lognormal) suggests that
these aquifer characteristics are not randomly distributed. For
the Edwards aquifer, sites with dominantly exponential IRFs
are in the northeastern part of the aquifer, and sites with dom-
inantly lognormal IRFs are in the southwestern part, with the
exception of site LVL (Fig. 2). For the Madison aquifer, sites
with dominantly exponential IRFs are in the northeastern part
of the Black Hills, and sites with dominantly lognormal IRFs
are in the southwestern part (Fig. 2).

Hydrogeologic features can be identified that might be re-
lated to differences in IRF shape. Therefore, we describe
these differences and attempt to relate them to IRF char-
acteristics where possible. Sites with dominantly lognormal
IRFs are located where the Edwards aquifer is wide (Fig. 2);
in this area Eberts (2011) reported that groundwater flows
southwesterly, then sweeps around to the northeast, with a
strong regional flow component. Sites with dominantly ex-
ponential IRFs are located where the Edwards aquifer is nar-
row, and flow in this area is to the north-northeast along a
series of conduit-controlled flow paths (Hunt et al., 2006).
A hydrologic divide is between the two areas. Although not
conclusive, the circuitous flow path near the lognormal IRF
sites might partly account for the delayed peak response,
whereas for the exponential IRF sites, the straight flow path
might be related to the quick peak response. For the Madi-
son aquifer, the lognormal IRF sites are located near the axis
of the main anticline that defines the structural uplift of the
Black Hills (Fig. 2). Fracturing and subsequent conduit de-
velopment resulting from this anticline might be related to
IRF characteristics.

Differences between springs and wells also were consid-
ered. Springs commonly discharge water from a large sur-
rounding area, whereas none of the wells used in this study
are pumped, so the zone of influence is small by comparison.
Despite these differences, no distinction between springs and
wells is evident from PCA (Figs. 4 and 5), which indicates

that the difference between springs and wells is small com-
pared with regional heterogeneity in the aquifers.

Metric correlation is an indication of redundancy in the
dataset (Table S5 in the Supplement). Positively correlated
metric pairs generally are identified by proximity of plotting
positions in Fig. 4a and b. For example, the group of five
metrics that plot farthest to the right resulted in five met-
ric pairs that have Pearson’sr correlation coefficient≥ 0.9
(Helsel and Hirsch, 2002). Negatively correlated metric pairs
plot on opposite sides of the origin. The number of highly
correlated pairs withr ≥ |0.95| is only 2.3 % of the total
number of metric pairs. These pairs are MnMmw/SDMnw,
MnMmd/SDMmd (negativer), and SDMnd/SDMmd (posi-
tive r). The small number of highly correlated metric pairs
indicates a low level of redundancy. These correlations do
not correspond exactly to the separation distances in Fig. 4,
because principal components 1–3 do not explain the total
variance in the dataset.

4 Conclusions

The convolution models are well suited to link climate sce-
narios to hydrologic responses critical to human water supply
and ecosystems. As climate models improve in simulating
storm processes, projected precipitation and air-temperature
records can be used as input for hydrologic models to inves-
tigate how water levels and spring discharge might change
in the future. The output from the hydrologic models can,
in turn, serve as input for models evaluating vulnerability of
karst ecosystems to potential changes in groundwater level
and spring flow. Unlike most physically based, distributed-
parameter models, convolution models are calibrated to data
at short time steps that are well suited to short-term vari-
ability characteristic of karst groundwater responses. The
impulse-response function (IRF) is the core of the con-
volution model and characterizes the groundwater-system
functioning.

The use of multiple IRF metrics in principal component
analysis (PCA) is a novel method to characterize, compare,
and classify the way in which multiple sites and aquifers
respond to recharge. When applied to several sites in two
karst aquifers in the United States (the Edwards and Madi-
son aquifers), this classification indicates a wide range of IRF
shapes within a single karst aquifer that vary spatially and
temporally. The IRF shape is a result of the aquifer’s pore
geometry and connectivity, which is horizontally and verti-
cally heterogeneous in karst aquifers. The first three princi-
ple components (PC1, PC2, and PC3) account for 84 % of
the variability in the IRF shapes for the Edwards and Madi-
son aquifers; these components represent differences in (1)
IRF skewness and temporal spread, (2) wet- and dry-period
counterparts of each metric, and (3) wet- and dry-period IRFs
overall, respectively. PC1 accounts for 51 % of IRF variabil-
ity for the two aquifers, and PC2 and PC3 combined, which
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largely represent time-variant properties, account for 33 % of
IRF variability.

Three lines of evidence indicate that the Madison aquifer
has larger spatial heterogeneity than the Edwards aquifer.
First, the Madison aquifer has larger spatial differences in
IRF shapes on the study-area scale than does the Edwards
aquifer. Second, the Madison aquifer has the largest tempo-
ral differences in IRF shapes at individual sites as a result of
different parts of the heterogeneous aquifer being saturated
during different climatic periods. Third, the Madison aquifer
has four sites with double-peaked IRFs, possibly because of
large differences in quick and slow flow, whereas the Ed-
wards aquifer has none.

Sites with IRFs that dominantly comprise exponential
curves are separated geographically from those dominantly
comprising lognormal curves in both aquifers. Differences
in groundwater flow paths (i.e., direct or circuitous), ground-
water divides, and structural geologic features might be re-
lated to these different response types. No distinction be-
tween springs and wells is evident from PCA, which indi-
cates that differences between springs and wells are small
compared with regional heterogeneity in the aquifers.

Currently, IRFs have been developed for only two karst
aquifers, but as convolution models are developed for addi-
tional sites in additional aquifers, they could contribute to an
IRF database and, moreover, a general classification system
for karst aquifers. Of particular interest will be comparison
of telogenetic and eogenetic systems, humid and arid sys-
tems, and diffuse- and conduit-controlled systems. Charac-
terization and classification of time-variant properties will be
useful for assessing model uncertainty for simulation of fu-
ture precipitation scenarios that are outside of the range of
observation. The availability of long-term records for precip-
itation, air temperature, water level, and spring flow in many
areas would facilitate this effort.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
17/281/2013/hess-17-281-2013-supplement.zip.
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duits in the Ḧolloch cave (Muotatal, Switzerland), Water Resour.
Res., 37, 191–200, 2001.

Jenkins, G. M. and Watts, D. G.: Spectral Analysis and its Applica-
tions, Holden Day, San Francisco, 525 pp., 1968.

Jukíc, D. and Deníc-Jukíc, V.: Nonlinear kernel functions for karst
aquifers, J. Hydrol., 328, 360–374, 2006.

Jukíc, D. and Deníc-Jukíc, V.: Partial spectral analysis of hydrolog-
ical time series, J. Hydrol., 400, 223–233, 2011.

Labat, D., Masbou, J., Beaulieu, E., and Mangin, A.: Scaling be-
havior of the fluctuations in stream flow at the outlet of karstic
watersheds, France, J. Hydrol., 410, 162–168, 2011.

Legates, D. R. and McCabe Jr., G. J.: Evaluating the use of
“goodness-of-fit” measures in hydrologic and hydroclimatic
model validation: Water Resour. Res., 35, 233–241, 1999.

Lindgren, R. J., Dutton, A. R., Hovorka, S. D., Worthington, S. R.
H., and Painter, S.: Conceptualization and simulation of the Ed-
wards aquifer, San Antonio region, Texas, US Geol. Surv., Re-
ston, Virginia, SIR 2004–5277, 154 pp., 2004.
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