
Hydrol. Earth Syst. Sci., 17, 2685–2699, 2013
www.hydrol-earth-syst-sci.net/17/2685/2013/
doi:10.5194/hess-17-2685-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences
O

pen A
ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

Regionalization of patterns of flow intermittence from gauging
station records

T. H. Snelder1,2, T. Datry1, N. Lamouroux1, S. T. Larned3, E. Sauquet4, H. Pella1, and C. Catalogne4

1IRSTEA, UR MALY, Lyon, France
2Aqualinc Research, Christchurch, New Zealand
3National Institute of Water and Atmospheric Research, Christchurch, New Zealand
4IRSTEA, UR HHLY, Lyon, France

Correspondence to:T. H. Snelder (t.snelder@aqualinc.co.nz)

Received: 24 December 2012 – Published in Hydrol. Earth Syst. Sci. Discuss.: 30 January 2013
Revised: 20 May 2013 – Accepted: 1 June 2013 – Published: 11 July 2013

Abstract. Understanding large-scale patterns in flow inter-
mittence is important for effective river management. The
duration and frequency of zero-flow periods are associated
with the ecological characteristics of rivers and have impor-
tant implications for water resources management. We used
daily flow records from 628 gauging stations on rivers with
minimally modified flows distributed throughout France to
predict regional patterns of flow intermittence. For each sta-
tion we calculated two annual times series describing flow
intermittence; the frequency of zero-flow periods (consec-
utive days of zero flow) in each year of record (FREQ;
yr−1), and the total number of zero-flow days in each year
of record (DUR; days). These time series were used to cal-
culate two indices for each station, the mean annual fre-
quency of zero-flow periods (mFREQ; yr−1), and the mean
duration of zero-flow periods (mDUR; days). Approximately
20 % of stations had recorded at least one zero-flow pe-
riod in their record. Dissimilarities between pairs of gauges
calculated from the annual times series (FREQ and DUR)
and geographic distances were weakly correlated, indicating
that there was little spatial synchronization of zero flow. A
flow-regime classification for the gauging stations discrim-
inated intermittent and perennial stations, and an intermit-
tence classification grouped intermittent stations into three
classes based on the values of mFREQ and mDUR. We used
random forest (RF) models to relate the flow-regime and in-
termittence classifications to several environmental charac-
teristics of the gauging station catchments. The RF model of
the flow-regime classification had a cross-validated Cohen’s
kappa of 0.47, indicating fair performance and the intermit-

tence classification had poor performance (cross-validated
Cohen’s kappa of 0.35). Both classification models iden-
tified significant environment-intermittence associations, in
particular with regional-scale climate patterns and also catch-
ment area, shape and slope. However, we suggest that the
fair-to-poor performance of the classification models is be-
cause intermittence is also controlled by processes operat-
ing at scales smaller catchments, such as groundwater-table
fluctuations and seepage through permeable channels. We
suggest that high spatial heterogeneity in these small-scale
processes partly explains the low spatial synchronization of
zero flows. While 20 % of gauges were classified as inter-
mittent, the flow-regime model predicted 39 % of all river
segments to be intermittent, indicating that the gauging sta-
tion network under-represents intermittent river segments in
France. Predictions of regional patterns in flow intermittence
provide useful information for applications including envi-
ronmental flow setting, estimating assimilative capacity for
contaminants, designing bio-monitoring programs and mak-
ing preliminary predictions of the effects of climate change
on flow intermittence.

1 Introduction

A large proportion of the river segments on Earth are inter-
mittent, i.e., they periodically cease to flow (Larned et al.,
2010a). Most river networks include intermittent segments,
which may be concentrated in headwater, mid-catchment,
or downstream areas, or interspersed over entire networks
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(Lake, 2003) (Turner and Richter, 2011). Many river net-
works in arid regions are entirely intermittent (Jacobson and
Jacobson, 2013; Meirovich et al., 1998). Temporal patterns
of flow intermittence range from near-perennial flow regimes
with infrequent, short periods of zero flow to episodic flow
regimes with rare flow events separated by long zero-flow
periods (Crocker et al., 2003; Houston, 2006; Larned et al.,
2011; Meirovich et al., 1998). In turn, the duration and fre-
quency of zero-flow periods are increasingly viewed as the
primary determinants of river ecosystem processes (Corti et
al., 2011; Datry et al., 2011; Dieter et al., 2011) and biotic
communities (Arscott et al., 2010; Datry, 2012; Davey and
Kelly, 2007).

Many intermittent rivers support diverse plant and ani-
mal communities, particularly when viewed at timescales
that encompass periods of river flow, standing water, and
no water. Aquatic and terrestrial species colonize and emi-
grate from intermittent rivers in response to shifts between
wet and dry habitat (Acũna et al., 2005; Corti and Datry,
2012; Datry et al., 2012; Davey and Kelly, 2007; Steward et
al., 2011). A smaller number of intermittent river specialists
persist through multiple wet–dry cycles; this group includes
aestivating fish and encysting invertebrates (Kikawada et al.,
2005; Perry et al., 2008; Sayer, 2005). The alternating oc-
cupation of habitat by aquatic and terrestrial species means
that the time-averaged biodiversity of intermittent segments
can exceed that of perennial segments (Katz et al., 2012).
In addition to their ecological values, intermittent rivers pro-
vide numerous ecosystem services, including flood irriga-
tion, flood control, and waste-water conveyance (Angel et al.,
2010; Larned et al., 2010a). In the Mediterranean region and
other water-scarce areas, intermittent rivers represent an im-
portant source or the sole source of freshwater for human use
(e.g., Jacobson and Jacobson, 2013; Ji et al., 2006). Under-
standing large-scale patterns in flow intermittence in these
regions is a prerequisite for effective water resources man-
agement.

The last decade has seen rapid growth in ecological and
water resources research focused on intermittent rivers (Da-
try et al., 2011). This research has been accompanied by
a widespread acknowledgment that intermittent rivers re-
quire careful management to protect biological and socio-
economic values (Jacobson and Jacobson, 2013; Larned et
al., 2010a; Nadeau and Rains, 2007). However, current man-
agement practices and natural resources policies are often
inadequate. For example, there are fewer restrictions im-
posed on the use or alteration of intermittent rivers in the
United States compared with perennial rivers (Leibowitz et
al., 2008). In much of the world, alterations of intermittent
river channels and flow regimes are entirely unrestricted (El-
more and Kaushal, 2008; Gómez et al., 2005; Hughes, 2005).
Effective management of intermittent rivers is impeded by
the scarcity of information about their abundance, distribu-
tion patterns, patterns of flow variability, and the environ-

mental conditions that produce those patterns (Datry et al.,
2011; Fritz et al., 2008; Hansen, 2001).

Identifying intermittent rivers and river segments, and
characterizing intermittent flow regimes at scales larger than
individual catchments pose several challenges. Small-scale
river maps (> 1 : 25 000) produced from digital elevation
models, aerial photography or airborne laser scanning omit
many intermittent segments (Hansen, 2001; Leopold, 1994).
More intermittent segments are included in detailed maps
based on field surveys (e.g., Brooks and Colburn, 2011),
but large-scale field surveys are prohibitively laborious. As
alternatives to surveys and remote sensing, empirical mod-
els have been used to predict the locations of intermittent
river segments based on catchment characteristics (Bent and
Steeves, 2006; Heine et al., 2004; Wood et al., 2009). These
models perform moderately well in the areas for which they
are defined and provide information about intermittence-
environment associations over large, environmentally hetero-
geneous areas. For example, an empirical model used to pre-
dict the occurrence of streams identified as intermittent or
perennial based on visual observation during low-flow peri-
ods in the state of Massachusetts was reasonably accurate,
with a misclassification rate of approximately 20 %, (Bent et
al., 2006). In another empirical modeling study, intermittent
segments in forested headwater streams were distinguished
from perennial segments using field survey data (Fritz et al.,
2008). However, survey data alone are insufficient for further
subdividing intermittent segments on the basis of intermittent
flow patterns (i.e., grouping segments with similar frequen-
cies and durations of zero flow); this step requires flow time
series that field surveys cannot provide.

Grouping gauging stations into flow-regime classes based
on time-series data is an important component of large-scale
river management and research (Olden et al., 2012). Flow-
regime classifications serve as spatial frameworks for envi-
ronmental monitoring, and they simplify water allocation de-
cisions and environmental flow setting (Kennard et al., 2010;
Olden et al., 2012; Snelder et al., 2009). Most flow-regime
classifications are based on hydrological indices calculated
from time series recorded at gauging stations. Hydrologi-
cal indices describe the magnitude, timing, duration, rate-
of-change and frequency of flow events. Statistical similar-
ities in hydrological indices are then used to group gaug-
ing stations with similar flow regimes (Olden et al., 2012).
The utility of a flow-regime classification is maximized when
class membership can be extrapolated to ungauged loca-
tions. In several recent studies, flow time series have been
combined with spatial data describing environmental con-
ditions in statistical classifications that were used to pre-
dict river flow regimes at ungauged locations (e.g., Kennard
et al., 2010; Snelder et al., 2009). To our knowledge, there
have been no comparable studies that focused specifically on
flow intermittence.

In this study we used daily flow records from 628 gauging
stations on rivers in France with unmodified or minimally
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modified flows regimes to study regional patterns of flow
intermittence. Our study had two objectives: (1) to charac-
terize flow intermittence in terms of the spatial distribution
of intermittent segments, and the frequency and duration of
zero-flow periods in those segments; and (2) to determine
the extent to which flow intermittence patterns are associated
with environmental conditions.

2 Materials and methods

2.1 Study area

The study area was continental France, which extends from
42◦19′ to 51◦5′ N latitude and from 4◦46′ W to 8◦14′ E lon-
gitude and has an area of 550 000 km2. Environmental varia-
tion within France that is pertinent to hydrological patterns
is summarized by the hydro-ecoregions (HER) framework
(Wasson et al., 2002). The HER is a regionalization de-
veloped for river management in accordance with the Eu-
ropean Water Framework Directive. The first level of the
HER divides France into 21 regions based primarily on vari-
ation in climate, topography and geology. Climate condi-
tions in the hydro-ecoregions range from mediterranean in
the “Méditerrańeen” and “Ćevennes” regions to temperate
maritime in the “Armoricain” region, to cold and wet in the
Alpine “Alpes internes” (Fig. 1). Geological conditions range
from calcareous in the “Jura-Préalpes” regions to alluvial
in the “Plaine Sâone” and “Alsace” regions (Fig. 1). Topo-
graphic conditions range from plains in the “Alsace” regions
to high mountains in the “Alpes internes” and “Pyréńeees”
regions.

2.2 Hydrological data

We started our analysis with a hydrology dataset composed
of time series of daily mean flow from over 3800 gaug-
ing stations distributed throughout France, acquired from the
HYDRO database (http://www.hydro.eaufrance.fr/). We re-
moved stations from the dataset that lacked quality-assured
data as defined by the HYDRO database managers, and for
which the flow records were coded as modified due to the
presence of reservoirs, diversions or significant abstractions
in the upstream catchment. From the remaining stations, we
selected those for which flow data were available in the 35 yr
period from 1975 to 2009. We searched these records for
gaps longer than 20 days and removed the year of record in
which these gaps occurred. This resulted in an average re-
moval of 1.2 (std dev = 1.7) yr per station. After these steps,
628 stations with 23–35 yr of record were retained (Fig. 2).

2.3 Flow variables and indices

We used the daily flow data for each gauging station to pro-
duce two annual times series describing flow intermittence;
the frequency of zero-flow periods (consecutive days of zero

Fig. 1. France showing the hydro-ecoregion (HER) boundaries
(Wasson et al., 2002). The number of gauging stations included in
this study in each region is shown in parentheses in the legend.

flow) in each calendar year of record (FREQ; yr−1), and
the total number of zero-flow days in each calendar year
of record (DUR; days). From these time series we calcu-
lated two inter-annual indices for each station, the mean an-
nual frequency of zero-flow periods (mFREQ; yr−1), and the
mean duration of zero-flow periods (mDUR; days). To de-
termine whether zero flows may have been recorded at some
gauging stations due to freezing, we also calculated mFREQ
and mDUR separately for the winter season, December to
February.

2.4 River network and environmental variables

Our spatial analysis used a digital representation of France’s
river network that was derived from a digital elevation model
(DEM) with 50 m resolution, made by Institut Géographique
National (IGN) (Pella et al., 2012). The minimum catchment
size used to define river segments in the DEM was 2.5 km2;
smaller catchments and the low-order segments in them were
omitted from our analyses. This minimum area was con-
sistent with the minimum area of the gauged catchments
(Table 1). The network comprised approximately 115 000
uniquely identified segments (mean length 2.5 km) defined
by upstream and downstream confluences with tributaries
(Pella et al., 2012). We obtained available GIS layers com-
prising climatic, topographic and geological data for France
and used these to define several environmental variables for
each segment of the river network that have been shown pre-
viously to be associated with hydrological patterns (Snelder
et al., 2009) (see Table 1 for variable definitions). For each
segment, the catchment area (the total area upstream; Area)
and the unique subcatchment area (the area draining laterally
into the segment) were delineated using the DEM.
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Fig. 2.Map of the location of the gauging stations used in this study.
Stations on perennial segments are indicated by closed circles. Sta-
tions on intermittent segments are classified into three intermittence
subclasses (see text for class descriptions).

Rainfall and air temperatures were measured by Mét́eo-
France at meteorological stations during the period 1961–
1990 and were interpolated onto a 1 km grid (resolution
1 km) using the method of Benichou and Le Breton (1987).
The climatic layers included average annual rainfall, mean
monthly rainfall, average maximum daily temperature in the
warmest month (July) and average minimum daily temper-
ature in the coldest month (January). The temperature and
rainfall data were then used to calculate values of the fol-
lowing variables for the catchment of each segment: average
annual rainfall (Rain), the difference between average sum-
mer and winter rainfall divided by annual average rainfall
(SumWinRain), average minimum January air temperature
(Tmin), and average maximum July air temperature (Tmax)
(Table 1). We derived two additional climate variables that
described periods without rainfall: the catchment average of
the mean annual number of days without rain (nDryDays),
and the catchment average of the mean annual maximum
duration of consecutive days without rain (dDry). The data
used for these predictors were available only for stations, not
for the entire network. Values of nDryDays and dDry were
obtained from a rainfall time series for the period 1970 to
2005 generated for the catchment of each gauging station de-
rived from the high-resolution Safran atmospheric reanalysis
over France (Quintana-Seguı́ et al., 2008) using methods de-
scribed by Sauquet and Catalogne (2011).

Topographic data consisted of a slope grid that we de-
rived from the DEM, and mapped river channels represented
on the 1 : 250 000 scale BD Carthage® map obtained from
IGN. We used the river-channel map to derive an estimate
of the observed drainage density that was independent of our
DEM-based network. We considered that the observed net-

work density may reflect relevant soil and geological charac-
teristics such as perviousness of the surficial material and that
this may provide a useful predictor variable. We calculated
the catchment average values of slope and drainage density
for each segment to define the variables Slope and Drain (Ta-
ble 1). We also used the DEM to estimate the distance from
each segment to the most distant point of its upstream catch-
ment. This distance divided by catchment area was defined
as the variable Shape. Elongated catchments have high val-
ues of Shape, and round catchments have low values.

Geological data were derived from a 1 :1 000 000-scale
digital geological map of France obtained from Bureau des
Recherches Ǵeologiques et Minìeres (BRGM, 1996). The
map defined 22 categories and comprised approximately
18 000 individually categorized polygons with a mean area
of 40 km2. The map was used to develop two GIS layers de-
scribing physical hardness (i.e., resistance to erosion) and
permeability. For each layer, each of the 22 geological cat-
egories was assigned an ordinal value corresponding to rela-
tive hardness and permeability (Table 2). For detailed meth-
ods, see Snelder et al. (2008). We computed the catchment
surface area weighted mean of the ordinal values represent-
ing physical hardness (Hard) and permeability (Perm) of geo-
logical categories. We also computed the proportions of each
catchment occupied by the broad geological categories chalk
(Chalk), limestone (Lime) and alluvium (Alluv) (Table 2).
We also derived the average segment subcatchment values
of the ordinal values representing hardness and permeability
(segHard and segPerm) and the geological categories chalk
(segChalk, segLime and segAlluv) to address the possibility
that local geological conditions affect flow intermittence.

2.5 Flow regime and intermittence classifications

We classified the 628 gauging stations into a flow-regime
classification that separated intermittent and perennial sta-
tions, and a classification of the intermittent stations based
on the frequency and duration of zero flow. For the
flow-regime classification, stations with values of mFreq
and mDur greater than zero were assigned to the inter-
mittent class, and the remainder to the perennial class.
The intermittence classification grouped the intermittent
stations from the previous classification into three sub-
classes that corresponded to subdivisions of a scatter plot
of mFREQ versus mDUR. We grouped the intermittent
stations into three approximately equal-sized intermittence
subclasses based on nominal thresholds for mFREQ and
mDUR of 0.5 and 5, respectively. Subclass 1 was char-
acterized by low-frequency (mFREQ< 0.5), short-duration
(mDUR< 5) zero-flow periods. Subclass 2 was charac-
terized by low-frequency (mFREQ< 0.5), long-duration
(mDUR> 5) zero-flow periods. Subclass 3 was charac-
terized by high-frequency (mFREQ> 0.5), long-duration
(mDUR> 5) zero-flow periods.

Hydrol. Earth Syst. Sci., 17, 2685–2699, 2013 www.hydrol-earth-syst-sci.net/17/2685/2013/
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Table 1.Regionalization of patterns of flow intermittence from gauging station records.

Variable Description Stations Network

Tmin Average minimum air temperature of catchment in
January (◦C).

−1, (−12; 5) −0.5, (−15; 7)

Tmax Average maximum air temperature of catchment in
July (◦C).

24, (11; 31) 24, (9; 32)

Rain Average annual rainfall (mm). 1030, (606; 2060) 944, (507; 2536)
SumWinRain Difference of average winter (December, January

and February) and summer (June, July and August)
rainfall, divided by the average annual rainfall.

0.1, (−0.1; 0.2) 0.1, (−0.2; 0.3)

Area Area of catchment (km2). 1010, (3; 108893) 684, (3; 117500)
Slope Mean hill slope of the catchment (m km−1). 15, (1; 75) 11, (0; 103)
Drain Mean drainage density of the catchment

(km km−2).
1, (0.7; 2.7) 0.9, (0.5; 3.3)

Hard Catchment averaged value of hardness 3.9, (1; 5) 3.5, (1; 5)
Perm Catchment averaged value of permeability 2, (1; 4) 2.3, (1; 4)
Allu Proportion of catchment with alluvium surface

geology
0.06 (0; 0.97) 0.09 (0; 1)

Chalk Proportion of catchment with chalk surface geology 0.06 (0; 0.99) 0.11 (0; 1)
Lime Proportion of catchment with limestone surface

geology
0.03 (0; 0.99) 0.05 (0; 1)

Shape Distance to head of catchment divided by catchment
area (km km−2

× 103)

0.18 (0.1; 0.8) 0.3 (0.1; 3.5)

nDryDays Mean annual number of days without rain. 229 (194; 301) NA
dDry Mean annual maximum duration without rain 21.6 (17; 41) NA

2.6 Spatial synchronization of intermittence patterns

To better understand the spatial scale of observed intermit-
tence patterns, we evaluated the degree of spatial synchro-
nization of the variables FREQ and DUR at the gauging sta-
tions on intermittent segments using the Mantel statisticr

(Mantel, 1967). The Mantel statistic is the Pearson correla-
tion coefficient between two matrices of dissimilarities and
is used to quantify spatio-temporal clustering (i.e., spatially
organized synchronization). Our first matrix described the
dissimilarity in annual intermittence patterns between pairs
of stations. Our second dissimilarity matrix defined the geo-
graphic (Euclidian) distance between pairs of stations. The
significance of the statistic is established by permutation
based on the null hypothesis of “no correlation” (Legendre
and Legendre, 1998). The procedure made random permu-
tations of the rows in one matrix and recomputed the corre-
lation. The observed correlation was compared to the distri-
bution of values derived from 10 000 permutations and mea-
sures the probability of obtaining higher than observed cor-
relation by chance (Legendre and Legendre, 1998).

Dissimilarities in the two annual times series describing
flow intermittence (FREQ and DUR) between pairs of sta-
tions were calculated as (1−ρ), whereρ is the rank (Spear-
man) correlation of the time series. Therefore, stations were
compared on the basis of the relative frequency and duration
of zero flow in each year, rather than the absolute magnitudes
of the events. The calculation of dissimilarities was compli-

cated by missing data for some years as a result of gaps or
because the station records had differing durations within the
analysis period. Thus, we calculated the correlation between
each pair of stations for the years in which data were avail-
able at both stations.

The assumption of linearity is implicit in Mantel tests and
consequently, the tests will not detect spatial structures if
there are non-linear relationships between space and syn-
chronous behavior. For example, gauging stations in close
proximity may have similar temporal behavior, but the be-
havior of widely separated pairs of stations may be unre-
lated. We used a Mantel correlogram to determine the level
of synchrony among the gauging stations at different spatial
scales (Goslee and Urban, 2007). The Mantel correlogram
used Mantel tests to determine the correlations between geo-
graphic distance and the indices FREQ and DUR for subsets
of stations belonging to several distance classes. The dis-
tance classes subdivided the log-transformed distances be-
tween stations into nine equi-distant categories. Because of
the multiple comparisons made by the Mantel correlogram,
Bonferroni corrections were applied before interpreting the
significance of the correlations (Goslee and Urban, 2007).

2.7 Statistical modeling of classifications

We used statistical classification models to relate the flow-
regime and intermittence classifications to the environmental
variables. First, we fitted a model that discriminated the 628
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Table 2.Geological categories represented on the 1 : 1 000 000 scale
geological map of France (BRGM, 1996). Ordinal values of physi-
cal hardness range from 1 (soft) to 5 (hard); ordinal values of per-
meability range from 1 (impermeable) to 4 (permeable). The fourth
column shows the geological categories that were also included in-
dependently as environmental variables in our analysis (as propor-
tion of the catchment in category). The sum of three categories was
used to define alluvium (Allu).

Catchment
Geological Physical geological
category hardness Permeability category

Fluvial alluvium 1 3 Allu
Quaternary alluvium 1 3 Allu
Clay and sand 1 1
Limestone 5 4 Lime
Chalk 3 4 Chalk
Glacial deposit 1 1
Sedimentary flysch 3 2
Marls 3 1
Marls with evaporates 3 1
Molasse 2 3
Basaltic rock 5 1
Igneous rock 5 1
Calcareous detrial rock 4 2
Cystaline detrial rocks 5 1
Noncalcareous detrial rock 5 3
Metamorphic rocks 5 1
Volcanic rocks 5 2
Sand 1 3 Allu
Carbonaceous schist 3 2
Metamorphic schist 3 2
Sedimentary schist 3 2
Stratified calcareous rocks 3 2

gauging stations on the basis of flow-regime class (peren-
nial and intermittent) using the environmental variables as
predictors. The statistical model was used to assess the de-
gree to which intermittence was related to different environ-
mental variables, and to make predictions of the flow-regime
class for all segments (gauged and ungauged) in the digital
river network. Second, we fitted a model that used the envi-
ronmental variables to discriminate intermittence subclasses
of the gauging stations classed as intermittent. This second
model was used to assess the degree to which different tem-
poral patterns in flow intermittence were related to different
environmental variables.

We used random forest (RF) models to relate the flow-
regime and intermittence classifications to the environmental
variables. Recent studies have shown that RF models pre-
dict spatial patterns in river characteristics better than more
conventional methods such as linear regression (Booker and
Snelder, 2012; Snelder et al., 2012). For a detailed descrip-
tion of RF models see Breiman (2001) and Cutler et al.
(2007). Briefly, an RF model comprises an ensemble of indi-
vidual classification and regression trees (CART, Breiman et
al., 1984) that can be used in a classification mode to model
the probability that each case belongs to some set of cate-

gories (here flow-regime and intermittence classes). In a clas-
sification context, CART partitions observations into groups
that minimize the misclassification rate based on a series of
binary rules (splits) constructed from the predictor variables
(here the environmental variables). CART models have two
desirable features for modeling complex relationships: they
are free from distributional assumptions, and they automati-
cally fit non-linear relationships and high order interactions.
However, CART models have two limitations, they do not
produce an optimal tree structure and they are sensitive to
small changes in input data (Hastie et al., 2001).

The limitations in CART models can be reduced by using
RF models (Breiman, 2001). A final prediction of the prob-
ability that each case belongs to each category is based on
the average of all the individual predictions obtained from
the ensemble of trees (the forest). An important feature of
RF models is that each tree is grown with a bootstrap sample
of the training data. In addition, at each node only small, ran-
dom samples of the predictors are used to define the split. The
introduction of these random components, combined with
averaging individual predictions over an ensemble of trees,
increases the prediction accuracy of RF models while retain-
ing the desirable features of CART.

RF models produce a limiting value of the generalization
error (Breiman, 2001). As the number of trees (k) increases,
the generalization error always converges to the minimum.
Thus, RF models cannot be over-fitted (Cutler et al., 2007).
The number of trees needs to be set sufficiently high to en-
sure that convergence occurs and this number depends on the
number of variables that are used at each split. Model per-
formance can be optimized by altering the number of trees
and variables that a‘re used at each split. However, we used
the recommended default values (the square root of the to-
tal number of predictors) and a large number of trees (500;
Cutler et al., 2007).

The structure of RF models can be examined using im-
portance measures and partial dependence plots. Importance
measures indicate the contribution of the predictors to model
accuracy and are calculated from the degradation in model
performance (i.e., the increase in misclassification rate) when
a predictor is randomly permuted (Breiman, 2001). Impor-
tance represents the increase in the misclassification rate that
could be expected for new cases (i.e., cases not used to fit
the model) if the predictor was excluded from the model
(Breiman, 2001). Partial dependence plots show the marginal
contribution of a predictor to the response (i.e., the response
as a function of the predictor when the other predictors are
held at their mean value; Friedman and Meulman (2003)).
These plots are not a perfect representation of the effects of
each predictor, particularly if there are interactions or predic-
tors are strongly correlated, but they provide useful informa-
tion for interpretation (Friedman and Meulman, 2003).

Predictors in an RF model may have positive importance
values, even when their removal from the model does not
cause a significant reduction in model performance. We used
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Fig. 3. Monthly variation in the occurrence of zero flow days. The
days with zero flow in each month was computed from the flow
records for all 123 intermittent gauges.

the procedure of Svetnik et al. (2004) to reduce the RF mod-
els to the most parsimonious set of predictors. The procedure
uses a cross-validation process that recursively removes the
least-important predictors from the model and tests if the re-
duced model has significantly lower prediction performance
than the full model. We used the “1 standard error rule”
(Breiman et al., 1984) to select the reduced model with the
highest prediction performance that was not different, within
the error generated from the cross-validation process, from
the model with the best performance. The reduced models
were considered to be the most parsimonious and we used
these to interpret the relationships between predictors and the
classifications.

We used a leave-one-out cross-validation procedure to es-
timate the performance of the models and to optimize the
probability threshold for the flow-regime model. In the cross-
validation step, we fitted RF models to as many subsets of
the data as there were gauging stations. For each subset, we
withheld one gauging station in turn from the training data
used to fit the RF models. We then used the RF model to
independently predict the probability of the withheld station
belonging to each of the classes represented by the classifi-
cation. The cross-validated probabilities were then converted
into predictions of class membership for each station based
on a chosen probability threshold.

The performance of a classification model is sensitive to
the probability threshold that is applied (Freeman and Moi-
sen, 2008). We used receiver operating curves (ROCs) to pro-
vide a method of evaluating the performance of the flow-
regime model that was independent of the threshold. ROC

plots show the true positive rate (sensitivity) against the false
positive rate (1-specificity) as the threshold varies from 0
to 1 (Hanley and McNeil, 1982). Good models have high
true positive rates and relatively small false positive rates
and, therefore, have curves that rise steeply at the origin, and
level off near the maximum value of 1. The ROC plot for
a poor model lies near the diagonal, where the true positive
rate equals the false positive rate for all thresholds. The area
under the ROC plot (AUC) is a measure of overall model
performance that is independent of the threshold, with good
models having an AUC near 1, while a poor models will have
an AUC near 0.5 (Hanley and McNeil, 1982).

We used the cross-validation predictions for the flow-
regime classification to derive ROC statistics to select the
best threshold for assigning gauging stations to the peren-
nial or intermittent class. There are several criteria that can
be used to define the best threshold (Freeman and Moisen,
2008) including maximising the percent correctly classified
(PCC) and maximising Cohen’s kappa (Cohen, 1960). Kappa
measures the agreement between two classifications, each of
which classifyN items intoC mutually exclusive categories.
We chose Kappa because it adjusts for chance agreement
and is therefore a more robust measure than misclassification
rate when observed occurrence is low (Freeman and Moisen,
2008). Kappa takes a value between 0 (no agreement) and 1
(complete agreement).

We also used the results of the cross-validation predictions
and Kappa to characterise the performance of the intermit-
tence classification model. We did not optimize the proba-
bility threshold for the intermittence classification and sim-
ply assigned stations to the intermittence sub-class with the
highest probability.

3 Results

3.1 Zero flows and indices

Of the 628 gauging stations, 123 had at least one zero-flow
period in the period of record. Gaps (i.e., days with missing
data) made up a very small proportion (0.14 %) of all time se-
ries used in the analysis. For the intermittent sites the propor-
tion of gaps was 0.2 % of all the days represented in the time
series. The majority of zero flows (85 %) occurred during the
summer and autumn months (June to October Fig. 3). No
gauging stations had zero-flow periods exclusively in winter,
indicating that freezing was not the sole cause of intermit-
tence at any station. Zero flows at the gauging stations used
for our analysis were most frequent and longest in duration
in years of broad-scale drought conditions that occurred dur-
ing 1976, 1989–1991, 2003 and 2005 (Fig. 4). However, the
year in which the highest zero-flow frequencies or longest
zero-flow durations occurred at each station was variable and
there was no common year in which the highest frequencies
or longest durations occurred (Fig. 4).
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Fig. 4. Box plots of the annual variables (FREQ and DUR) for all years. The plots show data for only the gauging stations on intermittent
segments. The variables have been standardized within stations by expressing them as the frequency that the index was less. Plotted values
therefore indicate the severity of the zero-flow events in each year relative to the extremes observed at each station. The box contains the
inter-quartile range, the dot shows the median value, whiskers indicate 1.5 times interquartile range and the circles indicate outliers.

The index mFREQ varied between 0 and 7.5 yr−1 across
all 628 gauging stations. For stations on intermittent seg-
ments, mFREQ ranged from 0.03 to 7.5 with a mean of 0.6
and a median of 0.3, indicating that most intermittent seg-
ments had low zero-flow frequencies. For stations on inter-
mittent segments, mDUR ranged from 1 to 128 days with a
mean of 15 and a median of 7.3.

The two flow-intermittence indices mFREQ and mDUR
were weakly, positively correlated (r = 0.19, p = 0.03;
Fig. 5). The intermittence subclasses 1, 2 and 3 comprised
41, 40 and 42 stations respectively. Three stations that fell
just outside the ranges of mFREQ and mDUR that defined
the subclasses and were assigned to the closest subclasses
(lower right quadrant in Fig. 5). Gauging stations on inter-
mittent river segments occurred across France; the highest
densities were located near the southern and western coasts
(Fig. 2). There was no clear geographic pattern evident in
the spatial distribution of the three flow intermittence types
(Fig. 2).

3.2 Spatial synchronization

The correlation coefficients (Mantelr) between dissimilar-
ities corresponding to FREQ and DUR values for gauging
stations on intermittent segments, and their spatial separa-
tion were 0.1 and 0.14, respectively (p < 0.0001; 10 000 per-
mutations), indicating weak spatial synchronization. Mantel
correlograms for both FREQ and DUR indicated that correla-
tions were weak at all spatial scales (Fig. 6). The largest cor-
relations were negative and occurred between stations with
the largest separation (i.e., mean distances of 700 km).

3.3 Discrimination of intermittent and perennial
gauging stations

The RF model that related the flow-regime classification of
628 gauging stations to environmental variables had a cross-
validated AUC of 0.77. The performance of the RF model as
measured by misclassification rate and Cohen’s kappa was
sensitive to the probability value used as the threshold for
assigning stations to either class (Fig. 7). The maximum per-
cent correctly classified was 14.8 % and occurred at a prob-
ability threshold of 0.49 (Fig. 7). The maximum Cohen’s
kappa was 0.47 and occurred at a threshold of 0.35 (Fig. 7).

The eight environmental variables retained by the reduced
model, in order of importance, were Tmin, Rain, Tmax,
Slope, WinSumRain, Shape, Area and the geological variable
Perm (Fig. 8). The partial dependence plots indicated that the
probability that a segment is intermittent increased with in-
creasing Tmax, Tmin, and Shape, decreased with increasing
Rain, Area, and Slope, and had a U-shaped response to Win-
SumRain and Perm (Fig. 8). The importance measures for the
environmental variables retained by the reduced model var-
ied from 0.6 % to 1.1 % (Fig. 8), indicating that the influence
of each variable on model performance was similar, com-
pared to the overall misclassification rate of 16 %. The envi-
ronmental variables Drain, nDryDays and dDry and the sub-
catchment geology variables (subHard, subPerm, subChalk,
subLime, subAlluv) did not contribute significantly to model
performance.
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Fig. 5. Intermittence index values for gauging stations on intermit-
tent segments. Three intermittence subclasses are indicated by dif-
ferent symbols. Subclasses were defined using threshold values of
mFREQ and mDUR (dashed lines). Sites that were misclassified by
the RF model are indicated with gray circles.

When a probability threshold for the flow-regime model
that maximized Cohen’s kappa (0.35) was used, 39 % of
the digital river network segments were predicted to be
intermittent (Fig. 10). When these predictions were aggre-
gated into hydro-ecoregions, the proportion of intermittent
segments in each region well predicted by the model. The
regression of observed proportion of intermittent segments
versus predicted proportion of intermittent segments had an
r2 value of 0.73 (Fig. 10a).

The mapped predictions of the flow-regime model and
the aggregation of these predictions into hydro-ecoregions
highlighted a broad gradient in the probabilities of flow
intermittence that corresponded to large-scale climate pat-
terns (Figs. 9 and 10b). Regions with the highest propor-
tion of intermittent segments tended to those with the low-
est annual rainfall (Rain)< 800 mm, the highest winter tem-
perature (Tmin)> 5◦C (Fig. 10b) and the highest summer
temperatures (Tmax)> 20◦C. Regions with high probabil-
ities of flow intermittence were located along the Mediter-
ranean and central Atlantic coasts, in the Midi-Pyréńees re-
gion (Fig. 9). In contrast, regions with higher annual rainfall
(Rain) > 1100 mm, lower summer air temperature (Tmax)
< 16◦C and lower winter air temperatures (Tmin)< 1◦C had
high probabilities of perennial flow (Fig. 10b). There were
additional, smaller regions in which river segments had high
probabilities of flow intermittence. These regions were char-
acterized by low values of hardness (Hard) and low slopes
(Slope). There was also a general tendency for segments
along large river main stems to have low probabilities of be-

Fig. 6.Mantel correlograms of FREQ and DUR for gauging stations
on intermittent segments in nine distance classes. The plots indicate
the Mantelr values for each distance class plotted against the mean
separation of gauging stations in the class. Solid dots indicate sig-
nificant Mantelr values (p < 0.05) after Bonferroni correction.  40 

40 

 

Fig. 7.  

 

 Fig. 7. Receiver operating curves (ROC) plot (left) and threshold
plot (right) for the flow-regime classification. The black circles on
the threshold plot indicate the probabilities thresholds that maxi-
mize the classification performance as measured by Cohen’s kappa
and the percent correctly classified (PCC).

longing to the intermittent class (Fig. 9). Main stem segments
had large values of catchment area (Area) and generally had
low values of Shape, both of which were associated with low
probabilities of flow intermittence (Figs. 8 and 9).

3.4 Discrimination of flow-intermittence patterns

The RF model of the intermittence classification (classifica-
tion of intermittent segments into three subclasses), had in-
dependent misclassification rates of 51 %, 47 % and 31 % for
classes 1, 2 and 3, respectively, and an overall misclassifica-
tion rate of 46 % (Fig. 5). The value of kappa for the com-
parison of predicted and actual membership of gauged river
segments to the three intermittence types was 0.32.

The six significant environmental variables in the reduced
intermittence classification model, in order of importance,
were Area, Shape, Tmin, Tmax, Rain, and Slope (Fig. 11).
The importance values for the six environmental variables
retained in the reduced model ranged from 1 % to 2 %, in-
dicating that the influence of each variable on model per-
formance was similar, compared to the overall misclassifi-
cation rate of 46 %. The environmental variables nDryDays
and dDry and the subcatchment geology variables (subHard,
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Fig. 8. Partial dependence of the probability of intermittence for each of significant environmental variables retained in the reduced model.
The variables are shown in order of importance from the top-right to the bottom left. The plots show the marginal contribution to probability
of flow intermittence (y-axis) as a function of the variables (i.e., the other contributing variables were held at their mean). The rug plots on
the horizontal axes show deciles of the predictors. The value in brackets on the horizontal axis is the importance measure.

Fig. 9. Predictions of the probability of being intermittent made by
the RF model of the flow-regime classification for the entire river
network. Based on maximising Cohen’s kappa (Fig. 7), network
segments whose probabilities are greater than 0.35 are intermittent
and those less than 0.35 are perennial.

subPerm, subChalk, subLime, subAlluv) did not contribute
significantly to model performance.

The partial plots indicated that the intermittence sub-
classes were discriminated based on differences in catch-
ment characteristics (Fig. 11). Subclass 1 (low-frequency,
short-duration zero-flow periods) had highest probability of
occurrence in large catchments with relatively high rainfall

Fig. 10. (A)Observed and predicted proportions of gauging stations
on intermittent segments in hydro-ecoregions. The dashed line is
the regression of observed versus predicted gauges on intermittent
segments. The solid line indicates a perfect agreement between ob-
served and predicted (i.e., slope = 1 and intercept = 0).(B) Scatter
plot of the mean values of the most important predictor variables
(Tmin and Rain) in each HER. The symbol sizes indicate the per-
centage of gauges on intermittent segments each region.

(Rain) and slope (Slope), cool summers (Tmax), cold winters
(Tmin) and low Shape (i.e., rounded catchments). In Sub-
class 2 (low-frequency, long-duration zero-flow periods), the
relationships with catchment characteristics were similar to
those in Subclass 1, except the probability of occurrence de-
creased with increasing rainfall (Rain), and increasing Slope.
Subclass 3 (high-frequency, long-duration zero-flow periods)
had highest probability of occurrence in small catchments
(Area) with low rainfall (Rain), high summer and winter air
temperatures (Tmax and Tmin), and high Shape (i.e., elon-
gated catchments).
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Fig. 11.Partial dependence plots for the three flow intermittence subclasses for the six environmental variables retained in the reduced model,
in order of importance from the top-right to the bottom left. The plots show the marginal contribution to probability of class membership
(y-axis) as a function of the variable (i.e., the other contributing variables were held at their mean). The rug plots on the horizontal axes show
deciles of the predictors. The value in brackets on the horizontal axis is the importance measure.

4 Discussion

In this study we used statistical models to identify rela-
tionships between flow intermittence and catchment char-
acteristics. To our knowledge, there have been no compa-
rable studies that attempted to classify types of flow inter-
mittence and predict its spatial distribution. Random forest
models of the flow-regime and intermittence classifications
had cross-validated kappa values that indicated only fair and
poor performance respectively, based on the guidelines of
Fleiss (1981). However, both classification models identified
associations between intermittence and environmental vari-
ables and provided some useful insights into the occurrence
of flow intermittence.

Our models indicated significant associations and ex-
pected relationships between intermittence and environmen-
tal variables (Figs. 8 and 9). Regions with high probabili-
ties of intermittent river segments are those with low annual
rainfall, warm air temperatures, and steep, small, elongated
catchments. The probability of intermittence had significant
but more complex relationships with the environmental vari-
ables SumWinRain and Perm. The similarity in importance
values for the environmental variables retained in the RF
model suggests that intermittence is caused by multiple phys-
ical factors, each of which has a moderate influence.

The RF model of the intermittence classification identi-
fied associations between environmental variables and dif-
ferent combinations of zero-flow frequency and duration
(Fig. 11). Based on its relationship with the environmental
variables, intermittence Subclass 3 appears to represent head-

water streams in warm and dry locations that have frequent
zero-flow periods. In contrast, Subclasses 1 and 2 appear to
represent larger, cooler, and wetter catchments that have in-
frequent zero-flow periods (on average less than once per
year (mFREQ< 0.5, Fig. 5). River segments in Subclasses 1
and 2 differed in that they had short- and long-duration zero-
flow periods (mDur> 5 days and mDur< 5 days, Fig. 5), re-
spectively. The most obvious environmental difference be-
tween Subclasses 1 and 2 was that sites in Subclass 1 had
higher probability of occurrence in steeper catchments with
higher annual rainfall (Slope and Rain, Fig. 11). It is likely
that the low frequencies of zero-flow periods in Subclasses 1
and 2 are attributable to sustained base flows for most of each
year, which are in turn associated with large catchment areas
and relatively wet, cool climates. We suggest that zero-flow
periods in these two sub-classes occur when the water table
drops below the channel elevation and surface flow ceases.
The difference in zero-flow duration between Subclasses 1
and 2 may be associated with differences in storage, release
and recharge of groundwater. Sites in Subclass 1 are likely to
have small groundwater storage volumes due to steep slopes
and small catchment duration of zero-flow periods of short
duration. The reverse applies to sites in Subclass 2, which
generally had lower slopes and lower annual rainfall, pro-
ducing zero-flow periods of long duration. We note that dif-
ferences in the intermittence subclasses may have been due
to differences in geological conditions. However, our study
was equivocal in this regard as no geological variable was
retained by the RF model of the intermittence classification.
Our classification models indicated that the probability of
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intermittence in France is only broadly associated with large-
scale climate patterns (Figs. 9 and 10b). Flow intermittence
is at least partly controlled by processes acting at smaller
scales than climate, such as local groundwater-table fluctua-
tions and seepage through permeable channels (Fleckenstein
et al., 2006; Larned et al., 2010a, b). The proximate cause of
flow intermittence in many river segments is water table fluc-
tuation relative to river channel elevation; flow occurs when
the water table intersects the channel, and ceases when the
water table drops below the channel (Konrad, 2006; Larned
et al., 2010a; von Schiller et al., 2011). In areas where chan-
nels are permanently perched above the water table, intermit-
tence is controlled by run-off from upstream and by transmis-
sion losses (Morin et al., 2009; Sharma and Murthy, 1994).
Interactions between these local processes and the climatic
processes that generate runoff and rainfall recharge deter-
mine where and when flow intermittence occurs. Two results
lend support to the suggestion that intermittence, and in par-
ticular, the timing of zero-flow periods, are only partly in-
fluenced by large-scale climatic processes. First, the plots of
annual zero-flow behavior (Fig. 4) and low values of Mantel
statistics (Fig. 6) indicate that there was weak spatial syn-
chronization in zero-flow frequency and duration. Although
there was a general tendency for the frequency and duration
of zero-flow periods to peak in the driest years of the time
series (1976, 1989/1990, 2003), many sites did not follow
this temporal pattern (Fig. 4). Second, the variables nDry-
Days and dDry represent rainfall patterns that we expected
to be more relevant to the duration and frequency of zero
flows than mean annual rainfall, which was included in the
RF models. However, these variables did not improve the
classification models.

In contrast to the present study, a flow-regime classifica-
tion of France reported by Snelder et al. (2009) distinguished
river network segments on the basis of a variety of hydrolog-
ical indices including the frequency of zero flow and others
that described the frequency, timing and duration of high and
low flows, and the frequency of changes in flow. A predictive
model of this classification performed well and was based on
similar statistical methods, and used the same river network
and environmental variables used in the present study. We
suggest that most of the flow-regime components described
by the classification of Snelder et al. (2009) result predom-
inantly from variation in large-scale processes such as rain-
fall, evaporation, catchment storage and runoff. Variation in
these processes over large spatial scales was reflected in rela-
tively strong discrimination of flow-regime classes using the
environmental variables.

The contrasting performance of the models in the present
study with the model of the flow-regime classification of
Snelder et al. (2009) indicates that different suites of environ-
mental variables are needed to model intermittent flows and
whole flow regimes (in which zero-flow frequency is only
one of many components). Aquifer structure and riverbed
permeability are probably among the factors that influence

the small-scale processes that determine intermittence and
were represented in our models by variables such as catch-
ment slope, shape and permeability. These variables had sim-
ilar levels of importance in the RF models as the variables
representing broad-scale climate, which supports our con-
tention that processes at a range of scales are involved. How-
ever, it is likely that, although these variables acted as sur-
rogates for local processes, they were too broad scale and
insufficiently representative of the actual causes of intermit-
tency to achieve good predictive performance. The inclusion
of predictor variables that described subcatchment (i.e., lo-
cal) geology (Hard, Perm, Chalk, Lime, Alluv) was intended
to provide better surrogates for small-scaled processes; how-
ever, these did not improve model performance. It is likely
that the 1 : 1 000 000 scale of the geological map used to de-
fine the geological predictor variables was too coarse to dis-
criminate geological or hydrogeological variation at segment
scales. If flow intermittence is related to groundwater dynam-
ics, spatial data corresponding to aquifer structure, riverbed
permeability and other small-scale factors may improve our
ability to model intermittent flows accurately, but these data
are rarely available. Until that data scarcity is alleviated, pre-
dictive models of regional or national patterns in flow inter-
mittence will have limited accuracy.

Our predictions of the abundance and distribution of inter-
mittent rivers in France will have several potential practical
applications. First, the Water Framework Directive requires
the ecological status of all surface and ground waters to be
assessed (Chave, 2001), and this includes intermittent rivers.
However, partly because they have been considered “atypi-
cal” and rare in France, intermittent rivers have been often
ignored by water managers. Our predictions may increase
awareness of the prevalence of intermittent rivers among sci-
entists and water managers by showing they are abundant and
occur in most regions of France and are not restricted to the
dry Mediterranean region.

Our flow-regime classification predictions indicate that the
gauging station network under-represents intermittent river
segments in France (i.e., 19.6 % of gauges were classified
as intermittent whereas 39 % of segments in the river net-
work are predicted to be intermittent). More accurate predic-
tions of the abundance and distribution intermittent segments
could be achieved by supplementing the gauging network.
Alternative methods of monitoring flow intermittence, such
as the use of electrical resistance arrays (Jaeger and Olden,
2012) or citizen-observation networks (Turner and Richter,
2011) could also increase the representation of intermittence
in future studies at less effort than is required to operate per-
manent gauging stations.

The predicted proportion of intermittent segments by our
study is particular to the spatial resolution of the anal-
ysis (i.e., the minimum catchment area to define a seg-
ment was 2.5 km2 and the minimum catchment area of our
gauging stations was 3 km2). Based on the relationship be-
tween catchment area and intermittent segments (Fig. 8), a
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finer-resolution analysis would likely result in higher esti-
mates of the proportion of intermittent segments. Other stud-
ies have also concluded that lower order streams are more
likely to be intermittent and represent a large proportion of
river networks by length (Meyer et al., 2007).

Although predictions of intermittence were not accurate at
the segment scale, when aggregated by HER they produced
good estimates of the proportion of intermittent segments at
regional scales (Fig. 10). Regional estimates of the propor-
tion of intermittent segments provide important information
for several management applications including environmen-
tal flow setting (Hughes, 2005), estimating assimilative ca-
pacity for contaminants (Tsagarakis et al., 2004) and design-
ing bio-monitoring programs that are representative of the
full range of river environments (Steward et al., 2011).

Finally, predictive models describing intermittence can be
used to provide preliminary estimates of how climate change
could change the frequency of intermittence (e.g., Benito et
al., 2011). Our results suggest that the probability of intermit-
tence in France would typically increase by approximately
2 % with each 1◦C rise in summer air temperature (Tmax)
and by 3 % for each 100 mm reduction in mean annual rain-
fall (Rain) (Fig. 8).

Acknowledgements.Ton Snelder was supported by Marie Curie
Incoming International Fellowship within the 6th European
Community Framework Programme and by a joint Irstea-Onema
research project on Low Flow Hydrology). We thank André Chan-
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Sopẽna, A., Botero, B. A., Machado, M. J., Davis, M., and Pérez-
Gonźalez, A.: Hydrological response of a dryland ephemeral
river to southern African climatic variability during the last mil-
lennium, Quaternary Res., 75, 471–482, 2011.

Bent, G. C. and Steeves, P. A.: A revised logistic regression equa-
tion and an automated procedure for mapping the probability of
a stream flowing perennially in Massachusetts, US Department
of the Interior, US Geological Survey, 2006.

Booker, D. J. and Snelder, T. H.: Comparing methods for estimating
flow duration curves at ungauged sites, J. Hydrol., 434–435, 78–
94, 2012

Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001.
Breiman, L., Friedman, J. H., Olshen, R., and Stone, C. J.: Classi-

fication and Regression Trees, Wadsworth, Belmont, California,
1984.
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