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Abstract. The vertical profile of shallow unsaturated zone
soil moisture plays a key role in many hydro-meteorological
and agricultural applications. We propose a closed-loop data
assimilation procedure based on the maximum likelihood en-
semble filter algorithm to update the vertical soil moisture
profile from time-lapse ground-penetrating radar (GPR) data.
A hydrodynamic model is used to propagate the system state
in time and a radar electromagnetic model and petrophysi-
cal relationships to link the state variable with the observa-
tion data, which enables us to directly assimilate the GPR
data. Instead of using the surface soil moisture only, the ap-
proach allows to use the information of the whole soil mois-
ture profile for the assimilation. We validated our approach
through a synthetic study. We constructed a synthetic soil
column with a depth of 80 cm and analyzed the effects of
the soil type on the data assimilation by considering 3 soil
types, namely, loamy sand, silt and clay. The assimilation of
GPR data was performed to solve the problem of unknown
initial conditions. The numerical soil moisture profiles gen-
erated by the Hydrus-1D model were used by the GPR model
to produce the “observed” GPR data. The results show that
the soil moisture profile obtained by assimilating the GPR
data is much better than that of an open-loop forecast. Com-
pared to the loamy sand and silt, the updated soil moisture
profile of the clay soil converges to the true state much more
slowly. Decreasing the update interval from 60 down to 10 h
only slightly improves the effectiveness of the GPR data as-
similation for the loamy sand but significantly for the clay
soil. The proposed approach appears to be promising to im-
prove real-time prediction of the soil moisture profiles as well

as to provide effective estimates of the unsaturated hydraulic
properties at the field scale from time-lapse GPR measure-
ments.

1 Introduction

Understanding the dynamics of soil moisture at the shallow
unsaturated zone is essential for hydrological, meteorologi-
cal and agricultural research. The water content at this zone
influences the most important processes of the hydrologi-
cal cycle as well as partitioning of energy at the land sur-
face into a sensible and latent exchange with the atmosphere
(Vereecken et al., 2008; Lambot et al., 2009). The availability
of the unsaturated zone water is the main factor that controls
the separation of the rainfall into runoff and infiltration. Dis-
regarding the spatial pattern of antecedent soil moisture may
cause significant errors on runoff prediction (e.g.,Merz and
Bardossy, 1998; Minet et al., 2011a). In agriculture, informa-
tion on the unsaturated zone soil moisture is crucial for op-
timal management and irrigation practices toward a tangible
impact on the crop production (Vereecken et al., 2008). As
a result, development and integration of measurement tech-
niques for quantitative characterization of the shallow unsat-
urated zone soil moisture is an urgent need.

During last two decades, GPR has become a popular non-
invasive technique that is widely applied in many engineering
applications (e.g., bridge and road evaluation, buried pipe lo-
cation, crack inspection and land mine detection) (Slater and
Comas, 2009). In soil and water sciences, GPR has been used
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to provide reliable, highly spatially resolved soil moisture at
field scale (Huisman et al., 2003; Robinson et al., 2008). The
theoretical foundation underpinning the applications of GPR
for soil moisture estimation is the overwhelmingness of the
water permittivity to the other soil components, which makes
soil water content the main characteristic that governs the
electromagnetic wave propagation in the soil. Several meth-
ods were developed to interpret the GPR signals into soil wa-
ter content. Detailed reviews on these methods can be found
in Huisman et al.(2003) andSlater and Comas(2009). Gen-
erally, these methods can be classified into three approaches.
Firstly, the water content is derived from the propagation ve-
locity of the ground wave, which travels from transmitting
to receiving antennas through the soil surface (Grote et al.,
2003; Galagedara et al., 2005; Mangel et al., 2012; Pan et al.,
2012; Steelman and Endres, 2012). The second approach es-
timates the soil moisture from the surface reflection coeffi-
cient, which is calculated as the ratio between the reflection
amplitude from the soil surface and that from the calibrat-
ing perfect electric conductor (PEC) (Serbin and Or, 2004,
2005). However, due to the significant assumptions related
to electromagnetic wave propagation and only using a part of
information contained in the GPR data, the accuracy of these
approaches are very limited.Lambot et al.(2004b) devel-
oped a more advanced method known as full-wave inversion
of GPR data, which permits one to use all GPR information
for soil moisture estimation. The method is based on an an-
alytical antenna model, which represents an exact solution
of Maxwell’s equations in far-field conditions. The model al-
lows one to reproduce accurately the GPR signals reflected
from a planar multi-layered medium. Very good results were
obtained for the case of a 1-layered soil model (e.g.,Minet
et al., 2011b; Tran et al., 2012). However, for 2-layered or
soil moisture profile models, the soil moisture estimation at
the lower layers was not adequately accurate due to the ill-
posed inverse problem caused by too many unknown param-
eters and the low sensitivity of GPR data with the electrical
properties at deeper layers (Lambot et al., 2004a; Minet et al.,
2011b). Efforts have been made to increase the accuracy of
the soil moisture profile estimation by using the time-lapse
GPR data to constrain a soil hydrodynamic model (Kowalsky
et al., 2005; Lambot et al., 2006, 2009; Jadoon et al., 2008,
2012; Looms et al., 2008; Dagenbach et al., 2013). A joint
inversion procedure based on integrated geophysical and hy-
drodynamic models was demonstrated to optimally estimate
the soil unsaturated hydraulic parameters. However, in cases
where the soil moisture profile slightly varies with the soil
depth, some parameters suffered from relatively large uncer-
tainties due to their low sensitivity to the radar data (Lambot
et al., 2006).

With the development of the data assimilation algorithms,
there have been increasingly intensive researches on assim-
ilation of remote-sensed data to improve soil moisture pro-
file prediction (Loew, 2008). For instance,Hoeben and Troch
(2000) andWalker et al.(2001) applied the extended Kalman

filter (EKF) to retrieve the soil moisture profile from the near-
surface soil moisture measurements.Reichle et al.(2002),
Das and Mohanty(2006), De Lannoy et al.(2007), Huang
et al. (2008), Crow et al.(2008) and Draper et al.(2012)
assimilated the soil moisture data from remote sensing mea-
surements with the ensemble Kalman filter (EnKF). Applica-
tion of the variational assimilation methods for updating the
soil moisture profile was performed byReichle et al.(2001)
andSabater et al.(2007). Montzka et al.(2011) employed the
particle filter technique to simultaneously update the soil hy-
draulic properties and soil moisture profile with the measure-
ments from geophysical and satellite measurements. Most of
these studies used only the surface soil moisture, which is ob-
tained by processing the remotely sensed data, to update the
whole soil moisture profile. This reduces the improvement of
the assimilation due to lack of information for the assimila-
tion (Pauwels et al., 2007; Das et al., 2008). In addition, er-
rors caused by the conversion from the remote-sensed data to
surface soil moisture also contribute to the smaller effective-
ness of the assimilation. There are only few researches that
directly use the geophysical data for the assimilation (e.g.,
Reichle et al., 2002; Huang et al., 2008; Rings et al., 2010).
Reviews on the assimilation of geophysical techniques to soil
moisture profile are given inLoew (2008), Reichle(2008)
andVereecken et al.(2008).

In this paper, we propose a new sequential assimilation
procedure to raise the accuracy of the soil moisture profile
prediction using time-lapse GPR data. The hydrodynamic
model, Hydrus-1D (̌Simunek et al., 2009), was employed
to simulate the vertical dynamics of the soil moisture in
the root zone. The GPR model and petrophysical relation-
ships worked as an observation operator to relate the soil
moisture profile with the GPR observation. The assimilation
was performed within the maximum likelihood ensemble fil-
ter (MLEF) framework developed byZupanski(2005), for
which the problem of the nonlinear observation operator is
solved much more effectively than the EnKF techniques. The
method estimates the optimal state as the maximum of the
probability density function (PDF) instead of the minimum
variance like in most of the other ensemble data assimila-
tion methods (Zupanski et al., 2008). Direct assimilation of
GPR data is a prominent advantage of our approach. It avoids
solving the time-consuming inverse problem as well as the
estimation errors of the soil moisture caused by inversion. In
addition, instead of using only surface soil moisture, the ap-
proach allows one to use the information of the whole soil
moisture profile, which is reflected via the ultra-wideband
(UWB) GPR data, for the assimilation. The use of the UWB
antenna in this study is also an advantage as it provides more
information about a soil moisture profile with better depth
resolution in comparison to other classical remote sensing
techniques (Lambot et al., 2004a). Consequently, this ap-
proach is expected to provide better estimation than the use
of the surface soil moisture only. The assimilation procedure
was numerically tested by synthetic simulations to solve the
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“wrong” initial conditions. The relationship between the as-
similation and update interval was also investigated. To the
best of our knowledge, this is the first attempt to directly as-
similate GPR measurements for updating the soil moisture
profile.

2 Materials and methods

2.1 Data assimilation procedure

Figure 1 shows the assimilation procedure that we used to
update the state of the soil moisture profile using GPR data,
which is outlined below:

1. Specify the initial soil moisture state and initial state en-
semble based on the a priori knowledge on the moisture
conditions. These values will work as the analysis state
and analysis state ensemble at timet = 0.

2. Run the Hydrus-1D model to simulate the spatiotempo-
ral dynamics of soil moisture from timet to t + 1 and
obtain the forecast state and forecast state ensemble at
time t + 1.

3. Check whether the observation is available. If not, as-
sign the forecast state and its ensemble to the analysis
state and ensemble. If yes, apply the MLEF algorithm
to estimate the analysis state and analysis state ensem-
ble. The observation operator which includes the petro-
physical relationships and electromagnetic model is em-
ployed in this step to link the soil moisture state with the
GPR observation.

4. Run the Hydrus-1D model for the next time with the
initial state being the analysis state and its ensemble ob-
tained from step 3.

This proposed data assimilation scheme consists of 3 com-
ponents: the hydrodynamic model, the observation operator
and the MLEF data assimilation algorithm, which are pre-
sented in the following paragraphs.

2.2 The hydrodynamic model

In this study, the one-dimensional vertical flow in an homo-
geneous soil column was simulated by the water flow module
of the Hydrus-1D model (̌Simunek et al., 2009). The model
numerically solves Richards’s equation, which governs the
movement of water in the unsaturated zone:

C(h)
∂h

∂t
=

∂

∂z

[
K(θ)

(
∂h

∂z
+ 1

)]
, (1)

whereh is the water pressure head,θ is the volumetric water
content,t is time, z is the spatial coordinate taken positive
upward, andK(θ) is the unsaturated hydraulic conductivity

function. C(h) = ∂θ(h)/∂h is the differential water capac-
ity with θ(h) being the water retention curve. The unsatu-
rated hydraulic conductivity and water retention curves are
described by the Mualem–van Genuchten model (Mualem,
1976; van Genuchten, 1980):

θ(h) =

{
θr +

(θs−θr)
[1+|αh|n]m h < 0

θs h ≥ 0
(2)

K(θ) = Ks

(
θ − θr

θs− θr

)l

1−

[
1−

(
θ − θr

θs− θr

) 1
m

]m


2

, (3)

where

m = 1− 1/n, n > 1, (4)

θr and θs are, respectively, the residual and saturated wa-
ter contents,Ks is the saturated hydraulic conductivity,α is
the inverse of the air-entry value,n is a pore-size distribu-
tion index andl is the pore connectivity parameter. In Hy-
drus model, the numerical solution of Eq. (1) is obtained
by using the standard Galerkin-type linear finite element
schemes. The atmospheric boundary with surface layer and
free drainage were, respectively, selected for the upper and
lower boundary conditions. For the potential evaporation, we
used the Penman–Monteith equation (Monteith, 1981).

2.3 The observation operator

In this study, we updated the prediction of the soil moisture
profile by directly assimilating the GPR data. The radar elec-
tromagnetic model (Lambot et al., 2004b) and petrophysi-
cal relationships worked as an observation operator to re-
late the soil moisture profile with the GPR data. We adopted
the GPR measurement system as described inLambot et al.
(2004b). We simulated radar data for a Vivaldi antenna in the
frequency range 1–3 GHz with a frequency step of 6 MHz.
The antenna phase center is located at 7.5 cm above the an-
tenna aperture. The frequency dependence of the phase cen-
ter is accounted for by the transfer functions in the far-field
antenna model (Lambot et al., 2004b; Jadoon et al., 2011).
The distance between the antenna aperture and medium was
26.5 cm, for which the far-field assumptions can be satisfied.
GPR data are represented by the Green’s functionG

↑
xx(f,b),

which is defined as the backscattered,x-directed electric field
at the antenna phase center for a unit-strength,x-directed
electric source situated at the same position above the mul-
tilayered medium. It is an analytical solution of Maxwell’s
equations for wave propagation in 3-D multilayered media,
which is derived by a recursive scheme to compute the trans-
verse electric and magnetic global reflection coefficients of
the multilayered medium in the spectral domain given the
parameter vectorb (Lambot et al., 2004b, 2007):

www.hydrol-earth-syst-sci.net/17/2543/2013/ Hydrol. Earth Syst. Sci., 17, 2543–2556, 2013
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Fig. 1. Assimilation procedure using GPR data to update the state of the soil moisture profile.
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Fig. 1.Assimilation procedure using GPR data to update the state of the soil moisture profile.

G↑
xx(f,b) =

1

8π

+∞∫
0

(
00R

TM

η0
−

ζ0R
TE

00

)
exp(−200z0)kρdkρ, (5)

where subscript 0 refers to the upper half space (free space),
z0 is the distance between the antenna phase center and
the first medium interface,RTM andRTE are, respectively,
the transverse magnetic (TM) and transverse electric (TE)
global reflection coefficients accounting for all reflections
in the multilayered medium,kρ is the radial component of
the polar coordinate system in the spectral domain.0 is

the vertical wavenumber defined as0 =

√
k2
ρ − k2, whilst

k2
= ω2µ(ε−

σ
ω

) with the magnetic permeabilityµ, dielec-
tric permittivity ε and electrical conductivityσ . For the free-
space layer 0 (upper half-space), we havek2

0 = (ω
c
)2 with c

being the free-space wave velocity. We refer toLambot et al.
(2004b) for more detailed information about the Green’s
function evaluation.

The vectorb = [εn,σn,hn], n = 1, . . . ,N contains the
layer thickness (hn), and constitutive parameters governing
wave propagation in the medium, namely, dielectric permit-
tivity (εn) and electrical conductivity (σn). For relating the
soil moisture profile with the GPR data, petrophysical rela-
tionships are necessary to convert the soil moisture to these
constitutive properties. In this study, the relationship between
the soil volumetric water content (θn) and the dielectric per-
mittivity was formulated by the model ofLedieu et al.(1986)
as

ε =

(
θ − b

a

)2

, (6)

where we fixeda = 0.1181 andb = −0.1841, which are suit-
able parameters for a wide variety of soils (Ferŕe et al., 1996).

The relationship between the soil moisture and electrical con-
ductivity was formulated by the model ofRhoades et al.
(1976):

σ = (cθ2
+ dθ)σw + σs, (7)

whereσw = 0.075 Sm−1 is the electrical conductivity of the
soil water (Jadoon et al., 2008; Minet et al., 2011b), andσs is
the electrical conductivity of the dry soil. Table1 presents the
σs and two empirical parametersc andd for the loamy sand,
silt and clay soils. Due to the high electrical conductivity of
the dry soil (σs = 4.39× 10−2 S m−1), the electrical conduc-
tivity of the clay soil is relatively large, which increases the
losses in GPR wave propagation. Consequently, for a given
soil moisture profile, we can obtain the dielectric permittivity
and electrical conductivity profiles by using Eqs. (6) and (7),
and afterwards, the GPR data reflected from that profile as
well as from Eq. (5).

For the fact that the assimilation procedure works with real
numbers and the phase of the GPR data does not vary, given
the fixed antenna height for all measurements, we used the
absolute values of the complex GPR data in the frequency
domain as the observation data. It is clear that the observation
operator relating the Green’s function and soil moisture is
a complex nonlinear operator. It is also worth noting that in
realistic measurements, the antenna effects are filtered out
from the radar data to obtain the Green’s function using the
far-field antenna model (Eq. 1 inLambot et al., 2004b).

2.4 The maximum likelihood ensemble filter

MLEF is an alternative deterministic ensemble filter tech-
nique based on control theory (Zupanski et al., 2008). It is
based on a combination of the maximum likelihood and en-
semble data assimilation. The MLEF is a posterior maximum
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Table 1. Van Genuchten’s hydraulic parameters and Rhoades’s
petrophysical parameters for the loamy sand, silt and clay soils.

Soil type Loamy sand Silt Clay

Hydraulic parameters
θr (cm3cm−3) 0.049 0.050 0.098
θs (cm3cm−3) 0.39 0.489 0.459
α (cm−1) 0.0347 0.0066 0.015
n 1.747 1.677 1.253
Ks (cmh−1) 4.38 1.82 0.61
l 0.5 0.5 0.5

Petrophysical parameters
c 1.85 2.10 1.35
d 0.0385 0.2450 −0.0900
σs (Sm−1) 5.89× 10−4 8.99× 10−4 4.39× 10−2

likelihood approach, in which the optimal analysis state is
obtained as the maximum of the PDF, and determined by
minimizing the cost function derived from a multivariate pos-
teriori PDF. The approach share the idea to use the mini-
mization of the cost function to derive the analysis model
state with the variational data assimilation. However, as an
ensemble-based approach, the minimization is performed in
an ensemble-spanned subspace, instead of the full model
space like in the variational approach. Since the MLEF uses
the maximum likelihood estimation to obtain the analysis
model state, it allows one to effectively solve the nonlinear-
ity of both model and observation operator. The following
paragraphs present the basic steps of the MLEF algorithm.
Detailed explanation can be found inZupanski(2005) and
Zupanski et al.(2008).

Generally, similar to the other assimilation algorithms, the
MLEF includes two steps, the forecast and the analysis.

2.4.1 Forecast

The forecast step uses the modelM (Hydrus-1D) to propa-
gate the system state in time:

xf
t+1 = M[xa

t ] +ωt , (8)

wherex is theNS×1 state variable vector withNS being the
number of state variables,t andt+1 represent the current and
next time steps, respectively. Superscriptf anda stand for the
forecast and analysis.ωt is the model error vector, which is
Gaussian random variables with zero mean and covariance
matrix,Q, assumed to be the same form as the forecast error
covariance one,Pf , but with a smaller value:

Q = 5%Pf, (9)

The ith column of the square-rootNS× NE forecast error
covariance matrixP1/2

f at time t + 1 is calculated from the
ensemble forecast as seen below:

pf
i,t+1 = M[xa

t + pa
i,t ] −M[xa

t ], i = 1, . . . ,NE, (10)

wherepa
i,t is theith column of the square-root,NS×NE anal-

ysis error covariance matrixP1/2
a at time t . NE denotes the

number of members of the ensemble.
It is worth noting that at the initial time step, the analysis

model state (xa
t=0) and its associated uncertainty (pa

i,t=0) are
needed to a priori determine the fact that these values are not
available.

2.4.2 Analysis

As soon as the observation is available, the analysis step is
performed to update the forecast state variable by the maxi-
mum likelihood approach. Accordingly, the MLEF seeks the
optimal state variable that maximizes the posterior probabil-
ity distribution, or in other words, minimizing the cost func-
tion given by the Gaussian PDFs for the observation and fore-
cast errors:

J(x) =
1

2
[x − xf ]

T P−1
f [x − xf ]

+
1

2
[y − H(x)]T R−1 [y − H(x)] , (11)

where the increment vectorx−xf can be expressed as a linear
combination of the forecast ensemble perturbationsP1/2

f :

x − xf = w1p
f
1 + w2p

f
2 + · · · +wNEpf

NE
= P1/2

f w, (12)

wherew = (w1,w2, · · ·,wNE)T is the weighting coefficient
vector, y denotes the measurement vector (GPR data)
and H(x) the observation operator (radar electromagnetic
model).R represents theNO × NO measurement covariance
matrix with NO being the length of measurement dataset.
SuperscriptT represents the transpose operator. Our objec-
tive is to find the optimal weighting coefficient vectorw that
minimizes the cost function (Eq.11). In this study, we fol-
lowed the non-differentiable minimization approach inZu-
panski et al.(2008), which estimates the unknown variables
by the generalized nonlinear conjugate-gradient optimization
algorithm employing the generalized first derivative, calcu-
lated as

∇GJ(x) = P−1/2
f (x − xf) − (Z(x))T R−1/2

[y − H(x)] (13)

in which theith column of theNO × NE observation pertur-
bation matrixZ, zi is calculated as

zi(x) = R−1/2
[H(x + pf

i) − H(x)]. (14)

Since the optimal preconditioning is defined as an inverse
square-root Hessian matrix, a changing variable is introduced
using the inverse square-root Hessian matrix as a multiple
factor:

w = [∇
2
GJ(xf)]

−1/2ξ (15)

with the Hessian matrix being calculated∇
2
GJ(xf) as

∇
2
GJ(xf) = P1/2

f [I + (Z(xf))
T Z(xf)], (16)
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whereI is anNE×NE identity matrix andZ(xf) is calculated
by substitutingx = xf into Eq. (14). Now, the optimization
of w is implemented via the changing variableξ . If the obser-
vation operator is linear and the changing variable (Eq.15) is
employed, the solution of the optimization problem (Eq.11)
is obtained in a single step of minimization iteration (Zupan-
ski, 2005).

Once we obtain the analysis state variable at timet+1, the
square-root analysis covariance matrix (P1/2

a,t+1) is updated by

P1/2
a,t+1 = P1/2

f,t+1

[
I + (Z(x

opt
a,t+1))

T Z(x
opt
a,t+1)

]−T/2
, (17)

wherex
opt
a represents the optimal analysis state variable. The

columns ofP1/2
a are then used in Eqs. (8) and (10) for the next

analysis cycle.

2.5 Numerical simulation

The proposed assimilation procedure was validated by per-
forming numerical simulations, for which the true system
was exactly known. We considered a synthetic homogeneous
soil column with a depth of 80 cm. This soil column was dis-
cretized into 80 equidistant elements. We analyzed the effects
of the soil type on the data assimilation by considering 3 soil
types: loamy sand, silt and clay. Table1 presents the 6 param-
eters of the Mualem–van Genuchten’s equation to construct
the water retention curve and calculate the unsaturated hy-
draulic conductivity. These parameters were obtained from
Schaap et al.(2001).

The simulation period was set at 720 h (30 days). For re-
alistic simulations, the hourly rainfall, temperature, humid-
ity and wind speed data were taken from a meteorologi-
cal station in Louvain-la-Neuve (Belgium) from 1 April to
30 April 2011. Figure2 presents the rainfall and potential
evaporation data (ET0) in this period. The figure shows that
there are 3 main rainfall events during the simulation period
in which 2 large events occurred at the beginning and end
of the period with the maximum rainfall being 0.46 cm. The
potential evaporation fluctuates proportionally with the vari-
ation of the temperature. It is relatively small from 0 to 400 h
but becomes larger from 400 to 720 h due to the increase of
the temperature. The minimum and maximum temperature
are 2.5 and 26.5◦C, respectively. The average temperature
over the period is around 13.8◦C.

In this study, we used the assimilation procedure to solve
the problem of the unknown initial conditions. We assumed
that the “true” initial profile was constant withθt=0(z) =

0.2 cm3cm−3, while that of the “forecast” was 0.3 cm3cm−3.
From the “true” initial state, the 720 hourly “true” soil mois-
ture profiles were generated using the Hydrus-1D model.

Figure 3a, c, e presents the variation of the “true” soil
moisture at several depths versus time over the simulation
period for the loamy sand, silt and clay soils. In general,
there is a good correlation between the forcing data (rainfall
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Fig. 2. Rainfall and potential evaporation time series from 01/04 to 30/04/2011 in Louvain-la-Neuve (Belgium).
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Fig. 2. Rainfall and potential evaporation time series from 1 April
to 30 April 2011 in Louvain-la-Neuve (Belgium).

and evaporation) and moisture of all types of soil (with time
lag). The surface soil moisture (z = 0 cm) is the most sen-
sitive to the variation of the rainfall. The peak of the sur-
face soil moisture rapidly appears right after the peak of the
rainfall. During the dry period, it sharply reduces due to the
evaporation and infiltration processes. When the soil depth
increases, the time lag between the rainfall and soil moisture
peaks gradually increases. This is explained by the fact that
water requires more time to move from the surface to lower
soil layers. The soil moisture at the deeper layers also varies
more smoothly with time due to the water retention effect of
the soil. The effects of the evaporation on the soil moisture
is only observed at the near-surface depths (z = 0, 2, 5 cm)
during the dry period.

The temporal variation of the soil moisture of the three
soil types are different. Compared to the silt and clay soils,
the loamy sand dries out more quickly, and the differences
of the water content among the soil depths are also smaller.
This is because this soil type has a low water-holding capac-
ity. By contrast, the clay soil shows its ability to retain wa-
ter well. Even as the rainfall occurs, the water content at the
near-surface layers (from 0 to 10 cm) increases rapidly but it
slowly moves down to the lower layers. As a result, the water
content at depths 40 and 80 cm is constant at the initial state
during the simulation period.

For each “true” soil moisture profile, the frequency-
domain synthetic GPR data were produced using the forward
radar model. In the electromagnetic model, the soil mois-
ture profile was modeled by 80-planar layers with an equal
thickness of 1 cm under the air layer and above a lower half
space. As for the measurement error covariance, we assumed
that only the elements in the main diagonal (i.e., variances)
of the observation error covariance matrixR are different
from zero. These elements were calculated corresponding to
a constant variance of each element in the soil moisture pro-
file, σ 2

= 0.0132. “Observed” GPR data were generated by

Hydrol. Earth Syst. Sci., 17, 2543–2556, 2013 www.hydrol-earth-syst-sci.net/17/2543/2013/



A. P. Tran et al.: Data assimilation using GPR data 2549

0 120 240 360 480 600 720
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (hour)

 θ
 (

cm
3 /c

m
3 )

 

 

0 cm
−2 cm
−5 cm
−10 cm
−40 cm
−80 cm

Time (hours) 

 f 
(G

H
z)

 |G
xx
↑ | (f)

 

 

0 120 240 360 480 600 720

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3 400

600

800

1000

1200

1400

1600

1800

(a) (b)

0 120 240 360 480 600 720
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (hour)

 θ
 (

cm
3 /c

m
3 )

 

 

0 cm
−2 cm
−5 cm
−10 cm
−40 cm
−80 cm

Time (hours) 

 f 
(G

H
z)

 |G
xx
↑ | (f)

 

 

0 120 240 360 480 600 720

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3 400

600

800

1000

1200

1400

1600

1800

(c) (d)

0 120 240 360 480 600 720
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (hour)

 θ
 (

cm
3 /c

m
3 )

 

 

0 cm
−2 cm
−5 cm
−10 cm
−40 cm
−80 cm

Time (hours) 

 f 
(G

H
z)

 |G
xx
↑ | (f)

 

 

0 120 240 360 480 600 720

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3 400

600

800

1000

1200

1400

1600

1800

(e) (f)

Fig. 3. (a, c, e) Temporal variation of the ”true” soil moisture at several depths of the profile (0, 2, 5, 10, 40 and
80 cm) and (b, d, f) corresponding ”observed” frequency-domain absolute Green’s functions |G↑

xx|(f) over the
720-hour simulation period. The results were obtained using the three soil types: (a, b) loamy sand, (c, d) silt
and (e, f) clay.
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Fig. 3. (a, c, e)Temporal variation of the “true” soil moisture at several depths of the profile (0, 2, 5, 10, 40 and 80 cm) and(b, d, f) cor-

responding “observed” frequency-domain absolute Green’s functions|G
↑
xx |(f ) over the 720 h simulation period. The results were obtained

using the three soil types:(a, b) loamy sand,(c, d) silt and(e, f) clay.

adding Gaussian random perturbations to the synthetic GPR
data. The mean of the perturbations is set to zero and its stan-
dard deviation is equal to the variance components of the ob-
servation error covariance matrix.

Figure3b, d, f presents the “observed” frequency-domain
absolute values of GPR data (Green’s function) correspond-
ing to the three soil types (loamy sand, silt and clay). The
measurement errors are represented by the noises in the
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Fig. 4. Synthetic (left) and forecast (right) soil moisture profiles at initial time (0-hour) and at time that the GPR
data assimilation begins (80-hour) corresponding with the loamy sand, silt and clay soil types.
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Fig. 4. Synthetic (a) and forecast (b) soil moisture profiles at initial time (0 h) and at time that the GPR data assimilation begins (80 h)
corresponding with the loamy sand, silt and clay soil types.

figure. For each soil type, there are 720 GPR datasets gener-
ated from 720 hourly soil moisture profiles. Each dataset has
334 “observed” values of absolute GPR data in a frequency
range of 1–3 GHz and a step of 6 MHz. It is worth noting
that in realistic practice, in addition to the reflections from
the medium (Green’s function), the measured GPR data also
include the GPR effects. Therefore, the “observed” GPR data
in this study correspond to the measured GPR data after fil-
tering the antenna effects. Generally, the figure shows that the
absolute value of the Green’s function is higher at the higher
frequencies, implying that the reflections from the surface
layer are stronger than those from the deeper layers. Com-
paring Fig.3b, d, e with c, d, f, we clearly see that the tem-
poral variation of the GPR data agrees well with that of the
soil moisture. The absolute Green’s function increases when
the soil is wet and vice versa. The 3 peaks of the GPR data
occur at approximately the same time as those of the surface
soil moisture. This is attributed to the fact that the amplitude
of the GPR reflections is stronger as there is a higher con-
trast in the dielectric permittivity (and the corresponding soil
moisture) between the soil and the air layers. The good corre-
spondence between the GPR and soil moisture data indicates
a great potential of GPR to correct the prediction of the soil
moisture profile. The figure also indicates that at high fre-
quency (2–3 GHz), the absolute Green’s function of the clay
is larger than that of the silt and and loamy sand. This can be
explained by the higher water content at the upper part of the
clay soil moisture profile.

We began to assimilate the GPR data to update the state
of the soil moisture profile at a time of 80 h. Figure4a and
b, respectively, present the synthetic and forecast soil mois-
ture profiles at initial time (0 h) and at the time that the GPR
data assimilation begins (80 h) for the loamy sand, silt and
clay soils. Both figures show that the soil moisture profiles
corresponding to the three soil types are different due to their

different hydraulic parameters, though the initial conditions
and forcing data are identical. Under impact of the same
amount of rainfall, the discrepancy between the upper and
lower parts of the clay soil moisture profile at time step 80 h
is much larger than those of the loamy sand and silt soils.

The figure also shows that, compared to the silt and clay
soils, after 80 h simulation, the gaps between the “true” and
forecast soil moisture profiles of the loamy sand is the small-
est. This indicates that the predicted soil moisture profile of
the loamy sand soil can converge to the “true” profile without
data assimilation if the simulation time is long enough.

In this study, we used an ensemble including 6 members
to estimate the analysis soil moisture. The initial ensemble
was generated from the initial state with the perturbations be-
ing assumed as white-noise Gaussian random variables. The
standard deviation of the initial perturbations was set to 20 %
of the initial state.

To illustrate the effect of the update interval on the assim-
ilation, we performed the data assimilation every 10, 30, and
60 h.

3 Results and discussion

3.1 Assimilation results

Figure5 compares the “true” and forecast soil moisture pro-
files of loamy sand, silt and clay at several time steps with
an update interval of 10 h. For comparison purpose, in addi-
tion to the GPR data assimilation, the results obtained by the
open-loop prediction were also presented. The open-loop is
the prediction in which the state system is propagated using
the initial conditions and forcing data without data assimila-
tion (Walker et al., 2001).

As for the effectiveness of the assimilation, the figure
shows that the performance of the GPR assimilation is much
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Fig. 5. Comparison of the open loop and data assimilation with the synthetic soil moisture profile at times 80,
100, 170, and 720-hour. The assimilation was performed every 10 hours. The three soil types were accounted
for: (a, d, g, j) loamy sand, (b, e, h, k) silt and (c, f, i, l) clay.
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Fig. 5. Comparison of the open-loop and data assimilation with the synthetic soil moisture profile at times 80, 100, 170, and 720 h. The
assimilation was performed every 10 h. The three soil types were accounted for:(a, d, g, j) loamy sand,(b, e, h, k)silt and(c, f, i, l) clay.

better than the open-loop prediction for all soil types. How-
ever, this performance is different for loamy sand, silt and
clay soils. At time 80 h (1st assimilation cycle), the assimi-
lation significantly improves the forecast soil moisture pro-
file. The soil moisture profiles of the 3 soil types updated

by the GPR data assimilation approach the “true” state much
more closely than the open-loop profiles. At time 100 h (3th
assimilation cycle), while the discrepancies between the as-
similated and “true” soil moisture profile are clearly observed
for the clay soil, they are very small for the loamy sand and
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Fig. 6. The RMSE of the open-loop forecast (left) and assimilated (right) soil moisture profiles for clay (blue),
loamy sand (red) and silt (black) soils as a function of the simulation time. The update interval is 10 hours.
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Fig. 6. The RMSE of the open-loop forecast (a) and assimilated (b) soil moisture profiles for clay (blue), loamy sand (red) and silt (black)
soils as a function of the simulation time. The update interval is 10 h.

silt soils. With respect to the open-loop prediction, there are
still large gaps between the open-loop forecast and “true”
soil moisture profile of the silt and clay soils. Contrastingly,
the open-loop moisture profile of the loamy sand rapidly ap-
proaches the “true” state, indicating the wrong initial con-
ditions can be effaced for this soil if the simulation time is
long enough. Until a time of 170 h (10th assimilation cycle),
for the loamy sand and silt soils, the assimilated and “true”
soil moisture profiles are approximately identical. For the
clay soil, a good agreement between the updated and “true”
soil moisture profile is found from the surface to a depth of
16 cm. For the deeper layers, the errors are higher (around
0.5–2× 10−2 cm3cm−3). At this time, the differences be-
tween the open-loop prediction and “true” state are negligi-
ble for the loamy sand, while these differences are still large
for the silt and clay soils. At the end of the simulation pe-
riod (time = 720 h), it is impossible to separate the “true” soil
moisture profile of the loamy sand from the assimilated and
open-loop ones. A perfect agreement between the updated
and “true” soil moisture is also observed for the silt soil.
However, the errors of the open-loop prediction for this soil
type are relatively large (around 4×10−2 cm3cm−3), though
they are smaller than at time 170 h. With respect to the clay
soil, while no improvement is observed for the open-loop
prediction, the agreement between the estimated soil mois-
ture profile with assimilation and the synthetic one increases
with absolute errors lower than 8× 10−4 cm3cm−3.

The figure also presents that the upper part of the soil
moisture profile is better corrected than its lower counter-
part, which is more clearly seen for the clay soil. This can be
explained by the fact that the GPR data for the assimilation
mostly reflect the variations of the soil moisture at near-soil
surface due to the electrical and dielectric losses. The cor-
rection of the deeper soil moisture profile is mainly based on
the hydrodynamic interactions between the upper and lower
layers. Consequently, for the soils with a good downward
drainage (loamy sand and silt in this study), the variations of

the soil moisture at the upper layers quickly influence on the
lower layers. This leads to an easy correction of the wrong
initial problem. By contrast, the variation of the soil mois-
ture at the upper layers takes much longer time to propagate
downward for the clay soil. Additionally, compared to the
loamy sand and silt soils, the clay soil has the higher electri-
cal conductivity, which causes the larger electrical losses and,
therefore, reduces the GPR penetrating depth. As a result, it
is more difficult to correct the whole soil moisture profile.

The comparison between the “true” and the forecast with
and without GPR assimilation was quantitatively evaluated
by the root mean square error (RMSE), which is formulated
as

RMSE=

√√√√ 1

NS

NS∑
i=1

(
xa
i − xtrue

i

)2
. (18)

Figure6 presents the RMSE of the soil moisture profile
obtained by the open-loop forecast and GPR data assimila-
tion as a function of the simulation time for the 3 soil types.
The update interval is 10 h. Comparing Fig.6a and b, we ob-
served that, for all soil types, the RMSE of the open-loop
prediction is much higher than that of the data assimilation.
The smallest difference between the open-loop and GPR as-
similation was found for the loamy sand due to its ability
to self-converge to the “true” state. The RMSE of the open-
loop prediction for this soil type ranges from 1.6× 10−3 to
1.3×10−2 larger than that of the GPR data assimilation. This
quantity is 3.8–8× 10−2 for the silt, and 8–9.7× 10−2 for the
clay soil.

As for the relationship between the RMSE and soil type,
the figure shows that the temporal variation of the RMSE
both for the open-loop and GPR assimilation relies on the
hydraulic parameters of the soil. The rapid change of the wa-
ter pressure head with the soil moisture helps the RMSE to
quickly reduces with the simulation time, i.e., the wrong ini-
tial conditions is easy to be corrected. Indeed, for the loamy
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sand, the RMSE both for the open-loop and GPR assimilation
sharply reduces with time and converges to the “true” soil
moisture profile (with RMSE< 2× 10−3) at time step 610 h
(for the open-loop prediction) and 180 h (for the GPR assim-
ilation). For the silt soil, the RMSE for the open-loop predic-
tion steadily decreases from 8.7× 10−2 to 3.8× 10−2, while
the GPR data assimilation quickly reduces and is approxi-
mately equal to the “true” state at time 160 h. The RMSE for
the clay soil remains stable over the simulation period for the
case of the open-loop prediction, indicating that the wrong
initial conditions cannot be self-corrected in this simulation
period. After the first assimilation cycle at time step 80 h, the
RMSE reduces suddenly from around 1×10−1 to 2.2×10−2

and continue to decrease to 5× 10−3 at time 210 h. From
time 210 h to the end of the simulation period, the RMSE re-
duce slightly from 5 to 3×10−3 for the fact that the corrected
soil moisture at the upper part of the soil moisture profile
has a low effect on its lower part due to the slow downward
movement of the wetting front.

3.2 Effect of the update interval

The effects of the update interval on the GPR data assimila-
tion is shown in Fig.7, which plots the temporal variation of
the RMSE for the GPR assimilation corresponding to update
intervals of 10, 30 and 60 h. It is worth noting that, for each
soil type, the RMSE of all update intervals at the first assimi-
lation cycle are identical because they started assimilating at
the same time step (80 h). The figure shows that the RMSE of
the soil moisture profile obtained by GPR data assimilation
for all update intervals is relatively small compared to the
open-loop prediction, indicating that the wrong initial con-
dition can be effectively corrected by assimilating GPR data
even with the update interval up to 2.5 days.

As for the relationship between the assimilation and up-
date interval, for the three soil types, the figure shows a trend
that the RMSE increases with decreasing update interval.
However, this dependence is different for different soil types.
For the loamy sand and silt soils, the obtained results indicate
that for this “wrong” initial condition problem, decreasing
update interval does not much improve the effectiveness of
the GPR data assimilation. The difference of the RMSE ob-
tained from the update intervals of 10 and 60 h varies from
5× 10−4 to 3× 10−3 for loamy sand, and from 7× 10−4 to
2× 10−3 for silt soils. The stronger effects of the update in-
terval on the GPR data assimilation is found for the clay
soil. The difference of the RMSE between update intervals
of 10 and 60 h varies in the range 5–6× 10−3. These facts
can be explained by observing Fig.3. The figure shows that
the temporal variation of the surface layers of the clay soil,
which are the most sensitive layers with the GPR signal, is
very large compared to that observed for the loamy sand and
silt soil. As a result, decreasing update interval enables us to
more closely follow the soil moisture dynamics. In addition,
as mentioned, for its high drainage ability, the discrepancy
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Fig. 7. The RMSE of the soil moisture profile obtained by the assimilation of GPR data with different update
intervals, namely 10, 30 and 60 hours. The three soil types were compared, namely, (a) loamy sand, (b) silt and
(c) clay.
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Fig. 7. The RMSE of the soil moisture profile obtained by the as-
similation of GPR data with different update intervals, namely 10,
30 and 60 h. The three soil types were compared, namely,(a) loamy
sand,(b) silt and(c) clay.
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between “true” and forecast states of the loamy sand con-
siderably reduces with the simulation time even without data
assimilation, whilst this discrepancy levels off for the clay
soil. Consequently, while decreasing update interval insignif-
icantly impacts on the effectiveness of the GPR data assimi-
lation for the loamy sand, it better corrects the predicted soil
moisture profile for the silt and clay soils.

4 Conclusion

In this paper, we explored the potentials of assimilating UWB
GPR data based on the MLEF technique. Resorting to an ac-
curate radar model for wave propagation in planar layered
media, the approach directly assimilates the GPR data to up-
date the soil moisture profile. This is different from the com-
mon approaches which assimilate the surface soil moisture
obtained from remote sensing techniques to update the whole
soil moisture profile. Our approach allows us to avoid solving
the difficult, time-consuming inverse problem to estimate the
soil moisture from GPR data. We validated our approach us-
ing synthetic experiments for the 3 typical soil types (loamy
sand, silt and clay) in which the initial conditions were as-
sumed to be wrong, as they are usually not known in practice.
The obtained results demonstrated that for all soil types, the
RMSE of the prediction without the GPR data assimilation
is much larger than that with the GPR data assimilation.

The results also reveal that the effectiveness of the GPR
data assimilation depends on the hydraulic properties of the
soil type. Due to its high drainage capacity, the updated
soil moisture profile of the loamy sand quickly converges to
“true” state. In contrast, the updated moisture profile of the
clay soil takes much longer time to approach the “true” pro-
file, especially at the deep layers.

With respect to the relationship between the assimilation
and update interval, the obtained results show that for the
wrong initial condition problem, decreasing update interval
slightly improves the updated soil moisture profile for the
loamy sand and silt soils with the difference of the RMSE
between update intervals of 10 and 60 h lower than 3×10−3,
while it significantly increases the effectiveness of the GPR
data assimilation for the clay soil with the maximum differ-
ence of the RMSE among the update intervals of 6× 10−3.

The success of the proposed approach appears to be
promising for using GPR data to improve the real-time soil
moisture profile prediction at the field scale, which is very
important in water and agricultural management. However,
this study only solved the problem of wrong initial condition.
The soil hydraulic parameters were assumed to be exactly
known, which does not usually occur in the practice. Our
next research will concentrate on the assimilation of GPR
data to simultaneously update both soil hydraulic parameters
and state variables by combing the MLEF algorithm with the
state augmentation technique. Moreover, the study ignored
the frequency dependence of the electrical conductivity and

dielectric permittivity, which cause errors for the observation
operator. In order to reduce these errors, the frequency de-
pendence of the electrical properties should be taken into ac-
count in realistic applications. This problem can be solved by
using the conceptual dielectric mixing models (e.g., complex
refractive index model (CRIM)) to relate the effective com-
plex permittivity with the soil moisture, instead of the empir-
ical formulas (Eqs.6 and7) like in this synthetic study. The
soil in the dielectric mixing models is considered to be a mix-
ture of three components, namely, air, water and soil matrix.
The frequency dependence of the soil electrical properties
is accounted for via the free water component, which varies
with frequency by the Debye’s equation (Debye, 1929).
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Šimunek, J.,̌Sejna, M. H., Saito, M. S., and van Genuchten, M. T.:
The HYDRUS-1D Software Package for Simulating the One-
Dimensional Movement of Water, Heat, and Multiple Solutes in
Variably-Saturated Media, Version 4.08, University of Califor-
nia, Riverside, California, 2009.

Slater, L. and Comas, X.: The contribution of ground penetrating
radar to water resource research, in: Ground Penetrating Radar:
Theory and Applications, edited by: Harry, M., Elsevier Science,
Amsterdam, The Netherlands, 203–246, 2009.

Steelman, C. M. and Endres, A. L.: Assessing vertical soil moisture
dynamics using multi-frequency GPR common-midpoint sound-
ings, J. Hydrol., 436–437, 51–66, 2012.

Tran, A. P., Mohammad Reza Mahmoudzadeh, A., and Se-
bastien, L.: Coupling of dielectric mixing models with full-
wave ground-penetrating radar signal inversion for sandy-soil-
moisture estimation, Geophysics, 77, 33–44, 2012.

van Genuchten, M. T.: A closed-form equation for predicting the
hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am.
J., 44, 892–898, 1980.

Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J.,
Vrugt, J. A., and Hopmans, J. W.: On the value of soil mois-
ture measurements in vadose zone hydrology: a review, Water
Resour. Res., 44, W00D06,doi:10.1029/2008WR006829, 2008.

Walker, J. P., Willgoose, G. R., and Kalma, J. D.: One-dimensional
soil moisture profile retrieval by assimilation of near-surface
measurements: a simplified soil moisture model and field appli-
cation, J. Hydrometeorol., 2, 356–373, 2001.

Zupanski, M.: Maximum likelihood ensemble filter: theoretical as-
pects, Mon. Weather Rev., 133, 1710–1726, 2005.

Zupanski, M., Navon, I. M., and Zupanski, D.: The Maximum Like-
lihood Ensemble Filter as a non-differentiable minimization al-
gorithm, Q. J. Roy. Meteorol. Soc., 134, 1039–1050, 2008.

Hydrol. Earth Syst. Sci., 17, 2543–2556, 2013 www.hydrol-earth-syst-sci.net/17/2543/2013/

http://dx.doi.org/10.1016/S0022-1694(01)00466-8
http://dx.doi.org/10.1029/2008WR006829

