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Abstract. The use of multiplicative random cascades
(MRCs) for temporal rainfall disaggregation has been exten-
sively studied in the past. MRCs are appealing for rainfall
disaggregation due to their formal simplicity and the pos-
sibility to extract the model parameters directly from ob-
served high resolution rainfall data. These parameters, how-
ever, represent the rainfall characteristics of the observation
period. Since rainfall characteristics of different time slices
are changing due to climate variability, we propose a param-
eterization approach for MRCs to adjust the parameters ac-
cording to past (observed) or future (projected) time series.
This is done on the basis of circulation patterns (CPs) by ex-
tracting a distinct MRC parameterization from high resolu-
tion rainfall data, as observed on days governed by each in-
dividual CP. The parameterization approach is tested by com-
paring the statistical properties of disaggregated rainfall time
series of two time slices, 1969–1979 and 1989–1999, to the
results obtained by two other disaggregation methods (a con-
ceptually similar MRC without CP-based parameterization
and a recombination approach) and to the statistical proper-
ties of observed hourly rainfall data. In this context, all three
approaches use rainfall data of the time slice 1989–1999 for
parameterization. We found that the inclusion of CPs into the
parameterization of a MRC yields hourly time series that bet-
ter reproduce the properties of observed rainfall in time slice
1989–1999, as compared to the simple MRC. Despite sim-
ilar results of both MRCs in the validation period of 1969–
1979, we can conclude that the CP-based parameterization

approach is applicable for temporal rainfall disaggregation
in time slices distinct from the parameterization period. This
approach accounts for changes in rainfall characteristics due
to changes in the frequency of occurrence of the CPs and al-
lows generating hourly rainfall from daily data, as often pro-
vided by a statistical downscaling of global climate change.

1 Introduction

A great variety of hydrological applications, including the
modelling of urban water systems, require continuous rain-
fall series at hourly or even finer time steps as input. In
this context two problems arise concerning the availability
of input data at an appropriate temporal resolution: First, the
available historical records are mostly present at a daily time
step. The gauging network operated by the German Weather
Service (DWD) for example includes roughly 5700 stations
with rainfall records of daily values spanning back 100 yr.
Compared to this, only∼ 1200 additional stations of the
DWD network are capable of recording rainfall at hourly
resolutions and an even smaller number has publicly avail-
able data covering more than 30 yr. Usually the hourly time
series do not have an appropriate length for long-term sim-
ulations or contain gaps due to technical difficulties associ-
ated with high resolution rainfall measurement. The second
problem of data availability arises when synthetic high res-
olution rainfall time series for projected climate scenarios
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are needed for climate change related impact studies. Pos-
sible local-scale realizations of precipitation time series for
future climate scenarios are usually obtained by employing
either dynamical or statistical downscaling methods on the
output of general circulation models (GCM). However, only
a few of these methods provide rainfall data at hourly reso-
lutions, e.g. the regional climate models REMO (Jacob and
Podzun, 1997) and CLM (Rockel et al., 2008). Most down-
scaling methods, including the widely adopted circulation-
pattern based approaches (e.g. Bárdossy et al., 2002; Enke et
al., 2005; Yang et al., 2010), generate daily precipitation time
series (e.g. B́ardossy et al., 2002; Enke et al., 2005; Yang et
al., 2010) or are used to derive future possible changes in the
spectrum of heavy precipitation for higher temporal resolu-
tions (Franke and Bernhofer, 2009).

A common way to extend the data availability of hourly
or sub-hourly rainfall at point locations is by stochastically
generating synthetic rainfall time series with statistical prop-
erties similar to the observable high resolution rainfall at the
location of interest. This is done either by generating syn-
thetic rainfall time series “from scratch” or by performing
a temporal disaggregation of available coarse scale rainfall
amounts to finer time steps. The latter approach has a great
practical relevance, since it makes use of the available daily
information to generate possible realizations of diurnal rain-
fall patterns by redistributing the daily rainfall among finer
time steps, so that the resulting high resolution rainfall val-
ues in turn add up to the given daily rainfall amount. Among
the various methods for generating high resolution rainfall
at point locations found in the literature, the most common
are based on re-sampling procedures (e.g. Lall and Sharma,
1996; Vogel and Shallcross, 1996), point process theory (e.g.
Glasbey et al., 1995; Koutsoyiannis and Onof, 2001) and
scale invariance theory (e.g. Schertzer and Lovejoy, 1987;
Olsson, 1998; Serinaldi, 2010).

Scale invariance theory, in particular, has received growing
attention for temporal rainfall disaggregation purposes over
the last 20 yr. Rainfall is assumed to be a multifractal process
with scale invariant properties, i.e. the signal generated by the
process shows statistical similarities across a limited range of
scales (Olsson, 1995; Fraedrich and Larnder, 1993). For the
theoretical basis of multifractality and scale invariance, we
refer the reader to the works of Schertzer and Lovejoy (1987)
and Lovejoy and Schertzer (2010a, b). The notion of multi-
fractality and scale invariance for rainfall has been supported
by a number of empirical studies (see e.g. Lovejoy and Man-
delbrot, 1985; Hubert et al., 1993; Olsson et al., 1993; Tessier
et al., 1996) and it is generally thought that this behaviour is
inherited from the governing process of atmospheric turbu-
lence. The first theoretical works aimed at supporting the em-
pirical observation of multifractality in fully developed tur-
bulence were done by Kolmogorov (1941, 1962) and mul-
tiplicative random cascades (MRCs) have since then been
employed to model this highly intermittent multifractal pro-
cess (Mandelbrot, 1974; Benzi et al., 1984; Frish, 1980). The

interest in MRCs is related to their simplicity and because
they themselves are generic multifractal processes (Lovejoy
and Schertzer, 2010a). They have increasingly been used to
model other multifractal processes, such as rainfall.

While MRCs have first mainly been used to model the
spatial and temporal structure of rainfall (e.g. Lovejoy and
Schertzer, 1990; Menabde et al., 1997), Olsson (1998) was
the first to employ a discrete MRC with exact conservation
of mass (i.e. microcanonical) for temporal rainfall disaggre-
gation. The parameters of the proposed model, while being
simplistic, were assumed to be dependent on two properties
of the input time series, namely rainfall volume and position
in the rainfall sequence. This assumption was made to better
reproduce the autocorrelation of observed rainfall time series
as well as to account for distinct internal structures of con-
vective and frontal rainfall events, and was supported by the
analysis of a two year rainfall record from southern Sweden.

Veneziano et al. (2006) deviated grossly from multifractal-
ity by introducing a cascade model with scale- and intensity-
dependent parameters, arguing that although the condensa-
tion of water vapour in the atmosphere inherits its multi-
fractality from atmospheric turbulence, any scale invariance
present in the condensation rate can be lost in the fall of con-
densed particles. These deviations from multifractality were
consistently observed in rain gauge measurements and space-
time radar images and could be reproduced by explicitly ac-
counting for scale- and intensity-dependency of the model
parameters.

Rupp et al. (2009) extended this approach by mod-
elling the functional dependency of model parameters on
timescale and rainfall intensity by simple analytical func-
tions, which resulted in a parameter-parsimonious cascade
model. Serinaldi (2010) compared the results of a similar
MRC to those obtained by a continuous universal multifrac-
tal model (CUM; see Schertzer and Lovejoy, 1987; Lovejoy
and Schertzer, 2010a, b). While the MRC with its modifica-
tions could not be considered as multifractal at all, the results
have shown a more accurate simulation of several proper-
ties of observed rainfall than could be achieved by the CUM
model, which in fact is a more realistic resemblance of a
multifractal process. This explains the further interest in the
study and practical application of MRCs.

Despite the progresses made in rainfall modelling and dis-
aggregation based on scale invariance theory, it has to be
taken into account that the parameterization process for these
models is data driven. Since the model parameters strictly
represent the scaling behaviour of the climate region they
were obtained from, with its predominant rainfall-generating
mechanisms (Svensson et al., 1996; Güntner et al., 2001), it
can be assumed that the same holds for the specific climate
period. Given that the climate is dynamic and the predom-
inant rainfall-generating mechanisms are subjected to vari-
ability according to a given climate change scenario, the aim
of this paper is to propose a dynamic parameterization pro-
cedure for a discrete MRC based on atmospheric circulation
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patterns (CPs) and their frequency of occurrence. This pa-
rameterization approach is meant to enable the user to further
disaggregate projected daily precipitation time series, which
were generated by scaling down the synoptic scale output
of general circulation models (GCMs) for a possible future
climate, to hourly resolutions and to use them as input for
climate impact studies.

This article starts with the description of the case study
region and the sets of circulation pattern- and rainfall-data
in Sect. 2. Section 3 introduces the models used in this study,
while Sect. 4 describes the parameterization of the MRCs and
their disaggregation procedure. In Sect. 5 the performances
of the disaggregation models, especially CP-based MRCs,
are assessed by comparison of several statistical properties of
the observed and generated time series. In Sect. 6 we present
our conclusion.

2 Materials

2.1 Case study region and rainfall data

Hourly rainfall data have been used for the parameterization
and validation of the models. The data were obtained from a
gauging station located approximately 400 m above sea level
in the mountainous and forested catchment area of Wern-
ersbach brook near Dresden, Germany, in the federal state
of Saxony (50.960873◦ N, 13.476405◦ E). With a mean an-
nual precipitation of 853 mm (reference period 1961–1990),
the local climate in Wernersbach brook is moderately wet, as
compared to the region of Saxony with a mean annual precip-
itation of 600 mm in the reference period, which is due to the
general increase of rainfall amounts with elevation (SMUL,
2008). The annual course of monthly precipitation shows the
typical patterns of a temperate climate, with a primary peak
in the summer season, where convective rainfall events are
prevalent and a secondary maximum in the winter season,
with rainfall events predominantly caused by frontal activity.
A statistical analysis of climate trends for the study region
has shown a decrease in precipitation of 10–20 % during the
summer seasons of the period 1951–2000. The frequency of
heavy precipitation events (> 20 mm d−1) increased by a fac-
tor of 5 for the period 1971–2000, compared to 1961–1990
(Franke et al., 2004). This indicates shifting climatic condi-
tions in the study region with effects on the probability dis-
tributions of hourly rainfall amounts in the first and second
half of the period 1961–2000.

Hourly rainfall data at this location were available for two
separate periods with (1) the period 1969–1979 covering 117
rainfall events of the summer season (April–September), and
(2) the period 1989–1999 consisting of a complete rainfall
time series of hourly rainfall amounts. The data of period
(1) were recorded by a standard pluviograph with a 200 cm2

orifice and a 24 h recording strip. These rainfall records were
manually digitized by first estimating the rainfall amounts ac-

cumulated on each hour and dividing them by their total daily
sum. Second, a time series of hourly rainfall for a given day
was then obtained by weighting the rainfall amount accumu-
lated over the day by a reference gauge with the hourly frac-
tions, as calculated in the previous step. In period (2) rainfall
amounts were digitized on site by a high-resolution tipping-
bucket instrument. This particular digitalization approach,
however, can produce large differences in recorded rainfall
intensity, since the rainfall depth recorded by a bucket tip is
completely attributed to the time step where it occurred. Pos-
sible effects are a non-detection of periods with continuous
rainfall characterised by low intensity or isolated time steps
with overestimated rainfall intensity. Mascaro et al. (2013)
provide a method to transform the discrete sampling signal
of a tipping bucket instrument into a continuous represen-
tation of recorded rainfall. They analysed the intermittency
and scaling behaviour of rainfall records obtained by both
sampling strategies and found that rainfall intermittency is
distorted by discrete sampling, while the scaling behaviour
is not sensitive to a particular sampling strategy. We can-
not account for a distorted rainfall intermittency by apply-
ing the transformation suggested by Mascaro et al. (2013),
since records of the actual bucket tips are required for this.
Unfortunately, such records are not available to us. Consider-
ing that the scaling behaviour remains unaffected by contin-
uous or discrete sampling, methodical differences between
these two digitalization techniques are assumed to be negli-
gible at the temporal resolution of interest (1 h). Due to data
availability the continuous rainfall record of period (2) was
selected for model parameterization and thus termed the pa-
rameterization or calibration period. The rainfall events of
period (1) were used to assess the performance of the models
in reproducing the statistical properties of observed hourly
rainfall amounts in a time slice distinct from the parame-
terization period and will be referred to as validation period
throughout this paper. A continuous record of daily rainfall
amounts was available from the reference gauge, covering
the years 1969–1999 and has been used as input for the dis-
aggregation process. Rainfall data of the winter season have
been omitted from parameterization and the validation pro-
cess due to the measurement errors, which have likely been
introduced by snowfall occurrence, and the lack of winter
rainfall data for the validation period.

2.2 Circulation pattern data

A time series of objective daily circulation pattern classes
(CP), available for the period of 1961–2000, was used as a
mean to couple the disaggregation process of the cascade
model to a signal, which not only is available for the re-
cent past climate but also can be derived from the outputs of
GCMs for future climate scenarios. Those patterns were de-
rived by an objective classification algorithm from the range
of spatially averaged daily rainfall data and observed atmo-
spheric predictor fields for the region of Saxony (Germany),

www.hydrol-earth-syst-sci.net/17/2487/2013/ Hydrol. Earth Syst. Sci., 17, 2487–2500, 2013



2490 D. Lisniak et al.: Circulation pattern based parameterization of a MRC

Table 1.Class numbers of CPs and their intervals of spatially aver-
aged daily precipitation according to Enke et al. (2005).

Class number Class interval

1 0≤ 0.05 mm
2 > 0.05≤ 0.5 mm
3 > 0.5≤ 1.0 mm
4 > 1.0≤ 3.0 mm
5 > 3.0≤ 5.0 mm
6 > 5.0≤ 10.0 mm
7 > 10≤ 15.0 mm
8 > 15 mm

as described in detail by Enke et al. (2005), and thus are re-
gionally valid for the study area. Briefly outlined, the clas-
sification method consists of dividing the spatially averaged
time series of observed daily precipitation into eight moisture
classes, with 1 being the “driest” and 8 the “wettest” class.
According to Enke (2005), the intervals of the daily precipi-
tation amounts for the CP classification are chosen as seen in
Table 1. In the next step, the eight empirically given classes
are approximated by composite maps of meteorological pre-
dictor fields, as given by the ERA40 reanalysis (Uppala et
al., 2005) for all days belonging to an individual moisture
class. The predictor fields used for the approximation include
the relative humidity at different levels and the vorticity at
850 hPa, which are related to the local precipitation amounts
by bearing information about moisture content in the atmo-
sphere and the formation of clouds (Enke et al., 2005). When
using these composite maps of predictor fields to recognise
CP classes from atmospheric fields, Enke et al. (2005) have
shown that a majority of the CPs can be recognised correctly,
with only 20 % of the cases, most of them belonging to CP7
and CP8, being assigned to wrong classes. It can be hypoth-
esised, this is due to the greater uncertainty in the composite
maps of these CPs, stemming from a greater variability of
precipitation events falling under wet conditions.

Thus the assumption was made that the locally recorded
precipitation events can be coupled to synoptic scale proper-
ties of the atmosphere, which in turn yield information about
the formation mechanisms of precipitation, i.e. convective or
stratiform (Kronenberg et al., 2012). After the classification
process and the construction of composite maps of predictor
fields, these circulation pattern classes in turn can be recog-
nised from the synoptic scale output of GCMs and from re-
analysis data.

3 Disaggregation models

3.1 Benchmark model

A rainfall generator was used as benchmark to compare the
disaggregation performance of the other models in the pa-

Fig. 1. Schematic of a cascade process, as implemented in the two
cascade models presented in this paper. Cells of a cascade levelk

with timescaleTk are branched into a number of child cells, as de-
fined by the branching numberb, at the next cascade levelk + 1 and
the rainfall volume of wet cells is redistributed among them accord-
ing to rules defined by the cascade generator.

rameterization and validation period to a random recombina-
tion. The rainfall generator, which is explained in detail by
Görner et al. (2009), extracts diurnal rainfall patterns of the
parameterization period and bins them according to season
and daily rainfall amount. The disaggregation of daily rain-
fall values is then performed by randomly choosing a diurnal
rainfall pattern from an appropriate season and rainfall class
and imprinting that pattern on the rainfall value to be disag-
gregated.

3.2 Cascade models

In this study, multiplicative random cascades (MRCs) are
used for rainfall disaggregation. The models employed here
are based on a discrete microcanonical MRC, as described by
Olsson (1998) and G̈untner et al. (2001). The implemented
disaggregation process depicted in Fig. 1 basically consists
of repetitively branching each discrete time interval (cell) of
a rainfall time series at cascade levelk with a given timescale
Tk into a number ofb child cells of equal and subsequently
smaller timescalesTk+1 =Tk b−1

k at levelk + 1 and assigning
each child cell a rainfall amount obtained by multiplying the
rainfall volumeRk of the parent cell by a weighting factor
W . This redistribution of rainfall amounts is only performed
for parent cells with rainfall volumeR > 0 mm (wet cells),
while the branching itself takes place for every cell of level
k, including cells withR = 0 mm (dry cells). The number of
child cells created can in principle assume any integer value
b ≥ 2, withb = 2 being the most simple case. Since the struc-
ture emerging from this process resembles a tree,b has been
termed the branching number.

Starting with a series of daily rainfall values this procedure
is successively repeated for each cascade level, until the de-
sired timescale, in this caseT5 = 1 h, is achieved. It is obvious
that this target timescale cannot be reached by subsequently
doubling the starting temporal resolution ofT1 = 24 h, i.e.
branching with constantb = 2. The common cascade ap-
proaches found in the literature overcome this problem by
defining a quasi-hourly target timescale (e.g. Güntner et
al., 2001) or a quasi-daily starting timescale (e.g. Licznar
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et al., 2011). Since this was not an option in this work, the
approach of a constantb = 2 was abandoned in favour of a
mixed branching withb = 3 for the first cascade level (k = 1),
resulting in a timescale ofT2 = 8 h on the second cascade
level. Branching of cascade levelsk > 1 then again is per-
formed withb = 2.

The generation of weightsW for the branching of wet cells
is a random process, in whichW can assume a value in the
closed interval (0, 1). However, the microcanonical feature of
the MRC constrains the generation of weights in a way that
the sum ofWs for child cells corresponding to a given parent
cell is exactly 1, i.e.∑b

i=1
Wi = 1 with b = {2,3}. (1)

Thus, conservation of mass between successive cascade lev-
els is ensured. Furthermore, this means that in the case of
b = 2 only the weightW1 of the first of the two child cells
has to be determined. The weight of the second child cell,
according to Eq. (1), is thenW2 = 1–W1. In the case ofb = 3
however, the generation of weights becomes more complex,
since the conservation of mass requires the range of possi-
ble values forW2 to be conditioned on the value ofW1, with
W3 = 1–W1–W2.

The process of assigning random values forW is termed
the cascade generator. According to Olsson (1998), we de-
fined several states that the cascade generator can assume
with a given probability. Basically, these states bin together
certain combinations ofWs that can be adopted by the child
cells and they describe how the rainfall volume of a parent
cell is redistributed among them. Forb = 2, three states could
be defined

W1 =

 1 with probabilityP (1)

0 with probabilityP (0)

x with probabilityP (x)

(2)

where x is associated with some probability distribution.
Here,W1 = 1 means that all the rainfall volume of the parent
cell is assigned to the first child cell, while the second child
cell remains dry (and vice versa forW1 = 0). In the case of
W1 = x the rainfall volume of the parent cell is distributed
between both child cells, where the fraction of the first cell
equalsx and the fraction of the second cell 1–x.

The number of states for the caseb = 3 has to be extended
by incorporating the fraction of the second corresponding
child cell on the aggregated rainfall volume to obtain sets of
W2 conditioned on values ofW1. Consequently, the weights
W1, W2 and, for the sake of clarity,W3 can assume seven
states with their corresponding probabilities:

W1,W2,W3 = (3)



1, 0, 0 with probability P(1, 0, 0)

0, 1, 0 with probability P(0, 1, 0)

0, 0, 1 with probability P(0, 0, 1)

x, 1− x, 0 with probability P(x, 1− x, 0)

x, 0, 1− x with probability P(x, 0, 1− x)

0, x, 1− x with probability P(0, x, 1− x)

x, y, 1− x − y with probability P(x, y, 1− x − y).

The probabilities for the states of the cascade generator in
Eqs. (2) and (3), as well as the probability distribution ofx
andy, which will be both referred to as the parameters of
the cascade model, can be derived directly from a time se-
ries of observed hourly rainfall amounts by inverting the cas-
cade structure and aggregating the rainfall amounts through
all cascade levels to daily rainfall sums. The weightsW are
extracted in this process for each cascade level by dividing
the rainfall volume in the first of the cells at levelk + 1 by the
total aggregated volumeR > 0 mm of a cell at levelk. Fol-
lowing Olsson (1998), the probabilitiesP (1),P (0) andP(x)

for every levelk are estimated by counting the occurrence of
each state and dividing the number of occurrences by the to-
tal number of wet cells at the same cascade level. Forb = 3,
this procedure is extended accordingly for the seven states in
Eq. (3).

For all states wherex in Eqs. (2) and (3) is not 0 or 1, the
empirical probability distributions ofx are estimated from
the respective histograms of extracted cascade weights at ev-
ery cascade level. The special case ofb = 3 and the state (W1,
W2, W3) = (x, y, 1–x–y), however, requires the estimation of
a probability distribution fory conditioned onx. This is done
by binning the known histograms ofx into 7 equidistant in-
tervals and estimating the empirical probability distribution
of y for each of them, given that the correspondingx is in-
side that interval.

The redistribution of rainfall amounts between the child
cells can therefore be summarised as follows. For each wet
cell in cascade levels 1 to 4 (1) Determine the properties (see
Sect. 4) of the cell to be branched. (2) If the cell is a “wet
cell”, draw a uniformly distributed random number to deter-
mine the state of cascade generator for the branching of that
particular cell according to the probabilities of states for the
given cell properties. (3) Set the cascade weights according
to the rules defined by the selected state. If the state of the
cascade generator requires the weight to be set tox, deter-
mine this value using the empirical probability distribution
of x as defined for cells with the given properties. Forb = 3
and the state (W1, W2, W3) = (x, y, 1–x–y), first determine
x as described above, then determiney using the probability
distribution ofy, as estimated for that particular range ofx.
(4) Distribute the rainfall volume of the parent cell to each
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Fig. 2.Flowchart depicting the process of redistributing the rainfall
volume of parent cells within a given cascade level between their
child cells with branching numberb = 2.

child cell of the next cascade level by setting

Ri = WiR for i = 1. . .b (4)

with R being the rainfall volume of a parent cell andRi of
a child cell, wherei denotes the index of theb child cells.
This procedure is repeated for every cascade level, until the
temporal resolution ofT5 = 1 h is reached. See Fig. 2 for a
depiction of this process for b= 2.

4 Parameterization of cascade models and
disaggregation procedure

4.1 Parameter classification

In order to improve the models ability to reproduce the in-
ternal structure of rainfall events, we assumed a dependency
of the model parameters on parent cell properties (e.g. Ols-
son, 1998; G̈untner et al., 2001; Rupp et al., 2009; Serinaldi,
2010). This is done by introducing a number of classes, each
describing a certain characteristic of the cell to be branched,
and by parameterizing one distinct cascade generator for ev-
ery combination of the considered properties.

Since it has been shown by various authors that the vari-
ance of the cascade weights decreases with increasing tempo-
ral resolution (e.g. Marshak et al., 1994; Olsson, 1998; Paul-
son and Baxter, 2007), the first characteristic we considered
is the timescale at levelk. Hence the timescale property con-
sists of four classes, corresponding to the temporal resolution
of each cascade level.

To account for the distinct dependence of the probabilities
P of the different states and the probability distributions ofx

on the rainfall volume of a parent cell, as well as the position
of that cell inside the rainfall sequence (see Olsson, 1998;
Güntner et al., 2001) a distinction between volume properties
and position properties was employed. The four classes of the

Fig. 3. Log-log plots of statistical momentsMq of rainfall totals
observed in the periods 1989–1999 (parameterization period) and
1969–1979 (validation period), respectively as a function of time
T betweenT = 1 h andT = 24 h. Regression lines of the validation
period are shifted and aligned with the intercepts of the parameter-
ization period to avoid overlap of the plots. Actual log moments of
both periods can bee seen in Table 2.

position property are defined as follows (1) cells preceded by
a dry cell and succeeded by a wet cell (starting class), (2)
cells preceded and succeeded by wet cells (enclosed class),
(3) cells preceded by a wet cell and succeeded by a dry cell
(ending class), and (4) cells preceded and succeeded by dry
cells (isolated class). The volume property consists of two
classes of rainfall volumes (above mean and below mean).
To distinguish between these two volume classes, the limit
has been defined as the average rainfall volume of every
sample of wet cells, which apart from the contained rainfall
volume have similar remaining cell properties. The implica-
tions of this classification for the parameterization process
are elaborated in Sect. 4.3.

4.2 Coupling of generator parameters to a climate
signal

The parameter estimation process for cascade models found
in the literature describes the scaling behaviour of observed
rainfall, which not only is specific to the local climate, but
also to the climate of the observation period. It is there-
fore assumed that the disaggregation of past or projected
rainfall would imprint the scaling behaviour observed dur-
ing the parameterization period on the target time slice, ex-
pecting that the scaling properties remain stationary between
both periods. Since the climate system is in fact highly non-
stationary, with short-term fluctuations and long-term trends
(Rapp, 2000) and the resulting changes in the frequency and
intensity of heavy precipitation events (Franke et al., 2004;
Franke and Bernhofer, 2009), it can be argued that the pa-
rameters of a disaggregation model could be not transferable
to different climatic periods. Considering the Wernersbach
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Table 2. Ordinary least squares estimation of scaling exponentK(q) from statistical moments of rainfall in the parameterization period
(1989–1999) and validation period (1969–1979) with the corresponding standard errors. Statistics of a t-test for differences in slope between
the moment-scale relationships of the two periods are given below for 6 degrees of freedom.

Parameterization period (1989–1999)

Resolution Moments of orderq

log(T) log(M(0.5)) log(M(1)) log(M(1.5)) log(M(2))

1.380211242 0.253028836 0.697977743 1.264183975 1.915700256
0.903089987 0.120219118 0.447806447 0.906196927 1.4471218
0.602059991 0.047682685 0.295841658 0.678548921 1.14775834
0.301029996 −0.025656437 0.13914718 0.443370213 0.842998811
0 −0.103238677 −0.029567084 0.190521165 0.519347195

SlopeK(q) 0.256054507 0.524235805 0.774857527 1.008765484
Standard error of slope 0.004444608 0.004898782 0.01036128 0.010463118

Validation period (1969–1979)

Resolution Moments of orderq

log(T) log(M(0.5)) log(M(1)) log(M(1.5)) log(M(2))

1.380211242 0.491422508 1.089463531 1.774718298 2.542041268
0.903089987 0.40114778 0.920671511 1.520709617 2.182169703
0.602059991 0.341943452 0.805032797 1.354900179 1.97077079
0.301029996 0.25346042 0.651448879 1.158507545 1.749499254
0 0.153729687 0.467076792 0.909814024 1.456474399

SlopeK(q) 0.241889036 0.445364082 0.617350324 0.772296838
Standard error of slope 0.019459377 0.032770849 0.034804667 0.025925537

t-test statistics

M(0.5) M(1) M(1.5) M(2)

t value 0.709674845 2.38031632 4.337344977 8.458209249
p value 0.5045 0.0547 0.0049 0.0001

rainfall data, differences in the scaling behaviour can be
found for the two defined periods. This can be seen in Fig. 3,
where the momentsMq of orderq = {0.5, 1, 1.5, 2} for the
rainfall values of both periods are depicted as a function of
time scaleTk. In a log-log plot the slopes of the moments of
orderq become linear, which indicates a scale invariant be-
haviour in this range of scales. These slopes, which have been
approximated using ordinary least squares regression (OLS),
are estimates of the scaling functionK(q) for each individ-
ual moment of orderq (Lovejoy and Schertzer, 1995). The
plots of the moments and the corresponding regression lines
in Fig. 3 have been rearranged to avoid overlap and to high-
light the differences of the slopes. TheK(q) values of the
two periods are summarised in Fig. 4. Using a t-test, the sig-
nificance of the differences has been confirmed for moments
of orderq > 1 with a confidence greater than 95 %. The val-
ues used for the OLS, as well as the results of the regres-
sion and the t-test are listed in Table 1. Although Villarini et
al. (2007) presented alternative regression frameworks to ad-
dress the shortcomings of the OLS method and to better rep-
resent the uncertainty ofK(q), we think that since we con-

sider only a limited number of moment orders and scales, the
OLS method suffices for presentation purposes. Considering
the differences ofK(q), it can be concluded that on average
the daily rainfall values of the validation period scale down
to larger hourly values, than those of the parameterization
period. Additionally, the rainfall of the validation period is
showing a higher variance. Consequently, it can be deduced
from this analysis that the rainfall data of the validation pe-
riod (1969–1979) is more influenced by heavy precipitation
events than the parameterization period (1989–1999).

The proposed parameterization method attempts to ac-
count for this variability in the scaling properties of tem-
poral rainfall in different time slices by coupling the model
parameters to a climate signal. This climate signal consists
of circulation patterns and specifically their frequencies of
occurrence in different time slices. For the parameterization
and validation period, these frequencies are shown in Fig. 5.
The circulation patterns are appealing for this purpose, since
classes of large-scale circulation patterns can be obtained
from analysis of synoptic scale predictor fields of the re-
cent climate re-analysis data (Enke et al., 2005; Yang et al.,
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Fig. 4. Scaling exponent K(q) as estimated from the moment-scale
relationship of rainfall data in the periods 1989–1999 (parameter-
ization period) and 1969–1979 (validation period) for moments of
orderq = {0.5, 1, 1.5, 2}.

2010) and also, concerning the projection of model parame-
ters into a possible climate future, from the output of GCMs,
which have shown to provide a robust and consistent pattern
of climate change (Mearns et al., 1999; Christensen, 2005).
For this purpose, in addition to the parameter classifica-
tion procedure of a simple cascade model as described in
Sect. 4.1, a circulation-pattern-based approach has been im-
plemented (CP-based cascade model). The CP-based cascade
model introduces an additional cell property, the circulation
pattern class predominant on a given day. This approach is
based on the assumption that local heavy precipitation con-
ditions are determined by atmospheric circulation patterns
and their interaction with the local topography (Franke and
Bernhofer, 2009) and therefore a difference in the circula-
tion pattern frequencies in different time slices would lead to
different scaling properties of temporal rainfall. Since the cir-
culation patterns employed here are obtained from the ERA-
40 re-analysis using an objective algorithm, which in turn
is optimised with regard to the precipitation regime, it can
be hypothesised that the relationship between the circulation
patterns and precipitation events is described properly inside
the limits of the classification methods spatial resolution.

We justify this approach by the differences in temporal
scaling of rainfall, as observed on days governed by each in-
dividual CP. Figure 6 shows the scaling functionsK(q) for
CP 1 (the driest class) and CP 8 (the wettest class) of the
parameterization period with their corresponding uncertain-
ties. The scaling behaviour of the driest CP, having smaller
K(q) values, hints at greater hourly rainfall averages with a
tendency for larger variances (Svensson et al., 1996), which
is characteristic for convective events. The wettest CP, on
the other hand, shows scaling properties that favour long-
duration events with lower averages and variances of hourly
rainfall compared to CP 1. The wettest CP also exhibits a
larger uncertainty, probably due to the smaller number of

Fig. 5. Relative frequencies of circulation pattern classes for days
with available hourly rainfall records in the periods 1989–1999 (pa-
rameterization period) and 1969–1979 (validation period).

Fig. 6.Scaling exponentK(q) as estimated from the moment-scale
relationship of rainfall data on days governed by CP 1 and CP 8 in
the period 1989–1999 for moments of orderq = {0.5, 1, 1.5, 2}.

rainfall events with greater variability covered by this CP.
The other CPs (not shown) have their scaling properties in
between these two extremes, while being less distinct.

4.3 Parameterization

In agreement with Enke et al. (2005), each wet cell has been
classified according to the circulation pattern effective on
that particular time step and binned into 8 classes. Follow-
ing this, the cells in each CP class are classified with respect
to the remaining three properties, i.e. in order of priority: po-
sition, timescale and volume. Ultimately the probabilitiesP

for the different states of the cascade generator as well as
the probability distributions ofx and y for each combina-
tion of cell properties were extracted. Since the number of
parameters increased by factor 8 in the process, as compared
to the parameterization without CPs, the average number of
samples for each parameter decreased accordingly, which af-
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fects the uncertainty of the parameterization. The result of
this procedure is a four-dimensional parameter matrix, as dis-
played in Fig. 7. Basically, this connotes the construction of
distinct cascade generators for each CP (i.e. for each char-
acteristic scaling regime) and thus weighting the parameters
with the relative frequency of occurrence of circulation pat-
terns. It is worth noting that while the frequency of the CPs
may change between time slices, the relationship between
MRC parameters and CPs is assumed to be invariant in time.
A similar method has already been successfully employed
for the derivation of a future temporal spectrum of heavy
precipitation by Franke and Bernhofer (2009).

5 Simulation results

After parameterizing the MRCs and the rainfall generator
on the time series of observed hourly rainfall for the pe-
riod 1989–1999, 100 disaggregation runs were performed
by each of the three models on daily rainfall data of time
slices 1989–1999 (parameterization period) and 1969–1979
(validation period) to generate synthetic rainfall sequences
at the hourly timescale. Additionally, daily rainfall amounts
of the period 1979–1989, where no hourly rainfall records
were available, have been disaggregated by both MRCs. The
resulting sequences were analysed in terms of their ability
to preserve several properties of the observed hourly rain-
fall time series in each period. The considered properties are
(1) the exceedance probabilityP(R > r) of hourly rainfall
amounts, plotted as a cumulative density function (CDF), (2)
the autocorrelation function (ACF) for lags one to ten and
(3) the scaling of momentsMq of orderq = { 0.5, 1, 1.5, 2}.
The CDFs for each model are constructed by computing the
frequencies of occurrence of hourly rainfall amounts for ev-
ery simulation run and building a composite by averaging
the rainfall amounts for equal quantiles over the 100 real-
izations of the CDF. Equal quantiles were calculated using
the Cunnane plotting position (Helsel and Hirsch, 1993). In
the same manner, the 5th and 95th percentiles of the com-
posite CDF for the synthetic time series were determined.
For the ACF and the moment scaling behaviour, the average
values of the 100 disaggregation runs have been calculated.
The ACFs of the two cascade models are complemented with
confidence intervals of the 5th and 95th percentiles from the
ensembles. Here, the results of the simple rainfall generator
function as a benchmark to assess the general applicability
of the MRCs for rainfall disaggregation in time slices 1989–
1999 and 1969–1979 in comparison to a more or less ran-
dom recombination of diurnal rainfall patterns, as observed
in the parameterization period. Furthermore, the results of
both MRCs were compared to each other to evaluate the pos-
sible improvement of the synthetic time series generated by
the CP-based cascade model in reproducing the properties of
observed hourly rainfall in different time slices.

Fig. 7. Parameter set of a CP-based MRC for each combination of
cell properties as a four-dimensional matrix. The small cubes con-
tain the parameters for the branching of a parent cell with given cell
properties CP (circulation pattern class), VP (volume property), PP
(position property) and T (timescale property). A template of pa-
rameters for a branching withb = 2 is shown for the highlighted
cube. The parameters are the probabilitiesP of statesW = 0,W = 1
andW = x, and the empirical probability distribution functionf (x)

for the stateW = x.

Fig. 8.Cumulative distribution functions of hourly rainfall amounts
from observations and synthetic time series as generated by the cas-
cade models (with and without CP) and the rainfall generator for pa-
rameterization period 1989–1999 (top) and validation period 1969–
1979 (bottom).
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Concerning the ability of the simple rainfall generator to
reproduce these properties it can be said, that the model
performs exceptionally well for the parameterization period.
The synthetic time series perfectly mimics the CDF of the
observed hourly rainfall values (Fig. 8, top panel) as well as
the moment scaling behaviour (Fig. 9, top panel) and, to a
lesser degree, the ACF (Fig. 10, top panel). These results are
expected, since the generated time series are a result of re-
sampling observed diurnal rainfall patterns of the same time
slice. Thus it is ensured that the properties of rainfall in this
time slice are statistically preserved and bear the closest re-
semblance to observed data. This, however, is not the case
for the validation period. Using observed diurnal patterns of
time slice 1989–1999 to disaggregate daily rainfall values of
the period 1969–1979 does not generate synthetic time series
with properties close to those of the observed hourly rainfall.
Figure 8 (bottom panel) shows that the CDF of the synthetic
hourly rainfall amounts strongly underestimates the observed
values by up to 50 %. Though the slopesK(q) of the ob-
served moments scaling behaviour in Fig. 9 (bottom panel)
decreased, the moments of the synthetic time series appear to
have similar slopes in both time slices, leading to an under-
estimation of the moments in the validation period. The ACF
of the rainfall generator data for this time slice in Fig. 10
(bottom panel) overestimates the observed correlation for all
lags, while showing behaviour that also is very similar to the
parameterization period. This is due to the nature of the rain-
fall generator to imprint the diurnal rainfall patterns of the
parameterization period on the target time slice. Therefore,
the rainfall generator appears to be less suitable for disaggre-
gation of daily rainfall values beyond the parameterization
period.

The results obtained by both MRCs for the parameteri-
zation period do not reproduce the properties of observed
hourly rainfall as well as the rainfall generator. Both cascade
models slightly overestimate the CDF and underestimate the
slopesK(q) of the moment scaling behaviour of observed
rainfall (Fig 8, top panel and Fig. 9, top panel), which is due
to the tendency of cascade models to underestimate event
durations (e.g. Olsson, 1998; Güntner et al., 2001; Rupp et
al., 2009) and consequently producing hourly rainfall values
with a higher variance than the observed data. This is also
reflected by the slightly lower ACF values achieved by the
cascade models (Fig. 10, top panel). However, considering
that this disaggregation technique, in contrast to the rain-
fall generator, does not take any specific correlation struc-
tures into account, but indirectly preserves a degree of serial
correlation due to the cascading structure (Molnar and Bur-
lando, 2005), the ACF is being reasonably well reproduced
by both cascade models. From the visual inspection of these
plots it can be said, that both cascade models appear to be
generally applicable for rainfall disaggregation in the param-
eterization period and that the introduction of a further source
of complexity to the CP-based cascade model did not lead to
a decline in performance while utilizing the statistical infor-

Fig. 9.Comparison of statistical momentsMq of observed and syn-
thetic rainfall data (averaged over 100 disaggregation runs) of the
cascade models (with and without CP) and the rainfall generator as
a function of timescaleT betweenT = 1 h andT = 24 h for parame-
terization period 1989–1999 (top) and validation period 1969–1979
(bottom) in a log-log plot.

mation carried by the CPs. Although the differences between
the ACFs and between the CDFs of both cascade models can-
not be considered as statistically significant, the overestima-
tion of rainfall appears to be less prominent for the CP-based
MRC. It is worth noting that the results presented here for
the disaggregation of Wernersbach daily rainfall values in the
parameterization period could be reproduced for 14 different
rain gauges inside and near Saxony (data not shown). Consis-
tently, the output of the CP-based cascade model has shown
a similar behaviour as described above, slightly better repro-
ducing the properties of the observed hourly rainfall data.
Due to sparse data availability at these rain gauges, only 5
years of hourly rainfall (1995–1999) could be used for pa-
rameterization, as well as disaggregation, so no test runs in
different time slices could be made for these locations.

For the validation period, the results obtained by both
MRCs are somewhat unexpected. While both cascade mod-
els generally perform better than the simple rainfall generator
in terms of reproducing the frequency distribution of hourly
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Fig. 10. Autocorrelation function of observed and simulated time
series of hourly rainfall data (averaged over 100 disaggregation
runs) of cascade models (with and without CP) and the rainfall gen-
erator for parameterization period 1989–1999 (top) and validation
period 1969–1979 (bottom). For the ensembles generated by the
cascade models, 90 % confidence intervals are given.

rainfall volumes (compare CDFs of cascade models, to the
CDF of the rainfall generator in the bottom panel of Fig. 8),
the moments scaling behaviour (Fig. 9, bottom panel) and the
serial correlation (Fig. 10, bottom panel) of observed data,
the properties of the time series generated by both cascade
models are strikingly similar. In particular this is evident for
the CDFs and the moment scaling behaviour of both syn-
thetic time series in Fig. 8 (bottom panel) and Fig. 9 (bot-
tom panel), suggesting that in this time slice both cascade
models employ similar scaling mechanisms. To rule out the
possibility that this behaviour is caused by the small sample
size of the validation period, the disaggregation was repeated
after extending the range of input data from 117 daily val-
ues, for which observed hourly rainfall data was available, to
the whole range of 974 daily rainfall values available for the
summer season of this period. The resulting CDFs of both
cascade models (data not shown) here again displayed the
same degree of similarity that can be observed in Fig. 8 (bot-
tom panel) for the 117 disaggregated daily rainfall values.

Fig. 11. Cumulative distribution functions of hourly rainfall
amounts from synthetic time series as generated by the cascade
models (with and without CP) and the rainfall generator for the
period 1979–1989. No observations of hourly rainfall amounts are
available for this period.

Although we cannot rationalise adequately within the
scope of this paper, why both MRCs produce similar results
in the validation period, we can state that MRCs are better
suited for rainfall disaggregation in time slices different from
the parameterization period, than the simple rainfall genera-
tor. Despite the fact that no definite improvements in per-
formance of the MRC could be observed in the validation
period when accounting for synoptic scale conditions via a
CP-based parameterization, it can be stated that the addition
of another degree of freedom to the parameter set of the cas-
cade model (in the form of atmospheric circulation patterns)
apparently did not lead to a decrease in model performance
below the benchmark of the simple cascade model. However,
the synthetic time series generated by the CP-based MRC
in the parameterization period, as well as the period 1979–
1989 (Fig. 11), where no hourly rainfall values were avail-
able for validation, show a lower CDF than obtained by the
simple cascade model. The results of the rainfall generator
are added for comparison. Although no statements about the
goodness of the synthetic time series in time slice 1979–1989
can be made, both MRCs here also yield distinct results. One
possible explanation aims at the degree of spatial generaliza-
tion involved in the objective classification method for cir-
culation patterns that can be derived by direct comparison
of point measurements of daily precipitation with the corre-
sponding circulation pattern on that day and the interaction of
local-scale-related vs. circulation-pattern-related effects on
the local precipitation regime (Franke and Bernhofer, 2009).
Since the circulation patterns employed in this paper are de-
rived through an environment-to-circulation approach from
spatially averaged precipitation amounts (Kreienkamp et
al., 2010), some degree of uncertainty is implied in assign-
ing a circulation pattern class for point locations which in
fact has been shown to be less effective for the precipitation
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regime, due to the sub-scale processes involved that can-
not be resolved by the underlying grid resolution of reanaly-
sis data (Enke et al., 2005). Furthermore, the assignment of
large-scale circulation patterns to one specific moisture class
is a gross generalization, since weather conditions at point
locations may be influenced by a composite of several circu-
lation types and a fuzzy classification approach may be more
appropriate for this matter. It can be hypothesised that these
factors have led to a composite scaling behaviour of the CP-
based MRC in time slice 1969–1979 that resembles the one
obtained by the simple cascade model.

It should be noted, that the above results only account
for statistics of the disaggregated rainfall data and not the
random process of rainfall disaggregation itself. It has been
shown by Lombardo et al. (2012) that the underlying ran-
dom process of MRCs is characterised by intrinsic non-
stationarity, since the autocorrelation function of the ran-
dom process is not a function of lag only, as it would if
the process was stationary. Hence they conclude MRCs do
not preserve joint statistical properties of rainfall. As an al-
ternative, they propose a downscaling approach based on a
Hurst-Kolmogorov process and prove it to produce a station-
ary random process. While we do not account for the intrinsic
non-stationarity of the MRCs used in this work, this problem
should be mentioned and investigated in a future work.

6 Conclusions

We proposed a circulation pattern based parameterization
procedure for a MRC, to be used for rainfall disaggrega-
tion from daily rainfall values to hourly resolution at point
locations. This parameterization attempts to enable the cas-
cade model to account for different rainfall generating mech-
anisms (i.e. rainfall caused by large-scale advection or local
convection) and, with respect to variations in frequencies of
these mechanisms due to climate change, for climate induced
fluctuations in rainfall characteristics at high temporal res-
olutions. The results obtained by the MRC with CP-based
parameterization were compared to a conceptually similar
cascade model, whose parameters were not explicitly con-
ditioned on circulation patterns and to a simple re-sampling
approach.

We argue that, according to the findings of Olsson (1998),
Rupp et al. (2009) and Serinaldi (2010), different combina-
tions of wet cell properties generate a distinct scaling be-
haviour in cascade based rainfall disaggregation. Further-
more, we assume that the introduction of circulation patterns
as an additional degree of freedom enables the MRC to ac-
count for climate induced variations in rainfall scaling be-
haviour, due to changes in the frequency of occurrence of
synoptic scale circulation patterns. Since these circulation
patterns can be derived from GCM outputs for future climate
scenarios, the CP-based parameterization of MRCs, as de-
rived from present or recent past rainfall data, can be dynam-

ically projected to future time slices and used for the genera-
tion of possible realizations of future sub-daily rainfall time
series. This amounts to weighting the model parameters by
the frequency of occurrence of the circulation patterns, which
has successfully been applied in the past to derive possible
climate change related changes of statistical heavy precipita-
tion (Franke and Bernhofer, 2009).

The method was tested by disaggregating daily rainfall
amounts of the Wernersbach gauging station for the sum-
mer season of two time slices: The period 1989–1999 as
calibration period (model parameterization), and 1969–1979
as the validation period. The results obtained with the CP-
based cascade model have shown improvements in reproduc-
ing the autocorrelation function and the cumulative distribu-
tion function of observed hourly rainfall amounts for the time
slice 1989–1999 as compared to the simple cascade model.
Unexpectedly, for the validation period of time slice 1969–
1979 the time series generated by both cascade models ap-
peared to have similar properties. However, the performance
of the CP-based cascade model did not drop beneath the
benchmark of the simple cascade model, which is encourag-
ing, since the introduction of an additional degree of freedom
did not lead to a degradation of model performance in the
validation period. Therefore, we conclude that the CP-based
parameterization approach can be employed for disaggrega-
tion of rainfall in present and past climates, as well as pro-
jected time series of future daily rainfall values, which were
obtained by a circulation pattern based downscaling method
from GCM outputs.

Due to the sparse data availability, the proposed method
could not be thoroughly validated for successive time series
with observed hourly rainfall. Although the disaggregation
of daily rainfall values with the CP-based MRC for a period
without validation data (1979–1989) yielded time series with
properties different from the ones obtained by the simple
MRC, no statements can be made concerning the statistical
goodness of the synthetic time series generated by both cas-
cade models in that period. Therefore, it is essential to addi-
tionally test this parameterization approach for locations with
several decades of available hourly rainfall data. Another im-
portant point for future work is to reanalyse the model results
in view of the Hurst phenomenon (Koutsoyiannis, 2011) and
its effects on rainfall disaggregation in different time slices.
This, however, has to be backed up by a broader data basis.

Apart from this, further developments might deal with
the CP-based parameterization of the cascade model as a
fuzzy problem. This approach is appealing, since the weather
conditions at point locations may be influenced by sev-
eral classes of circulation patterns (Franke and Bernhofer,
2009). Additionally, the circulation pattern classes used
in this work were obtained by an objective classification
method, which may yield fuzzy assignments to individual
circulation patterns for a given day (Enke et al., 2005). In
this context, different regionally valid classification methods
for circulation patterns should be tested with the CP-based
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parameterization approach to identify the most convenient
classification method for describing the scaling regime of
local precipitation.
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