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Abstract. In data sparse mountainous regions it is difficult to mates in these data sparse mountainous catchments. In such
derive areal precipitation estimates. In addition, their evaluategions with only very few precipitation gauges but high
tion by cross validation can be misleading if the precipitation spatial variability of precipitation, important information for
gauges are not in representative locations in the catchmenevaluating precipitation estimates may be gained by hydro-
This study aims at the evaluation of precipitation estimatedogical modelling and a comparison to observed discharge.

in data sparse mountainous catchments. In particular, it is
first tested whether monthly precipitation fields from down-
scaled reanalysis data can be used for interpolating gauge

observations. Secondly, precipitation estimates from this and  Introduction

other methods are evaluated by comparing simulated and

observed discharge, which has the advantage that the datf data sparse mountain regions it is challenging to derive
are evaluated at the catchment scale. This approach is edreal precipitation estimates. At the same time, evaluating
tended here in order to differentiate between errors in thedifferent spatial interpolation approaches also is difficult, as
overall bias and the temporal dynamics, and by taking intocr0Ss validation may lead to wrong conclusions if large frac-
account different sources of uncertainties. The study area intions of the catchment are underrepresented by precipitation
cludes six headwater catchments of the Karadarya Basin i§auges (Heistermann and Kneis, 2011). Large uncertainties
Central Asia. Generally the precipitation estimate based orin areal precipitation estimates are generally due to measure-
monthly precipitation fields from downscaled reanalysis datament errors and the scale difference between the point mea-
showed an acceptable performance, comparable to anoth&rements and the areal estimate. This is amplified in moun-
interpolation method using monthly precipitation fields from tainous regions, where, despite the high spatial variability
multi-linear regression against topographical variables. PooPf precipitation, the gauge network often has a low density
performance was observed in only one catchment, probabl ith an unequal distribution towards lower and less exposed
due to mountain ridges not resolved in the model orographyocations (Frei and Sér, 1998).

of the regional climate model. Using two performance cri- Orography affects the spatial pattern and the amount of
teria for the evaluation by hydrological modelling allowed a Precipitation through various processes (e.g. Houze, 1993,
more informed differentiation between the precipitation datafor an overview). Despite complex relations between orogra-
and showed that the precipitation data sets mostly differedPhy and precipitation, in general, these processes often result
in their overall bias, while the performance with respect to in an increase of precipitation with elevation, particularly on
the temporal dynamics was similar. Our precipitation esti-windward slopes, and lower precipitation on the leeward side
mates in these catchments are considerably higher than tho§ & mountain range (rain shadow effect). For the spatial in-
from continental- or global-scale gridded data sets. The studyerpolation of precipitation in mountainous areas, methods

demonstrates large uncertainties in areal precipitation estiwhich consider the orography are therefore often advanta-
geous over methods neglecting the relation with the terrain
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(Goovaerts, 2000; Hevesi et al., 1992; Martinez-Cob, 1996;0f observed runoff with simulated runoff from a hydrologi-
Phillips et al., 1992; Tobin et al., 2011). Exceptions from this cal model driven by the different precipitation data sets can
occur when the correlation between precipitation and ele-be a more suitable method for the evaluation of areal precip-
vation is low, or in regions where the station density is soitation estimates (Heistermann and Kneis, 2011; Stisen and
high that the relation between precipitation and topographySandholt, 2010). This has the advantage that the scale prob-
is already represented by the observations (Haberlandt et allem between point measurements and areal estimates is elim-
2005; Ly et al., 2011). Elevation may be taken into accountinated, as discharge measurements represent an integrated re-
using geostatistical methods like modified residual kriging, sponse from the entire catchment. Under average flow con-
external drift kriging or co-kriging with elevation (Garen et ditions, discharge measurements are also usually afflicted
al., 1994; Goovaerts, 2000; Hevesi et al., 1992; Lloyd, 2005;with smaller measurement errors than precipitation measure-
Martinez-Cob, 1996; Phillips et al., 1992; Tobin et al., 2011), ments, especially if these contain a large fraction of snow
or using multi-linear or polynomial regression against vari- measurements. On the other hand, it has to be considered that
ous topographical variables (Basist et al., 1994; Brown andhis approach also introduces other uncertainties related to
Comrie, 2002; Cheval et al., 2003; Daly et al., 1994; Goodalemodel uncertainties, errors in the catchment runoff from un-
et al., 1998; Hay et al., 1998; Johansson and Chen, 200%nown subsurface inflow/outflow and unknown abstractions
2005; Marquinez et al., 2003; Ninyerola et al., 2000, 2007;or flow diversions.
Perry and Hollis, 2005; Prudhomme and Reed, 1998; Sun et There are basically two approaches for the assessment
al., 2008). of different precipitation estimates using hydrological mod-
These statistical approaches require that the spatial varielling. The model may either be recalibrated for each pre-
ability of precipitation is captured by the observed precip- cipitation data set (Yilmaz et al., 2005; Stisen and Sand-
itation, including, e.g. the relationship to topographic vari- holt, 2010; Bitew and Gebremichael, 2011a, b; Behrangi
ables. In sparsely gauged areas with a more complex topoget al., 2011; Artan et al., 2007) or applied within a Monte
raphy this may not be possible. In this case precipitationCarlo framework (Heistermann and Kneis, 2011; Gourley
from reanalysis data downscaled by a regional climate mode&nd Vieux, 2005). The different precipitation data sets are
(RCM) could be a helpful source for deriving the spatial vari- then typically assessed using model performance measures
ability of precipitation within the catchment. Such data be- for the simulated discharge. In addition, the bias of the pre-
come increasingly available (van der Linden and Mitchell, cipitation data set may be evaluated using the bias in the sim-
2009). As an RCM considers the interactions between thailated discharge. This approach, however, has some draw-
orography and the wind field for simulating precipitation, it backs. It does not allow for directly quantifying the bias of
should be able to represent orographic precipitation and raitthe precipitation estimate, which due to non-linearities of the
shadowing effects in a suitable and physically based waysystem is usually different from the streamflow bias. Addi-
Only few studies started to work in this direction. Haber- tionally, if a precipitation estimate has a large bias and one
landt and Kite (1998), for example, used daily precipita- wants to evaluate its performance with respect to the tem-
tion output from the NCAR reanalysis (without downscal- poral dynamics, it is not advisable to directly use it as input
ing) for the geostatistical interpolation of station-based pre-to a hydrological model, as the whole system may function
cipitation time series, and recently Tobin et al. (2011) inter-in a different mode. Scaling all precipitation estimates to a
polated precipitation data from gauge observations by exterreference precipitation data set allows evaluating the precipi-
nal drift kriging with precipitation fields from event accumu- tation estimates independent of their biases (Stisen and Sand-
lated COSMOY7 reanalysis data as trend variable. As generolt, 2010), but has the disadvantage that a reference data set
ally the performance of downscaled reanalysis data is loweneeds to be identified, which may itself also be afflicted with
on shorter time steps (Hurkmans et al., 2008), we propos&n unknown bias. In this study we therefore extended this ap-
to combine monthly accumulated spatial fields from down- proach by adding a precipitation bias factor to the calibration
scaled reanalysis data with daily station data for the estimaparameters in order to evaluate the bias within the calibration
tion of areal precipitation in data sparse regions. We compardéramework. This also brings the advantage that uncertainties
this interpolation method with the direct use of downscaledin the estimated bias can be assessed within the calibration
reanalysis precipitation data, precipitation estimates based oftamework.
multi-linear regression against topographical variables, data The aim of this study is the evaluation of precipitation es-
interpolated by inverse distance and with the gauge basetimates in data sparse mountainous regions. It is first tested
daily gridded precipitation data set APHRODITE (Yatagai et whether spatial precipitation fields from downscaled reanal-
al., 2012). ysis data can be used to interpolate station observations. Sec-
Traditionally, different precipitation data sets are evaluatedond, the approach for comparing and evaluating areal pre-
based on measured values from precipitation gauges, e.g. lgipitation estimates by hydrological modelling is further de-
cross validation. This may however lead to wrong conclu-veloped to separately consider the performance of different
sions if the precipitation gauges are not in representative loprecipitation data sets with respect to their overall bias and
cations of the catchment. In such situations, the comparison
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their temporal dynamics, and to account for different sourcesrable 1. Area, glaciation, elevation range and mean annual runoff

of uncertainties. of the studied subcatchments of the Karadarya Basin.

With respect to the case study region — the Karadarya
catchment in Central Asia — estimating and assessing the Area  Glacier Elevation (m) Runoff
precipitation input contributes to a better understanding of (km?) (%) Min. Max. Mean (mmal*
the hydro_logy in s_uch a sparsel_y gauged .region, and.is  p——— 216 00 1253 3165 2001 432
prerequisite for reliable hydrological modelling. The region ponguztoo 166 0.0 1271 3502 1999 505
strongly depends on water resources from mountain catch- Salamalik 1180 0.5 1288 4381 2592 585
ments for irrigation, hydropower generation and for water in-  Ak-Tash 907 23 1728 4752 3121 778

Cholma 3840 1.9 1352 4753 3117 410

flow to the Aral Sea (e.g. Siegfried and Bernauer, 2007). The g - 2010 07 1557 4623 3013 267

question of possible climate change effects on water avail-
ability therefore is highly relevant in this area and there is a * Mean annual runoff over the period 1961-1990.
demand in setting up hydrological models for approaching

this task.

3 Methods and data

2 Study area 3.1 Precipitation data and interpolation approaches

The Karadarya catchment is a mountainous catchment irs-1-1  Downscaled reanalysis data
Kyrgyzstan, Central Asia. The confluence of the Karadarya

and Naryn River in Uzbekistan forms the Syrdarya, the SeC_A relatively good performance of global reanalysis data in

: Central Asia was shown by Sahet al. (2004) and Schie-
ond largest tributary to the Aral Sea. The study area up- . :

i ) mann et al. (2008). This was attributed to the fact that
stream of the Andijan Reservoir has an area of 13000 km weather systems typically move into the region from the west
The catchment is bordered by the Fergana Range in the y ypically 9

northeast and by the Alay Range in the south, where eIefamd reanalysis data for Central Asia therefore benefit from

: . . the denser observation network in Europe and the Middle
vations reach up to 4753 m (Fig. 1). Dominant land cover ast, which partly compensates the sparse data coverage in
types are grasslands (59 %) and croplands (23 %), followe ’ party P P 9

by smaller fractions of shrub land (5%), woody vegetation he region. In order to resolve orographic precipitation and

: >~ rain shadowing effects at smaller scales, it is necessary to
(5%), and glaciated areas (1 %). Mean annual preC|p|tat|ond le th \vsis data b ional cli el
based on the 1961-1990 time series at the precipitation staronsca e the reanalysis data by a regional ¢ |mate modet.
In this study, data from the ERA-40 reanalysis (Uppala et

tions, ranges from 350 to 1050 mma The precipitation al., 2005) with a horizontal resolution of Are downscaled

regime shows a maximum in spring and a second smaIIeEO a 12 km grid using the RCM Weather Research and Fore-

maximum in autumn. . .
The focus of our study is on six headwater subcatchmentsCaStIng Model (WRF, Skamarock et al., 2008) for the time

for which discharge data are available and which are assume%erIOd 1959-1990. This study period was chosen due to the

to be only marginally influenced by water management. Theavallabmty of precipitation data, which strongly declines af-

location of these six subcatchments is shown in Fig. 1 an er 1990. A two way nesting approach IS apphed,.wnh the
. . . : irst nest at a horizontal resolution of 36 km covering a re-
important characteristics are listed in Table 1. For most of .

ion between 35 to 4N and 62 to 83E and the second
these subcatchments the mean annual runoff over the pe- : .
. 1 nest at a resolution of 12 km covering an area between 38 to
riod 19611990 has values of 400 mnigo 600mmar, 45° N and 65 to 80E. The model is run with daily restarts
outliers are Ak-Tash with nearly 800 mmaand Gulcha in ] y

the south with less than 300 mm’ The discharge regime order to keep it close to the ERA-40 boundary and ini-

) : . g ; tial conditions; the simulation time for each day is 30 h, of
is strongly seasonal with maximum discharges during the

. ) which the first 6 h are used for model initialisation and dis-
snowmelt season in spring and early summer. In accordance

o ! . . . _carded. Figure 1 shows the elevation as represented in the re-
with increasing average elevation, maximum monthly dis- . : .
: e : . .~ gional climate model compared to the elevation from SRTM
charges occur in April in Tosoi and Donguztoo, in May in

Salamalik, and in June in Gulcha, Cholma and Ak-Tash. (Shuttle Radar Topography Mission) (Jarvis et al., 2008). The
general features of the topography are captured well, but due

to the much coarser resolution the highest model elevations
are much lower than the actual peaks and narrow mountain
ranges, for example southwest of the Karadarya catchment,
are not resolved.
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Fig. 1. The Karadarya Basin upstream of the Andijan reservoir. Left: SRTM elevation, right: elevation in the WRF model. Shown are the
headwater subcatchments where the hydrological model is applied (black outlines), and their corresponding discharge gauges (red dots), a
well as the precipitation gauges (black triangles).

3.1.2 Precipitation station data is applied in a standard way (e.g. Goovaerts, 2000; Lloyd,
2005) using an inverse distance power of two, and with the

For 10 gauges within or close to the Karadarya catchmentiistance calculated as Euclidean distance in a two dimen-

daily precipitation data for the time period 1959-1990 aresjonal plane:

retrieved from the National Climatic Data Center (NCDC,

2005) and complemented by data from the National Hy- X P,

drometeorological Services of Uzbekistan and Kyrgyzstan. El(w’ “P)

Precipitation measurements are affected by systematic error8j = —,

due to evaporation, wetting and wind-losses. Precipitation > (wi)

undercatch of the Tretyakov gauge, which is the common i=1

gauge in this region, due to wind losses is corrected usingyiw, p - estimated precipitation at location P;: observed

the approach of Yang et al. (1995). These regression equgs,| e ét gauge: d;;: horizontal distance betweenand j:

. . . . £ ] £

tions (Egs. 4-7in Yang et al., 1995) give the catch ratio of the_ - humber of gauges.

Tretyakov gauge in comparison to the double fence intercom-

parison reference and were derived through the World Mete3 1 4 |nterpolation of station data using spatial fields

orological Organization Solid Precipitation Measurement In- from downscaled reanalysis data

tercomparison. Measured temperature and wind data, which

are required as inputs for this approach, are not availablerhe approach developed here interpolates daily time series

for all gauges. Therefore, temperature data are derived fronaf station data using spatial fields from downscaled reanaly-

the WRF downscaled ERA-40 data and, after consulting thesis data. The WRF-ERA-40 precipitation data are first aggre-

WRF output and the available measurement data, an averaggated to monthly maps. For the generation of daily precipi-

wind speed of 2ms! is assumed. The undercatch correc- tation maps, a scaling factor at the station locations is calcu-

tion results, on average, in an increase of the measured valuésted by dividing the daily gauge observation at locaiiduy

. owi=dfj, b=-2 @

by 10 %. the mean monthly precipitation of the WRF-ERA-40 data at
. ) . locationi:
3.1.3 Interpolation of station data by inverse
: o P,
distance weighting F = ﬁl @)

In addition to the more sophisticated methods described in

the following sections, the precipitation data are also inter-with F;: scaling factor at station locatian and M;: mean
polated using a simple inverse distance weighting (IDW) ap-monthly precipitation of the WRF-ERA-40 data at location
proach (Shepard, 1968). In this method precipitation for a In order to avoid abnormally large values when dividing
locationj is estimated as weighted mean of the gauge obserby very small nhumbers, stations where the mean monthly
vations at surrounding stations. The weights are determinegrecipitation is less than 1 mm monthare excluded from
based on the inverse of the distance between locgtiand  the calculation of the scaling factor for that month. The cal-
the gauge locations, raised to the powerbofThe method culated factor is next interpolated to all locatiopson a
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1kmx 1km grid using the inverse squared distance weight-the daily precipitation fields (see Eq. 4, bMt; here denotes

ing method: the mean monthly regression value at locatjpnAgain two
n variants of this method are applied using (i) monthly means
> (di;z . F,-) over a month in all years (MLR-all) and (ii) monthly means
Fj= = 7 3)  ofindividual years (MLR-ind).
d2
l§1< Y > 3.1.6 Gridded precipitation data

with F;: scaling factor interpolated to locatign . . . .
Multiplication of the interpolated scaling factor map A,P_HR_ODITE (Yatagai et al., 2(_)12) is a daily g'rldded. pre-
with the mean monthly WRF-ERA-40 data mapped to g Cipitation data set at a resolution of 0°26overing Asia,

1kmx 1 km grid then results in the daily precipitation map: e former Soviet Union and the Middle East. It is based
on gauge observations from the Global Telecommunication

P;j=F;-Mj, (4) System, precompiled data sets like from the Global Histori-

with M;: mean monthly WRF-ERA-40 data at locatign Ck?l Cllmc?tolggy I\!etvlvork, the Ngt|opal thrrr:ate ;)at(ja Cepter,
Two different variants of this method are tested: (i) in the Food and Agriculture Organization of the United Nations,

the variant WRFadj-all the monthly maps are calculated aand others, as well as additional data from national hydrome-

means over the whole period 1960-1990, i.e. for the inter_.teorologlcal services. The spatial interpolation scheme takes

polation of station data in January 1960 a map of the mear{'t0 account the effect of mpun_tain ranges by giving a high
monthly precipitation over all Januaries is used: (i) in the weight to gauges on slopes inclined to the target location and

variant WRFadj-ind the monthly maps are calculated for2 low weight to gauges on the leeward side behind a moun-

each year individually, i.e. for the interpolation of station tain ridge.

data in January 1960 a map of the monthly precipitation of Other, globally available precipitation data are only as-
January 1960 is used sessed with respect to their spatial distribution and subcatch-

ment mean values and not included in the evaluation by hy-
3.1.5 |nterp0|ation of station data using month]y fields drological modelling. We use three different data sets based
derived by multi-linear regression on interpolated station data: the Global Precipitation Clima-
tology Centre (GPCC) full data reanalysis version 6 (Schnei-
Due to the topography and the main wind direction from theder et al., 2011), the University of Delaware (UDEL) precipi-
west, precipitation in the catchment generally increases withtation data set version 2.01 (Legates and Willmott, 1990), and
increasing elevation and decreases to the south and east. Ptae University of East Anglia Climate Research Unit (CRU)
cipitation is therefore also interpolated by multiple linear re- TS 3.10.01 (Mitchell and Jones, 2005). These data are all
gression against elevation, and y. Since the correlations available as monthly time series with a spatial resolution of
between precipitation and these three variables are highed.5°. Furthermore we also inspected the precipitation data
for monthly than for daily data, the multi-linear regression from the ERA-40 reanalysis (Uppala et al., 2005) at their
is performed on monthly data. We apply the stepwise back-original resolution, which is a spectral resolution of T159,
wards approach (e.g. Backhaus et al., 2003), settingpthe regridded to a regular geographic coordinate systen*of 1
value of anF statistic for exclusion and inclusion to 0.1 For an overview, Table 2 lists all precipitation data sets used
and 0.05 respectively. This means that in the initial modelin this study.
all variables (elevationy andy) are included. At each step
the explanatory power of the current model is compared with3.2  Point based evaluation of the precipitation data
incrementally smaller and larger models. This stepwise back-
ward approach can lead to different variables being includedn the first step, the precipitation data sets are evaluated by
in the final regression equation than the stepwise forward apeomparison to observed station data. The precipitation data
proach. An initial analysis showed lower standard errors andyenerated by downscaling the ERA-40 reanalysis data with
lower root mean squared errors for the stepwise backwardVRF are directly compared to observed station time series.
approach, which was thus selected for this study. For this, WRF data from the pixel which contains the station
After calculating the monthly regression maps, daily pre- location are extracted. There are limitations to such a com-
cipitation maps are calculated in the following way: for each parison between point observations and pixel-based data, as
day scaling factors between the daily precipitation and thegauge observations cannot be considered as ground truth for
monthly regression at the station locations are calculated and 12 kmx 12 km WRF pixel area, and due to errors in the
interpolated to a 1 knx 1km grid using IDW (see Egs. 2 undercatch correction or in the observation data themselves.
and 3, butM; is here replaced by the monthly regression atHowever, a first indication of the performance of the WRF
locationi). precipitation data for the Karadarya catchment is provided.
The interpolated scaling factors are multiplied with the The interpolated precipitation data sets are evaluated by
monthly map derived by multi-linear regression to generatecross validation. In this method only a part of the stations is
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Table 2. Overview of the precipitation data sets used in this study.

Abbreviation Description

WRF Precipitation from the ERA-40 reanalysis data downscaled using WRF to a resolution of 12 km.

WRFadj-ind Station data interpolated using monthly precipitation maps of WRF, monthly maps from individual years.

WRFadj-all Station data interpolated using monthly precipitation maps of WRF, monthly maps averaged over all years.

MLR-ind Station data interpolated using monthly precipitation maps from multi-linear regression, monthly maps from individual years.
MLR-all Station data interpolated using monthly precipitation maps from multi-linear regression, monthly maps averaged over all years.
IDW Station data interpolated using the inverse squared distance weighting method.

APHRODITE V1003R1 Gridded observation based daily precipitation data set with a resolutionof¥aggai et al., 2012).

GPCC v6 Gridded observation based monthly precipitation data set with a resolutiofi (§CGtheider et al., 2011).

CRU TS 3.10.01 Gridded observation based monthly precipitation data set with a resolutioh @fliickell and Jones, 2005).

UDEL 2.01 Gridded observation based monthly precipitation data set with a resolutior? gE8dates and Willmott, 1990).

ERA-40 Precipitation data from the ERA-40 reanalysis data at a resolutich(bfdpala et al., 2005).

used for the interpolation, and the others are employed for thération approach is that it easily allows evaluating the model
evaluation of the interpolated values at these locations. As théor various subsets of the data, e.g. only for high or low
error statistics are only calculated at the locations of the staflows. However, in some cases, particularly when parameters
tions, the value of such an analysis may be very limited if thehave a linear influence on the fraction of rainfall generating
gauges are not in representative locations for the catchmentinoff and the precipitation estimates do not have random
(for example in a situation where precipitation increases witherrors but a systematic bias, the Monte Carlo approach may
elevation, but most stations are located in relatively low ele-lead to wrong conclusions. Heistermann and Kneis (2011)
vations). Also, in regions with only few stations, the interpo- give the following example: assume a very simple linear hy-
lated fields may be strongly changed if stations with a highpothetic catchment witlD = v - P, whereQ represents the
weight in the interpolation are left out. In this study we only runoff, ¢ the runoff coefficient with values between 0 and 1,
remove one station from the data set at a time. The interpoand P the precipitation. Monte Carlo simulations with uni-
lated time series at this location is compared to the observefborm sampling over the runoff coefficient are performed for
time series and evaluated using bias and mean absolute errarprecipitation data set without bias and a second precipita-
of the daily time series. tion data set characterised by a constant bias. In the next step
the root mean squared error (RMSE) between simulated and
3.3 Evaluation of areal precipitation estimates based on observed discharge is evaluated for each simulation. It can

simulated discharge be shown (see Heistermann and Kneis, 2011) that in a sys-
tem with the true value of the runoff coefficietit,ye < 0.7
3.3.1 Approach (Yrrue > 0.7) the mean RMSE of a precipitation data set with

a negative (positive) bias is lower than for the unbiased pre-
The suitability of different precipitation estimates is tested cipjtation data set so that the biased precipitation data set
by comparing observed discharge and discharge simulategould be classified as the better one. While very obvious
by a hydrological model driven with the different precipita- jj|-posed settings may be avoided by careful analysis of the
tion estimates. Running a hydrological model with a different mgdel, less obvious cases may not always be avoided from
precipitation data set than the one it has been calibrated witlhe outset.
usually results in lower model performance, and is therefore - one solution to the problem of false rankings is to evaluate
not a suitable approach for the comparison of precipitationnot all but only a percentage of the best Monte Carlo simu-
data sets. Generally there are two possibilities to evaluate diffations. Heistermann and Kneis (2011) showed that reducing
ferent precipitation data sets by hydrological modelling: cal-the number of the evaluated best performing Monte Carlo
ibrating the model for each precipitation data set, and Monteryns reduces the number of false rankings, though it also de-
Carlo simulations using various parameter values betweeRreases the discriminatory power between different precipi-
defined bounds. tation data sets. This can be seen as a transition to the model

The Monte Carlo approach is for example applied calipration approach.

by Gourley and Vieux (2005) and Heistermann and calibrating the model for each precipitation data set may
Kneis (2011). In this approach Monte Carlo simulations arepaye the disadvantage that model parameters can partly com-
carried out for each precipitation data set and the selectefensate for inadequacies of the precipitation data sets, which
goodness of fit measure is calculated for each simulation. Fomight result in different precipitation data sets being hardly
each precipitation data set one then evaluates the mean googstinguishable with respect to the simulated hydrograph. On
ness of fit over the whole or subsets of the Monte Carlo enthe other hand, the approach is less prone to false rankings,

semble and ranks the precipitation data sets according to thigs jll-posed settings would rather result in indistinguishable
value. An advantage of this approach compared to the cali-
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precipitation data sets so that setting the parameter boundsmpler approach based on hydrologic response units defined
and analysing the model for possible ill-posed settings beby elevation bands is selected in order to reduce the computa-
comes a less sensitive issue. Another advantage is that byon time and allow for a higher number of model simulations
using an optimisation algorithm instead of random Monte for calibration and uncertainty analysis. For each 200 m ele-
Carlo runs, usually better model performances are achievesgiation band the dominant soil and vegetation cover and the
with a lower number of simulations. As it is seen as more im-glacier fraction are taken into account.

portant to avoid false rankings than to discriminate between For the model calibration 11 parameters are selected
already similar precipitation data sets, the model calibration(Table 3). These affect the snow and glacier melt routine
approach is selected for this study. (snowmelt factor, glacier melt factor, melt temperature), the

In order to gain more information on different aspects of soil hydraulic conductivity for infiltration and percolation
the performance of a precipitation data set, a precipitationkf_corrf, k_satf), the subsurface runoff (frac2gw, interflow
bias factor is introduced as additional calibration parameterdelay factor, groundwater delay factor), the fraction of the
The precipitation estimate is then evaluated with respect tacatchment area leading to direct runoff (fraparian), the
the bias based on the precipitation bias factor, and evaluatedccurrence of saturated areas as a function of the current soil
with respect to the temporal dynamics based on the objectivenoisture state (sareavar) and the precipitation input (pre-
function used for model calibration. cipitation bias factor).

Three different sources of uncertainties are considered in
this study. Uncertainties in the precipitation bias factor (as
part of the parameter uncertainties) need to be considereé)’,'
because the precipitation factor of the best optimised param-
eter set might differ from other equally good performing pa- The model is set up for the Karadarya catchment based on
rameter sets. The model calibration is then repeated for difthe SRTM digital elevation model (Jarvis et al., 2008) for
ferent time periods in order to evaluate the robustness of thelevations and the delineation of subcatchments. As land
precipitation bias factor and ranking of the objective function cover input the MODIS land cover product with a resolu-
value with respect to the selected time period. Finally the ro-tion of 500 m (MCD12Q1; Friedl et al., 2002) is applied us-
bustness of the results with respect to uncertainties in modeahg the most frequent land cover class over the time period

3.3 Hydrological model set-up

inputs is investigated using sensitivity analyses. 2001-2008. Mean monthly leaf area index (LAI) values by
elevation zone, subcatchment and land cover class are cal-
3.3.2 Description of the hydrological model culated from the 8 day MODIS LAl product with a reso-

lution of 1km for 2001-2008 (MOD15A2, Myneni et al.,

The hydrological model WASA (Gntner, 2002; @ntnerand ~ 2002). For the soil data a digitised map from the Kyrgyz At-
Bronstert, 2004) is a semi-distributed daily time step modellas (scale, 11500 000; Academy of Science of the Kyrgyz
based on process-oriented and conceptual approaches. It W&SR, 1987) is used and missing soil hydraulic parameters
recently extended for high mountain areas by introducing el-are assigned using pedo-transfer functions from the litera-
evation zones, and a snow and glacier mass balance moddre. Glacier areas are delineated from a LANDSAT MSS
ule based on the temperature index method. The model cakcene (resolution 79 m) in summer 1977 using a combina-
culates evaporation from the interception storage and opetion of automated classification and manual digitising. Daily
water bodies with the Penman—Monteith equation (Monteith,time series of solar radiation, temperature, temperature lapse
1965), evapotranspiration using the two-layer model of Shut+ate and humidity are taken from the WRF downscaled ERA-
tleworth and Wallace (1985), infiltration with the Green— 40 data described above. The temperature data are corrected
Ampt approach (Green and Ampt, 1911), the generation offor the difference between the SRTM DEM and the WRF to-
infiltration and saturation excess surface runoff, and percolapography using daily lapse rates as simulated by the WRF
tion through a multiple layer soil store. In the model version model. All meteorological input data are aggregated to sub-
applied for this study, surface and subsurface flow betweertatchment mean values.
model units within a subcatchment (i.e. lateral flow redistri-
bution) are neglected, and subsurface flow is separated b%-
tween interflow and groundwater based on a calibration pa~"
rameter. The simulation of small events during the low flow
period is improved by introducing an additional parameter
for the fraction of the catchment where rainfall directly leads The model is automatically calibrated against observed dis-
to runoff, like riparian areas, roads or rock areas connecteatharge using six-year simulation periods (1961-1966, 1967—
to a stream. 1972, 1973-1978, 1979-1984, 1985-1990); prior to this the

The spatial discretisation of WASA is originally based model is initialised using an additional simulation period of
on hillslopes with characteristic toposequenceér@er and  two years. In order to consider both high and low flows and
Bronstert, 2004; Francke et al., 2008). For this study a mucho keep the overall bias low, the following objective function

3.4 Model optimisation and analysis of parameter
uncertainties
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Table 3. Calibration parameters including values for the lower and upper bounds.

Routine Parameter Unit Lower bound  Upper bound
Snow and glacier melt snowmelt factor Mm@ lday !l 1 7
melt temperature °C -2 2
glacier melt factor mmMACldayl 0 7
Infiltration and percolation kEorr_f - 0.01 100
k_satf - 0.01 100
Subsurface flow frac2gw - 0 1
interflow delay factor days 10 100
groundwater delay factor  days 30 400
Generation of direct runoff fradparian - 0 0.05
from areas connected to the stream
Spatial variability of saturated sareavar - 0 0.3
areas within a model unit
Precipitation input precipitation bias factor - 0.5 2.0
is applied: is discarded. Second, no measured glacier mass balances are

. L available for the Karadarya catchment, but based on mea-
Obj function= 0.5 x (NSEJF LogNSB sured mass balances in other catchments in Central Asia a
—2 x max(Bias—0.05,0), (5)  wide range of-1000 mma? up to+200mmalis setas a

where NSE is the Nash-Sutcliffe efficiency value, LogNSE further constraint. _
is the Nash-Sutcliffe efficiency calculated on logarithmic  The model optimisation and parameter uncertainty analy-
flows, and Bias is the absolute value of the overall volumeSiS is performed using the DDS-AU algorithm (dynamically
bias. The Nash—Sutcliffe efficiency is particularly responsivedimensioned search — approximation of uncertainty; Tolson
to errors in high discharge values, while the Nash-Sutcliffeand Shoemaker, 2008). The analysis of parameter uncertain-
efficiency for logarithmic flows is more sensitive also for er- ti€s is particularly important for the investigation of how
rors in low flows so that the average of these two measure§uch the calibrated precipitation bias factor varies between
results in a more balanced evaluation. The maximum possithe best and other equally good parameter sets. The DDS-
ble value of the objective function is 1, which would indi- AU @lgorithm is an informal method (in contrast to formal
cate perfect agreement between simulated and observed di§2yesian approaches) similar to GLUE (generalised likeli-
charge. As the bias in the precipitation estimate is evaluate@©0d uncertainty estimation, Beven and Binley, 1992), but
using the precipitation bias factor, the bias in the simulatedinstéad of simple Monte Carlo simulations, which usually
discharge should be very low. The objective function is there-résult in a high fraction of runs very far from the objective
fore additionally penalised if the bias is greater than 0.05 orfunction maximum, a number of short optimisation runs are
5% of the observed discharge. started. These short optimisation runs are meant to get into
Despite the lack of hard data, two further constraints forthe region of the optimum, but the length of the optimisation
the snow and glacier mass balance modules are introducedn iS @lso short enough that they mostly do not reach the
in order to avoid unrealistic simulations. First, an elevation Objective function maximum. For each optimisation, 200 of
is defined below which snow is not expected to accumulatéhese short DDS runs are started. The number of model eval-
over several years. This elevation is derived from LANDSAT uations in each DDS run (the length of the DDS run) is set
images in summer and set to 4200 m for the Karadarya catch:2ndomly between three and seven times the number of cal-
ment. For each year, the number of elevation zones wherdbration parameters resulting in 33 to 77 model evaluations.

simulated snow does not melt away in elevation zones beln order to assure that at least one very good parameter set
low this elevation is counted, and if it is above a thresholdis found, one run with 3000 model evaluations is performed.

of one per year, the simulation is discarded. For example | n€ individual DDS runs are independent from each other.
for a model evaluation period of six years as in this study,The short optimisation runs with _33 to 77 model (_avaluatlons
the simulation will still be accepted, if in one year the min- Nelp to approximate the uncertainty bounds, while the long
imum snow water equivalent is above zero in up to six el-"un with 3000 model evaluations is meant to come very close
evation zones below the threshold elevation. It will also bet© the global optimum.

accepted, if in all six years the minimum simulated snow wa-

ter equivalent is above zero in only one elevation zone below

the threshold elevation, but if the number of elevation zones

or years where snow accumulates is higher, the simulation
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3.3.5 Sensitivity to model inputs 600

Uncertainties in the calibration parameters are directly con- 400 I \ Y

sidered through the selected calibration approach. However ~ \ N p f\/‘ \

uncertainties in the model inputs may also have an impact. £ 200} i N A \‘\\;@ s B g ‘\‘/\\\ i A

Influences on the ipitation bi i M\ "”W\‘f AN /\‘ Al VW\W A AN W d/‘x’f\\x\
precipitation bias factor are particularly ex- /@)\ WA J/vw \‘»’*‘ AR J\f | / \) u W‘ \MVH \,\[\

pected from uncertainties in those inputs which affect evap- ¢ , 9~ et s B

otranspiration and thus also the water balance. In order to

estimate the magnitude of the effect of these uncertainties, g '5°r

sensitivity analyses are performed. For these sensitivity anal-* o, (

yses, we selected those inputs which are expected to strongl i

Precipitation (mm month

L

%, |

(\/\\ r\l\‘w n /

\)

.y

" | a\
iration: i - sof\ | ] Al \’\ |
affect thg cglculated gvapotranspwaﬂon. the climate variables \‘/‘/\/V’\‘ A} i [1« Wf \ . J \ﬁx | \f\ A\ ‘;au‘@/f\.y,& \J \u WW /J\w M \M
solar radiation and wind velocity; the plant parameters plant B A A AT AR N TR S AU PN A4 /.S A
height, rooting depth, stomata resistance and the matrix po- 5 B & & & 5 5 § § § B
tential values below which transpiration is reduced or ceases; 8 8 &8 & & 8 & 8 & & 3

and soil depth (Table 4). Solar radiation, wind velocity and ) _ _ _

plant height directly influence the potential evapotranspira—iggéoz' fcot:npa”s(;’” of monthly t'rgevsgl':ej over thledpg'?oAd ig?jo‘

tion. Root depth and soil depth determine the amount of soil of observed precipitation an ownscale ~40 data
. . . at the gauge location for Chaar-Tash (top) and Kyzyl-Jar (bottom).

water available to plants for transpiration. Minimum stomata

resistance influences the potential transpiration rate, and the

two matrix pqtenthl values determme.how th!s rate changesry,, squared correlation coefficients for daily time series only
with decreasing soil water. The model is recalibrated for eaCr}each values around 0.3 for the stations at lower elevations

yariation factor of e_ach of t_he inputs Ii_sted in Table 4 vary- and are even lower for the high elevation stations. Monthly
ing one factor at a time. This analysis is performed for all of recipitation time series from the WRF model at the sta-

the six subcatchments and all precipitation data sets, but ”ﬁon locations generally correspond much better to the sta-

order to_ restrict_ computing time the analysis is constraiqedtion data, with squared correlation coefficients around 0.6.
to one time period (1979-1984) and one long DDS run with Nevertheless, large disagreements may exist for individual

3000 model evaluations per subcatchment and precipitatiorﬂnonths or seasons, for example a strong overestimation in
data set (parameter uncertainties resulting from equifinalitysummer 1983 in Ch,aar-Tash, or a considerable underestima-
are not considered). tion in June 1981 in Kyzyl-Jar (Fig. 2).

The agreement between gauge and WRF precipitation data
is similar to RCM applications in other mountainous regions.
For example, Frei et al. (2003) studied the performance of

4 Results and discussion

4.1 Characteristics of the precipitation data sets five RCMs (CHRM, HadRM, HIRHAM, REMO, ARPEGE)
at a resolution of 0.5with boundary conditions from ERA15
4.1.1 Point based evaluation in the European Alps. The bias of the areal mean of simu-
lated precipitation ranged from3 % to—23 % in winter and
Comparison of downscaled ERA-40 precipitation data —5% to—27 % in summer. Suklitsch et al. (2011) evaluated
to observations four high resolution (10 km) RCMs (WRF, MM5, REMO,

CLM) driven by ERA-40 data over a simulation period of
First, the precipitation data generated by downscaling the; yr and found bias values up t050% and-+100% for
ERA-40 reanalysis data with WRF are evaluated relative tojhdividual seasons and subregions of the Alps. Higher cor-
observed station time series. As this comparison can delivefg|ation values between observed and simulated time series
information about the performance of the downscaled pre-; monthly as compared to daily resolution are typical (e.g.
cipitation data at a few points in the catchment only, it is jyrkmans et al., 2008); this can be explained by the fact that
complemented by visual inspection of the spatial distribu-gonly a part of the precipitation can be modelled determinis-

tion of precipitation (Sect. 4.1.2). Large deviations in termstica|ly, and errors from random processes partly average out
of volume and/or an unrealistic spatial pattern may indicateon 3 monthly timescale.

a priori that in these areas the downscaled precipitation data
are not suitable as input for water balance modelling or asCross validation of interpolated precipitation data sets
spatial fields for the interpolation of station data.

For mean annual precipitation, the bias of the WRF down-The precipitation data sets interpolated from gauge observa-
scaled ERA-40 data compared to the gauge observationsons using monthly fields from WRF downscaled ERA-40
in the study area is in the range 20% to —30% (Ta-  data (WRFadj-all and WRFadj-ind), multi-linear regression
ble 5). There is no relationship of the bias with elevation. (MLR-all and MLR-ind) and inverse distance weighting are
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Table 4.Climate, plant and soil inputs selected for the sensitivity analyses.

Input Original value Variation

Solar radiation WRF downscaled ERA-40 data Multiply original value by 0.7 and 1.3 (based on
differences between the WRF downscaled ERA-40
data and satellite based data from the NASA Surface
Radiation Budget (SRB) product, version 3Hitp:
/leosweb.larc.nasa.gov/sseiean seasonal differences
over 19842001 are 21 % in spring and 12 %

in summer).

Wind Constant value of 2 ns Multiply original value by 0.5 and 2 (based on values
of WRF downscaled ERA-40 data and available station
data).

Plant height Varies by land cover; e.g. grasslanMultiply original value by 0.25 and 4.

30cm
Root depth Varies by land cover; e.g. grasslanMultiply original value by 0.25 and 4.
20cm
Soil depth Varies by soil type between Multiply original value by 0.5 and 2.
35-140 cm; mostly 50—-100 cm
Minimum stomata resistance Varies by land cover; grassland Multiply original value by 0.5 and 2 (according to

126 smr1 (based on values from  ranges as given in&ner, 1994).
Korner, 1994)

Matrix potential below which ~ —600 hPa (according to values fromApply a value 0f~200 hPa and-15 000 hPa throughout
transpiration is reduced Feddes and Raats, 2004) the whole catchment.
(minsuction)

Matrix potential below which ~ —15000 hPa Apply a value 6£8000 hPa and-22 000 hPa
transpiration is only 1 % of the throughout the whole catchment.

potential transpiration

(maxsuction)

also compared using leave-one-out cross validation. Gener- The low performance of the methods MLR-all and MLR-
ally this analysis shows large errors for the stations Chaarind results from the fact that omitting a station from the in-
Tash in the north, Kyzyl-Jar in the east and Sary-Tash in thderpolation changes both the mean monthly fields generated
south of the catchment, while for the clustered stations to theéby linear regression and the adjustment factors for the partic-
west of the catchment, the errors are low (Fig. 3). In particu-ular day interpolated by IDW. Omitting the stations Kyzyl-
lar the methods MLR-all and MLR-ind strongly overestimate Jar or Sary-Tash results in very different monthly regression
at the station Kyzyl-Jar by around 160 % and at Sary-Tash byfields so that then IDW, WRFadj-all and WRFadj-ind clearly
around 35 % and 50 %, and underestimate at Chaar-Tash byutperform the methods MLR-all and MLR-ind. The meth-
approximately 35%. By comparison, the method WRFadj-ods WRFadj-all and WRFadj-ind are similar to the methods
all shows a more balanced performance with bias values oMLR-all and MLR-ind, in that also first monthly fields are
—7%,+8 % and+40 %, at these three stations. The perfor- calculated, and second these are adjusted to daily stations
mance of the IDW method with respect to bias is betweenvalues. However, as the precipitation stations are not used in
the methods MLR and WRFadj. Regarding the mean absothe calculation of the monthly fields, the methods WRFadj-
lute error, the methods IDW and WRFadj-all have approxi- all and WRFadj-ind show a more robust behaviour, when in-
mately comparable results with higher errors in Chaar-Tasldividual stations are omitted.

of the method WRFadj-all and higher errors in Kyzyl-Jar of

the method IDW. Both with respect to bias values and meard.1.2 Spatial distribution and temporal dynamics of

absolute errors, the performance of WRFadj and MLR with subcatchment mean values for the different

monthly fields averaged over all years (“-all”) is similar or precipitation data sets

slightly better than the versions which use monthly fields for

individual years (“-ind”). Despite only relatively small differences at the station lo-

cations, the precipitation data sets are very different with
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Table 5.Comparison of observed and WRF simulated precipitation 2 §

at the station locations: bias, daily and monthly squared correlation

coefficient calculated over the period 1960-1990. w L

@ 0 “ ‘d_i_\ [ - . _———s

Station Elevation (m) Bias (%) 2 month 2 day ] o v =i
Chaar-Tash 2748 18 054 025 - iR
Djalal-Abad 971 —-16 0.61 0.26 ERn w\WRFadj-all
Kyzyl-Jar 2230 —12 0.53 0.19 E :mti‘a"lf
Sary-Tash 3155 11 0.42 0.13 227 =IDW
Uzgen 1014 -31 0.66 0.28 2 i
Dzhergital 1198 -25 0.65 0.28 811
Gulcha 1542 3 0.68  0.27
Savay 753 -1 0.59 0.29 20+

Chaar Kyzyl Sary- Gulcha Uzgen Dzher- Djalal Savay Kara Osh
Kara-Suu 866 2 0.63 0.32 -Tash  -Jar  Tash gital  -Abad -Suu

Osh 887 9 0.59 0.31

Fig. 3. Bias and mean absolute error calculated from cross valida-
tion for the interpolation methods WRFadj-all, WRFadj-ind, MLR-
all, MLR-ind and IDW for precipitation stations in or close to the
respect to their spatial distribution (Fig. 4). There are a fewKaradarya catchment.
agreements, for example all precipitation data sets indicate
relatively high precipitation along the mountain range to the
north and northeast of the catchment, and relatively low predata sets still agree on the general seasonal distribution, but
cipitation in the valley close to the station Kyzyl-Jar. they strongly differ in magnitude.
The precipitation data sets estimated by multi-linear re-
gression show a strong increase of precipitation with in-4.1.3 Comparison to global gridded data sets
creasing elevation; additionally precipitation also decreases
to the south and to the east (Fig. 4d, e). The WRF down-Maps of mean annual precipitation from APHRODITE and
scaled ERA-40 precipitation data indicate spots with veryGPCC show a very similar spatial distribution in the study
high precipitation values in the southern part of the catch-area, with a distinctive precipitation maximum in the north
ment (Fig. 4c). This is likely to be caused by the coarser to-(Fig. 6). By comparison, the other two gauge based precipi-
pography and the poor representation of one of the mountaitation data sets UDEL and CRU indicate a much lower mean
ridges in the southwest of the catchment (Fig. 1). Thus in theannual precipitation and only show a very weak precipita-
WRF model the valley in the southern part of the catchmenttion increase to the north of the catchment. In contrast to
is less sheltered from the wind than in reality, which might the gauge based data sets, the ERA-40 reanalysis data shows
cause too high precipitation of the WRF model at this loca-higher precipitation in the southern compared to the northern
tion. The mean annual precipitation maps of the precipitationpart of the Karadarya catchment. The precipitation estimates
data set interpolated using monthly maps of the WRF precipfrom these global data sources are considerably lower than
itation (Fig. 4a, b) are very similar to the WRF precipitation our estimates based on the methods WRFadj, WRF or MLR
map, with the main difference that in the former the precip- (Fig. 4a—e).
itation at the station locations is closer to the observed val- The differences between the precipitation data sets ap-
ues. The spatial distribution of precipitation in the IDW in- plied in this study and global gridded data sets are clearly
terpolated and the APHRODITE precipitation data sets bothdemonstrated in the values of the subcatchment mean pre-
markedly differ from the other precipitation data sets in thatcipitation (Fig. 7). If the precipitation data set MLR-all is
they both indicate only very little precipitation in the south- used as a reference, UDEL and CRU underestimate precipi-
ern and southeastern parts of the catchment (Fig. 4f, g).  tation by around-50 % and—60 % in the six subcatchments,
Naturally there is much more agreement among the differfor GPCC the underestimation varies from abetit5 % in
ent data sets in terms of the temporal dynamics, as all datthe two northern subcatchments 60 % in Gulcha and
sets except for the WRF data originate from station dataCholma, and for the ERA-40 data this varies between an un-
The subcatchment mean monthly precipitation data show aerestimation of~70% for the northern subcatchments to
bimodal regime with a major peak in April-May and a minor only a very small difference of the values in Cholma.
peak in October (Fig. 5). There is a strong agreement be- As the number of stations included in the GPCC and
tween the different precipitation data sets for the three north-APHRODITE data in this region is higher than in CRU and
ern subcatchments; only the WRF downscaled ERA-40 pretUDEL, this is likely to be the reason for the differences be-
cipitation data exhibit a slightly late seasonality with high tween APHRODITE and GPCC on the one hand and CRU
precipitation also in June-July (Fig. 5a—c). In the three eastand UDEL on the other hand. The ERA-40 data are obvi-
ern and southern subcatchments, the different precipitatiomusly too coarse to derive areal precipitation estimates for
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Fig. 5. Monthly subcatchment mean precipitation (1960-1990) for
6 subcatchments of the Karadarya Basin and 7 different precipita-
tion estimates.
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4.2 Evaluation of the precipitation data based on
simulated discharge

4.2.1 Parameter distributions and correlations between
parameters

Parameter distributions for the best 20, 50, 100 and 150
parameter sets are shown as an example for the subcatch-
ment Gulcha, the precipitation data set WRF and the cali-
bration period 1979-1984 (Fig. 8). The general behaviour

seen in this example is also typical for the other calibra-

W Py a T Pamer tion cases. Most importantly for this study, the precipita-

tion bias factor is confined to a very narrow range, indicat-
Fig. 4. Estimates of the mean annual precipitation (1960-1990) Oveling that the problem of identifying the precipitation bias fac-
the Karadarya _ca_ltchment usipg diffgrent_m(_athods. Circles indicatqor is well defined. For many other parameters, good models
measured precipitation at stations. Lines indicate subcatchment boraire achieved nearly over the whole parameter range. For ex-
ders. .

ample, the parameters glacier melt factasdtf, kf_corr_f

and satareavar are not constrained at all. The remaining pa-
catchments of the size as in this study. The higher precipitalameters are between these two extremes; while the best 150

tion of the ERA-40 cells in the southern part of the catchmentParameter sets may still include parameters from the whole
is probably caused by the higher elevation of these cells ifParameter range, the parameters are confined to a more nar-
the ERA-40 model. At this resolution smaller-scale features’ow range if one considers the best 20 or best 50 parameter
such as the Fergana range in the north or the valley aroungets only. As a consequence of this equifinality, i.e. the fact

Kyzyl-Jar in the west of the catchment cannot be representedhat very different parameter sets result in comparable model
performances, unconstrained parameters can for example not

be used for catchment characterisation, and it is not possible
to transfer individual parameters to catchments with similar

utmy (m)
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Despite the differences between the precipitation estimates,
Fig. 6. Mean annual precipitation (1960-1990) for the Karadarya most of the time they result in rather similar simulated dis-
catchment from APHRODITE and four globally available gridded charge time series. This is also reflected in the objective func-
precipitation data sets GPCC, CRU, UDEL and ERA-40. tion values (Fig. 9), which in many cases reach very similar

values, both for the best and also for the best 20, best 50

or best 150 parameter sets. Most noticeable exceptions from
characteristics. This does however not impede the objectivethis are the consistently lower values of the objective func-
of this study. tion values in the subcatchments Tosoi and Donguztoo for the

Scatter plots of parameter pairs for the best 50 or 150model driven with WRF precipitation data; lower objective

parameter sets (not shown here) demonstrate that there afenction values for the model driven with WRF precipitation
hardly any or only very low correlations between the precip- data are also observed in other subcatchments for some time
itation bias factor and any other parameter. This is in accorperiods, e.g. in Salamalik and Ak-Tash for 1979-1984 and
dance with the relatively narrow ranges of the precipitation1985-1990. Additionally, some precipitation products result
bias factor after calibration. In some cases, there is a weakn lower objective function values at only few gauges and
correlation of the bias factor to the glacier melt factor and totime periods: MLR-ind in Cholma 1973-1978, WRF-ind in
frac_riparian. Higher glacier melt increases the total runoff Cholma 1979-1984, and WRF-ind in Gulcha 1961-1966.
at the expense of a more negative glacier mass balance, andLower objective function values of the model driven with
an increase in fraciparian would result in a higher percent- WRF precipitation data may be explained by the difficulty
age of direct runoff thus decreasing actual evapotranspiraef WRF to correctly predict the precipitation amount on a
tion. The correlation to the glacier melt factor implies that particular day (see comparison to observed gauge precipi-
it may be possible to further confine the precipitation biastation, Sect4.1.1). A possible reason why lower objective
factor if glacier mass balance data were available to furthefunction values of the models driven with WRF data are pre-
constrain the glacier melt factor. However, due to the smalldominantly observed in Tosoi and Donguztoo is the smaller
glacier fraction and relatively high precipitation, glacier melt size of these subcatchments. This results in less spatial aver-
is only a small fraction of the total annual runoff so that the aging and smoothing of precipitation. Another possible cause
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% 03 45 % in Gulcha. This shows that parameter uncertainties can
g only explain some part of the uncertainties and that a relevant
§ 02 ' _ part of the uncertainty is also caused by errors in the model
2 structure and in the model input.
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© 0 9 4 8§ 0 2 0 5 4.2.3 Variation of the precipitation bias factor by
snowmelt factor melt temperature  glacier melt factor PreC|p|ta:t|0n estimate, subcatchment and
> 03 time period
C
[0
5 02 For a well performing precipitation data set, the precipita-
° o1 * m - f'. tion bias factor should be close to one, show little variabil-
B _. | B N ity between different time periods and little variability be-
[0] . . .
© 0 — tween the different subcatchments. According to this, the
0 100 S0 1000 05 1 two precipitation data sets based on multi-linear regression
k_sat_f kf_corr_f frac2gw . - . .
seem to be the most suitable precipitation estimates (Fig. 10).
g 03 The corresponding precipitation factors are very close to one
2 02 in all subcatchments, except in Ak-Tash, where precipita-
(0] . . . .
=~ -._ ] - t|op. is underestlmated by 16 to _38 %. Based on tr_]e vari-
g 81 - B - ability between different time periods, the precipitation es-
g o timate MLR-all, which uses monthly regression estimates
50 100 100 200 300 400 0 0.05 averaged over 1960-1990, should be preferred over MLR-

ind, which uses monthly regression estimates from individ-

o) 03 ual years, as the latter shows a higher variability in the sub-
“g 0.2 , I best 20 catchments Gulcha and Cholma. The good performance of
g \ best 50 the discharge simulations with precipitation data interpolated
% ol m ..* I E— DS oo by MLR-all and MLR-ind despite the low performance in the
2 | H cross validation is likely due to the fact that the precipitation

gauges and thus also the results of the cross validation are
not representative for the areal precipitation of the modelled

subcatchments. If one is interested in areal precipitation es-
Flg 8. Histograms of the parameter distributions for the best 20, 50,tima‘[es7 cross validation can be mis]eading and an evalua-
100 and 150 parameter sets for the subcatchment Gulcha, precipitgjon of different precipitation data sets using simulated dis-
tion estimate “WRF" and time period 1979-1984. charge should be preferred. On the other hand, cross valida-

tion also indicates the dependence of this approach from in-

dividual stations with potentially strong changes to the inter-
is the higher percentage of rainfall in total precipitation due polated precipitation if individual stations are removed from
to the lower elevation of these two subcatchments. For snowthe data set.
fall the temporal dynamics of precipitation is less important In contrast to the precipitation data sets interpolated by
for the temporal dynamics of discharge, as snow accumulatebLR, the direct use of WRF precipitation results in a pre-
until the melting season. cipitation bias which varies both between subcatchments and

In this study the uncertainty bands for the simulated dis-between time periods. For four of the subcatchments (Tosoi,

charge are meant to describe only the parameter uncertairdonguztoo, Salamalik and Cholma) the bias varies from pre-
ties, i.e. the part of the total uncertainty caused by differ- cipitation underestimation in the early 1960s to overestima-
ent parameter sets reaching equally good objective functionion in the 1980s (Fig. 10, and more clearly visible for one
values. If a higher number of parameter sets is included insubcatchment in Fig. 11), while there is a clear overestima-
the analysis, one also includes models with a clearly lowertion over all time periods in Gulcha and a clear underesti-
performance. For the subcatchment Salamalik, considerablynation over all time periods in Ak-Tash. The decrease of
worse models are included if the analysis is based on the beshe bias factor indicates an artificial trend in the WRF down-
100 parameter sets (Fig. 9, row 3). It is therefore decided tescaled ERA-40 precipitation data that is not consistent with
focus the evaluation on the best 1, best 20 and best 50 pahe observed discharge data. Such trends in reanalysis data
rameter sets. The width of the uncertainty bands based ooan result from changes in the observing system (Bengtsson
the 50 best simulations is roughly half of the mean observeckt al., 2004). As the downscaled reanalysis data are the only
flow, and the uncertainty intervals include on average aroundlata showing this behaviour and it is known that ERA-40
70 % of the observed discharge data in Tosoi and Donguztoodata have problems with trends, in this case, the problem with
between 50 to 60 % in Cholma, Ak-Tash and Salamalik andthe trend in the downscaled ERA-40 data could also have
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Fig. 9. Variation of the objective function values for different Fig. 10. Variation of the precipitation bias factor for different
precipitation data sets (bars in each plot), different time periodsprecipitation data sets (bars in each plot), different time periods
(columns), and different subcatchments (rows). The colours indi-(columns), and different subcatchments (rows). The colours indi-
cate the range of objective function values for the best 20, 50, 10®ate the range of the precipitation bias factor for the best 20, 50,
and 150 parameter sets. 100 and 150 parameter sets.

been detected by simply comparing trends of the precipitaimains. Due to the lack of precipitation gauges in this part of
tion data. However, if two comparable precipitation data setsthe catchment, this overestimation cannot be corrected by the
show different trends, a simulation approach is required tocombination of the spatial precipitation fields of WRF with
show for which or whether for both precipitation data sets theobserved precipitation time series. The variability of the bias
precipitation bias varies over time, indicating that the trendfactor between time periods and between subcatchments is
in the precipitation data is not consistent with the trend insimilar for the two precipitation estimates WRFadj-all and
the discharge data. The overestimation for the subcatchme/RFadj-ind. However, due to the lower objective function
Gulcha is likely to be at least partly caused by a too coarsevalues of WRFadj-ind for the period 1979-1984 in Cholma
topography in the WRF model, which results in the valley and for the periods 1961-1966 and 1979-1984 in Guicha,
and mountain ridges to the west of this subcatchment beingyRFadj-all should be preferred to WRFadj-ind.
not well resolved (see Fig. 1). Thus, in all subcatchments except Gulcha we find WRFadj
Using spatial maps of WRF precipitation for the interpo- and MLR as the most suitable methods. Tobin et al. (2011),
lation of gauge observations (WRFadj-all and WRFadj-ind) who estimated areal precipitation for two Alpine catchments
results in relatively low over- and underestimations for Tosoi, in Switzerland, found that kriging with elevation as external
Donguztoo, Salamalik and Cholma, an underestimation of ugrift variable outperformed kriging with event accumulated
to 26 % in Ak-Tash, and a stronger overestimation of 36 toprecipitation from the COSMO7 downscaled reanalysis data.
50 % in Gulcha. WRFadj-ind and WRFadj-all result in much Due to the differences in the methods and study area, this
less variation of the precipitation factor between time peri- study is not directly comparable to our study. However, one
ods than the direct use of the WRF precipitation. However,possible reason for the comparable performance of an inter-
the overestimation in the southern part of the catchment repolation method using downscaled reanalysis data compared
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WREF-all WRF-ind APHRODITE

[ best 20
best 50
best 100
I best 150

precip. factor

Fig. 11. Variation of the precipitation bias factor by time period for the subcatchment Cholma as an example. The data are the same as also
shown in Fig. 10, but they are sorted in a different way in order to better demonstrate the variation by time period (particularly noticeable for
the WRF and APHRODITE precipitation data sets).

to other interpolation methods in our study may be the fact4.2.4 Sensitivity of results with respect to uncertainties
that for the basin in Switzerland a larger number of stations in inputs
was available, which probably allowed a better identification
of the observed variability and the precipitation elevation re-In order to check how robust the results are with regard to
lationship from the data, while methods using simulated prechanges in the inputs (see Sect. 3.3.5), a sensitivity analy-
cipitation fields from reanalysis data are particularly advanta-sis is performed. Varying these inputs and re-calibrating the
geous in situations where the variability of precipitation can- model has hardly any influence on the objective function val-
not be derived from the observed data. ues. This shows that the parameters can compensate for input
The precipitation estimate based on interpolation of theerrors. Changes in the precipitation bias factor are shown in
observed data by IDW results in an underestimation of preFig. 12. The boxplots summarise the changes in the precipi-
cipitation in all subcatchments. There is a strong variation oftation bias factor for the seven precipitation data sets and six
the bias factor between subcatchments, with values indicatsubcatchments. An increase in the precipitation bias factor
ing around 10 % underestimation in the subcatchments in th@f 0.1 in Fig. 12 would for example indicate that a precip-
northern part (Tosoi, Donguztoo and Salamalik), around 95tation bias factor of 1.1 would change to 1.2, meaning that
and 65 % in Ak-Tash and Cholma located in the west, andthe respective precipitation data set underestimates precipita-
about 35% in Gulcha located in the south of the Karadaryation by 20 % and not by 10 %. The largest uncertainties result
catchment. However, the variation of the precipitation biasfrom radiation, soil depth, root depth and wind speed. For
factor between the different time periods remains low. Thethese inputs the median changes in the precipitation bias fac-
higher bias factors of the subcatchments Ak-Tash, Cholmdor are betweera-0.03 and+-0.07, but changes can be up to
and Gulcha are probably caused by the fact that the precip@.2 for individual precipitation data sets and subcatchments.
itation gauges in this part of the catchment are located inChanges in temperature, plant height and stomata resistance
less exposed positions (e.g. Kyzyl-Jar is located within a val-have a lower influence with median values of abgn@03.
ley, and Sary-Tash, despite being located at a high elevatiorEffects of changes in the matrix potential below which tran-
is sheltered by higher mountains) so that the precipitationspiration is reduced and in the matrix potential below which
amount at these stations is not representative for the catcHranspiration ceases are negligible.
ment precipitation. In contrast, there is at least one precipi- In summary, uncertainties of the precipitation bias factor
tation gauge at an exposed mountain position in the northerlue to uncertainties in inputs to the evapotranspiration mod-
part of the catchment (Chaar-Tash), and thus the measuredle are less than 0.2 and in most cases even less than 0.1. The
precipitation amount is more likely to be representative forcombined uncertainties might be higher and different from
the areal catchment precipitation in Tosoi, Donguztoo andsimply additive — for example the effect of an increase in
Salamalik. root depth would be higher if the soil depth was increased at
The APHRODITE data also underestimate precipitation inthe same time. However, it is unlikely that the default esti-
all subcatchments. To some extent (probably around 10 %)mates of all of the analysed climate, soil and plant inputs are
the underestimation can be explained by the fact that for thédiased in a way that they would result in the same direction
APHRODITE data gauge observations are not corrected foof change of the precipitation factor.
undercatch errors before interpolation. In Ak-Tash, Gulcha
and Cholma there is a relatively strong variation of the bias
factor between the different time periods. This seems not td Conclusions
be due to a change in the number of stations used for the gen-
eration of the data set, as with respect to this region and timd his study indicates that spatial fields from downscaled re-

period the number of stations remains relatively constant. analysis data can provide useful information for the spatial
interpolation of precipitation data in regions where the spatial
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Radiation Wind Soil depth  Plant height on monthly fields from multi-linear regression, suggesting
g 0.2 that it is particularly suited for data sparse regions.
i T T Using a calibrated precipitation bias factor as an additional
g 01 — - Q — performance criterion for the evaluation of precipitation es-
=00 4 B = ™ _ E timates py_ hydrological modellin_g_all(_)ws a more informed
Py = =] == = - dlfferentlatlo_n.between the precipitation data s_ets.. For our
§-011 | - case study, it is for example shown that the main difference
) between the precipitation data sets based on interpolated sta-
07 13 05 2 05 2 025 4 : . ) : .
Multipl. factor ~Multipl. factor ~ Multipl. factor  Multipl. factor tion data is in the bias values, while the performance with
Root depth Stomata resistance Min. suction ~Max. suction respect to the time course is rather similar. The evaluation
g 02 - approach was further extended by an assessment of uncer-
i tainties resulting from the calibration parameters, from un-
2 0.1 ‘ certainties in the model inputs, and from different calibration
5 _ E = I - periods. Uncertainties in the calibrated bias factor resulting
° = = T =T T|= == from parameter uncertainties and from model inputs are not
S04 — - very large and on average both in the order of 0.1, corre-
© sponding to a precipitation bias of 10 %. Thus, these uncer-

) tainties are often smaller than the differences between dif-
) o _ ) ) ~ ferent precipitation estimates. The evaluation of the precip-
Fig. 12. Sensitivity analysis of the change in the calibrated precip-jtation bias factor for different calibration periods revealed
itation bias factor as a result of changes in inputs for the time pe-, | o iation of this factor between time periods for two pre-

riod 1979—1984._ The boxplots show summaries of_th_e r_esults aver- ipitation data sets, the WRF downscaled ERA-40 data and
aged over the six subcatchments and seven precipitation data se

with the thick black line indicating the median, the boxplot area thet € APHRODITE data. Ideally, the pre_C'p'tat'on 'n_DUt to _a
interquartile range and the whiskers the minimum and maximumhydrological model should have zero bias, but a bias which
is largely constant over time could usually be handled for
most applications. A variation of the bias factor over time
could indicate inconsistencies in gridded precipitation data
sets (Mizukami and Smith, 2012). It shows that with these
precipitation inputs the observed variability can only be cap-
variability of precipitation cannot be derived from ground- tured by adjusting the precipitation bias factor. The fact that
based observations alone. The method depends on the asdch a variation of the bias factor over time is not necessary
sumption that the spatial variability is in general correctly for the other precipitation estimates shows that this is caused
represented in the downscaled reanalysis data. While this ady the precipitation input and not for example by changes in
sumption cannot be fully validated, plausibility tests, like (1) the catchment or deficits of the model. Currently the bias fac-
inspecting the simulated precipitation fields for any conspic-tor represents a mean value over a calibration period. Future
uous features, (2) checking that the major orographic characwork should also investigate whether variations of this bias
teristics of the region are also captured by the model orografactor within this period, for example a seasonal variation,
phy and (3) the comparison of simulated and observed preean be identified.

cipitation data at locations of available stations, were gen- With respect to the headwater catchments of the Karadarya
erally successful for the Karadarya catchment. In the southBasin, the different precipitation data sets show very large
ern part of the catchment, simulated precipitation tends tadifferences for subcatchment mean precipitation. Based on
be overestimated due to mountain ridges to the west of thiour evaluation, the precipitation data set MLR-all, which
area that are not represented in the model orography. Comuises monthly fields from multi-linear regression, is judged as
pared to the direct use of the WRF downscaled ERA-40 datathe most suitable precipitation input for the studied headwa-
hydrological modelling demonstrates a clearly better perfor-ter subcatchments of the Karadarya catchment. It shows good
mance of the precipitation data set WRFadj, both with re-performance with respect to the objective function values —in
spect to the goodness of fit and with respect to the stability oicommon with all precipitation data sets based on interpolated
the precipitation bias factor over different time periods. The station data — low bias and only very small variations of the
evaluation by hydrological modelling further shows that, ex- bias factor between different time periods. Our estimates of
cept for the subcatchment Gulcha, the method using monthlyhe precipitation input to these mountain subcatchments are
fields from WRF performs equally well as the best perform- considerably higher than those from continental- or global-
ing method for this area based on monthly fields from multi- scale gridded data sets. This demonstrates the large uncer-
linear regression. Additionally, cross validation points out tainties in these data if they are applied to small to mesoscale
that the method WRFadj behaves more robust against omitmountain catchments. This also has implications for the use
ting individual stations than the interpolation method basedof these data for the evaluation or bias correction of regional

0.25 4 0.5 2 1
Multipl. factor Multipl. factor ~ Value (

change.
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