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Abstract. Vast parts of Africa rely on the rainy season for data is available, the seasonal forecast can be used for mon-
livestock and agriculture. Droughts can have a severe impadtoring (first month of forecast). Furthermore, poor-quality

in these areas, which often have a very low resilience andrecipitation monitoring products can reduce the potential
limited capabilities to mitigate drought impacts. This paper skill of SPI seasonal forecasts in 2 to 4 months lead time.
assesses the predictive capabilities of an integrated drought
monitoring and seasonal forecasting system (up to 5 months

lead time) based on the Standardized Precipitation Index

(SPI). The system is constructed by extending near-real-timd  Introduction

monthly precipitation fields (ECMWF ERA-Interim reanaly-

sis and the Climate Anomaly Monitoring System—Outgoing Most of Africa relies on the rainy season for water supply
Longwave Radiation Precipitation Index, CAMS-OPI) with for livestock and agriculture (IWMI, 2010). Therefore, rain
monthly forecasted fields as provided by the ECMWF sea-shortage can have a severe impact over this continent, which
sonal forecasting system. The forecasts were then evaluatdd Many areas has a very low resilience and limited capa-
over four basins in Africa: the Blue Nile, Limpopo, Upper Dbilities to mitigate drought effects. For example, the long
Niger, and Upper Zambezi. There are significant differencesseéquence of droughts in the sub-Sahel region during the
in the quality of the precipitation between the datasets de-1970s and 1980s (e.g. Nicholson et al., 1998), and the recent
pending on the catchments, and a genera| statement regaraO].O/ll drOUght that afflicted the Horn of Africa (Dutra et
ing the best product is difficult to make. The generally low al., 2013) had severe humanitarian consequences. Monitor-
number of rain gauges and their decrease in the recent yeatd9d and forecasting both the length and geographical exten-
limits the verification and monitoring of droughts in the dif- Sion of droughts is a key component of increasing resilience.
ferent basins, reinforcing the need for a strong investment Droughts are typically classified into four types: meteo-
on climate monitoring. All the datasets show similar spatial fological, hydrological, agricultural and socioeconomic, and
and temporal patterns in southern and north-western Africathere are many drought indicators associated to each drought
while there is a low correlation in the equatorial area, whichtype (€.g. Keyantash and Dracup, 2002). In this work we
makes it difficult to define ground truth and choose an ad-focus on the meteorological drought using the Standard-
equate product for monitoring. The seasonal forecasts hav&#ed Precipitation Index (SPI) initially developed by Mc-

a higher reliability and skill in the Blue Nile, Limpopo and Kee et al. (1993) and recommended by the World Meteo-
Upper Niger in comparison with the Zambezi. This skill and rological Organization as a standard to characterize meteo-
reliability depend strongly on the SPI timescale, and longerfological droughts (Hayes et al., 2011; WMO press release
timescales have more skill. The ECMWF seasonal forecasty) 2009). The SPI is based on the probability of an ob-
have predictive skill which is higher than using climatology Served precipitation deficit occurring over a given prior ac-

for most regions. In regions where no reliable near-real-timecumulated time period. This time period (also referred to as
timescale) is defined according to the particular application,
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with typical values of 3, 6 and 12 months. The flexibility of followed by the evaluation of the system in Sect. 3 and the
the accumulation in different time periods allows a range ofmain conclusions in Sect. 4.
meteorological, agricultural and hydrological applications.
However, the time responses to drought of different systems
(e.g. soil moisture, stream flow, reservoirs) are not known & Data and methods
priori (Vicente-Serrano et al., 2012). In each particular re-
gion/application, a detailed study should ideally be carried2.1 Precipitation datasets
outto relate the different SPI timescales to the target variable,
such as available soil moisture to crops or natural reservoirs2.1.1  Precipitation monitoring
The SPI calculation relies only on monthly means of pre-
cipitation, which are usually available in near real time from Several datasets could be used for drought monitoring. How-
observations (in situ and/or satellite) and also from seasonatver, there are few technical requirements a dataset should
forecasts (in both cases generally associated with large urfulfil to be suitable for an operational monitoring and fore-
certainties). Data availability, and simplicity of calculation, casting chain employing the SPI, and these will be described
makes the SPI a multiscalar drought index with potentialin the following section.
capabilities for combining monitoring and forecasting. The  Firstly, it should be long enough (at least 30yr, as rec-
monitoring component relies on near-real-time data that carommended by McKee et al., 1993) and statistically homoge-
either be derived through the merging of ground observa-neous (Guttman, 1999). This means that observations should
tions and remote sensing information or by using numericalas much as possible (i) avoid changes in rain gauge location
weather prediction (NWP) models as reanalysis tools. Theand measuring equipment, and (ii) use similar techniques to
forecasting component traditionally relied on climatological derive precipitation from remote sensing data, even when us-
or statistical forecasts. In more recent years as the quality oing different platforms. When employing dynamical model
forecast models steadily improves over the monthly to seaoutputs, the model should have the same spatial and temporal
sonal lead time (Simmons and Hollingsworth, 2002), there isstructure (as in reanalysis or global/regional climate models)
an increasing interest to test these products also in the set¢e avoid disruptions due to model changes, such as a change
torial application of drought monitoring. For example, Yoon in resolution or parameterization schemes. Changes in the
et al. (2012) recently proposed a methodology to forecast 3ebservation systems and/or models can produce artificial sig-
and 6-month SPI for the prediction of meteorological droughtnals, such as trends, that will be reflected in the drought in-
over the contiguous United States based on the NCEP clidicators. Secondly, the dataset needs to be available in near
mate forecast system (CFS) seasonal forecasts of precipitaeal time, meaning no more than a 1-month delay.
tion (Saha et al., 2006). The long-term homogeneity and near-real-time update are
The latest version of the European Centre for Medium-two criteria difficult to achieve, especially on a global scale.
Range Weather Forecasts (ECMWF) seasonal forecastingwo freely available products that partially fulfil the require-
systems, system 4 (S4), was released in November 201fnents are the reanalysis produced by the dynamical ECMWF
(Molteni et al., 2011). Despite the recent model improve- model ERA-Interim (Dee et al., 2011) and the observation-
ments, predicted fields such as temperature, and to a higheailly based product Climate Anomaly Monitoring System—
extent precipitation, can be biased and in some areas haw@utgoing Longwave Radiation Precipitation Index (CAMS-
little or no skill. This is particularly the case in some regions OPI; Janowiak and Xie, 1999). These datasets have a global
in Africa, where in situ observations are scarce and modelsoverage, span 30yr and are available in near real time.
often show persistent systematic errors. One such example ERA-Interim (ERAI) starts on 1 January 1979 and is ex-
is the prediction of the West Africa monsoon system, wheretended forward in near real time (Dee et al., 2011). It has
S4 is able to reproduce the progression of the West Africaa spectral T255 horizontal resolution, which corresponds to
monsoon but shows persistent biases caused by a southerpproximately 79 km in the grid-point space and employs a
shift of the precipitation in the main monsoon months of sequential 4D-var data assimilation scheme which ensures
July and August (AgustPanareda et al., 2010; Tompkins and the optimal consistency between available observations and
Feudale, 2009). the model background. Full 3-D fields are stored 6 hourly,
In this paper an integrated monitoring and forecastingwhile a large number of surface parameters, including pre-
drought system for four African river basins has been de-cipitation, are provided every 3h. ERAI precipitation is a
signed to explore the current capability of ECMWF products forecast product generated by the NWP model. Therefore,
to provide drought information over the African continent. different forecast lead times can be used to calculate the
This has been done by combining globally available monthlymonthly means. In this study, the monthly means of pre-
precipitation monitoring products with the forecast from S4. cipitation are calculated from the daily forecasts starting at
The four basins were chosen to represent different synop00:00 and 12:00 UTC with lead timgs24 to+48 h (2nd day
tic conditions typical of the African continent. The drought of forecast). The forecast lead time was based on several
monitoring and forecasting system is described in Sect. Zests, and the main results are not greatly affected by this
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selection. A full evaluation of the optimal forecast lead time 2.2 Drought forecasting system
(spin-up/spin-down effects) for the monthly mean calcula-

tion is out of the scope of the current study, but it is expected2.2.1  Drought metric

to differ spatially. ] )

The CAMS-OPI is a merged dataset produced by theProught is predlcted. by means of the SPI (_I\{IcKee et al.,
NOAA Climate Prediction Center (CPC) combining satel- 1993). In the (':a.lcu'latlon of the SPI for a specifitimescale,
lite rainfall estimates from the Outgoing Longwave Radi- € total precipitation for a certain monin (m =1, ..., N,
ation (OLR) Precipitation Index (OPI) with ground-based whereN is the nl_Jrr_]be_r of months in _the time series) is the
rain gauge observations from the Climate Anomaly Mon-SUM Of the precipitation for the periodu[-k +1 t0 m].
itoring System (CAMS). The OPI estimates are computedFor each calendar mor_1tr1 (|:e. aII_Ja_nuarms, Februaries, etc.)
from NOAA polar-orbiting IR window channel data, using "€ accumulated precipitation distributio’V/12 samples)
the technique developed by Xie and Arkin (1998). While it is 'S fitted to e_prot_)abrllty_dlstrlbutlorr. The resultant cum_ula-
recognized that the OP!I has significant limitations for many tivé probability distribution (CDF) is then transformed into

climate applications, the merged CAMS-OPI dataset is pc)_the standard normal distribution (mean zero with one stan-

tentially useful for near-real-time applications. For example,dard deviat_ion), resu_lring i_n the $P|, It itc' common t(,) SgleCt
Sohn et al. (2011) found that CAMS-OPI was reliable for & parametric probability distribution to fit the precipitation.

monitoring large-scale precipitation variations over the EastPifferent statistical distributions can be used, such as the

Asia region. Janowiak and Xie (1999) provide a complete de-9amma distribution (Lloyd-Hughes and Saunders, 2002) or
scription of the CAMS-OPI merged dataset, which is avail- Pearson Ill (Vicente-Serrano, 2006). In this study the gamma

able from January 1979 to present in a°2&.5 lat/lon distribution was chosen since it is commonly used. The fit-
regular resolution. ting of the distribution used the approximation proposed by

For research purposes, NOAA CPC encourage users t&réenwood and Durand (1960).
use instead either GPCP or CMAP (Xie and Arkin, 1997)
merged climate rainfall datasets, both of which have bette

quality control measures and include satellite passive Mirha extension of the SPI from the monitoring period

crowave rain estimates. Therefore, the Global Precipitation} o past, to the seasonal forecast range was performed by

Climatology Project (GPCP) version 2.2 (Huffman et al., nerging the seasonal forecasts of precipitation with the mon-
2011) monthly precipitation was used in the following as a itoring product and is a crucial step of the whole system.

benchmark. It is available for the period January 1979 to De- Firstly, both the forecasts and monitoring products have to

cember 2010 in a 2°5< 2.5” lat/lon regular resolution. be interpolated to a common resolution. This step will de-
pend on the available data (resolution of monitoring and sea-
sonal forecasts of precipitation) and final application of the
drought forecasts. Two options are available: (i) downscale

Forecasted precipitation is the second required input to con*

struct the drought forecasting system. In the implementat€ forecasts to a higher resolution using a simple (for ex-

tion presented here this is provided by the most recent sea@MPle bilinear interpolation) or more advanced methods (for
sonal forecasting system at ECMWF (S4), which becameeXample statistical downscaling) as was proposed by Yoon

operational in November 2011, issuing 51 ensemble memé&t al. (2012); or (ii) upscale the forecasts and monitoring to

bers with 6 months lead time. S4 has the same horizon@ coarser resolution or to a region. The second option has

tal resolution as ERAI (about 79km) and is fully coupled (1€ advantage of reducing the amount of data to process, and
with an ocean model with a horizontal resolution 6f The |'r filters some of the intrinsic noise of grid-point premprta—
initial perturbations are defined with a combination of at- ion from the dynamical models (Lander and Hoskins, 1997)
mospheric singular vectors and an ensemble of ocean anafind has been preferred in this exercise. The precrprtatron was
yses. Atmosphere model uncertainties are simulated usinif1€refore spatially aggregated (mass conserving) to a basin
the 3-time-level stochastically perturbed parameterized ten>cal€ (the basin definitions are described in the end of this
dency (SPPT) scheme and the stochastic back-scatter scherfgction)- _ _
(SPBS), which are also operational in the current ECMWF Secondly, some care needs to be taken to the biases in the
medium-range ensemble prediction system. The hindcast s&geasonal forecast. Uncertainties in S4 precipitation forecasts

is provided for calibration, covering a period of 30yr (1981 &€ mainly controlled by model biases (Di Giuseppe et al.,
to 2010) with the same configuration as the operationa|2012)- These biases can drift over time, i.e. change with lead

forecasts but only with 15 ensemble members. Molteni etime, and can jeopardize the prediction skill. Moreover, since

al. (2011) presented an overview of S4 model biases andhe merging procedure involved two different precipitation
forecast performance. datasets, care has to be taken to ensure that the two datasets

have the same mean climate. This is achieved by performing
a simple bias correction of monthly precipitation in the form

r2.2.2 Drought forecasts

2.1.2 Precipitation forecasting
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ro_ Range Forecasts (WMO, 2012). The ACC was calculated as
Pm| = Olm,IPm,I» (1) . . . . . .

: the ordinary correlation coefficient on the anomalies, i.e. re-
whereP and P’ are the original and corrected seasonal fore-moving the mean annual cycle. The CRPS (see I_—iersbach,
cast of precipitation, respectively; is a multiplicative cor- ~ 2000) can be interpreted as the integral of the Brier Score
rection factor; and the subscripts “m” and “I" are the calendarover all possible threshold values of the parameter under
month (1 to 12) and the forecast lead time (0 to 5 months) consideration. Since the CRPS is not a normalized measure,

respectively. The correction factor is given by the ratio the related skill score (CRPSS) was used. In the skill score
—mon — calculation the reference forecast was taken from the obser-
oaml = Py /Pmy, 2 vational dataset to produce a climatological forecast (CLM)

—mon. _ o with the same ensemble size as the forecast, by randomly
WhereP_m is the muln-annugl mean of precipitation of the sampling different years. The ROC diagram (Mason and Gra-
monitoring dataset for a particular calendar month, 88 nam, 1999) displays the false alarm rate (FAR) as a function
the multi-annual and ensemble mean of the forecasts for & hjt rate (HR) for different thresholds (i.e. fraction of en-
particular calendar month m and lead time |. This simple biassemple members detecting an event) identifying whether the
correction does not address inter-annual variability and enforecast has the attribute to discriminate between an event
semble spread. More sophisticated bias correction methodgy not. The area under the ROC curve is a summary statistic
(e.g. Yoon et al.,, 2012) are possible, but being mostly fo-representing the skill of the forecast system. The area is stan-
cused on spatially integrated quantities this was not deemeggrdized against the total area of the figure such that a perfect
necessary. - o forecasts system has an area of 1 and a curve lying along the
To create a seamless transition from the monitoring togiagonal (no information) has an area of 0.5. The reliability
the forecast fields, the interpolated and bias-corrected Sgjjagrams (Hamill, 1997) measure the consistency between
precipitation data were merged with the monitoring fields. predicted probabilities of an event and the observed relative
This merge is a simple concatenation of the precipita-frequencies and were used to assess the reliability and con-
tion time series, performed for the entire S4 hindcast pefigence of the forecasts. Details of the calculations are given

riod. For a particular initial forecast date in month by Hersbach (2000) for the CRPS and by WMO (2012) for
(m=1[January 1981], ..., 360 [December 2010]) the accu-tnhe ROC and reliability diagrams.

mulated precipitation for SPt-with lead timel is given by
2.4 Selection of the basins

il P l—k+1>0 The drought forecasting system was tested in four river
i:l—k-?—_ll ' _— . (3) basins of the African continent: Blue Nile (NB), Limpopo
i P+ "% PMON | _k41<0 (LP), Upper Niger (NG) and Zambezi (ZB) (Table 1 and

i=max0l—k+1) " jemi—k+1 Fig. 1). The catchment definitions were taken from the river

o network and basins created by Yamazaki et al. (2009). The
The application of Eq. (3) to all years and ensemble memberg,cation of the basins was selected to sample different cli-

for a specific calendar month (for example for the forecastsyatic regions of Africa, with different seasonal precipitation

starting in February all montha =2, 13, 25, ..., 350) cre-  gistributions. The regions are defined as hydrological basins
ates a sample of 450 (30 yr15 ensemble members) values jnstead of lat/lon limits since basins have a geographically

of accumulated precipitation that are transformed to the NOrmeaningful draining to the same river. All the basins have a

mal space following the SPI calculation procedure describedsmijar size (see Table 1) of about 3.5%m 10° km?, corre-
before. sponding to approximately 60 grid points of ERAI or S4 and
4.5 grid points of GPCP and CAMSOPI. The possible ranges
of basins sizes are not addressed in this study. The selection

The forecasts were verified using different scores: anomal)Pf the basin will mainly depend on prior knowledge of the
correlation coefficient (ACC), continuous rank probability '€9i0n (precipitation patterns and variability) and underlying
skill scores (CRPSS), relative operating characteristic (ROCSKIll Of the seasonal forecasts (avoiding merging region with
diagrams, and reliability (REL) diagrams. We selected onedifferent skill). Very small basins will not allow for the spa-
deterministic score, the ACC (which considers only the en-tial fllterlng that r_educ'es pr§C|pltat|pn noise, while very large
semble mean) and three probabilistic scores (which conside?@sins (€.g. entire Nile, Niger) might account for different
the forecast ensemble spread). The ACC and CRPS providglimatic regions with different forecast skill.

an integrated measure of the forecast quality (entire range

of forecasts), while the ROC and reliability diagrams evalu-

ate categorical forecasts (in our case drought detection, with

the SPI below a certain threshold) and are recommended

by WMO in the Standardized Verification System for Long

2.3 Verification metrics
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40 Table 1.Basin definitions. See also Fig. 1.

30} ...

Basin Outlet Area
20 (x 10° km?)
10 Upper Niger (NG) 16.24N, —3.39 E 3.62
Blue Nile (BN) 15.50 N, 32.68 E 3.17
0 Upper Zambezi (ZB) —7.46°N, 24.25% E 3.34
Limpopo (LP) —242%N,32.79E 3.45

northern limit, producing disturbances that are dynamically
linked to the African Easterly Jet. These are the first cause
4 10 0 10 20 30 40 20 60 for the large-scale precipitation observed in the region at
the monsoon onset. Westward propagating mesoscale distur-
Fig. 1. Basins definition (dark grey), and the full basin (dark and pances generate the dominant convective systems. They feed
light grey). See also Table 1. into the large-scale disturbance only during late boreal sum-
mer (when enough moisture is available), changing the rain-
fall regime from frontal precipitation (June—July) to convec-
tive (August—September). The LP and ZB river basins are
instead located in southern Africa and have their peak pre-
cipitation occurring during austral summer (Fig. 3c and d).

Throughout the paper, GPCP version 2.2 is assumed to be thE€ rainy season is therefore generally out of phase with
ground truth and is used as a benchmark for drought monitorthat in western Africa (i.e. dry (wet) western Africa corre-
ing. However, the quality of this large-scale dataset is signifi-SPONds to wet (dry) southern Africa). Although wave activ-
cantly influenced by station count and changes in the numbelfy has not been identified, rainfall tends to be organized into
of stations in time. Since all basins have a similar area (sed"€soscale convective systems analogous to those in Sahelian
Table 1), the differences in the station count and its change iYVest Africa. _ _

time can potentially compromise the reliability of GPCP and !N the BN and NG basins, the rainy season (June—
its temporal homogeneity (essential for drought monitoring). S€Ptember) is captured by all datasets, with an overestima-
The analysis of the temporal evolution of the number of sta-tion in the BN by ERAI (Fig. 3b). S4 forecasts overestimate
tions present in the Global Precipitation Climatology Centre Precipitation in both BN and NG in the first month of fore-
(GPCC; Schneider et al., 2011), the underlying data used iffaSts with a reduction of the. pea_k rainfall ywth Igadlur_ne. This
GPCP over land, along with the error estimates provided byS @n example of model drift with lead time, justifying the
GPCP (Fig. 2), provides a qualitative overview of possible applied bias correction for each calendar month (initial fore-
challenges in GPCP over each basins. In the NG there is gast date) and lead time. In the LP and ZB basins all datasets
drop in the station count from the early 1980s to late 1990sSNoW & reasonable agreement with GPCP, and S4 has a re-
of about 50 %, which was further reduced in the last decadeduced drift in the mean cycle with lead time.

This is reflected in an increase of the error estimates during 1" temporal correlation of the 3-, 6- and 12-month SPI
the last decade. In both BN and ZB basins, the number ofalculated with ERAI, CAMS-OPI and S4 first month of
stations is lower than in NG, being much lower (around 10) forecasts (S4L0) against the SPI calculated with GPCP (Ta-
in the ZB. LP is the basin with a higher and stable number ofPl€ 2 and Fig. 4 for the SPI-12 time series, and Supplement
stations except for a drop in the last 5yr of the dataset. ThdOr the SPI-3 and SPI-6 in Figs. S1 and S2, respectively)
number of stations present in CAMS-OPI (Fig. 2) is much 9IVes an overview of the potentlal quality of each dataset for
lower than in GPCP over the selected basins, especially ifirought monitoring in the regions. Both ERAI and CAMS-
NG, NG and ZB. This will impact its potential use of CAMS- OPI have a good agreement with GPCP in LP for the dif-
OPI for real-time monitoring, which will be addressed in the ferent timescales, while in the remaining three basins the

3 Results

3.1 Quality of observations

next section. correlations are lower. In the NG and BN, the SPI derived
from the first month of forecasts from S4 has a better agree-
3.2 Drought monitoring ment with GPCP than ERAI or CAMS-OPI, while in ZB all

datasets display low correlations (Table 2). It should be noted
Precipitation over the NG and the BN is controlled by the that S4L0 has a better inter-annual variability of precipitation
south to north and back progression of the West Africaanomalies than ERAI or CAMS-OPI in the NG and BN re-
monsoon. Peak rainfall occurs in the boreal summer (Junegions (higher correlations of SPI-12 with GPCP in Table 2).
September, Fig. 3a and b), when the ITCZ moves to its fatERAI overestimates the decrease in rainfall in the central
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Fig. 2. Temporal evolution of the mean annual number of stations present in GPCC (dashed lines) and CAMS-OPI (circle symbols) in each
basin and GPCP error estimates normalized by the mean precipitation (solid line). CAMS-OPI number of stations was multiplied by 5.
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Fig. 3. Mean annual cycle of total precipitation (TP) over the selected basins. The shaded area represents thé sageard deviation)

of observed (GPCP-red) and modelled (S4, grey) precipitation in the hindcast period (1981-2010), comparing with ERAI (blue) and CAMS-
OPI (green). The time series for the seasonal forecasts uses the first (S4-L0, thick black) and last (S4-L6, tick grey) month of forecasts and
the 15 ensemble members.

African region which is likely to be associated with a sub- The decrease in the number of rain gauges is a main lim-
stantial warm bias in the model due to an underestimation oftation for the verification and monitoring precipitation in
aerosol optical depth in the region, as well as changes in théhe different basins. This reduction is present both in GPCP
data entering the data assimilation system (Dee et al., 2011Jused for verification) and in CAMS-OPI (used for monitor-
This resulted in an unrealistic model drying that penalizesing, see Fig. 2), while ERAI and S4 seasonal forecasts are
the SPI scores. The poor performance of CAMS-OPI, whemot affected. The impact of these changes is not straight-
compared with GPCP, in the NG, BN and ZB basins is mostforward to address because (1) the decrease in the number
likely linked with the low number of stations used (Fig. 2), of stations affects the dataset that we use for verification
mainly due to the near-real-time restriction, since not all sta-(GPCP) and (2) splitting the time series of precipitation into
tions report in near real time. two periods would result in short series of data (16 yr) be-
ing transformed to SPI, therefore increasing the uncertainty
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Table 2. Temporal correlation of the GPCP 3-, 6- and 12-month SPI and ERAI, CAMS-OPI and S4L0 (each column) for the different basins.
The correlations are given by the lower and upper bounds for a 95 % confidence interval. Bold (underlined) intervals indicate the dataset with
higher (or lower) correlation and with confidence intervals outside of the range of the remaining datasets for each SPI timescale and basin.

ERAI CAMS-OPI S4L0
3 6 12 3 6 12 3 6 12

NG [0.530.66] [0.390.55] [0.240.42] [0.410.56] [0.270.45] [0.12 0.31] [0.500.64] [0.46 0.6[0}49 0.63]
BN [0.490.63] [0.430.58] [0.320.49] [0.550.68] [0.460.61] [0.32 0.49] [0.59 0.71p.62 0.73]  [0.65 0.76]
ZB  [0.390.55] [0.390.54] [0.40 0.56] [0.340.50] [0.400.55] [0.38 0.54] [0.270.45] [0.340.51] [0.29 0.47]
LP [0.800.86] [0.830.89] [0.880.92] [0.840.89] [0.860.90] [0.87 0.91] [0.45 0.600.52 0.66] [0.62 0.74]
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Fig. 4. Evolution of the 12-month SPI in the different basins given by S4L0 (first forecast month), CAMS-OPI, GPCP and ERAI precipitation.
The horizontal ticks represent January of each year.

of the transformation. Table 3 presents the temporal correlaentering the data assimilation system. The main changes oc-
tions between GPCP SPI and the remaining datasets for theur in CAMS-OPI with a decrease in the correlations from
different SPI timescales and basins, considering the first anthe first to the second half of the period in the NG, BN
second half of the period but keeping the full period of pre- and ZB basins, which are the basins with larger reduction
cipitation in the SPI calculations. The correlations betweenof rain gauges. In particular, the significant reduction in the
GPCP and S4L0 do not change significantly. For ERAI thereZB basins is associated with a drop to zero stations used by
are only significant changes in the BN, with an increase ofCAMS-OPI in the region from 1999 onwards (see Fig. 2).

the correlations from the first to the second half of the period. The spatial patterns of the temporal correlations of the
This is likely associated with changes in the ERAI precipi- SPI-3 and SPI-12. calculated from the different products
tation due to changes in the amount/quality of observationsare in agreement with GPCP in southern and north-west
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Table 3. Temporal correlation of the GPCP 3-, 6- and 12-month SPI and ERAI, CAMS-OPI and S4L0 (each column) for the different
basins. The correlations between [c1 c2] indicate the correlations in the first half of the record (c1: 1979 to 1994) and second half of the
record (c2: 1995 to 2010). The bold values indicate that the difference between cl and c2 is statistically significant at 99 % (using a Fisher
transformation).

ERAI CAMS-OPI S4L0
3 6 12 3 6 12 3 6 12

NG [0.620.58] [0.500.47] [0.420.36] [0.720.59] [0.770.59] [0.87 0.59] [0.600.51] [0.540.43] [0.46 0.40]
BN [0.530.70] [0.430.74] [0.360.79] [0.77 0.63][0.75 0.62] [0.750.58]  [0.680.65] [0.670.70] [0.68 0.76]

ZB [0.520.42] [0.500.45] [0.420.58] [0.600.25] [0.680.29] [0.700.33] [0.430.33] [0.490.40] [0.410.43]

LP [0.840.83] [0.880.84] [0.930.86]  [0.880.85] [0.900.87] [0.92 0.86] [0.420.59] [0.530.61] [0.70 0.65]

d)SPI-12 GPCP vs ERAI €)SPI-12 GPCP vs CAMSOPI

0.3 0.4 0.5 0.6

Fig. 5. Temporal correlation ofa—c) 3-month andd—f) 12-month SPI betweefa, d) GPCP and ERAI(b, e) GPCP and CAMS-OPI, and
(c, f) GPCP and S4. Gray areas denote statistically insignificant correlationg withO1.

Africa, while in central Africa (between the 20l/S paral- 3.3 Drought forecasting

lels) ERAI and CAMS-OPI have low or non-significant cor-

relations, especially for the SPI-12 (Fig. 5). S4LO has in The skill of the seasonal forecasts of SPI will depend on the
general a lower variability than ERAI or CAMS-OPI, ex- skill of the underlying seasonal forecasts of precipitation and
cept over a latitudinal band south of Sahel (including the NGOn the quality of the monitoring (for long SPI timescales and
and BN basins), being a good candidate for drought moni-short lead times, where the monitoring dominates over the
toring in those regions, considering the poor performance oforecast). These two components of the skill can be sepa-
ERAI and CAMS-OPI. The lower variability of S4L0 (com- rately analysed, by (i) accessing the skill of the seasonal fore-
pared with ERA|) can be primar”y attributed to the |0ng- casts of precipitation and (II) evaluating the potential skill
range integrations of the coupled atmosphere—ocean mod®f the SPI seasonal forecast, i.e. using a perfect monitoring
and to the tendency of the forecasts to predict climatologicalroduct.

conditions.
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3.3.1 Precipitation monitoring skill aNG b

S4L3 S4L3
S4L2
S4L1
S4L0

S4L2

Over LP, NG and BN, S4 has skill in the first month of fore-  sau
casts, explaining the good performance of the SPI calculatec 5*°
using S4L0 when compared with ERAI and CAMS-OPI, €S- us.om
pecially in the NG and BN basins (Fig. 6). This can be pri- e

CAMS-OPI
ERAI

marily attributed to the predictability coming from the land— g E233335%85233
atmosphere initial conditions that will dominate the first days - 05 06 0T am

of the forecast. With increasing lead time, there is a general 3 saLs

drop in skill that is only present in regions/seasons associ- ... o

ated with large-scale climate forcings that can be captured suwo [ s4L0

by the coupled atmosphere—ocean modelling system. In botf

NG and BN, S4 has skl up to 2/3 months lead time for the "l e

forecasts valid between June to September, which is also the 2533352353233 233352853233

main rainy season, while in the LP a similar skill with lead

time is also found during November to February, also theFig. 6. Anomaly correlation coefficient (ACC) of 3-monthly mean
rainy season. Inthe ZB, S4 has a reduced skill (only 3 monthgrecipitation as a function of verification season (horizontal axis)
at 0 lead time), which is also visible in ERAI and CAMS- and dataset (El: ERAI; CS: CAMS-OPI) and S4 lead time. For
OPI. However, ZB was also the basin with a lower number€xample, the colour associated with column OND of line ERAI

of rain gauges included in GPCP, therefore being the mosforesponds to the ACC of ERAI versus GPCP mean October—
uncertain in terms of verification. December precipitation (over 30 yr), while the column OND of line

SL4L2 corresponds to the ACC of S4 forecasts initialized in August
valid for October—-December (2 months lead time) compared with
October—December precipitation of GPCP. White cells denote sta-
tistically insignificant ACC withp > 0.05. The forecast and ERAI
The potential skill of the SPI forecasts was evaluated byand CAMS-OPI are verified against GPCP for the period 1981 to
merging the S4 precipitation with GPCP to create a bench2010.
mark of the different SPI timescales for the seasonal forecasts
described above. This method isolates the contribution of the
seasonal forecasts of precipitation to the SPI skill, avoidingright after the rainy season will rely on the S4 seasonal pre-
the problems of the different monitoring products. On a re-diction. The CRPSS identifies the verification months and
gional scale, this can be adapted by using local informationjead time where the SPI forecasts using S4 outperform a
such as long-term rain gauges and/or gridded precipitatiorsimple climatological forecast (Fig. 7i—p). Those periods are
datasets. The SPI seasonal forecasts using GP&Pwere  consistent with higher ACC of S4 compared with CLM (with
benchmarked against forecasts using the same monitoringymbols in Fig. 7a—h) and reflect the underlying skill of S4
merged with climatological forecasts (CLM) created by ran- precipitation (Fig. 6).
domly sampling different 15yr (same ensemble size as S4) The previous skill analysis, based on ACC and CRPSS,
of GPCP. considered the full range of SPI forecasts. For drought detec-
The ACC of the SPI-12 is very close to 1 in all basins for tion/early warning, ROC and REL diagrams (among others
0 and 1 months lead time (Fig. 7e—h). In this case, the SPllike the Brier Score) are a useful tool for testing categorical
12 is built from 11 or 10 months of the monitoring and 1 or forecasts, i.e. event or no event. A drought event is defined
2 months of the seasonal forecasts for the 0 and 1 monthas SPk —1. The ROC diagrams in Fig. 8 of the SPI-3 and
lead time, respectively. For the short lead times, the monitor-SPI-6 represent the skill of using only precipitation forecasts
ing dominates the ACC of the SPI-12, which yields scores(no monitoring), while in the SPI-12 6 months of monitoring
close to 1 since the verification is done against the sameare merged with 6 months of seasonal forecasts. The ROC
dataset used for monitoring. In the SPI-3 the ACC for the scores of CLM are close to 0.5 (no information) in all basins
0 lead time is already lower than in the SPI-12, and it rapidly for the SPI-3 and SPI-6 at 2 and 5 months lead time since
drops to low values or not significant in regions/periods with these are just a random climatological sampling (Fig. 8). On
low or no precipitation predictability. For long lead times, the other hand, S4 has skill in drought detection in the NG,
there is a drop in the SPI-12 skill in particular for the veri- BN and LP, and no skill in ZB. For the SPI-12 at 5 months
fication in the calendar months after the rainy season. Thidead time, the ROC of CLM is always around 0.8 and was
is associated with the different weight of the monitoring and outperformed by S4 in the NG, BN and LP.
forecast in regions with a pronounced annual cycle. The SPI- The reliability diagrams (Fig. 9) further support the pre-
12 forecasts valid before the rainy season will tend to havevious results, showing that SPI-3 and SPI-6 with 2 and
a higher skill since the core precipitation information comes5 months lead time, respectively, are reliable in the NG, BN
from the monitoring (year before), while the forecasts valid and LP and tend to be over-confident (reliability curves with

3.3.2 Forecast skill of the benchmark
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Fig. 7.Anomaly correlation coefficient (ACC) of the seasonal forecasts of IB+@) and SPI-1Ze—h), and continuous rank probability skill
score (CRPSS) of SPI{3-1) and SPI-12Zm-p). In the colour matrix, the horizontal axis represents the verification month and the vertical
axis the lead time (months). In the ACC S4 forecasts are compared with GPCP, and the white circles indicate that the SAMGCC

by at least 0.05. In the CRPSS panels, S4 CRPS is benchmarked against the CPRS of CLM.

a slope< 1; Fig. 9). While the ACC and ROC evaluation in- have long-term records and are available in near real time to
dicated a clear difference between S4 and CLM forecasts foassess the actual predictive skill of the merged forecast.

the SPI-12 at 5 months lead time, the reliability diagrams The ROC scores for the near-real-time forecasts are equal
show similar results, with slopes of the reliability curves from 2 months lead time onwards for the SPI-3, and for the
close to 1 with S4 being under-confident (slopek) in the 5 months lead time in the SPI-6 since these do not include
BN, NG and LP. The variation of ROC and ROC skill score precipitation from the monitoring (Figs. 10 and 11). In the
(ROCSS) with lead time are summarized in the following re- NG and BN, ERAI and S4L0 were similar, outperforming
sults (Fig. 10): (i) in the ZB S4 is similar to a climatological CAMS-OPI although having a similar skill with 0 months
forecast, i.e. no skill, while it outperforms CLM in the NG, lead time to using GPCP as monitoring at 2 months lead time.
BN and LP; (ii) in the SPI-3 the 2 months lead time (using the This means that the problems identified in those datasets
first 3 months of the seasonal forecast) and in the SPI-6 th¢Sect. 3.2) lead to a reduction of skill of 2 months in the
5 months lead time (using the first 6 months of the seasonaNG and BN and 1 month in LP for the SPI-3. For the SPI-
forecast) have the highest skill scores; (iii) the skill score of 6 the skill reduction is between 3 and 4 months, while for
the SPI-12 is reduced, i.e. it is difficult to beat a climatology- the SPI-12 only CAMS-OPI is able to reach similar skill to
based forecast for long SPI timescales, where the monitoringsPCP at 5 months lead time in the LP basin. These results
dominates; and (iv) SPI S4 forecasts are never worse thahighlight the role of the precipitation monitoring quality for
CLM, and CLM skill is only driven by the accumulated ef- SPI seasonal forecasts, showing that significant gains in skill

fect of the monitoring. can be obtained by using good-quality observation/modelled
precipitation.
3.3.3 Seasonal forecast skill An example of a drought event showing the evolution of

the forecasts is represented in Fig. S3 in the Supplement.
The potential skill allows a clear understanding of the im- \we selected the 1991/1992 drought in the Limpopo region
portance and impact of the skill of S4 precipitation, but for (see Fig. 4) that caused humanitarian crises in several coun-
a near-real-time operational implementation GPCP is nofries in southern Africa associated with crop failures and

available. Therefore, a similar analysis to the previous sectiyestock mortalities among other factors (FAO, 2004). This
tion was performed using other precipitation products that
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Fig. 8. Relative operating characteristic (ROC) diagram representing hit rate (vertical axis) against false alarm rate (horizontal axis) for the
SPI-3 for 2 months lead tim@—d), the SPI-6 for 5 months lead tinfe—h)and the SPI-12 for 5 months lead tirtiel), given by S4 (black)

and CLM (grey) in the different basins (columns). Calculations based on 20 thresholds (fraction of ensemble member&)bélom 1

(symbols closer to 0.0) to 0 (symbols closer to 1.1). Both S4 and CLM seasonal forecasts were merged with GPCP for the SPI calculation,
and the forecasts are verified against the SPI calculated with GPCP. ROC values are given in the legend of each panel.

drought event was characterized by the driest rainy season ioonvergence zone, and the different datasets show the highest
the period 1979 to 2010 (using GPCP data): from Decem-divergence in these regions. It is therefore important to care-
ber 1991 to February 1992 the precipitation in the basin wadully assess the performance of the monitoring dataset for the
only 44 % of the climatological mean. The forecasts issuedspecific region of interest. GPCP is discontinued and cannot
early in September 1991 (Fig. S3 in the Supplement) pointedserve as a near-real-time monitoring tool in the future, but
to below-normal SPI-12 conditions in February 1992, which it serves as a benchmark observational tool. In this study it
were further reinforced by the following months’ forecasts. was also used to bias-correct the reanalysis data. The main
The forecasts using S4 did not capture the strong intensity o€onclusions from the monitoring component are as follows:
the anomaly but did outperform climatology-based forecasts
(CLM). The recovery of the anomaly was slow and correctly
captured by both S4 and CLM (the 1992/1993 rainy season
was close to normal conditions). — the usefulness of near-real-time monitoring tools has to
be carefully evaluated in each region; and

— drought monitoring in Africa with ERA-Interim has
limitations in the central equatorial region;

4 Conclusions — inregions where no reliable near-real-time data is avail-
able (in this study Niger, Blue Nile and Zambezi) the

In this paper the use of different observational (GPCP  first month of the seasonal forecasts might be used for
and CAMS-OPI) and reanalysis datasets (ERA-Interim) was drought monitoring following a positive evaluation.

evaluated concerning their value as monitoring tools for _
droughts in four African basins. Furthermore, the skill of the The new ECMWF seasonal forecast system 4 shows skill as

new seasonal forecast (S4) was tested in its ability to forecag forecasting tool in most basins and does not perform worse

droughts on a seasonal scale, in combination with reanalythan climatology in any of the considered basins. However at
sis/observations and as a stand-alone tool. longer timescales, where a merge with observational datasets

There is a clear difference in skill of monitoring precip- is needed, the selection of the best observation dataset is
itation anomalies, and thereby also droughts, depending oRaramount. The main conclusions of the drought forecasting
the region. In general, monitoring is difficult in the tropical System applied to the Africa basins are as follows:
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Fig. 9. Reliability diagrams (CLM, S4) and frequency histograms (fCLM, fS4) for SPI1 forecasts produced by S4 (black lines and white

bars) and CLM (grey lines and bars). For perfect reliability the curves should fall on top of the dotted diagonal line. The thin solid lines
(CLM* and S4) are the weighted least-squares regression lines of the reliability curves, and the slope of each curve is displayed in each
panel. Each panel represents a particular basin (column) and SPI timescale (rows), with the same organization as in Fig. 8.
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Fig. 11.Relative operating characteristic (ROC) of the S4 SPI forecasts as a function of lead time (months) for different timescales (columns)
and for the four basins (rows). Each panel compares the ROC of S4 forecasts using GPCP (square symbols), CAMS-OPI (triangle up
symbols), ERAI (circle symbols) and S4L0 (triangle left symbols) as monitoring. Note that for the SPI-3 all ROC scores are the same from
2 months lead time onwards and for the SPI-6 for 5 months lead time since in those lead times only S4 precipitation is used.

— the system 4 seasonal forecast has predictive skill inwith shorter records (for example the Tropical Rainfall Mea-
comparison with climatology in the Niger, Blue Nile surement Mission (TRMM)) that could be used for drought
and Limpopo and no skill in the Zambezi basin; and  monitoring.

) o The methodology presented in the paper to merge a mon-

— poor-quality monitoring products can reduce the poten-jioring and seasonal forecasts of precipitation on a regional
tial skill of SPI seasonal forecasts with 2 to 4 months gcaje can be adapted by using other sources of precipitation
lead time. for the monitoring (e.g. in situ rain gauges, gridded precipi-

. . tation datasets, remote sensing estimates) and seasonal fore-

_The generally low number of rain gauges and their decreasgasts (e.g. other systems, multi-model approaches, statistical

In the rec.en.t years (used bOth. n GPCP and C.AM.S'OPI)methods). This methodology can be also applied on a grid-

is the main limitation for the verification and monitoring of point basis, following downscaling methods as proposed by

droughts in the different basins. This will potentially impact Yoon et al. ’(2012) but care has to be taken when interpreting
f[he Sk_i” of the combined forecas_ts and their_ veri_fication, "€ seasonal-scale p}edictions of precipitation on local scales.
inforcing the need for a strong investment in climate mon- Furthermore, the role, quality and skill of other drought indi-

itoring. A proper evgluation of.changes in the skill Qf the ators (e.g. based on soil moisture, river discharge, evapora-
forecasts between different periods (for example the first an(ﬁon) has to be established, but such work will be highly de-

secgnd half OT the records_) would require a deeper study, ilrbendent on the availability of reliable monitoring networks.
particular the impact of using a reduced number of data (fo

example 16yr) for the SPI transformation. This would be
very informative, with further implications since there are
other precipitation datasets available in near real time but
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