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Abstract. Classical methods of regional frequency analysisregionalization approaches are commonly used to transfer
(RFA) of hydrological variables face two drawbacks: (1) the information from gauged sites to the target site (ungauged
restriction to a particular region which can lead to a loss ofor partially gauged) (e.g., Burn, 1990b; Dalrymple, 1960;
some information and (2) the definition of a region that gen-Ouarda et al., 2000). A number of estimation techniques in
erates a border effect. To reduce the impact of these drawregional frequency analysis (RFA) have been proposed and
backs on regional modeling performance, an iterative methodpplied in several countries (De Michele and Rosso, 2002;
was proposed recently, based on the statistical notion of théladdad and Rahman, 2012; Madsen and Rosbjerg, 1997;
depth function and a weight functiop. This depth-based Nguyen and Pandey, 1996; Ouarda et al., 2001).
RFA (DBRFA) approach was shown to be superior to tradi- In general, RFA consists of two main steps: (1) grouping
tional approaches in terms of flexibility, generality and per- stations with similar hydrological behavior (delineation of
formance. The main difficulty of the DBRFA approach is the hydrological homogeneous regions) (e.g., Burn, 1990a) and
optimal choice of the weight functiop (e.g.,¢ minimizing (2) regional estimation within each homogenous region at the
estimation errors). In order to avoid a subjective choice andsite of interest (e.g., GREHYS, 1996; Ouarda et al., 2000,
naive selection procedures ¢f the aim of the present paper 2001). The two main disadvantages of this type of regional-
is to propose an algorithm-based procedure to optimize thézation methods are (i) a loss of information due to the exclu-
DBRFA and automate the choice @faccording to objective  sion of a number of sites in the step of delineation of hydro-
performance criteria. This procedure is applied to estimatdogical homogeneous region, and (ii) a border effect problem
flood quantiles in three different regions in North America. generated by the definition of a region.
One of the findings from the application is that the optimal To reduce or eliminate the negative impact of these dis-
weight function depends on the considered region and camdvantages on the estimation quality, a number of regional
also quantify the region’s homogeneity. By comparing the methods have been proposed that combine the two stages
DBRFA to the canonical correlation analysis (CCA) method, (delineation and estimation) and use all stations (e.g., Ouarda
results show that the DBRFA approach leads to better perforet al., 2008; Shu and Ouarda, 2007, 2008). One of these
mances both in terms of relative bias and mean square erroregional methods was developed recently by Chebana and
Ouarda (2008). This RFA method is based on statistical depth
functions (denoted by DBRFA for depth-based RFA). The
i DBRFA approach focuses directly on quantile estimation us-
1 Introduction ing the weighted least squares (WLS) method to estimate pa-
I . rameters and avoids the delineation step. It employs the mul-
Due to the large territorial extents and the high costs assomfiple regression (MR) model that describes the relation be-

f”t‘t?d totmstalllgltlop and Tall:]te(r;ar:ce_ of m?”b'}o””% Sltlat'.(t) NStween hydrological and physio-meteorological variables of
it is not possible to monitor hydrologic variables at all sites ;¢ (Girard et al., 2004).

of interest. Consequently, hydrologists have often to provide After Chebana and Ouarda (2008), statistical depth func-

estimates of des_,lgn event quanﬂ@ﬂ',_ correspo_ndmg to_ 4 tions are used in a number of hydrological and environmental
large return periodl’ at ungauged sites. In this situation,
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studies. For instance, Chebana and Ouarda (2011a) usddriterion to be optimized) is not differentiable or the gra-
these functions in an exploratory study of a multivariate dient is unavailable and must be calculated by a numerical
sample including location, scale, skewness and kurtosis amethod (e.g., finite differences). Among these algorithms,
well as outlier detection. In another study, Chebana andhe most commonly used are the simplex method (Nelder
Ouarda (2011b) combined depth functions with the orienta-and Mead, 1965), the pattern search method of Hooke and
tion of observations to identify the extremes in a multivariate Jeeves (Hooke and Jeeves, 1961; Torczon, 2000) and the
sample. Bardossy and Singh (2008) used the statistical nodRosenbrock methods (Rao, 1996; Rosenbrock, 1960). These
tion of depth to detect unusual events in order to calibrate hy-methods are used successfully in several domains, and are
drological models. Recently, some studies present further departicularly popular in chemistry, engineering and medicine.
velopments of the approach that calibrate hydrological mod-Specifically, in this paper the simplex and the pattern search
els by a depth function (e.g., Krauf3e and Cullmann, 2012;algorithms are used because of their advantages. Indeed,
Kraul3e et al., 2012). they are very robust (e.g., Dolan et al., 2003; Hereford,

The DBRFA method consists generally of ordering sites2001; Torczon, 2000), simple in terms of programming, valid
by using the statistical notion of depth functions (Zuo andfor nonlinear optimization problems with real coefficients
Serfling, 2000). This order is based on the similarity between(McKinnon, 1999) and helpful in solving optimization prob-
each gauged site and the target one. Accordingly, a weight ifems with and without constraints (e.g., Lewis and Torczon,
attributed to each gauged site using a weight function de-1999, 2002).
notedg. This function, with a suitable shape, eliminates the In this study, the proposed optimization procedure is ap-
border effect and includes all the available sites proportionplied to the flood data from three different regions of the
ally to their hydrological similarity to the target site. Note United States and Canada (Texas, Arkansas and southern
that classical RFA approaches correspond to a special weigt@uebec). For each region, the obtained results are compared
function with value 1 inside the region and O outside. The with those of the CCA approach.
definition of a region in the classical RFA approaches be- The present paper is organized as follows. Section 2 de-
comes rather a question of choice of weight functoac- scribes the used technical tools including depth functions,
cording to a given criterion (e.g., relative root mean squarethe WLS method and the definitions of the considered weight
error RRMSE). functions. Section 3 describes the proposed procedure. Then

By construction, the estimation performance in the MR Sect. 4 presents the application to the three case studies as
model using the DBRFA approach depends on the choice ofvell as the obtained results. The last section is devoted to the
the weight functiong. Chebana and Ouarda (2008) applied conclusions of this work.
several families of functiong, where the corresponding co-
efficients were chosen arbitrarily and after several trials. In
addition, even though the obtained results are an improve2 Background
ment of the traditional approaches, they are not necessarily
the best ones. In this section, the background elements required to intro-

The aim of the present paper is to propose a procedure tduce and apply the optimization procedure of the DBRFA
optimize the DBRFA approach over This aim has theoreti- approach are briefly presented. This section contains a num-
cal as well as practical considerations. This procedure allows$er of basic notions.
an optimal choice of the weight functian and makes the
DBRFA approach automatic and objective. It should be noted2.1 Mahalanobis depth function
that Ouarda et al. (2001) determined the optimal homoge-
nous neighborhood of a target site in the canonical correlaThe absence of a natural order to classify multivariate data
tion analysis (CCA) based approach. In Quarda et al. (2001)ed to the introduction of the depth functions (Tukey, 1975).
the optimization corresponds to the selection of the neighborThey are used in many research fields, and were introduced in
hood coefficient, denoted ly, according to the bias or the water science by Chebana and Ouarda (2008). Several depth
squared error. The optimal choice of weight functions hasfunctions were introduced in the literature (Zuo and Serfling,
been the topic of numerous studies in the field of statistics2000). Depth functions have a number of features that fit well
(e.g., Chebana, 2004). with the constraint of RFA (Chebana and Ouarda, 2008).

To optimize the choice af, suitable families of functions In this study, the Mahalanobis depth function is used to
as well as algorithms are required. In the present contextsort sites where the deeper the site is the more it is hy-
four families ofy are considered: Gomperizd) (Gompertz,  drologically similar to the target site. This function is used
1825), logistic fiogistic) (Verhulst, 1838), lineard inear) and  for its simplicity, value interpretability, and for the relation-
indicator ). The three familiesg, ¢iogisiic andgLinearare  ship with the CCA approach used in RFA. The Mahalanobis
regular, flexible, S-shaped and have other suitable propertieslepth function is defined on the basis of the Mahalanobis dis-

Several appropriate algorithms can be considered (Wrighttance given byi2 (x, y) = (x — y)' A~1(x — y) between two
1996). They are appropriate when the objective function pointsx, y € R%(d > 1) whereA is a positive definite matrix
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(Mahalanobis, 1936). This distance is used by Ouarda et 2 ‘ ‘ o]
al. (2001) in the development of the CCA approach. The Ma- ";' e Bi/i“;lfl
halanobis depth of with respect tqu is given by 15 :( ;2 ;1 1:1 |
1 I
MHD(x; F) = ———— xIinR", 1) it
1+di(x, w
for a cumulative distribution functio# characterized by a  °°|
location parameter and a covariance matri&. Note that
Egell]\/lahalanobls depth function has values in the interval CCRENEEEESET——0! s 5 PR s 5(a)
An empirical version of the Mahalanobis depthxofith 1
respectu is defined by replacing” by a suitable empirical (mem o =1 a=1/2 b=1

function Fy for a sample of sizev (Liu and Singh, 1993).  osjj = ®=¢cc=la=l 1=l
In the context of the present paper, the notation in Eq. (1) is po e=la=2b=1
replaced by

0.6

! @ |

MHD ;(x; 4) = ———,
A( 2 1+d§(-x1:&) 021

1=

wherej andA are respectively the location and covariance
matrix estimated from the observed sample.

2.2 Weight functions rmem i G e=1 a=1 b=1/2
08| w @ m og c=1a=1 b=1
Below are the definitions of the four families of weight . 0o =1 a=1 b=2
functions¢g, @iogistic: ¢Linear aNd ¢ considered in this pa-
per along with special cases of functiopdor comparison 0.4}
purposes.

2.2.1 Gompertz function P ‘
-3 -2 -1 0 1 2 3 4 5 6(c)
The Gompertz function is usually employed as a diStribu'Fig. 1. lllustration of Gompertz function(a) ¢ varies with fixeda

tion in survival analysis. This function was originally formu- 4045, (b) « varies with fixeds ande and(c) b varies with fixeda
lated by Gompertz (1825) for modeling human mortality. A gndc.

number of authors contributed to the studies of the charac-

terization of this distribution (e.g., Chen, 1997; Wu and Lee,

1999). In the field of water resources, the Gompertz function2.2.2  Logistic function

was adopted by Ouarda et al. (1995) to estimate the flood , ) .
damage in the residential sector. The funciignis increas- ~ verhuls (1838) proposed this function to study population
ing, flexible and continuous (Zimmerman anéitéz-Anpn, ~ 9rowth. Itis given by

2001). The Gompertz distribution has different formulations

one of which is given by Plogistic(x) = a,b,c>0; x €R, 4)

14 ae b

06(x) = c exp{—a e—bX] a.b.c>0 x¢€R, (3)  Where the coefficients, a andb play the same role as ipg.
This function has similar properties to those @&

wherec is its upper limit,a andb are two coefficients which ~ (increasing, flexible, continuous and with three phases).

respectively allow to translate and change the spread of th&lowever, giogistic is symmetric around its inflection point

curve. Figure 1 shows the effects of these coefficients on th '”T“, %) which is not the case fasg.

form of ¢g. Note that this function starts at zero (starting

phase), then increases exponentially (growth phase) and fi-

nally stabilizes by approaching the upper limistationary

phase) with G< pg(x) < c. The inflection point of this func-

tion is ('”T“ 9).
e
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2.2.3 Linear function logY = (logX)B + e, (8)
Itis asimplefum_:tion, linear overthr_ee pigces correspondingyhere logX =(1, logA;, logAs, ..., logA,) is the
to the three previous phases. Explicitly it is given by N x (r+1) matrix formed by £) physio-meteorological
0 ifx < dy variables seriesg i; the ¢ +1)xs matrix of parameters
' x—dp - ande=(cl, ..., &5 is the N x s matrix that represents the
Ylinear®) = | g=gy Tdi = x = dp, dp > d1 > 0. (5) gt ooy (residual) with null mean vectors and variance-

i > . .
1 ifx > da covariance matrix:

This function is considered as a weight function in the study
of Chebana and Ouarda (2008). E(e) = (0. ... 0)and Vake) = T = (

Var (1) ... Cov(el, &%)

. . C s’ 1 V S
2.2.4 Indicator function ov(es, &) ... Var(e9)

The parameter matrig can be estimated, using the WLS

This function is given by estimation, by

_JlifxeA A arg min
fn) = {o it x ¢ A, O < % ) (logY — logX )’ 2 (logY — logX 4)
where A is a subset iR (set of real numbers), such as an = ((logX)' 2logX)(logX)' 2 log Y, (10)
interval. The subset represents the neighborhood or the re- i ) ) o
gion in the classical RFA approaches. The weight is equalvheres2=diag w1, ..., wy) is the diagonal matrix with di-

to 1 if the site is included in the region, otherwise, itis 0.  2gonal elements; whereuw; is the weight for the sité. The
In the case where the sdtis the interval {7, ,, 1] with ~ MatrixI'is estimated by

Cop= —1_ and Xg’p is the (1- «) quantile associated to N N
(IogY - IogXﬁW) (IogY — logX ﬂw)

1+x2
the chi—squgred distribution with degrees of freedom, the fy = . (11)
DBRFA reduces to the traditional CCA approach (e.g., Bates N-r-1

et al., 1998). The corresponding weight function is denoted

Note that the log-transformation induces generally a bias in

by pcca. o :
If A=]0, 1],i.e.,a =0, then the DBRFA represents the uni- the estimation oQT (Girard et al., 2004).

form approach, which includes all available sites with similar
importance. The corresponding weight function is denoted3 Methodology
by ¢u.
_ - This section describes a general procedure for optimizing
2.3 Weighted least squares estimation the DBRFA approach and treats special cases where this

. procedure is applied using the weight functions defined in
In the RFA framework, the MR model is generally used t0 ggct 2 2.

describe the relationship between the hydrological variables

and the physiographical and climatic variables of the sites 0f3.1  General procedure

a given region. This model has the advantage to be simple,

fast, and not requiring the same distribution for hydrological In order to find the optimal weight functiopoptimal in the

data at each site within the region (Ouarda et al., 2001). DBRFA approach, the procedure is composed of three main
Let QT be the quantile corresponding to the return pe-steps. They are summarized as follows:

riod T. It is often assumed that the relationship betw@din

as the hydrological variable, and the physio-meteorological

variables and basin characteristi¢s, Ao, ..., A, takes the

form of a power function (Girard et al., 2004):

| 1. For a given class of weight functions and a set of
gauged sites (region), use a jackknife procedure to as-
sess the regional flood quantile estimators (Eq. 8) for the
sites of the region using the DBRFA approach. These
QT = fo A/i‘l Af252 Afr e, (7) estimators depend on the weight functipthrough its

_ coefficients.
wheree is the model error.

Let s be the number of quantile®T corresponding to 2. For a pre-selected criterion, calculate its value to quan-
s return periods andV be the total number of sites in tify the performance of the estimates obtained from
the region. A matrix of hydrological variable¥ = (QT1, step (i).
QTo, ...,0Ts) of dimensionN x s is then constructed. With
a log-transformation in Eq. (7) we obtain the multivariate
log-linear model in the following form:
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3. Using an optimization algorithm, optimize the criterion errors are the minimum possible by construction. Conse-
(objective function) calculated in step (ii). The parame- quently, in order to simplify the notations in the rest of this
ters of the optimization problem are the coefficients of paper, we denote
the weight function. The outputs of this step atgtimal

and the value of the selected criterion. (\?1> - (AYkitervl) s (\?1> = (\?kner,l) ,
% ¢ @ ¢
3.2 Description of the procedure ~ N
e (W), = (Vi)

In the first step of the procedure, we use a jackknife resam- L _ _
pling procedure to assess the regional flood quantile esti- After calculating(Y;),, /=1, ..., N in step (i), we con-
mators for the sites of the region. This jackknife proceduresider and evaluate one or several performance criteria in
consists in considering each st/ =1, ..., N) in the re-  step (ii). The considered criteria are employed as objective

gion as an ungauged one by removing it temporarily fromfunctions in the optimization step (iii).

the region (i.e., we assume that the hydrological variable The relative bias (RB) and the relative root mean square
Y,of site! is unknown and the physio-meteorological vari- error (RRMSE) are widely used in hydrology, particularly in
able X; is known since it can be easily estimated from ex- RFA, as criteria to evaluate model performances. These two

isting physiographic maps and climatic data). Then we cal-Criteria are defined using an element-by-element division by
culate the regional estimat(éﬁ( 1) of sitel by the iterative ¢
® N (Y1 — (Yz)
¥

WLS regression, using th¥ — 1 remaining sites, which is RB, = 100 x 1 Z
related to the given weight functiop. The parameters of N = Y
tAhe startipg estimator (initial point) of DBRFA, denoted by
B, andI'y;, are calculated by assuming thét=X=<—/>, Y — (?) 2
Y =Y<"">andQ=1y_1in Egs. (10) and (11), where<—> 1 KM ),

/ : ! : RRMSE, = 100 x >
represents the matrix of physio-meteorological variables ex- N-14&
cluding sitel, Y <~*> is the matrix of hydrological variables B

e_xcludlng sitel and |y is the _|dent|t3_/ matrix of c_hmen- where Y] is the local quantile estimation for theth site,
spn W-1)x (N,_ L. The :c,taryng estimataly,), is ob- (?l)w is the regional estimation by DBRFA approach accord-
tained by replacings with 1, in Eq. (8). Then for each g 164 and excluding sité, andN is the number of sites in
depth iteratiork, k=2,3, ... kier, we calculate the Maha-  the yegion. The RB measures the tendency of quantile esti-
lanobis depth (Eg. 2) of the gauged sité =1, ...,N =1,  mates to be uniformly too high or too low across the whole
with respect to the ungauged sitelenoted bY(Dx.i.i)), = region and the RRMSEmeasures the overall deviation of

. . $ : estimated quantiles from true quantiles (Hosking and Wallis,
MHD(Fk—lJ)cp (IogY,, <|Ong1J)(p>. The number of iter- 1997). Note that other criteria can also be considered such
ationskiter is fixed to ensure the convergence of the depthas the Nash criterion (NASH) and the coefficient of determi-
function (generallyiwer = 25 is appropriate). The weight ma- nation (®2). In the hydrological framework, the previously
trix at iterationk is defined by applying the functianto the  defined criteria are used as key performance indicators (KPI)
depth calculated at this iteration. The parameters of the MRo compare different RFA approaches (e.g.aGs al., 2008).
model at thek-th iteration are estimated by Finally in step (iii), we apply an optimization algorithm
) , =) , on the selected and evaluated criterion in step (ii). The al-
(Bea), = (("’gx“')) (@), ('°gx<7'>)) (logx=") (@), togv <"~ (12) gorithms to be considered are indicated in the introduction

(logy<4> ~ (logx="1>) (Bw)w)’ (,OQYGD ~ (logx=—">) (EU)W) section. The formulation of the criteria to be optimized, gen-

: (16)

. (A7)

Y;

(fur), = e —— .(13)  erally complex and non-explicit, suggests the use of zero-
order algorithms. The application of these algorithms allows

where(Q.1),, is aN — 1 diagonal matrix with elements: us to find the optimal functiomoptimal With respect to se-
lected criteria. An overview diagram summarizing the opti-

® [(Dk,(l,,))(p], ) [(Dk,(N,l,,))(p]. (14)  mization procedure of the DBRFA approach is illustrated in
Fig. 2.

Note that all these parameters dependpoithen, the re- The procedure described above aims to calcuafgimal

gional quantile estimator for the sitén this iteration is according to the desired criterion. In order to estimate the
quantileY, of an ungauged site using the optimal DBRFA

(?k,l) = exp [('09X1) <3k,1) ] (15) approach, the user simply repeats step (i) of the procedure

¢ ¢ without excluding any site and while fixing the weight func-

In the second step of the procedure, we use the regional e£lON: I-€-, Step (i) withy = goptimat
timators at the last iteration since their associated estimation

www.hydrol-earth-syst-sci.net/17/2281/2013/ Hydrol. Earth Syst. Sci., 17, 2281296 2013



2286 H. Wazneh et al.: Optimal depth-based regional frequency analysis

Y :(Y)Nxs Hydrological
Input data

X =(X )NX(M) Physio-meteorological
T
Select: Kitr, class of g, criterion and optimization method
T

Initialization site 1=1

1
_ <=I>
Y= (Y )(Nfl)xs
Exclude site | temporarily =
X = ( X <7I>)
: (N=1)x(r+1)

Compute 4, and T, Eq. (10) and (11) using Q, =1,

Starting estimator( “) —eXp[ log X)) ﬂl.}

4

Compute D, ;) = MHD; (IogY log¥,.,, ); i=1.,N-1 <]

Update © using ¢ and D:
Q,, =diag ((D(Dk‘(l,l))’ ------ ’(D(Dk‘(N—LI)))

Re-estimate /3, and T, using Q, ,
T

Update v, using the /,, and T,

Jackknife procedure

Estimate Y, using iterative DBRFA
|

|ter

-<>

L klter I
(/’

|
I<N Yes

No

| Compute the selected criterion as parametric function |
T

| Optimize the criterion using the selected optimization method |
1

| Output: @y and the corresponding criteria |
T

Fig. 2. An overview diagram summarizing the optimization procedure of the DBRFA approach.

Based on the optimization procedure of the DBRFA ap-memory and computing time. If the weight function is one
proach described previously, the parameters of the optimizaef the two functions Gompertz (Eq. 3) or logistic (EqQ. 4), the
tion problem are the coefficients of the weight function. Con- coefficientc represents the upper limit of these functions. As
sequently, reducing the number of coefficientgican make in the DBRFA approach, the upper limit gfis 1; namely
the algorithm more efficient and less expensive in terms ofthe gauged site is completely similar to the target site, hence
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the valuec =1 is fixed. In this case, the problem is reduced The two other considered regions correspond to a database
to find the coupledy, by) that optimizes one of the pre- of the United States Geological Survey (USGS). This
selected criteria, such as Eqgs. (16) and (17). database, called Hydro-Climatic Data Network (HCDN),
Moreover, in the classeg=¢g Or ¢ = @iogistic: the opti-  consists of observations of daily discharges from 1659 sites
mization problem is applied in semi-bounded domain (i.e.,across the United States and its Territories (Slack et al.,
a > 0 andb > 0) and without other constraints (linear or non- 1993). The sites included in this database contain at least
linear). In this case, the Nelder—Mead algorithm can also be20yr of observations. As part of the HCDN project, the
applied as well as the pattern search one (Luersen and LEnited States is divided into 21 large hydrological regions.
Riche, 2004). In this study, the data of the states of Arkansas and Texas
On the other hand, in the case where ¢_ineair (EQ- 5), (USA) are used for comparison purposes. The applicability
the inequality constraind, > d1 > 0 is imposed. Therefore, conditions of frequency analysis as well as the variables to
the Nelder—Mead algorithm cannot be considered. consider are justified in the study of Jennings et al. (1994).
Theoretically and generally, the two optimization algo- The physiographical and climatological characteristics are
rithms used in this paper (i.e., the Nelder—Mead and thethe area of drainage basin (AREA) in Rnthe slope of
pattern search algorithms) converge to a local minimum (omain channel (SC) in mkmt, the annual mean precipitation
maximum) according to the initial point. To overcome this (AMP) in cm, the mean elevation of drainage basin (MED)
problem and make the algorithm more efficient, two solu-in m and the length of main channel (LC) in km. The se-
tions are proposed in the literature: (a) for each objectivelected hydrological variables in these two regions are the at-
function, use several starting points and calculate the optisite flood quantiles@T), in m3s~! corresponding to the re-
mum for each of these points; the optimum of the function turn periodsT =10 and 50yr.
will be the best value of these local optima (Bortolot and The data set of the state of Arkansas is composed of
Wynne, 2005); or (b) use a single starting point and each time&204 sites. These data and the at-site frequency analysis are
the algorithm converges, the optimization algorithm restartspublished in the study of Hodge and Tasker (1995). Tasker
again using the local optimum as a new starting point. Thiset al. (1996) used these data to estimate the flood quantiles
procedure is repeated until no improvement in the optimalcorresponding to the 50 yr return period by the region of in-
value of the objective function is obtained (Press et al., 2002)fluence method (Burn, 1990b).
The Texas database is composed of 90 sites but due to the
lack of some explanatory variables at several sites, modeling
was performed with only 69 stations. The data set used in

In this section we present the data sets on which the DBRFAthIS region is the same used by Tasker and Slade (1994).

approach will be applied in the following section. These data
come from three geographical regions located in the state
of Arkansas and Texas (USA) and in the southern part o
the province of Quebec (Canada). The first region is lo-

4 Data sets for case studies

Results

The results obtained from the CCA-based approach are first

cated between 45 and 58 in the 'south.ern 'part of Que- 0;Presented and then compared to those obtained by the opti-
bec, Canada. The data set of this region is composed of .
mized DBRFA approach.

151 stations, each station has a flood record of more than o o

o o . The variations of the two performance criteria RB and
15yr. The conditions of application of frequency analysis . .
. . . . RMSE, obtained by the CCA approach, as a function of the
(i.e., homogeneity, stationary and independence) are testelé g . o )

A ) . . _coefficienta (neighborhood coefficient) for the three regions

on the historical data of these stations in several StUd'eSére resented in Fig. 3. The complete variation rande isf
(Chokmani and Ouarda, 2004; Quarda and Shu, 2009; Sh e iF|)1tervaI [0, 1] I—?éwéver in thips application, the ?:n eis
and Ouarda, 2008). Three types of variables are considered: i ’ P ' g

hysiographical, meteorological and hydrological. The se- 0, 0.30] for Quebec and Arkansas regions and [0, 0.17] for
physiograp ' 9 y gical. . the Texas region. These upper bounds afe fixed to ensure

lected variables for the regional modeling are also used i . . : - .
Chokmani and Ouarda (2004). The selected physiographicr}hat all nelghbo_rhoqu of the sites contain sufﬂment. s_tauons
. o0 allow the estimation by the MR model. Note that it is ap-

variables are the basin area (AREA) in krthe mean basin : : .

. . : ropriate to have at least three times more stations than the
slope (MBS) in % and the fraction of the basin area covere : ,

. : : . number of parameters in the MR model (Hagdt al., 2002).
with lakes (FAL) in %. The meteorological variables are the _. L : .
S ! Figure 3 indicates that, for a given region, the same value of
annual mean total precipitation (AMP) in mm and the annual o o . .
a optimizes the two criteria for the various return periods,

mean degree days ovef @ (AMD) in degree-day. The se- even though this is not a general result (Ouarda et al., 2001).

lected hydrological variables are represented by at-site SP&a optimal values are 0.25, 0.01 and 0.05 respectively for
cific flood quantiles (QST) in Akm~—2's, corresponding to Quebec, Arkansas and Toxas. '

return periods” =10 and 100yr. The coefficientsi; and A2 correspond respectively to
the correlations of the first and the second couples of the
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Fig. 3. Optimal value of the neighborhood coefficientor the CCA $o6412 iy ’E'é.g 49
approach fo(a) southern Quebe¢h) Arkansas andc) Texas. The -3 8| Soeffcentol e
first column illustrates the RB and the second column illustrates the 0.85 1y 52T g
RRMSE. _ ‘ ‘ ‘ o ‘ ‘ ‘
-2 0 2 -4 -2 0 2 4
V1 (A, =0.92369) V2 (A, = 0.40244) (©

canonical variables. Their values for Arkansas£0.973,  Fig. 4. Scatterplot of sites in the canonical spaces (V1, W1) and

A2=0.470) and Texas.g =0.923,1, =0.402) are larger than  (V2, W2) for (a) southern Quebe¢b) Arkansas andc) Texas. The

those of Quebecig =0.853,12=0.281). This corresponds first column illustrates the canonical (V1, W1) space and the second

to a large optimal value of for the latter region. Indeed, columnillustrates the (V2, W2) space.

the higher the canonical correlation, the smaller the size of

the ellipse defining the homogeneous neighborhood (Ouarda

et al., 2001). The value o should be small enough so corresponding respectively ta and . This figure shows

that the neighborhood contains an appropriate number of stathat for these three regions, the relationship between V1 and

tions to perform the estimation in the MR model, and large W1 is approximately linear, in contrast to V2 and W2. The

enough to ensure an adequate degree of homogeneity withipresentation of a site in the space (V1, W1) is useful for

the neighborhood. an a priori information on the estimation error of this site.
Figure 4 shows the projection sites of the three re-For example, in the Quebec region, the two sites 66 and 122

gions in the two canonical spaces (V1, W1) and (V2, W2) are poorly estimated. By fitting a linear model between V1
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and W1 for each region, it is seen that the linearity assump- 1
tion is more respected in Arkansas and Texas than in Quebec
(R,irkansas: 0'94'R%exas: 0.85 andR(ZQuebec: 0.73). 08
The previous results show that the values.gfA2, « and
R? can be used as indicators of the quality of the homogene-
ity in a given region. In this application, the lower values of
A1, A2 and R? as well as the higher value of for Quebec
compared to the values of the other two regions indicate that
the Quebec region is less homogeneous than the two others.
This conclusion needs to be verified by other criteria or sta- 02
tistical tests.
The DBRFA approach is applied by using the Mahalanobis

. . . . 0 0.5 1 0 0.5 1
depth function (Eqg. 2). The optimal weight functions, from Depth Depth @)
each one of the three considered families, are obtained on the
basis of the indicated optimization algorithms (igg and 1
Plogistic Using Nelder—Mead angl jnear using pattern search).
They are presented in Fig. 5. The corresponding results are
summarized in Table 1. The optimization is made with re-
spect to the RB and RRMSE criteria. Note that, for a given
region, the regional flood quantile estimation is more accu- =
rate for small return periods. This result is valid for local §
as well as regional frequency analysis approaches (Hosking 04
and Wallis, 1997). In addition, Table 1 shows that the worst
estimates are obtained using the uniform approach (weight o>
functiongy). This justifies the usefulness of considering the
regional approaches. Note that for all regions, DBRFA with ‘ ‘
goptimal leads to more accurate estimates in terms of RBand ~ ° Dgfm ! 0 ngih ! )
RRMSE than those obtained using the CCA approach with
optimal «. These results show also that the optimal coeffi- 1

0.8

0.6

Weight

=
=
@
2

0.4 0.4

0.2

0.8 0.8

0.6

Weight

0.4

0.2

cients of a given weight function depend on the chosen cri- [ = v
terion (objective function). Finally, for the southern Quebec :: i |

0.8

= mQccs

region, the results of Chebana and Ouarda (2008) are very 08
close to those in the present paper (Table 1). The reason for
this closeness is that the above authors forced the DBRFA,. %°
approach to provide good results by trying several different g
combinations of values af coefficients (i.e., iteration loop 04
of coefficients). Consequently, their trials took a long time
and did not ensure the optimality of the approach, whichis
not the case for the present study.

According to Fig. 5, the form of optimal weight function ‘ ‘
depends on the considered region. For instance, the steep © 05 1 0 05 1
S curve (with long upper extremity) of the two regions, Pepth Pepih ©
Arkansas and Texas, depicts a large number of gauged sitgsg. 5. Optimal weight functions for(a) southern Quebec,
similar to the target one; however, the highcurve (with (b) Arkansas andc) Texas. The first column illustrates the weight
short upper extremity) of Quebec shows a small number offunction’s optimal with respect to RRMSE and the second column
gauged sites similar to the target one. This result supportdlustrates the weight function’s optimal with respect to RB.
the previously mentioned conclusion about the homogeneity
level for these regions.

In order to visualize the influence of gauged sites on the
regional estimation of a target site in the DBRFA and CCA « for the CCA approach and the optimad for the DBRFA
approaches, assume that Texas site number 25 is a target sapproach. We observe that the influence of a gauged site on
and has to be estimated using the remaining 68 gauged sitehe estimation of the target site in the DBRFA approach is
Figure 6 illustrates the weights allocated to each gauged sitproportional to the hydrological similarity between these two
in the canonical hydrological space (W1, W2) instead of thesites. Hence, the weight function takes a bell shape in a 3-D
geographical space. The estimate is made with the optimgbresentation (Fig. 6b). However, with the CCA approach, the

0.6

Weight

0.4

0.2
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space (W1, W2) usinfp) CCA with optimale and(b) the DBRFA
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-4 62

-5 ssssan s \ e

_ ...‘.i\ sesesa 60 D 991(::3?4 |
weight function (Eq. 6) takes only two values: 1 within the ° = 2Bt A . :
neighborhood of the target site or O otherwise (Fig. 6a). - 3

To study the impact of depth iterations on the perfor- 2 8 & 56

mance of the DBFRA method, this approach is applied tog ° % o
the three regions but without iterations on the Mahalanobis= -10 x
depth (i.e..kiter =2 in step (i) in the DBRFA optimization -11 52 1
procedure). The outputs of this application, witlr g and -12 RRART
£(.)=RRMSE, are shown in Table 2. These results indicate _;3 %0 /
that the optimal weight function changes depending on the _,, ‘ ‘ ‘ 8 ‘ ‘ ‘
case (with or without iterations) but keeps theshape (for 0 5Depth W i 0 5Depth W i ©

space limitation, the associated figure is not presented). In

addition, using the iterations, we observe an improvement irFig. 7. Variation of criteria (RB and RRMSE) as a function of the

the performance of the DBRFA method. This improvementdepth iteration number for the estimation(a) QS100 — southern

varies from one region to another, where it is more signifi- Quebec(b) Q50 — Arkansas an(t) Q50 — Texas.

cant in Quebec than in Texas and Arkansas (Table 2). This is

another result indicating a difference between Quebec and

the two other regions. Note that similar results are foundfunctions are those minimizing the RRMSE (Table 1). We

for other families of weight functions and for different op- observe arapid convergence (5 iterations) to the RRMSE val-

timization criteria. In conclusion, the depth iterative step in ues in Table 1 for Arkansas and Texas (Fig. 7b, c), whereas,

the DBRFA before weight optimization is important. for Quebec (Fig. 7a) it requires more than 20 iterations to
In order to examine the convergence speed in terms of theonverge to the results in Table 1. These results could be

performance criteria, we present the variations of these criteagain due to the level of homogeneity in the region.

ria as a function of depth iteration for different weight func-  To compare the relative errors of flood quantile estimates

tions (Fig. 7). The employed coefficient values of the weight obtained by different approaches for the three regions, Fig. 8
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Table 2. Results of the DBRFA approach with and without depth iterations using- RRMSE andp = ¢g.

Region
Southern Quebec (Canada) Arkansas (USA) Texas (USA)
Qs10 QS100 Q10 Q50 Q10 Q50

Optimal RB RRMSE RB RRMSE Optimal RB RRMSE RB RRMSE Optimal RB RMSE RB RRMSE

coefficients (%) (%) (%) (%) coefficients (%) (%) (%) (%) coefficients (%) (%) (%) (%)
With a=30.5 —3.55 38.70 —-2.20 44.50 a=97 —6.00 41.50 —6.33 47.70 a=129.7 -1.01 36.86 —6.00 50.79
iteration b=7 b=25 b=354
Without @ =66.50 —6.60 47.05 —7.52 55.07 a=721 —7.24 42.87 —8.64 50.34 a=186.7 -1.60 38.29 —6.29 51.00
iteration b=14.25 b=81 b=42.65
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Fig. 8. Relative quantile errors usin@) ¢cca and(b) ¢g. The first column illustrates the error of QS100 in southern Quebec, the second
column illustrates the errors of Q50 in Arkansas and the third column illustrates the errors of Q50 in Texas.

illustrates these errors with respect to the logarithm of basinrA comprehensive comparison requires presentation of these
area. The weight functions used are those optimizing theapproaches as well a number of data sets for the considered
RRMSE. It is generally observed that the DBRFA relative regions. Some of the data sets are not available for the re-
errors are lower than those obtained with the CCA approachgions of Texas and Arkansas, e.g., at-site peak flows to esti-
We also observe large negative errors for some sites, sucinate at-site quantiles as hydrological variables. However, all
as number 64 and 66 in southern Quebec, 180 and 175 ithese approaches are already applied to the region of Que-
Arkansas and 62 and 69 in Texas. bec in different studies. Table 3 summarizes the obtained re-
In this paper, the optimal DBRFA approach is mainly com- sults for all those methods along with those of the DBRFA
pared with the basic formulation of one of the most popularapproach. The results indicate that the optimal DBRFA per-
RFA approaches, which is the CCA approach. However, dif-forms better than the available approaches both in terms of
ferent variants of the latter are developed and are available ifRB and RRMSE, except a very slight difference of 1% in
the literature, such as the ensemble artificial neural networksthe RRMSE of QS10 with EANN-CCA. This could be re-
CCA approach (EANN-CCA) (Shu and Ouarda, 2007) andlated to the numerical approximations in the computational
the kriging-CCA approach (Chokmani and Ouarda, 2004). Inalgorithms.
order to insure the optimality of the optimal DBRFA, it is of
interest to expend the above comparison to those approaches.
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Table 3. Quantile estimation result for Quebec with available approaches and their references.

Approach Reference Qs10 QS100
RB RRMSE RB RRMSE
(%) (%) (%) (%)
Linear regression (LR) Table 1 above -9 55 -11 64
Nonlinear regression (NLR) Shu and Ouarda (2008) -9 61 -12 70
NLR with regionalization approach Shu and Ouarda (2008) -19 67 —24 79
CCA Table 1 above -7 44 -8 52
Kriging-CCA space Chokmani and Ouarda (2004)-20 66 —-27 86
Kriging-principal component analysis space Chokmani and Ouarda (20046 51 -23 70
Adaptive neuro-fuzzy inference systems (ANFIS)  Shu and Ouarda (2008) -8 57 -14 64
Artificial neural networks (ANN) Shu and Ouarda (2008) -8 53 -10 60
Single ANN-CCA (SANN-CCA) Shu and Ouarda (2007) -5 38 -4 46
Ensemble ANN (EANN) Shu and Ouarda (2007) -7 44 -10 60
Ensemble ANN-CCA (EANN-CCA) Shu and Ouarda (2007) -5 37 —6 45
Optimal DBRFA Table 1 above -3 38 -2 44

Best results are in bold character.
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