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Abstract. Classical methods of regional frequency analysis
(RFA) of hydrological variables face two drawbacks: (1) the
restriction to a particular region which can lead to a loss of
some information and (2) the definition of a region that gen-
erates a border effect. To reduce the impact of these draw-
backs on regional modeling performance, an iterative method
was proposed recently, based on the statistical notion of the
depth function and a weight functionϕ. This depth-based
RFA (DBRFA) approach was shown to be superior to tradi-
tional approaches in terms of flexibility, generality and per-
formance. The main difficulty of the DBRFA approach is the
optimal choice of the weight functionϕ (e.g.,ϕ minimizing
estimation errors). In order to avoid a subjective choice and
näıve selection procedures ofϕ, the aim of the present paper
is to propose an algorithm-based procedure to optimize the
DBRFA and automate the choice ofϕ according to objective
performance criteria. This procedure is applied to estimate
flood quantiles in three different regions in North America.
One of the findings from the application is that the optimal
weight function depends on the considered region and can
also quantify the region’s homogeneity. By comparing the
DBRFA to the canonical correlation analysis (CCA) method,
results show that the DBRFA approach leads to better perfor-
mances both in terms of relative bias and mean square error.

1 Introduction

Due to the large territorial extents and the high costs associ-
ated to installation and maintenance of monitoring stations,
it is not possible to monitor hydrologic variables at all sites
of interest. Consequently, hydrologists have often to provide
estimates of design event quantilesQT, corresponding to a
large return periodT at ungauged sites. In this situation,

regionalization approaches are commonly used to transfer
information from gauged sites to the target site (ungauged
or partially gauged) (e.g., Burn, 1990b; Dalrymple, 1960;
Ouarda et al., 2000). A number of estimation techniques in
regional frequency analysis (RFA) have been proposed and
applied in several countries (De Michele and Rosso, 2002;
Haddad and Rahman, 2012; Madsen and Rosbjerg, 1997;
Nguyen and Pandey, 1996; Ouarda et al., 2001).

In general, RFA consists of two main steps: (1) grouping
stations with similar hydrological behavior (delineation of
hydrological homogeneous regions) (e.g., Burn, 1990a) and
(2) regional estimation within each homogenous region at the
site of interest (e.g., GREHYS, 1996; Ouarda et al., 2000,
2001). The two main disadvantages of this type of regional-
ization methods are (i) a loss of information due to the exclu-
sion of a number of sites in the step of delineation of hydro-
logical homogeneous region, and (ii) a border effect problem
generated by the definition of a region.

To reduce or eliminate the negative impact of these dis-
advantages on the estimation quality, a number of regional
methods have been proposed that combine the two stages
(delineation and estimation) and use all stations (e.g., Ouarda
et al., 2008; Shu and Ouarda, 2007, 2008). One of these
regional methods was developed recently by Chebana and
Ouarda (2008). This RFA method is based on statistical depth
functions (denoted by DBRFA for depth-based RFA). The
DBRFA approach focuses directly on quantile estimation us-
ing the weighted least squares (WLS) method to estimate pa-
rameters and avoids the delineation step. It employs the mul-
tiple regression (MR) model that describes the relation be-
tween hydrological and physio-meteorological variables of
sites (Girard et al., 2004).

After Chebana and Ouarda (2008), statistical depth func-
tions are used in a number of hydrological and environmental
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studies. For instance, Chebana and Ouarda (2011a) used
these functions in an exploratory study of a multivariate
sample including location, scale, skewness and kurtosis as
well as outlier detection. In another study, Chebana and
Ouarda (2011b) combined depth functions with the orienta-
tion of observations to identify the extremes in a multivariate
sample. Bardossy and Singh (2008) used the statistical no-
tion of depth to detect unusual events in order to calibrate hy-
drological models. Recently, some studies present further de-
velopments of the approach that calibrate hydrological mod-
els by a depth function (e.g., Krauße and Cullmann, 2012;
Krauße et al., 2012).

The DBRFA method consists generally of ordering sites
by using the statistical notion of depth functions (Zuo and
Serfling, 2000). This order is based on the similarity between
each gauged site and the target one. Accordingly, a weight is
attributed to each gauged site using a weight function de-
notedϕ. This function, with a suitable shape, eliminates the
border effect and includes all the available sites proportion-
ally to their hydrological similarity to the target site. Note
that classical RFA approaches correspond to a special weight
function with value 1 inside the region and 0 outside. The
definition of a region in the classical RFA approaches be-
comes rather a question of choice of weight functionϕ ac-
cording to a given criterion (e.g., relative root mean square
error RRMSE).

By construction, the estimation performance in the MR
model using the DBRFA approach depends on the choice of
the weight functionsϕ. Chebana and Ouarda (2008) applied
several families of functionsϕ, where the corresponding co-
efficients were chosen arbitrarily and after several trials. In
addition, even though the obtained results are an improve-
ment of the traditional approaches, they are not necessarily
the best ones.

The aim of the present paper is to propose a procedure to
optimize the DBRFA approach overϕ. This aim has theoreti-
cal as well as practical considerations. This procedure allows
an optimal choice of the weight functionϕ and makes the
DBRFA approach automatic and objective. It should be noted
that Ouarda et al. (2001) determined the optimal homoge-
nous neighborhood of a target site in the canonical correla-
tion analysis (CCA) based approach. In Ouarda et al. (2001)
the optimization corresponds to the selection of the neighbor-
hood coefficient, denoted byα, according to the bias or the
squared error. The optimal choice of weight functions has
been the topic of numerous studies in the field of statistics
(e.g., Chebana, 2004).

To optimize the choice ofϕ, suitable families of functions
as well as algorithms are required. In the present context,
four families ofϕ are considered: Gompertz (ϕG) (Gompertz,
1825), logistic (ϕlogistic) (Verhulst, 1838), linear (ϕLinear) and
indicator (ϕI). The three familiesϕG, ϕlogistic andϕLinear are
regular, flexible, S-shaped and have other suitable properties.

Several appropriate algorithms can be considered (Wright,
1996). They are appropriate when the objective functionζ

(criterion to be optimized) is not differentiable or the gra-
dient is unavailable and must be calculated by a numerical
method (e.g., finite differences). Among these algorithms,
the most commonly used are the simplex method (Nelder
and Mead, 1965), the pattern search method of Hooke and
Jeeves (Hooke and Jeeves, 1961; Torczon, 2000) and the
Rosenbrock methods (Rao, 1996; Rosenbrock, 1960). These
methods are used successfully in several domains, and are
particularly popular in chemistry, engineering and medicine.
Specifically, in this paper the simplex and the pattern search
algorithms are used because of their advantages. Indeed,
they are very robust (e.g., Dolan et al., 2003; Hereford,
2001; Torczon, 2000), simple in terms of programming, valid
for nonlinear optimization problems with real coefficients
(McKinnon, 1999) and helpful in solving optimization prob-
lems with and without constraints (e.g., Lewis and Torczon,
1999, 2002).

In this study, the proposed optimization procedure is ap-
plied to the flood data from three different regions of the
United States and Canada (Texas, Arkansas and southern
Quebec). For each region, the obtained results are compared
with those of the CCA approach.

The present paper is organized as follows. Section 2 de-
scribes the used technical tools including depth functions,
the WLS method and the definitions of the considered weight
functions. Section 3 describes the proposed procedure. Then
Sect. 4 presents the application to the three case studies as
well as the obtained results. The last section is devoted to the
conclusions of this work.

2 Background

In this section, the background elements required to intro-
duce and apply the optimization procedure of the DBRFA
approach are briefly presented. This section contains a num-
ber of basic notions.

2.1 Mahalanobis depth function

The absence of a natural order to classify multivariate data
led to the introduction of the depth functions (Tukey, 1975).
They are used in many research fields, and were introduced in
water science by Chebana and Ouarda (2008). Several depth
functions were introduced in the literature (Zuo and Serfling,
2000). Depth functions have a number of features that fit well
with the constraint of RFA (Chebana and Ouarda, 2008).

In this study, the Mahalanobis depth function is used to
sort sites where the deeper the site is the more it is hy-
drologically similar to the target site. This function is used
for its simplicity, value interpretability, and for the relation-
ship with the CCA approach used in RFA. The Mahalanobis
depth function is defined on the basis of the Mahalanobis dis-
tance given byd2

A(x, y) = (x − y)′ A−1(x − y) between two
pointsx, y ∈ Rd(d ≥ 1) whereA is a positive definite matrix
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(Mahalanobis, 1936). This distance is used by Ouarda et
al. (2001) in the development of the CCA approach. The Ma-
halanobis depth ofx with respect toµ is given by

MHD(x; F) =
1

1 + d2
A(x, µ)

x in Rd, (1)

for a cumulative distribution functionF characterized by a
location parameterµ and a covariance matrixA. Note that
the Mahalanobis depth function has values in the interval
[0, 1].

An empirical version of the Mahalanobis depth ofx with
respectµ is defined by replacingF by a suitable empirical
function F̂N for a sample of sizeN (Liu and Singh, 1993).
In the context of the present paper, the notation in Eq. (1) is
replaced by

MHD
Â
(x; µ̂) =

1

1 + d2
Â
(x, µ̂)

, (2)

whereµ̂ andÂ are respectively the location and covariance
matrix estimated from the observed sample.

2.2 Weight functions

Below are the definitions of the four families of weight
functionsϕG, ϕlogistic, ϕLinear andϕI considered in this pa-
per along with special cases of functionsϕ for comparison
purposes.

2.2.1 Gompertz function

The Gompertz function is usually employed as a distribu-
tion in survival analysis. This function was originally formu-
lated by Gompertz (1825) for modeling human mortality. A
number of authors contributed to the studies of the charac-
terization of this distribution (e.g., Chen, 1997; Wu and Lee,
1999). In the field of water resources, the Gompertz function
was adopted by Ouarda et al. (1995) to estimate the flood
damage in the residential sector. The functionϕG is increas-
ing, flexible and continuous (Zimmerman and Núñez-Ant́on,
2001). The Gompertz distribution has different formulations
one of which is given by

ϕG(x) = c exp
{
−a e−bx

}
a, b, c > 0; x ∈ R, (3)

wherec is its upper limit,a andb are two coefficients which
respectively allow to translate and change the spread of the
curve. Figure 1 shows the effects of these coefficients on the
form of ϕG. Note that this function starts at zero (starting
phase), then increases exponentially (growth phase) and fi-
nally stabilizes by approaching the upper limitc (stationary
phase) with 0≤ ϕG(x) ≤ c. The inflection point of this func-

tion is
(

ln a
b

, c
e

)
.
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Fig. 1. Illustration of Gompertz function:(a) c varies with fixeda
andb, (b) a varies with fixedb andc and(c) b varies with fixeda
andc.

2.2.2 Logistic function

Verhuls (1838) proposed this function to study population
growth. It is given by

ϕlogistic(x) =
c

1 + a e−bx
a, b, c > 0; x ∈ R, (4)

where the coefficientsc, a andb play the same role as inϕG.
This function has similar properties to those ofϕG

(increasing, flexible, continuous and with three phases).
However,ϕlogistic is symmetric around its inflection point(

ln a
b

, c
2

)
which is not the case forϕG.
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2.2.3 Linear function

It is a simple function, linear over three pieces corresponding
to the three previous phases. Explicitly it is given by

ϕLinear(x) =


0 if x ≤ d1
x −d1
d2−d1

if d1 ≤ x ≤ d2, d2 > d1 > 0
1 if x ≥ d2

. (5)

This function is considered as a weight function in the study
of Chebana and Ouarda (2008).

2.2.4 Indicator function

This function is given by

ϕI(x) =

{
1 if x ∈ A

0 if x /∈ A,
(6)

whereA is a subset inR (set of real numbers), such as an
interval. The subsetA represents the neighborhood or the re-
gion in the classical RFA approaches. The weight is equal
to 1 if the site is included in the region, otherwise, it is 0.

In the case where the setA is the interval [Cα,p, 1] with
Cα,p = 1

1+χ2
α,p

andχ2
α,p is the (1− α) quantile associated to

the chi-squared distribution withp degrees of freedom, the
DBRFA reduces to the traditional CCA approach (e.g., Bates
et al., 1998). The corresponding weight function is denoted
by ϕCCA.

If A = [0, 1], i.e.,α = 0, then the DBRFA represents the uni-
form approach, which includes all available sites with similar
importance. The corresponding weight function is denoted
by ϕU.

2.3 Weighted least squares estimation

In the RFA framework, the MR model is generally used to
describe the relationship between the hydrological variables
and the physiographical and climatic variables of the sites of
a given region. This model has the advantage to be simple,
fast, and not requiring the same distribution for hydrological
data at each site within the region (Ouarda et al., 2001).

Let QT be the quantile corresponding to the return pe-
riod T . It is often assumed that the relationship betweenQT,
as the hydrological variable, and the physio-meteorological
variables and basin characteristicsA1, A2, . . . , Ar takes the
form of a power function (Girard et al., 2004):

QT = β0A
β1
1 A

β2
2 . . . Aβr

r e, (7)

wheree is the model error.
Let s be the number of quantilesQT corresponding to

s return periods andN be the total number of sites in
the region. A matrix of hydrological variablesY = (QT1,
QT2, . . . ,QTs) of dimensionN × s is then constructed. With
a log-transformation in Eq. (7) we obtain the multivariate
log-linear model in the following form:

log Y = (log X)β + ε, (8)

where logX = (1, logA1, logA2, . . . , logAr) is the
N × (r + 1) matrix formed by (r) physio-meteorological
variables series,β is the (r + 1)× s matrix of parameters
andε = (ε1, . . . , εs) is theN × s matrix that represents the
model error (residual) with null mean vectors and variance-
covariance matrix0:

E(ε) = (0, . . . , 0) and Var(ε) = 0 =

Var
(
ε1

)
. . . Cov

(
ε1, εs

)
...

. . .
...

Cov
(
εs, ε1

)
. . . Var(εs)

 . (9)

The parameter matrixβ can be estimated, using the WLS
estimation, by

β̂w =

(
arg min

β

)
(logY − logX β)′ �(logY − logX β)

= ((logX)′ � logX)−1 (logX)′ � log Y, (10)

where� = diag (w1, . . . ,wN ) is the diagonal matrix with di-
agonal elementswi wherewi is the weight for the sitei. The
matrix0 is estimated by

0̂w =

(
logY − logX β̂w

)′ (
logY − logX β̂w

)
N − r − 1

. (11)

Note that the log-transformation induces generally a bias in
the estimation ofQT (Girard et al., 2004).

3 Methodology

This section describes a general procedure for optimizing
the DBRFA approach and treats special cases where this
procedure is applied using the weight functions defined in
Sect. 2.2.

3.1 General procedure

In order to find the optimal weight functionϕOptimal in the
DBRFA approach, the procedure is composed of three main
steps. They are summarized as follows:

1. For a given class of weight functionsϕ and a set of
gauged sites (region), use a jackknife procedure to as-
sess the regional flood quantile estimators (Eq. 8) for the
sites of the region using the DBRFA approach. These
estimators depend on the weight functionϕ through its
coefficients.

2. For a pre-selected criterion, calculate its value to quan-
tify the performance of the estimates obtained from
step (i).

Hydrol. Earth Syst. Sci., 17, 2281–2296, 2013 www.hydrol-earth-syst-sci.net/17/2281/2013/
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3. Using an optimization algorithm, optimize the criterion
(objective function) calculated in step (ii). The parame-
ters of the optimization problem are the coefficients of
the weight function. The outputs of this step areϕOptimal
and the value of the selected criterion.

3.2 Description of the procedure

In the first step of the procedure, we use a jackknife resam-
pling procedure to assess the regional flood quantile esti-
mators for the sites of the region. This jackknife procedure
consists in considering each sitel (l = 1, . . . ,N ) in the re-
gion as an ungauged one by removing it temporarily from
the region (i.e., we assume that the hydrological variable
Ylof site l is unknown and the physio-meteorological vari-
ableXl is known since it can be easily estimated from ex-
isting physiographic maps and climatic data). Then we cal-

culate the regional estimator
(
Ŷl

)
ϕ

of site l by the iterative

WLS regression, using theN − 1 remaining sites, which is
related to the given weight functionϕ. The parameters of
the starting estimator (initial point) of DBRFA, denoted by
β̂1,l and 0̂1,l , are calculated by assuming thatX = X<−l>,
Y = Y<−l> and� = IN−1 in Eqs. (10) and (11), whereX<−l>

represents the matrix of physio-meteorological variables ex-
cluding sitel, Y<−l> is the matrix of hydrological variables
excluding sitel and IN−1 is the identity matrix of dimen-
sion (N − 1)× (N − 1). The starting estimator(Ŷ1,l)ϕ is ob-
tained by replacingβ with β̂1,l in Eq. (8). Then for each
depth iterationk, k = 2, 3, . . . ,kiter, we calculate the Maha-
lanobis depth (Eq. 2) of the gauged sitei, i = 1, . . . ,N − 1,
with respect to the ungauged sitel denoted by

(
Dk,(i,l)

)
ϕ

=

MHD
(0̂k−1,l)ϕ

(
logYi;

(
logŶk−1,l

)
ϕ

)
. The number of iter-

ationskiter is fixed to ensure the convergence of the depth
function (generallykiter = 25 is appropriate). The weight ma-
trix at iterationk is defined by applying the functionϕ to the
depth calculated at this iteration. The parameters of the MR
model at thek-th iteration are estimated by
(
β̂k,l

)
ϕ

=

((
logX<−l>

)′ (
�k,l

)
ϕ

(
logX<−l>

))−1 (
logX<−l>

)′ (
�k,l

)
ϕ

logY<−l>, (12)

(
0̂k,l

)
ϕ

=

(
logY<−l>

−
(
logX<−l>

) (
β̂k,l

)
ϕ

)′ (
logY<−l>

−
(
logX<−l>

) (
β̂k,l

)
ϕ

)
(N − 1) − r − 1

, (13)

where
(
�k,l

)
ϕ

is aN − 1 diagonal matrix with elements:

ϕ
[(

Dk,(1,l)

)
ϕ

]
, . . . , ϕ

[(
Dk,(N−1,l)

)
ϕ

]
. (14)

Note that all these parameters depend onϕ. Then, the re-
gional quantile estimator for the sitel in this iteration is(
Ŷk,l

)
ϕ

= exp

[
(logXl)

(
β̂k,l

)
ϕ

]
. (15)

In the second step of the procedure, we use the regional es-
timators at the last iteration since their associated estimation

errors are the minimum possible by construction. Conse-
quently, in order to simplify the notations in the rest of this
paper, we denote(
Ŷ1

)
ϕ

=

(
Ŷkiter,1

)
ϕ
, . . . ,

(
Ŷl

)
ϕ

=

(
Ŷkiter,l

)
ϕ
,

. . . ,
(
ŶN

)
ϕ

=

(
Ŷkiter,N

)
ϕ
.

After calculating(Ŷl)ϕ , l = 1, . . . ,N in step (i), we con-
sider and evaluate one or several performance criteria in
step (ii). The considered criteria are employed as objective
functions in the optimization step (iii).

The relative bias (RB) and the relative root mean square
error (RRMSE) are widely used in hydrology, particularly in
RFA, as criteria to evaluate model performances. These two
criteria are defined using an element-by-element division by

RBϕ = 100×
1

N

N∑
l=

Yl −

(
Ŷl

)
ϕ

Yl

 , (16)

RRMSEϕ = 100×

√√√√√√ 1

N − 1

N∑
l=1

Yl −

(
Ŷl

)
ϕ

Yl


2

, (17)

whereYl is the local quantile estimation for thel-th site,
(Ŷl)ϕ is the regional estimation by DBRFA approach accord-
ing toϕ and excluding sitel, andN is the number of sites in
the region. The RBϕ measures the tendency of quantile esti-
mates to be uniformly too high or too low across the whole
region and the RRMSEϕ measures the overall deviation of
estimated quantiles from true quantiles (Hosking and Wallis,
1997). Note that other criteria can also be considered such
as the Nash criterion (NASH) and the coefficient of determi-
nation (R2). In the hydrological framework, the previously
defined criteria are used as key performance indicators (KPI)
to compare different RFA approaches (e.g., Gaál et al., 2008).

Finally in step (iii), we apply an optimization algorithm
on the selected and evaluated criterion in step (ii). The al-
gorithms to be considered are indicated in the introduction
section. The formulation of the criteria to be optimized, gen-
erally complex and non-explicit, suggests the use of zero-
order algorithms. The application of these algorithms allows
us to find the optimal functionϕOptimal with respect to se-
lected criteria. An overview diagram summarizing the opti-
mization procedure of the DBRFA approach is illustrated in
Fig. 2.

The procedure described above aims to calculateϕOptimal
according to the desired criterion. In order to estimate the
quantileYu of an ungauged siteu using the optimal DBRFA
approach, the user simply repeats step (i) of the procedure
without excluding any site and while fixing the weight func-
tion, i.e., step (i) withϕ =ϕOptimal.

www.hydrol-earth-syst-sci.net/17/2281/2013/ Hydrol. Earth Syst. Sci., 17, 2281–2296, 2013
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Fig. 2.An overview diagram summarizing the optimization procedure of the DBRFA approach.

Based on the optimization procedure of the DBRFA ap-
proach described previously, the parameters of the optimiza-
tion problem are the coefficients of the weight function. Con-
sequently, reducing the number of coefficients inϕ can make
the algorithm more efficient and less expensive in terms of

memory and computing time. If the weight function is one
of the two functions Gompertz (Eq. 3) or logistic (Eq. 4), the
coefficientc represents the upper limit of these functions. As
in the DBRFA approach, the upper limit ofϕ is 1; namely
the gauged site is completely similar to the target site, hence
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the valuec = 1 is fixed. In this case, the problem is reduced
to find the couple (̂aN , b̂N ) that optimizes one of the pre-
selected criteria, such as Eqs. (16) and (17).

Moreover, in the classesϕ =ϕG or ϕ =ϕlogistic, the opti-
mization problem is applied in semi-bounded domain (i.e.,
a > 0 andb > 0) and without other constraints (linear or non-
linear). In this case, the Nelder–Mead algorithm can also be
applied as well as the pattern search one (Luersen and Le
Riche, 2004).

On the other hand, in the case whereϕ =ϕLineair (Eq. 5),
the inequality constraintd2 > d1 > 0 is imposed. Therefore,
the Nelder–Mead algorithm cannot be considered.

Theoretically and generally, the two optimization algo-
rithms used in this paper (i.e., the Nelder–Mead and the
pattern search algorithms) converge to a local minimum (or
maximum) according to the initial point. To overcome this
problem and make the algorithm more efficient, two solu-
tions are proposed in the literature: (a) for each objective
function, use several starting points and calculate the opti-
mum for each of these points; the optimum of the function
will be the best value of these local optima (Bortolot and
Wynne, 2005); or (b) use a single starting point and each time
the algorithm converges, the optimization algorithm restarts
again using the local optimum as a new starting point. This
procedure is repeated until no improvement in the optimal
value of the objective function is obtained (Press et al., 2002).

4 Data sets for case studies

In this section we present the data sets on which the DBRFA
approach will be applied in the following section. These data
come from three geographical regions located in the states
of Arkansas and Texas (USA) and in the southern part of
the province of Quebec (Canada). The first region is lo-
cated between 45 and 55◦ N in the southern part of Que-
bec, Canada. The data set of this region is composed of
151 stations, each station has a flood record of more than
15 yr. The conditions of application of frequency analysis
(i.e., homogeneity, stationary and independence) are tested
on the historical data of these stations in several studies
(Chokmani and Ouarda, 2004; Ouarda and Shu, 2009; Shu
and Ouarda, 2008). Three types of variables are considered:
physiographical, meteorological and hydrological. The se-
lected variables for the regional modeling are also used in
Chokmani and Ouarda (2004). The selected physiographical
variables are the basin area (AREA) in km2, the mean basin
slope (MBS) in % and the fraction of the basin area covered
with lakes (FAL) in %. The meteorological variables are the
annual mean total precipitation (AMP) in mm and the annual
mean degree days over 0◦C (AMD) in degree-day. The se-
lected hydrological variables are represented by at-site spe-
cific flood quantiles (QST) in m3 km−2 s, corresponding to
return periodsT = 10 and 100 yr.

The two other considered regions correspond to a database
of the United States Geological Survey (USGS). This
database, called Hydro-Climatic Data Network (HCDN),
consists of observations of daily discharges from 1659 sites
across the United States and its Territories (Slack et al.,
1993). The sites included in this database contain at least
20 yr of observations. As part of the HCDN project, the
United States is divided into 21 large hydrological regions.

In this study, the data of the states of Arkansas and Texas
(USA) are used for comparison purposes. The applicability
conditions of frequency analysis as well as the variables to
consider are justified in the study of Jennings et al. (1994).
The physiographical and climatological characteristics are
the area of drainage basin (AREA) in km2, the slope of
main channel (SC) in m km−1, the annual mean precipitation
(AMP) in cm, the mean elevation of drainage basin (MED)
in m and the length of main channel (LC) in km. The se-
lected hydrological variables in these two regions are the at-
site flood quantiles (QT), in m3 s−1 corresponding to the re-
turn periodsT = 10 and 50 yr.

The data set of the state of Arkansas is composed of
204 sites. These data and the at-site frequency analysis are
published in the study of Hodge and Tasker (1995). Tasker
et al. (1996) used these data to estimate the flood quantiles
corresponding to the 50 yr return period by the region of in-
fluence method (Burn, 1990b).

The Texas database is composed of 90 sites but due to the
lack of some explanatory variables at several sites, modeling
was performed with only 69 stations. The data set used in
this region is the same used by Tasker and Slade (1994).

5 Results

The results obtained from the CCA-based approach are first
presented and then compared to those obtained by the opti-
mized DBRFA approach.

The variations of the two performance criteria RB and
RRMSE, obtained by the CCA approach, as a function of the
coefficientα (neighborhood coefficient) for the three regions
are presented in Fig. 3. The complete variation range ofα is
the interval [0, 1]. However, in this application, the range is
[0, 0.30] for Quebec and Arkansas regions and [0, 0.17] for
the Texas region. These upper bounds ofα are fixed to ensure
that all neighborhoods of the sites contain sufficient stations
to allow the estimation by the MR model. Note that it is ap-
propriate to have at least three times more stations than the
number of parameters in the MR model (Haché et al., 2002).
Figure 3 indicates that, for a given region, the same value of
α optimizes the two criteria for the various return periods,
even though this is not a general result (Ouarda et al., 2001).
The optimalα values are 0.25, 0.01 and 0.05 respectively for
Quebec, Arkansas and Texas.

The coefficientsλ1 and λ2 correspond respectively to
the correlations of the first and the second couples of the
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Fig. 3.Optimal value of the neighborhood coefficientα for the CCA
approach for(a) southern Quebec,(b) Arkansas and(c) Texas. The
first column illustrates the RB and the second column illustrates the
RRMSE.

canonical variables. Their values for Arkansas (λ1 = 0.973,
λ2 = 0.470) and Texas (λ1 = 0.923,λ2 = 0.402) are larger than
those of Quebec (λ1 = 0.853,λ2 = 0.281). This corresponds
to a large optimal value ofα for the latter region. Indeed,
the higher the canonical correlation, the smaller the size of
the ellipse defining the homogeneous neighborhood (Ouarda
et al., 2001). The value ofα should be small enough so
that the neighborhood contains an appropriate number of sta-
tions to perform the estimation in the MR model, and large
enough to ensure an adequate degree of homogeneity within
the neighborhood.

Figure 4 shows the projection sites of the three re-
gions in the two canonical spaces (V1, W1) and (V2, W2)
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Fig. 4. Scatterplot of sites in the canonical spaces (V1, W1) and
(V2, W2) for (a) southern Quebec,(b) Arkansas and(c) Texas. The
first column illustrates the canonical (V1, W1) space and the second
column illustrates the (V2, W2) space.

corresponding respectively toλ1 andλ2. This figure shows
that for these three regions, the relationship between V1 and
W1 is approximately linear, in contrast to V2 and W2. The
presentation of a site in the space (V1, W1) is useful for
an a priori information on the estimation error of this site.
For example, in the Quebec region, the two sites 66 and 122
are poorly estimated. By fitting a linear model between V1
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and W1 for each region, it is seen that the linearity assump-
tion is more respected in Arkansas and Texas than in Quebec
(R2

Arkansas= 0.94,R2
Texas= 0.85 andR2

Quebec= 0.73).
The previous results show that the values ofλ1, λ2, α and

R2 can be used as indicators of the quality of the homogene-
ity in a given region. In this application, the lower values of
λ1, λ2 andR2 as well as the higher value ofα for Quebec
compared to the values of the other two regions indicate that
the Quebec region is less homogeneous than the two others.
This conclusion needs to be verified by other criteria or sta-
tistical tests.

The DBRFA approach is applied by using the Mahalanobis
depth function (Eq. 2). The optimal weight functions, from
each one of the three considered families, are obtained on the
basis of the indicated optimization algorithms (i.e.,ϕG and
ϕlogistic using Nelder–Mead andϕLinear using pattern search).
They are presented in Fig. 5. The corresponding results are
summarized in Table 1. The optimization is made with re-
spect to the RB and RRMSE criteria. Note that, for a given
region, the regional flood quantile estimation is more accu-
rate for small return periods. This result is valid for local
as well as regional frequency analysis approaches (Hosking
and Wallis, 1997). In addition, Table 1 shows that the worst
estimates are obtained using the uniform approach (weight
functionϕU). This justifies the usefulness of considering the
regional approaches. Note that for all regions, DBRFA with
ϕOptimal leads to more accurate estimates in terms of RB and
RRMSE than those obtained using the CCA approach with
optimal α. These results show also that the optimal coeffi-
cients of a given weight function depend on the chosen cri-
terion (objective function). Finally, for the southern Quebec
region, the results of Chebana and Ouarda (2008) are very
close to those in the present paper (Table 1). The reason for
this closeness is that the above authors forced the DBRFA
approach to provide good results by trying several different
combinations of values ofϕ coefficients (i.e., iteration loop
of coefficients). Consequently, their trials took a long time
and did not ensure the optimality of the approach, which is
not the case for the present study.

According to Fig. 5, the form of optimal weight function
depends on the considered region. For instance, the steep
S curve (with long upper extremity) of the two regions,
Arkansas and Texas, depicts a large number of gauged sites
similar to the target one; however, the highS curve (with
short upper extremity) of Quebec shows a small number of
gauged sites similar to the target one. This result supports
the previously mentioned conclusion about the homogeneity
level for these regions.

In order to visualize the influence of gauged sites on the
regional estimation of a target site in the DBRFA and CCA
approaches, assume that Texas site number 25 is a target site
and has to be estimated using the remaining 68 gauged sites.
Figure 6 illustrates the weights allocated to each gauged site
in the canonical hydrological space (W1, W2) instead of the
geographical space. The estimate is made with the optimal
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Fig. 5. Optimal weight functions for(a) southern Quebec,
(b) Arkansas and(c) Texas. The first column illustrates the weight
function’s optimal with respect to RRMSE and the second column
illustrates the weight function’s optimal with respect to RB.

α for the CCA approach and the optimalϕG for the DBRFA
approach. We observe that the influence of a gauged site on
the estimation of the target site in the DBRFA approach is
proportional to the hydrological similarity between these two
sites. Hence, the weight function takes a bell shape in a 3-D
presentation (Fig. 6b). However, with the CCA approach, the
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(a)

(b)

Fig. 6. Weight allocated to each gauged site to estimate the target-
site number 25 in the Texas region in the canonical hydrological
space (W1, W2) using(a) CCA with optimalα and(b) the DBRFA
approach with optimalϕG.

weight function (Eq. 6) takes only two values: 1 within the
neighborhood of the target site or 0 otherwise (Fig. 6a).

To study the impact of depth iterations on the perfor-
mance of the DBFRA method, this approach is applied to
the three regions but without iterations on the Mahalanobis
depth (i.e.,kiter = 2 in step (i) in the DBRFA optimization
procedure). The outputs of this application, withϕ =ϕG and
ζ (.) = RRMSE, are shown in Table 2. These results indicate
that the optimal weight function changes depending on the
case (with or without iterations) but keeps theS shape (for
space limitation, the associated figure is not presented). In
addition, using the iterations, we observe an improvement in
the performance of the DBRFA method. This improvement
varies from one region to another, where it is more signifi-
cant in Quebec than in Texas and Arkansas (Table 2). This is
another result indicating a difference between Quebec and
the two other regions. Note that similar results are found
for other families of weight functions and for different op-
timization criteria. In conclusion, the depth iterative step in
the DBRFA before weight optimization is important.

In order to examine the convergence speed in terms of the
performance criteria, we present the variations of these crite-
ria as a function of depth iteration for different weight func-
tions (Fig. 7). The employed coefficient values of the weight
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Fig. 7. Variation of criteria (RB and RRMSE) as a function of the
depth iteration number for the estimation of(a) QS100 – southern
Quebec,(b) Q50 – Arkansas and(c) Q50 – Texas.

functions are those minimizing the RRMSE (Table 1). We
observe a rapid convergence (5 iterations) to the RRMSE val-
ues in Table 1 for Arkansas and Texas (Fig. 7b, c), whereas,
for Quebec (Fig. 7a) it requires more than 20 iterations to
converge to the results in Table 1. These results could be
again due to the level of homogeneity in the region.

To compare the relative errors of flood quantile estimates
obtained by different approaches for the three regions, Fig. 8
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(a)

(b)

Fig. 8. Relative quantile errors using(a) ϕCCA and(b) ϕG. The first column illustrates the error of QS100 in southern Quebec, the second
column illustrates the errors of Q50 in Arkansas and the third column illustrates the errors of Q50 in Texas.

illustrates these errors with respect to the logarithm of basin
area. The weight functions used are those optimizing the
RRMSE. It is generally observed that the DBRFA relative
errors are lower than those obtained with the CCA approach.
We also observe large negative errors for some sites, such
as number 64 and 66 in southern Quebec, 180 and 175 in
Arkansas and 62 and 69 in Texas.

In this paper, the optimal DBRFA approach is mainly com-
pared with the basic formulation of one of the most popular
RFA approaches, which is the CCA approach. However, dif-
ferent variants of the latter are developed and are available in
the literature, such as the ensemble artificial neural networks-
CCA approach (EANN-CCA) (Shu and Ouarda, 2007) and
the kriging-CCA approach (Chokmani and Ouarda, 2004). In
order to insure the optimality of the optimal DBRFA, it is of
interest to expend the above comparison to those approaches.

A comprehensive comparison requires presentation of these
approaches as well a number of data sets for the considered
regions. Some of the data sets are not available for the re-
gions of Texas and Arkansas, e.g., at-site peak flows to esti-
mate at-site quantiles as hydrological variables. However, all
these approaches are already applied to the region of Que-
bec in different studies. Table 3 summarizes the obtained re-
sults for all those methods along with those of the DBRFA
approach. The results indicate that the optimal DBRFA per-
forms better than the available approaches both in terms of
RB and RRMSE, except a very slight difference of 1 % in
the RRMSE of QS10 with EANN-CCA. This could be re-
lated to the numerical approximations in the computational
algorithms.
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Table 3.Quantile estimation result for Quebec with available approaches and their references.

Approach Reference QS10 QS100

RB RRMSE RB RRMSE
(%) (%) (%) (%)

Linear regression (LR) Table 1 above −9 55 −11 64
Nonlinear regression (NLR) Shu and Ouarda (2008) −9 61 −12 70
NLR with regionalization approach Shu and Ouarda (2008) −19 67 −24 79
CCA Table 1 above −7 44 −8 52
Kriging-CCA space Chokmani and Ouarda (2004)−20 66 −27 86
Kriging-principal component analysis space Chokmani and Ouarda (2004)−16 51 −23 70
Adaptive neuro-fuzzy inference systems (ANFIS) Shu and Ouarda (2008) −8 57 −14 64
Artificial neural networks (ANN) Shu and Ouarda (2008) −8 53 −10 60
Single ANN-CCA (SANN-CCA) Shu and Ouarda (2007) −5 38 −4 46
Ensemble ANN (EANN) Shu and Ouarda (2007) −7 44 −10 60
Ensemble ANN-CCA (EANN-CCA) Shu and Ouarda (2007) −5 37 −6 45
Optimal DBRFA Table 1 above −3 38 −2 44

Best results are in bold character.

6 Conclusions

In the present paper, a procedure is proposed to optimize the
selection of a weight function in the DBRFA approach. This
procedure automates the optimal choice of the weight func-
tion ϕ with respect to a given criterion. Therefore, aside from
leading to optimal estimation results, it allows the DBRFA
approach to be more practical and usable without the user’s
subjective intervention. The user has only to select one or
several objective performance criteria to obtain the model,
the estimated performance and the weight functions for a
specific region. One of the findings is that the optimal weight
function can be seen as characterization of the associated
region.

General and flexible families of weight function are con-
sidered, as well as two optimization algorithms to find
ϕOptimal. The used algorithms can handle cases with or with-
out constraints on the definition domain of the functionϕ.

The obtained results, from three regions in North America,
show the utility of considering the DBRFA method in terms
of performance as well as the efficiency and flexibility of the
proposed optimization procedure.

The study of the three regions shows an association be-
tween the level of the homogeneity of the region, the form
of the optimal weight function and the computation conver-
gence speed. This result deserves to be developed in future
work.
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