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Abstract. Budyko (1974) postulated that long-term catch- We find that the time scale that controls subsurface storage
ment water balance is controlled to first order by the avail-release explains the observed trend. This time scale combines
able water and energy. This leads to the interesting questioseveral geomorphologic and hydraulic soil properties. Catch-
of how do landscape characteristics (soils, geology, vegetaments with relatively longer subsurface storage release time
tion) and climate properties (precipitation, potential evapora-scales produce significantly more/ P. Vegetation in these
tion, number of wet and dry days) interact at the catchmentatchments have longer access to this additional groundwater
scale to produce such a simple and predictable outcome adource and thus are less prone to water stress. Further anal-
hydrological partitioning? Here we use a physically-basedysis reveals that climates that give rise to more (Ids5p
hydrologic model separately parameterized in 12 US catchare associated with catchments that have vegetation with less
ments across a climate gradient to decouple the impact of clifmore) efficient water use parameters. In particular, the cli-
mate and landscape properties to gain insight into the role ofmates with tendency to produce mdtg P have catchments
climate-vegetation-soil interactions in long-term hydrologic that have lower % root fraction and less light use efficiency.
partitioning. The 12 catchment models (with different param-Our results suggest that their exists strong interactions be-
terizations) are subjected to the 12 different climate forcingstween climate, vegetation and soil properties that lead to
resulting in 144 10 yr model simulations. The results are an-specific hydrologic partitioning at the catchment scale. This
alyzed per catchment (one catchment model subjected to 120-evolution of catchment vegetation and soils with climate
climates) and per climate (one climate filtered by 12 differentneeds to be further explored to improve our capabilities to
model parameterization), and compared to water balance prepredict hydrologic partitioning in ungauged basins.

dictions based on Budyko’s hypothesiB /(P = ¢(Ep/P);
E: evaporation P: precipitation,Ep: potential evaporation).
We find significant anti-correlation between average devia-

tions of the evaporation indexz( P) computed per catch- 1 Introduction

ment vs. per climate, compared to that predicted by Budyko.

Catchments that on average produce meye® have devel- Catchment hydrologic partitioning, regional vegetation com-
oped in climates that on average produce I[E¢®, when position and soil properties are strongly affected by climate
compared to Budyko’s prediction. Water and energy season(Budyko, 1974; Whittaker and Niering, 1964; Jenny, 1941),
ality could not explain these observations, confirming pre_but the effect of climate-vegetation-soil interactions on river
vious results reported by Potter et al. (2005). Next, we anbasin water balance is still poorly understood. Wolock and
alyze which model (i.e., landscape filter) characteristics exMcCabe (1999) determined the hydrologic concepts needed

in mean annual runoff for the 344 climate divisions in the
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conterminous United States. The results of their study indi-with a strong Mediterranean climate (Silberstein et al., 2001),
cate that almost all of the information required for explain- and over-storey-under-storey dynamics in Darwin, Northern
ing the spatial variation of mean annual runoff is containedAustralia, with a tropical climate (Schymanski et al., 2008).
in mean annual precipitation and potential evaporation. How- In this study, we test Budyko’s hypothesis that available
ever, they required estimates of soil moisture storage capaawater and energy are the main controls on hydrologic par-
ity and seasonality in water supply to accurately estimatetitioning. If this hypothesis holds true than moving climates
the magnitude of mean annual runoff (Milly, 1994). Potter across different catchments should result in predictable hy-
et al. (2005) reached contradictory conclusions after study-drologic partitioning in accordance with Budyko’s curve. We
ing the mean annual water balance of 262 catchments arountest this hypothesis by means of a process-based hydrologic
Australia. They found that estimates of mean annual runoffmodel applied in 12 US catchments across a climate gradi-
from a model that accounts for seasonality and a priori esent. We use the 12 model parameterizations to decouple cli-
timates of catchment-scale soil moisture capacity comparednate and landscape properties to gain insight into the role of
poorly with observations. Further analysis showed that cali-climate-vegetation-soil interactions in long-term hydrologic
brated values of soil moisture storage capacity (to reproducgartitioning. Carrillo et al. (2011) present the results of ap-
observations) for summer-dominant rainfall catchments wereplying our hydrologic model to these 12 catchments, and
significantly lower than the a priori estimates, suggesting thatdemonstrate that the resulting model parameterizations are
in these catchments infiltration-excess runoff is an importantcapable of capturing the hydrologic response across the cli-
process that was not accounted for in the original model.  mate gradient at different temporal scales, from decades to
These and many other studies indicate that Budyko’s hy-daily. These 12 behavioral catchment models are subjected
pothesis (i.e., that mean annual evaporation is uniquely govto the 12 different climate forcings, resulting in 144 10yr
erned by the ratio of mean annual potential evaporation (cli-model simulations. The results are analyzed per catchment
matic water demand) and mean annual precipitation (climatiqone catchment model subjected to 12 climates) and per cli-
water supply), the aridity indekp/ P) is valid across many mate (one climate filtered by 12 different model parameteri-
climates and physiographic settings. Based on a large nuneation), and compared to water balance predictions based on
ber of precipitation and runoff data from catchments acrossBudyko’s hypothesis. The methodology adopted here is sim-
the world, Budyko (1974) suggested that the average aniar in many respects to the diagnostic analyses presented by
nual water balance at catchment scales is governed by théothityangkoon and Sivapalan (2009) to decipher differences

following empirical relationship: of inter-annual variability of annual water balance between

E E p 05 several catchments in Australia and New Zealand. In Sect. 2,

5= [%’tanh(E—)} [1— e*(EP/P)] we give a brief overview of the model being used, together
p

with some basic information regarding the 12 catchments se-

Budyko's observation leads to the interesting question of howlected from the MOPEX database. In Sect. 3, we present the

do landscape characteristics (soils, geology, vegetation) ancesults of simulating hydrologic response by means of the 12

climate properties (precipitation, potential evaporation, num-behavioral models forced by 10yr of climate observations.

ber of wet and dry days) interact at the catchment scale tdn Sect. 4, we interpret these results in light of model and

produce such a simple and predictable outcome of hydrologelimate characteristics.

ical partitioning? Recently, Gentine et al. (2012) addressed

this question by determining vegetation parameter values

in a simple stochastic water balance model that include® Process-based modeling of hydrologic response across

infiltration-excess overland flow to reproduce Budyko'’s hy- a climate gradient

pothesis across 460 catchments around the conterminous US.

They found that aboveground transpiration efficiency and be2.1  Hillslope storage Boussinesq-Soil Moisture model

lowground rooting structure adapt to the aridity index and the (Carrillo et al., 2011)

climate seasonality. In Mediterranean climates, where water

supply and demand are out of phase, plants develop deep&¥e refer to Carrillo et al. (2011) for a detailed description

roots to take advantage of larger storage capacity of water irf the process-based model used in this study. The model is

soils to survive long dry spells (Gerrits et al., 2009). based on the semi-distributed hillslope-storage Boussinesq
The study of Gentine et al. (2012) suggests that vegetatioithsB) model, developed by Troch et al. (2003). hsB allows

adapts to local climate conditions in ways that optimize wa-for the parsimonious simulation of shallow perched aquifer

ter use efficiency. This supports the findings of Huxman etdynamics at the hillslope spatial scale. This hillslope sub-

al. (2004) and Troch et al. (2009) where similar water use ef-surface flow model is coupled with a land surface water and

ficiency strategies were hypothesized based on whole biomenergy balance model to account for root zone soil moisture

and catchment response, respectively. The strategies that vedynamics and how it affects infiltration, percolation, evapo-

etation adopts may be different in different climatic and ge-ration, transpiration and recharge to the shallow hsB aquifer.

ologic settings: deep rooting strategies in Western AustraliaRainfall interception by vegetation canopy is parameterized
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by means of time-variable leaf area index information de- v oW o
rived from remote-sensing observations. A simple tempera- PN/ 7
ture based snow accumulation and melt model completes the, .
land surface components of the model. A fraction of total
recharge is assumed to contribute to a deep aquifer througt
fractured bedrock flow features.

The model parameters are informed from meteorological * "] “~
and hydrological observations selected to represent the dif-
ferent dynamic components in the model. For instance, base:
flow dynamics during the dormant season are synthesized ir« v
the baseflow recession master curve, which allows selecting s Tos 1 e o
aquifer parameters that accurately represent these observe = R —r -
dynamics. Likewise, vegetation parameters are selected from
observations during the growing season when the processé'_slg. 1. Study sites location. Snow catchments are indicated with
represented by these model parameters are likely dominating? - Inset: Evaporation Indexi/ P) vs. Aridity Index (Ep/P),
the catchment hydrologic response. Through this manual calcontinuous black curve corresponds to Eq. (1).
ibration strategy guided by physical understanding, we ob-
tain 12 behavioral model parameterization for each selected

2

catchment across a climate gradient (Fig. 1). investigate what causes Budyko’s hypothesis to hold across
so many climates and landscapes. In the following, we will
2.2 Data illustrate our methodology using data and simulations from

Spring River, Missouri.

The study catchments were selected from the MOPEX Figyre 2 shows model simulation results when varying cli-
database and represent a range of different climates, fromyates filtered by the model representing the hydrologic re-
semi-arid to humid (Duan et al., 2006). The inset of Fig. 1 sponse of Spring River (top panel), and when varying filters
illustrates that the average water balance of these 12 catcl”u-sing the climate of Spring River (bottom panel). The solid
ments follows Budyko’s hypothesis quite closely, despite thejine indicates Budyko’s hypothesis (Eq. 1) and the different
heterogeneity in climate, topography, soils and vegetationsympols show deviations from the solid line when different
Some catchments have seasonal snow cover, but in none @jimates are filtered by one model (top) and when different
these catchments snowmelt is the dominant runoff generatiop, o dels are used to filter one climate (bottom). For each simu-
process. We refer to Carrillo et al. (2011) for a complete list|ation (in this case 2 12) we compute the difference between
of catchment characteristics and model parameters for thesge simulated hydrologic partitioning and Budyko’s hypoth-
catchments. esis, indicated byA(E/P) (a positiveA(E/P) means that
Budyko’s hypothesis has less evaporation than simulated).
The Spring River catchment in Missouri shows that when the
2 climatic forcings are applied to its model parameteriza-
lon, a mean positive\ (E/ P) results. This indicates that in-
dependent of climate (wet and cold vs. hot and dry), this filter

idated using all 10yr of the decade. From the Slrnulatedalways generates less runoff than estimated using Budyko’s

response, we computed long-term water balance Variable%ypothesis On the other hand. when this catchment's. cli-

such as runoff coefficient and baseflow index, as well asmate is filtered by 12 different catchment model parameter-
streamflow regime curves using monthly data and flow du_izations a meanyne ative(E/P) is observed sup estin
ration curves using daily data. Performance indicators such, — =" g ) /. ) » SUgg 9
. - that independent of filter this climate typically generates less

as the Nash-Suttclife efficiency and mean absolute error . , 7
evaporation as compared to Budyko’s prediction.

were used to confirm the capacity of each model to simulate™” _. - .
pacity Figure 3 summarizes the results of the above-described

streamflow response across time scales. More information is . . N .
reported in Carrillo et al. (2011). methodology for all 144 simulations. The rows in Fig. 3 give

results per catchment (one catchment’s model filtering 12 dif-
ferent climates), whereas the columns give results per cli-

2.3 Model validation

Each of 12 catchment model parameterization was calibrate
using 5yr of climate forcing at the daily time step and val-

3 Decoupling climate and landscape properties mate (one catchment’s climate being filtered by 12 different
models). Figure 4 displays the average deviations of the indi-
3.1 Testing Budyko’s hypothesis vidual hydrologic partitioning with respect to Budyko’s hy-

pothesis (the\ (E/ P) values illustrated in Fig. 2) when ana-
Using the 12 behavioral models we can decouple the effectyzed per climate (x-axis) and per catchment (y-axis). The
of climate and landscape properties on hydrologic responsedata suggests that a linear relationship between these val-
We focus on long-term hydrologic partitioning so that we canues is statistically significant at < 0.05 and explains 45 %
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CLIMATE
Mean by
00 GUA | SAN | ENG* | SPR | RAP | MON*| EAS* | POT*|BLU*| AMI | TYG* | FRE catchment
1. } erercrcrcrcasessrsrsrsrstsesesessssrensrsrsrsrsrsace | S0 o001l cor | 00a Tco7 000 608 o0z Towalaoa ool 005 To.05 o
SAN -0.07 | -0.07| -0.17 |-0.19|-0.09| -0.06 |-0.12 |-0.01|-0.02| 0.00|-0.02 | -0.07 -0.07
[ ENG* |-0.01|-0.01| -0.04 |-0.09| 0.02 | 0.06 |-0.02 | 0.11 | 0.09 0.05 0.01
2 SPR [ 0.01 | 0.02 | 0.02 [-0.03|0.07 | 0.10 | 0.03 [0120.42] 0.06 | 0.02 -
w RAP -0.06 | -0.05| -0.09 |-0.13]-0.01| 0.02 |-0.05|0.07 | 0.05 | 0.06| 0.01 | -0.03 -0.02
E MON* | -0.08 | -0.08 | -0.12 |-0.15 -0.02 [-0.09| 0.03 | 0.02 | 0.03| 0.00 | -0.05 -0.05
5 EAS* |-0.13|-0.10| -0.08 |[-0.11]-0.03| 0.00 |-0.02[0.06 | 0.06 [ 0.05| 0.05 | 0.01 -0.02
(=) POT* |-0.16 | -0.15| -0.14 |-0.18|-0.07 | -0.05 |-0.09 | 0.02 0.01 0.00 | -0.05 -0.08
< BLU* |.0.42|-0.11| -0.14 |-0.17|-0.05| -0.01 |-0.09 | 0.04 | 0.01 0.02 | -0.02 | -0.06 -0.06
© AMI -0.01|-0.01| -0.08 |-0.11|-0.01| 0.02 |-0.04|0.08 | 0.060.08 0.04 | 0.00 0.00
TYG* |-0.42|-0.11| -0.15 |-0.19|-0.06 | -0.03 |-0.12 | 0.01 |-0.03| 0.01|-0.06[-0.11 -0.08
. FRE 0.04 | -0.04 | -0.15 |-0.17 [ -0.06 | -0.03 |-0.10| 0.02 | 0.00 | 0.03|-0.01|-0.05 -0.05

Mean by
climate

-0.06 ‘ -0.06‘ -0.10 ‘-0.13‘—0,03 ‘M -0.06. 0.04|0.04| 0.02 ‘»0.03|

Fig. 3. AE/ P values for 12 climates filtered through 12 catchments.

Values are averaged by rows (one catchment forced by 12 climates)

1.00 - Leeeecscesserhrrsssessssadssscssesseseiosssssrrasssbed and by columns (one climate filtered by 12 catchments) — Color
3 scale ranges from red to blue denoting low to high /P values,

respectively.

E/P[-]

3.2 The effect of intra-annual variability in water and
energy availability

The question arises whether the patterns we see in Fig. 4
are the result of the intra-annual variability of water and en-
ergy availability present in the different climates used in this
study. When water and energy availability are out of phase
Fig. 2. lllustration of AE/P calculation. Markers correspond to ONne would expect that such climates would always lead to
the evaporation indext/ P) vs. Aridity Index (Ep/P) for Spring higher runoff amounts, because there is not enough energy to
River, Missouri. Continuous black line represents Eq. (1). Diamondevaporate the rainfall when it becomes available as soil mois-
shaped marker corresponds to the Spring River catchment with it¢ure. Vice versa one expects climates with in-phase water and
own climate. Top: results for the Spring River climate filtered by 12 energy availability to generate more evaporation as there is
catchments; bottom: results for the Spring River catchment Undeénergy available when water is present. In order to test the
12 climates. effect of intra-annual variability on our results, we have com-
puted the seasonality index, SI (Walsh and Lawler, 1981):

of the observed variability. There is an anti-correlation be- 12
tween persistent deviations from the Budyko’s hypothesis peig| — 1
catchment and its corresponding climate. For instance, for Po—
Spring River the catchment’s model parameterization seems . N _
to produce, on average, more evaporation, while it's correWhere P is mean annual precipitation arij, is the mean
sponding climate seems to produce, on average, less eVap!;ﬂo.nthly prempnapon. Table 1 provides thg values and qual-
ration. We can now examine different climate and landscapdt@tively description of SI for the 12 climates. Follow-
properties (directly observed or captured by the models’ paiNd Walsh and Lawlers (1981) precipitation regime scale,
rameters) to explain this observation. Before we present reln® maximum level is described as “Extreme seasonality,

sults of this analysis, we investigate whether climate characWith almost allprecipitation in 1-2 months”, and corre-
teristics alone can explain the observed behavior. sponds to Sk 1.20. Because none of the 12 climates even

reached a “Seasonal” classification, corresponding to Sl
values between 0.60 and 0.79, an alternative index was
devised to quantify seasonality. Using the correlation co-
efficient between mean monthly precipitation and mean
monthly temperatureRp_7, the effects of seasonality can
be further examined.

In a study to explain spatial variability in mean annual
runoff, Wolock and McCabe (1999) calculat®g_ for 344
climate divisions in the conterminous United Sates in or-
der to account for seasonality effects. They clusteked
values in five groups, having the most out-of-phase regions

1.00 1.25 1.50 1.75 2.00
PE/P [-]

Xm -

P
12
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Table 1. Seasonality index for the 12 MOPEX catchmeritindicates catchment with some snow).

Seasonality

Climate Index Precipitation Regime

GUA 0.22  Precipitation spread throughout the year, but with definite wetter season

SAN 0.21 Precipitation spread throughout the year, but with definite wetter season

ENG* 0.42 Rather seasonal with short drier season

SPR 0.30 Precipitation spread throughout the year, but with definite wetter season

RAP 0.13 Precipitation spread throughout the year

MON* 0.11 Precipitation spread throughout the year

EAS* 0.23 Precipitation spread throughout the year, but with definite wetter season

POT* 0.15 Precipitation spread throughout the year

BLU* 0.17 Precipitation spread throughout the year

AMI 0.17 Precipitation spread throughout the year

TYG* 0.16 Precipitation spread throughout the year

FRE 0.15 Precipitation spread throughout the year
- 6:15 gions as out-of-phase, where the evaporation index was sig-
@ y=-0.51x-0.040 nificantly higher than expected according to Budyko's hy-
_g i R?=0.45 pothesis (Fig. 8 in Wolock and McCabe, 1999).
® O . p-val =0.017 Finally, from the analysis of daily precipitation and tem-
z ~<_ * perature time series, two climatic variables were identified

I 1 000 O 1 . .
o oY that may explain the observed pattern in the mean/ P
b 0,15 ND.O\% 0.15 values by climate. These variables are: the fraction of rainy
< * o days,Frp (a measure of storminess, see Jothityangkoon and
g r Sivapalan, 2009), and the mean temperature during rainy
N days,Trp. An empirical model was developed to test the re-

UIo

mean AE/P by climate lationship between mean E/P by climate and these two

variables. We consider a linear relationship between the two
Fig. 4. Correlation between averager / P evaluated by catchment  VariablesFrp and7rp andA E/ P by climate:

and by climate (sample size: 12 value: 0.02 (this value expresses
the probability that the observed trend is due to chance)). A (E/P)climate = —0.7150+ 0.7707Frp + 0.00817rp

This model explains 60 % of the variance and is significant at

with Rp_7 values lower than-0.61, and the most in-phase 7 < 0.0_5. It is clear that these two chargpter.istics pf the cli-

region with Rp_7 values higher thar-0.61. Table 2 shows mate will affect the way (?atchments partition incoming yvater

Rp_7 values, in ascending order, for the 12 catchments in théihd energy quxes'and will therefore strongliy mtgract with the

present study. Even the most negatRe_r value (~0.49 _dlfferent hydrolqglc processes, §u_ch as soil moisture dynam-

for AMI) is still far from the threshold for strong seasonality ICS @nd vegetation water use efficiency.

effects Rp_7 < —0.61). In fact, someRp_7 values for the

12 catchments imply an opposite effect on water partition-4  gelationships between climate, landscape and model

ing Whe_n compared t_o_observatlons. For ex._ample, the Amite  .aracteristics and hydrologic partitioning

River climate has positive values f&rE / P but it also has the

most negative correlation (out-of-phase) between monthlys 1 Analysis by catchment

precipitation and temperature. The opposite situation is illus-

trated with Spring River climate, which has negative valuesFigure 5 shows some statistically significant relationships be-

for AE/P but has one of the highest positigy_7 values  tween average deviations from Budyko’s hypothesis and ob-

(in-phase). served climate and landscape properties. The top panel sug-
Although these results are contradictory, Wolock and Mc-gests a linear relationship betwe@&E/P) by catchment

Cabe (1999) noted that seasonality effects improve the exand mean storm duration of that catchment. The linear re-

planatory power in their models only for climate regions on gression line explains 50 % of the observed variability. This

the west coastKp_r < 0.61), whereas seasonality has little result can be interpreted as follows: when mean storm dura-

effect in regions of the country where water supply and de-tion in a particular catchment increases, the tendency of the

mand are in-phase. Our study focuses entirely on catchmergatchment’s model is to produce more runoff, independent

east of the Rocky Mountains. Their study also classified re-of climate. This suggests that some model parameters have

www.hydrol-earth-syst-sci.net/17/2209/2013/ Hydrol. Earth Syst. Sci., 17, 220247, 2013
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Table 2. Linear correlation coefficient between mean monthly 0.10
precipitation and mean monthly temperaturep(_7) for the 12 y =-0.0139x +0.0745
MOPEX catchments. 2. 005 {® R?=0.50
a C » p-val =0.010
-~ @
Catchment ID Rp_t 2 E 0.00 -~ | |
Amite, LA AMI  —0.49 &5 50 10.0 12.5
French B., NC FRE  —0.27 g ©-0054 @
Bluestone, WV BLU -0.16 ® O
Tygart Valley, WV TYG 0.07 -0.10
San Marcos, TX SAN 0.15 Mean storm duration [day]
Monocay, MD MONF 0.17 0.10
Rappahanock, VA RAP 0.19 ’ y =-0.31x+0.0113
South Potomac, WV  POT 0.28 3. 0.05 R2 = 0.45
Guadalupe, TX GUA 0.32 a e . p-val = 0.017
East Fork, IN EAS 0.48 o g *
Spring, MO SPR 0.61 < £ 0.00 +—~ . '
English, IA ENG 0091 &2 0o 0.20 0.30
§ ©.0.05 -
*
. . -0.10
assumed values that favor runoff production and that this af- Catchment slope [-]

fects runoff generation no matter what the imposed climate

on that model. The bottom panel in Fig. 5 shows a linear rela-Fig. 5. Correlations between meaxE /P by catchment and mean
tionship betweer (E/ P) by catchment and catchment aver- storm duration (top; sample size: 1g;value: 0.01) and average
age slope. Apparently, when the catchment slope is high théatchment slope (bottom; sample size: p2/alue: 0.02).
catchment’s model will generate more runoff, independent

of climate. The explained variance of the linear regression

I I 0,
through the data points is 45 %. stay longer in the aquifer, and since there is a connection be-

tween water storage in the perched aquifer and the root zone,
plants have more time to take up that available water and

Carrillo et al. (2011) defined several model time scales to€nce will evaporate more. As can be seen from Eq. (2), this
compare similarities between different catchments (e.g., imdime scale combines landscape geomorphological informa-
scale of root zone filling by rainfall or time scale of root ton (L, &, ac, D) with hydrologic properties of the perched
zone emptying by evaporation). We analyzed all of theseaqglfer_kh, f).. The latter values are estimated during the
time scales with respect to average deviations from Budyko'$@libration period and are thus directly affected by stream-
hypotheses per climate, and found that a time scale relateflow dynamics, whereas the former (except foy which is

to perched aquifer dynamics explains best the observationdncluded in the model calibration) are derived from digital el-
Figure 6 compares th&(E / P) by climate and this important  €vation m_od_e_ls. The linear regression in Fig. _6 explains 75 %
model parameter, the perched aquifer advective time scalf the variability and suggests a strong coupling between cli-

4.2 Analysis by climate

This time scale is computed as follows: mate characteristics and the time water can spend in subsur-
face storage before being released as baseflow.
Lf We also analyzed several observed and derived catchment
t= 2kn(Sine — acp DCOS) properties that possibly explain the observed trends per cli-

mate. Figure 7 shows a linear relationship between maximum
whereL [m] is the average hillslope length,is the average leaf area index, estimated from 10yr of MODIS data (see
hillslope slope anglef [-] is the perched aquifer drainable Carrillo et al., 2011), and\ (E/P) by climate. Again, a sta-
porosity,kn, [m day 1] is the horizontal hydraulic conductiv- tistically significant relationshipg < 0.05) is observed. This
ity of the aquifer,D [m] is the aquifer depthp [-] is a lin- time there is a positive correlation between these two vari-
earization parameter (set to 1/3 in the model), apfll/m] ables, indicating that when the maximum leaf area index is
is the average hillslope convergence rate (see Carrillo et alhigh in a given catchment, its corresponding climate gener-
2011, for more details). This time scale quantifies whetherates more evaporation when compared to Budyko’s curve.
subsurface flow is dominated by advective (low valuedfpr ~ When we compara (E/ P) with vegetation parameters esti-
versus diffusive processes (high value). When flow in themated during the calibration process (in this case the vegeta-
perched aquifer is dominated by diffusion (high values of tion root fraction and light use efficiency; Fig. 8), we can fur-
7), the corresponding climate of that catchment generatesher explain the observed deviations from Budyko’s predic-
on average, more evaporation. Wherns high, water will  tions when analyzing our results by climate(E/ P) seems

Hydrol. Earth Syst. Sci., 17, 22092217, 2013 www.hydrol-earth-syst-sci.net/17/2209/2013/
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Fig. 7. Correlations between meafhE/P by climate and maxi- Fig. 8. Correlations between meahE/P by climate and two

mum value of the averaged leaf area index curve (sample size: 1inqd_el parameters, yegetatlon root fraction and vegetation light use
p value: 0.005). efficiency (sample size: 12; value: 0 and 0.001, resp.).

0.1

to have a negative correlation with both these parameters and € y= 0.0264x-0.0605
the fitted linear regressions explain 75 % and 67 % of the ob- g 0.05 R®= |°'_79 o
served variability, respectively. The model vegetation param- £ ™ p-val =0.0003
eters affect the catchment water balance through the follow- 9 ®
ing relationship (Teuling and Troch, 2005): -g: 0 O ! ! 1

> ojo 1.0 2.0 3.0 4.0 5/0
t = (1—owc) VrRebt (1 — e HA ) T (rsmin) <=' -0.05 -

: &
wherer [m day~1] is transpiration ratepwc [] is fraction of 2 o1

wet canopyVrr [-] is vegetation root fractiors; is the tran-
spiration reduction factoy is light use efficiency, LAl is leaf

area index, and’(rsmin) is the maximum transpiration rate Fig. 9. Correlation between meakE /P by catchment and the di-

Co.rrespondlng to minimal Stome_ltal resistance of the_ €anOPYmensionless number from the ratio of the perched aquifer and storm
Climates that produce systematically more evaporation seerg,ration time scales (sample size: 2value: 0).

to correspond with catchment vegetation that is less efficient

in its water use. Apparently, vegetation that is used to cli-

mates that produce more evaporation than Budyko’s predic5 Discussion and conclusion

tion seem to be less efficient in their use of water. This result

hints at a co-evolution of the catchment’s ecosystems and he motivation behind the present study was to try to un-

the corresponding climates, similar to the work of Gentinederstand the climatic and landscape controls on long-term

etal. (2012). hydrologic partitioning. Catchments demonstrate a surpris-
ingly simple behavior across many different climate and
landscape properties. This is best illustrated in the work of
Budyko (1974) who hypothesized that the long-term hydro-
logic partitioning is driven to first degree by the aridity index,

T10.14 (Perched aq./Storm duration) [-]
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and is relatively immune to variations in intra-annual cli- Recent opinion papers in hydrology and ecology (Harte,
mate properties and catchment characteristics. This raise®002; Sivapalan, 2005; McDonnell et al., 2007) have sug-
the question how different landscape properties interact withgested that great progress can be expected if the Earth sci-
local climate dynamics to cause such a simple outcome. lences reconcile the Newtonian with the Darwinian world-
also invites us to think whether this seemingly simple re-view. Several recent studies have attempted to apply Dar-
sponse is the result of some type of co-evolution between cliwinian methodology to catchment studies (Jothityangkoon
mate and catchment properties (more specifically the catchand Sivapalan, 2009), but an overarching theory of catch-
ment's geomorphology, soils, topography and vegetation)ment response based on the idea of catchment co-evolution
Since true experimentation at the catchment scale is imposshas yet to emerge. We refer to Harman and Troch (2013) for
ble, we have applied a space-for-time approach, in line withan in-depth discussion on this issue. Our results here indicate
the methodology often adopted by Darwin (see Ghiselin,that there exist strong connections between hydrologic par-
1969, for an excellent discussion on Darwin’s methods of re-titioning and several soil-vegetation-climate processes at the
search). This space-for-time approach was implemented witltatchment scale. Unraveling the interactions and feedbacks
the aid of a process-based model that is capable of simulathat result in these connections will ultimately allow us to
ing hydrologic response across various climates and at differinform catchment-scale Earth process models in ways that
ent temporal scales. A total of 12 catchment scale model paaccount for these existing interactions between climate, soils
rameterizations were confronted with 12 different climates inand vegetation.
an attempt to decouple climate drivers and landscape/model
properties.

Our results indicate that there are strong relationships bef\cknowledgementsSupport for this project was provided by the
tween how catchments partition incoming water and energ))\latlopal Science Foun_datlon_uno_ler project EAR-0635998 “Under-
and their respective climates. Similarly, we see that the dif_standlng the Hydrologic Implications of Landscape Structure and

Climate — Towards a Unifying Framework of Watershed Similar-

ferent climates impose specific hydrologic partitioning and it\ﬁ”. Support was also provide by the National Science Foundation
d

that those tendencies are related to Iar?dscape.propernes a}der project EAR-0724958 “CzO: Transformative Behavior of
model parameters that affect water residence time and Veg&water, Energy and Carbon in the Critical Zone: An Observatory
tation water use efficiencies. In contrast to what one WOUIdtO Quantify Linkages among Ecohydro|ogy’ Biogeochemistry, and
expect, when climates show a tendency to produce moreandscape Evolution”.
evaporation compared to Budyko’s hypothesis, their catch-
ments have less efficient vegetation, and vice versa. This alEdited by: L. Samaniego
indicates some level of co-evolution between climate and
vegetation properties that are responsible for hydrological
partitioning at the catchment scale.
. To further 'IIUStraFe this dgpendence, F.Ig. 9 Sh_ow_s a rela'Budyko, M. I.: Climate and Life, Academic Press, New York,
tionship between climate-driven hydrologic partitioning and  50g pp., 1974.
a dimensionless number that is related to water residencearrillo, G., Troch, P. A., Sivapalan, M., Wagener, T., Harman, C.,
time and storm duration. This dimensionless number com- and Sawicz, K.: Catchment classification: hydrological analysis
bines geomorphologic properties of the landscape with hy- of catchment behavior through process-based modeling along
drologic properties of the catchment aquifers and local cli- a climate gradient, Hydrol. Earth Syst. Sci., 15, 3411-3430,
mate dynamics. Again a strong significant relationship is doi:10.5194/hess-15-3411-2012011.
revealed that explains 80 % of the variance. When that di-Puan, Q., Schaake, J., Andreassian, V., Franks, S., Gupta, H. V., Gu-
mensionless number is high (large residence time of water ie"' Y. ':/' Féabﬁ_ts, F"XHa'QI' A., Hay, 'b" HNogltlje‘ylgl S':JHL(‘)a“E' ML"
and short storm durations), the corresponding climate gener- -S&VeSi€y. &., Liang, 2., Nasonova, ©. ., Notlhan, £, Dudin, L.,
. . . Sorooshian, S., Wagener, T., and Wood, E. F.: Model Parameter
ates more evaporation than expected. This type of analysis __.. . . . :
heds liah he i lati b domi dri Estimation Experiment (MOPEX): Overview and Summary of
sheds light on the Interrelations between dominant drivers .o gecond and Third Workshop Results, J. Hydrol., 320, 3-17,
of catchment hydrology, and suggests that the observed re- 5pg.
lationships may be expressions of climate-vegetation-soil in-Gentine, P., D’Odorico, P., Lintner, B., Sivandran, G., and Salvucci,
teractions at the catchment scale that systematically affect G.: Interdependence of climate, soil and vegetation as con-
hydrologic partitioning. It is interesting to refer to Wang and  strained by the Budyko curve, Geophys. Res. Lett., 39, L19404,
Wu (2013) who report strong correlations between water bal- doi:10.1029/2012GL053492012.
ance partitioning and the perennial stream network, whichGerrits, A. M. J., Savenije, H. H. G., Veling, E. J. M., and Pfister,
impact hydrologic response at the catchment scale. More re- Eharaitse”\7\;&3432"da(‘jjg'Tg'z‘z/%%%c\’;vaggggOggggwater Resour.
search, including more catchments and possibly other modeé XES., 49, g )730 :
. . . . hiselin, M. T.: The Triumph of the Darwinian Method, Dover
parameterizations, is needed to provide further evidence for -
. Publications, 1969.

these observations.
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