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Abstract. Runoff and flash flood generation are very sen-
sitive to rainfall’s spatial and temporal variability. The in-
creasing use of radar and satellite data in hydrological ap-
plications, due to the sparse distribution of rain gauges over
most catchments worldwide, requires furthering our knowl-
edge of the uncertainties of these data. In 2011, a new super-
dense network of rain gauges containing 14 stations, each
with two side-by-side gauges, was installed within a 4 km2

study area near Kibbutz Galed in northern Israel. This net-
work was established for a detailed exploration of the un-
certainties and errors regarding rainfall variability within a
common pixel size of data obtained from remote sensing
systems for timescales of 1 min to daily. In this paper, we
present the analysis of the first year’s record collected from
this network and from the Shacham weather radar, located
63 km from the study area. The gauge–rainfall spatial cor-
relation and uncertainty were examined along with the esti-
mated radar error. The nugget parameter of the inter-gauge
rainfall correlations was high (0.92 on the 1 min scale) and
increased as the timescale increased. The variance reduction
factor (VRF), representing the uncertainty from averaging
a number of rain stations per pixel, ranged from 1.6 % for
the 1 min timescale to 0.07 % for the daily scale. It was also
found that at least three rain stations are needed to adequately
represent the rainfall (VRF< 5 %) on a typical radar pixel
scale. The difference between radar and rain gauge rainfall
was mainly attributed to radar estimation errors, while the
gauge sampling error contributed up to 20 % to the total dif-
ference. The ratio of radar rainfall to gauge-areal-averaged
rainfall, expressed by the error distribution scatter parameter,
decreased from 5.27 dB for 3 min timescale to 3.21 dB for the

daily scale. The analysis of the radar errors and uncertainties
suggest that a temporal scale of at least 10 min should be
used for hydrological applications of the radar data. Rainfall
measurements collected with this dense rain gauge network
will be used for further examination of small-scale rainfall’s
spatial and temporal variability in the coming years.

1 Introduction

Complex interactions exist between the spatial and temporal
variability of rainfall and watershed hydrological responses
(Morin et al., 2006). This has been demonstrated by several
hydrological studies:Singh(1997) discussed how the spatial
and temporal variability of rainfall affects the runoff hydro-
graph and peak discharge;Arnaud et al.(2011) indicated that
large catchments, on the scale of hundreds of square kilo-
meters, are more sensitive than small catchments to uncer-
tainties resulting from not considering the spatial variability
of the rainfall; Zoccatelli et al.(2011) pointed out that the
catchment response is sensitive to the rainfall’s spatial vari-
ability, even for small catchment sizes (a few dozen square
kilometers), and that neglecting the spatial variability would
affect runoff timing;Rozalis et al.(2010) established a hy-
drological model for flash-flood prediction and found it to be
very sensitive to the temporal variability of the rainfall, af-
fecting both runoff amount and peak discharge;Faures et al.
(1995) indicated that knowing the spatial variability of con-
vective rainfall is essential, even for catchments of very small
scale (less than a few square kilometers) when conducting
hydrological modeling;Bahat et al.(2009) found that rainfall
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uncertainty dominates uncertainties in runoff prediction for a
catchment smaller than 1 km2; Berne et al.(2004) found that
hydrological applications for urban catchments of the order
of few square km require a high resolution of temporal (3–
5 min) and spatial (2–3 km) rainfall data.

Rainfall is usually measured for hydrological applications
by rain-gauge networks, weather radars or satellites. Al-
though rain gauges are the most commonly used source, they
are often too sparsely distributed; only a few dense rain-
gauge networks worldwide adequately cover entire catch-
ments. Weather radar records rainfall at high spatial and
temporal resolution (e.g. 1.5 km2 and 3 min – see Sect.2),
which is suitable for most hydrological modeling purposes.
Satellite-based rainfall estimates can also be used for hydro-
logical applications but they typically represent larger space
and timescales and can potentially be applied to large catch-
ments (as discussed byNikolopoulos et al., 2010). The in-
creasing use of radar and satellite data in hydrological appli-
cations requires improving our knowledge of the uncertain-
ties of these data (see a recent discussion byBerne and Kra-
jewski (2013) of current limitations and challenges in the use
of weather radars in hydrology). A main difficulty in this re-
gard is that remotely sensed rainfall estimates are provided in
spatially averaged pixels (typically 1–4 km2) and no equiva-
lent ground reference data are available because of the above-
mentioned sparseness of rain-gauge networks (see extensive
discussion byKrajewski and Smith, 2002). In 2003,Krajew-
ski et al.(2003) declared that “new designs of the rain gauge
networks should be considered” to learn more about the high-
resolution variability of rainfall. Almost a decade later,Kra-
jewski et al.(2010) summarized their paper by stating that
“one key factor in solving the persistent problem of radar-
rainfall uncertainties is the availability of dense rain gauge
networks that could provide valuable information for model-
ing these uncertainties”. In 2011, a new super-dense network
of rain gauges was installed in northern Israel. This network
was established to explore in detail the uncertainties and er-
rors caused by rainfall variability at remote-sensing subpixel
resolution. This is the first step in continuing research to ex-
pand our knowledge of the spatial and temporal variability of
rainfall at scales below 2 km.

Several studies have dealt with rainfall variability at pixel
and subpixel scales: in 1998,Krajewski et al.(1998) recog-
nized the need to establish rain-gauge networks at the radar
subpixel scale to estimate radar-rainfall uncertainty. They de-
ployed a network, which included 10 stations (see configu-
ration in Krajewski et al., 2003), in the Iowa City Munici-
pal Airport. Habib et al.(2001b) used this network to esti-
mate the errors resulting from the use of tipping-bucket rain
gauges with the aim of capturing the rainfall’s small-scale
temporal variability. By fitting a nonparametric regression on
rainfall data collected from 15 collocated rain gauges (EVAC
PicoNet network, Oklahoma),Ciach(2003) analyzed the lo-
cal random errors of tipping-bucket rain gauges on a smaller
scale. Later,Ciach and Krajewski(2006) used the PicoNet to

analyze the spatial correlation of the rainfall over a 3× 3 km
area;Ciach and Krajewski(1999) introduced the error sep-
aration method which distinguishes the rain-gauge sampling
error from the radar rainfall estimation error. They used a net-
work of five rain gauges with a scale similar to that of the
radar pixel. Data from the PicoNet were also used bySeo and
Krajewski (2011) to test the assumption that the covariance
between radar rainfall error and rain gauge error in represent-
ing the radar sampling domain is negligible when using the
error separation method. Two dense networks of eight gauges
within a 4 km2 grid located at the Brue catchment were used
by Wood et al.(2000) to estimate the errors of the individ-
ual gauge and radar compared to the “true” mean areal rain-
fall. This network was later used byVillarini et al. (2008)
to assess the errors resulting from temporal gaps in rainfall
observations and the uncertainties resulting from areal-to-
point estimations.Habib et al.(2001a) estimated the corre-
lation coefficient of point rainfall using a clustered network
of rain gauges deployed in Florida (TEFLUN-B network).
Gebremichael and Krajewski(2004) used both TEFLUN-
B and TRMM-LBA networks to estimate the radar’s ability
to characterize the small-scale spatial variability of rainfall
by comparing the correlation function of the gauge and the
radar. A network consisting of nine optical rain gauges within
500× 500 m was deployed in Denmark byJensen and Ped-
ersen(2005) to explore the radar subpixel-scale rainfall vari-
ation.Pedersen et al.(2010) used the same network to deter-
mine the coefficient of variation and the spatial correlation
of the rainfall field.Fiener et al.(2009) installed a network
consisting of 13 tipping-bucket rain gauges on a 1.4 km2

area in Germany to determine the spatial variability of rain-
fall on a subkilometer scale, taking into account the wind’s
potential effect. The Walnut Gulch Experimental Watershed
(WGEW), equipped with about 10 rain gauges per every
TRMM Precipitation Radar pixel (∼ 5 km in diameter), was
used byAmitai et al.(2012) who conducted rain rate compar-
isons of these two resources for a semiarid climate. Several
studies have explored the small-scale spatial variability of the
rainfall drop size distribution (DSD) (Tapiador et al., 2010;
Tokay et al., 2010). Jaffrain et al.(2011) deployed 16 optical
disdrometers over a 1× 1 km area in Switzerland and deter-
mined the coefficient of variation of the total concentration
of drops, the mass-weighted diameter and the rain rate over
the network.

In the current study we set up the first step toward es-
timating the subpixel sampling uncertainties and the errors
of weather radar rainfall estimates using a super dense rain-
gauge network. This network is located in a different cli-
matological area than the above presented networks. In this
paper we wish to first present our network (current results
and future plans) to the hydrological community as part of
the global effort to enhance the knowledge of small-scale
rainfall variability and radar uncertainty; and secondly, to
present three lessons learned from the first year of obser-
vations regarding (1) the spatial correlation of convective
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Fig. 1. Map of the study area including the 14 rain stations (triangles) around Kibbutz Galed. Each station is composed of two rain gauges.
The black grid represents the radar mesh, with a spatial polar resolution of 1.4◦

× 1 km. Inset shows the general location of the network in
Israel (star) and the location of the EMS weather radar (cross).

and nonconvective rainfall; (2) the number of rain gauges
required to adequately measure rainfall in a radar subpixel
scale; and (3) the decision as to which radar temporal reso-
lution should be used for hydrological modeling due to the
radar errors at the pixel scale. The paper is composed of six
sections: Sect.2 is dedicated to technical information regard-
ing the rain gauge network’s installation and data quality
control (QC). This section also contains information about
the weather radar and rainfall estimations. The rainfall spa-
tial correlation is described in Sect.3. The uncertainty quan-
tification for the mean areal rainfall representing the subpixel
level is discussed in Sect.4. The radar rainfall error variance
and the radar evaluation are presented in Sect.5. The con-
clusions, discussion on the lessons learned, and near-future
plans for the rain-gauge network are presented in Sect.6.

2 Data

2.1 Galed dense rain-gauge network

A very dense network of rain gauges was deployed in
November 2011 near Kibbutz Galed, about 15 km east of
northern Israel’s coastline (Fig.1). The network consists of
27 rain gauges, maintained by the Hydrometeorology Lab
of the Hebrew University of Jerusalem, and one additional
rain gauge operated by the Israel Meteorology Service. The
rain gauges are deployed in 14 stations each with two side-
by-side gauges (as in the Iowa network,Krajewski et al.,
2003) covering an area of about 4 km2 in the fields surround-
ing the Kibbutz (Fig.1). This network differs spatially, but
is in a similar range as the networks used in previous stud-
ies, for example: the EVAC PicoNet in Oklahoma City with
25 rain stations deployed over 9 km2 (Ciach and Krajewski,
2006), the Scheyern Experimental Farm with 10 rain gauges
over 1.4 km2 (Fiener et al., 2009), the Aarhus network con-
sisting of 9 gauges equally spaced within a 0.25 km2 area
(Jensen and Pedersen, 2005; Pedersen et al., 2010) or the
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Table 1. Intra-distances (m) of the rain stations.

1
1 0 2
2 1709 0 3
3 2672 1735 0 4
4 1457 620 1375 0 5
5 1395 1076 1277 456 0 6
6 1102 1052 1572 497 298 0 7
7 990 1193 1684 658 413 162 0 8
8 1699 1918 1444 1298 842 962 912 0 9
9 1920 1386 777 829 548 843 930 785 0 10
10 1620 1392 1111 778 354 598 645 557 336 0 11
11 1250 1448 1516 846 419 426 363 549 740 406 0 12
12 1303 1440 1461 831 392 438 395 525 685 350 57 0 13
13 686 1518 2057 1049 812 570 412 1019 1284 963 572 628 0 14
14 830 940 1938 634 708 434 450 1362 1253 1032 813 841 610 0

8 gauges deployed in a 4 km2 area of the Brue catchment
(Moore et al., 2000).

The stations are distributed in a nonuniform design
(Fig.1), according to the terrain’s limitations (e.g. field crops,
small streams, woods). The intra-distances of the rain sta-
tions (see Table1) vary between 57 and 2,672 m. Each station
consists of two high-precision tipping-bucket rain gauges
separated by about 1 m (as suggested byCiach and Krajew-
ski, 1999; Krajewski et al., 2003) to maintain better quality
control and to acquire data on the zero-distance correlation
of the rainfall. The tipping-bucket rain gauge was manufac-
tured by YOUNG Company (model 52203). It has an orifice
diameter of 18 cm with rainfall measurement resolution of
0.1 mm per tip and accuracy of 3 % up to 50 mmh−1. Each
rain gauge is connected to a HOBO data logger (model UA-
003-64). The maximum sampling frequency of the data log-
ger is 1 Hz, with a memory of 64 K bytes (more than enough
for 1 yr of measurements). This stands with the recommen-
dations byHabib et al.(2001b) and Wang et al.(2008) to
use a gauge bucket size of up to 0.254 mm with a temporal
resolution of 1 s. The HOBO logger’s time accuracy is about
1 min per month. The loggers were synchronized each time
the data were downloaded (approximately every three weeks)
to minimize the potential problem of the loggers clocks’ drift.
In addition, we used 1 min time intervals accumulated from
the 1 s temporal resolution to reduce errors.

The study area has a Mediterranean climate; its rainy
season lasts from October to May (mean annual rainfall is
550 mm), while June to September are typically dry and hot.
In this study, we present the analysis of the first year record
collected from 1 November 2011 to 1 May 2012. The ac-
cumulated rainfall for this period, indicated by counting the
number of tips in 1 min time intervals, is equal to 512 mm
(averaged over the rain gauges) and is divided into 63 rain
events. A rain event is defined as beginning when the first
rain tip is detected in one of the rain gauges and ending when
there is an intermission of more than 15 min in rainfall for

all gauges. Rain events with cumulative rainfall depth of less
than 0.5 mm for all gauges were excluded. An inherent prob-
lem with tipping-bucket-derived rain intensities is that only
the time at which the bucket is completely filled is recorded
and no information is available on the actual period of time
it took to get filled. To overcome this problem, a backward
linear interpolation to the previous recorded tip was applied,
with two exceptions: (1) the time interval from the previous
tip was larger than 15 min, or (2) this was the first tip in the
rain event. Note that low rain intensities are more vulnerable
to the above-mentioned problem.

To ensure reliability of the results, QC procedures were
conducted. This is essential, as the data collected from the
rain gauges may be corrupted due to partial clogging of the
funnel by debris or small living creatures (for example, wasps
or snails), or technical problems (such as a low battery) re-
sulting in lack of measurements at a given time. Most of the
errors were detected by comparing the rain intensity of rain
gauge couples at each station and the rain event. In addition,
the rain intensities of all of the gauges were compared for
each rain event. All data which were considered to be cor-
rupted were removed during the QC, ensuring a lack of intra-
and inter-station measurement errors. After QC, rain inten-
sity time series for time intervals between 1 min and daily
timescales were computed for each rain gauge.

2.2 Radar data

Data from the Shacham (EMS) Mekorot company weather
radar system located at Ben Gurion Airport, about 63 km
south of the study area, were used in this study. Data from
this radar have been used extensively for climatology and
hydrology studies over the last decade (seeKarklinsky and
Morin, 2006; Morin et al., 2001, 2009; Morin and Gabella,
2007; Peleg and Morin, 2012; Rozalis et al., 2010; Yakir and
Morin, 2011). The radar is a C-band (5.35 cm wavelength),
non-Doppler system with a maximal transmitting power of
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Table 2. Radar pixels afterZ–R bias adjustment. Sum (Rr) repre-
sents the accumulated rainfall for the studied period and Sum (Rr

R−1
t ) is the ratio between radar rainfall and rain gauge rainfall (av-

eraged over the gauges) for the studied period.

Radar ID Sum (Rr) (mm) Sum (Rr R−1
t )

10 054 444.3 97.9 %
10 055 413.6 91.2 %
10 056 431.9 95.2 %
10 057 429.8 94.7 %
11 054 466.8 102.9 %
11 055 442.5 97.5 %
11 056 449.4 99 %
11 057 447.3 98.6 %
12 054 477.2 105.2 %
12 055 430 94.8 %
12 056 443.9 97.8 %
12 057 455.7 100.4 %

250 kW, a temporal resolution of about 3 min per volume
scan, and a spatial polar resolution of 1.4◦

× 1 km in space
(see grid in Fig.1). Data from an elevation angle of 1◦ (mean
elevation of 1255 m above the network) were used for the
analysis. No pixels with substantial ground clutter or beam
blockage were detected in the analyzed region.

A total of 11 827 radar volume scans were analyzed in this
study. The radar was shut down by the EMS for short pe-
riods due to malfunctions and for regular maintenance, and
thus 462 mm of rainfall were recorded by the radar out of
the full 512 mm of rainfall recorded by the rain gauges. We
chose 12 radar pixels over the network location and its sur-
roundings for the analysis (Fig.1) as the area of the gauge
network is similar to that of 2–4 joint radar pixels (approxi-
mately 4 km2).

Rainfall intensity data (R, mmh−1) were calculated from
the weather radar reflectivity data (Z, mm6m−3) by a fixed
Z–R power law relationship adjusted using the annual cu-
mulative rainfall amount derived from the dense rain-gauge
network. TheZ–R relationships were fixed toZ = 126R1.5

for the radar pixels; a summarization of the adjustment is
given in Table2. Prior to this adjustment, the radar reflectiv-
ity values were increased by 6 dB to compensate for system
losses, as done byMorin and Gabella(2007). A lower thresh-
old of 0.1 mmh−1 for noise filtering and an upper threshold
of 250 mmh−1 to reduce unrealistically strong returns from
hail particles were set.

In Fig.2, scatter plots of synchronous radar (averaged data
from the 12 pixels) and rain gauge observations are presented
for three timescales: 3 min (the time interval between the
radar volume scans), hourly and daily intervals.Ciach and
Krajewski(1999) noted that this plot can give an idea of the
large amount of variability in the measurements. Here we can
see that for the shorter temporal resolution and for the lower
rain intensity, the points scatter away from the perfect match

line of the radar-to-gauge amounts, possibly due to the prob-
lem mentioned above with the unknown tipping-bucket fill
time (see previous section).

3 Spatial correlation of gauge rainfall data

The spatial rainfall correlation is commonly investigated us-
ing Pearson’s product–moment correlation (for examples,
seeCiach and Krajewski, 2006; Mandapaka et al., 2010; Ped-
ersen et al., 2010; Tokay and Ozturk, 2012; Villarini et al.,
2008, and more). Correlograms for different timescales, from
1 min to daily, were computed using a lag distance of 200 m
(Fig. 3). As expected, the spatial correlation decreased as the
separation distance increased and as the timescale decreased.
This trend was also shown byKrajewski et al.(2003) for
several different experiments conducted worldwide, as well
as byCiach and Krajewski(2006) andVillarini et al. (2008).
The correlation was parameterized using a three-parameter
exponential function (see fit in Fig.3), as suggested byGe-
bremichael and Krajewski(2004), Habib et al.(2001a) and
Villarini et al. (2008), for the spatial correlation at separation
distanceh of the correlogram:

r(h) = c1 · exp

[
−

(
h

c2

)c3
]
, (1)

wherec1 represents the nugget (zero-distance correlation),c2
is the correlation distance andc3 is the shape factor.

The time dependence of the parameters given in Eq. (1)
are summarized in Fig.4. The nugget has a value of about
0.92 on the 1 min scale, increasing to 0.98 for the 5 min scale
and then continuing asymptotically toward 1 on the daily
scale. The nugget represents the zero-distance correlation,
thus it gives us information about the variability and mea-
surement errors for each side-by-side rain gauge (i.e. each
station); whenc1 is equal to 1 there is a perfect match be-
tween the side-by-side gauges. The values obtained in this
study were much higher than those reported byVillarini
et al. (2008) of c1 = 0.5 on the 1 min timescale; they are
on a scale similar to the values given byKrajewski et al.
(2003) of c1 = 0.95–0.97 (different locations worldwide) on
timescales of 15 min or longer.Tokay and Ozturk(2012) re-
ported values ofc1 = 0.97 on a 5 min timescale.

The correlation distance (c2) increased with the timescale
from 3 to 79 km. The correlation distance for 12 h (79 km)
was much lower than the value of 110 km estimated byVil-
larini et al.(2008) or the value of 320 km estimated byTokay
and Ozturk(2012). The disagreement between the correla-
tion distances can be explained by sample size differences,
different estimation methods or statistical artifacts. In addi-
tion, as the spatial scale in this study is limited to a distance
of a few kilometers because of the network dimensions, we
should interpret these very large correlation distances with
caution, as was also mentioned byTokay and Ozturk(2012).

www.hydrol-earth-syst-sci.net/17/2195/2013/ Hydrol. Earth Syst. Sci., 17, 2195–2208, 2013



2200 N. Peleg et al.: Subpixel rainfall analysis from a dense gauge network

Fig. 2.Scatter plots of synchronous radar and rain gauge observations for 3 min (radar data are transected along the lower 0.1 mmh−1 rainfall
intensity threshold), hourly and daily intervals. The radar rainfall data represent the averaged rainfall derived from the 12 radar pixels. Dashed
line represents a perfect fit between gauge and radar rainfall.

Fig. 3. Correlograms of the rainfall derived from the rain gauges for several timescales (dots) and the fitted three-parameter exponential
functions (lines).

Hydrol. Earth Syst. Sci., 17, 2195–2208, 2013 www.hydrol-earth-syst-sci.net/17/2195/2013/
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Fig. 4. Time-scale dependence of the nugget(a), correlation dis-
tance(b) and shape factor(c) used in the three-parameter exponen-
tial function.

In this study, the shape parameter (c3) was approximately
1 (a pure exponential function), slightly changing from 0.9
to 1.2 with no obvious trend. The shape parameter function
estimated in this study was different from those obtained by
Ciach and Krajewski(2006), Tokay and Ozturk(2012), and
Villarini et al. (2008), where an increase in the shape param-
eter was detected with an increase in the timescale (between
1.1 and 1.6, 0.37 and 0.92 and 0.4 and 1, respectively). As
Villarini et al. (2008) mentioned, differences are expected be-
tween experimental studies due to differences in the range of
inter-gauge distances, sample size and precipitation type.

4 Spatial rain gauge uncertainty

4.1 Variance reduction factor

The rainfall variance was estimated by the well-known vari-
ance reduction factor (VRF), which has been used byKra-
jewski et al.(2000) andVillarini et al. (2008) to quantify the
uncertainty results from averaging a number of rain gauges.
The VRF methodology was introduced byRodŕıguez-Iturbe
and Mej́ıa (1974) and Bras and Rodrı́guez-Iturbe(1976).
Morrissey et al.(1995) proposed a numerical method which
considered the number of rain gauges, their spatial distribu-
tion, and the correlation between them. In this paper, we pro-
vide only a brief discussion of the VRF methodology; for
further details, the reader is referred to the above-mentioned
papers.

Let Rs be the point rainfall of a single rain station (two
side-by-side gauges per station),Rs be the averaged-areal
rainfall derived from the rain stations, and letRt be the true
areal rainfall. The mean square error of the true rainfall to the
averaged-areal rainfall can be expressed as:

E[(Rt − Rs)
2
] = σ 2

Rs
· VRF, (2)

whereσ 2
Rs

is the variance of the point rainfall and the VRF is
computed by

VRF =
1

n2
·

N∑
i=1

N∑
j=1

ρ(di,j ) · δ(i) · δ(j) −
2

N · n

·

N∑
i=1

N∑
j=1

ρ(di,j ) · δ(i) +
1

N
+

2

N2
·

N−1∑
i=1

N∑
j=i+1

ρ(di,j ), (3)

wheren is the number of rainfall measuring stations,N is the
number of boxes dividing the domain,ρ(di,j ) is the correla-
tion coefficient derived from Eq. (1) for the distance between
boxesi and j , andδ is a Boolean value with a value of 1
when boxi contains a measuring station (each box can con-
tain only one measuring station) and a value of 0 otherwise.

The domain area was defined with dimensions of
2.1× 2.1 km in order to capture all of the rain stations (n =

14) participating in this study (Fig.1; see the 4 km2 box
for comparison). The grid was composed of 441 boxes (N ),
each with a size of 100× 100 m. The results are plotted in
Fig. 5a. The VRF was 1.6 % for a timescale of 1 min and it
decreased with increasing time accumulated to 0.07 % for the
daily timescale. These results are similar to those presented
by Villarini et al. (2008) for a 4 km2 domain, where the VRF
decreased from approximately 2.7 % for a timescale of 1 min
to near zero for the daily timescale. The VRF is very close
to zero, meaning that the left side of Eq. (2) is also close to
zero; thus for any given timescale, the true rainfall will be
well represented by the averaged-areal rainfall.

The minimum number of rain stations required for a good
representation of this small 4 km2 domain was determined.
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Fig. 5.Variance reduction factor (VRF) as a function of(a) timescale and(b) number of rain stations in the study area for the 1 min timescale
(maximum, minimum and median).

The VRF was computed from one station to 14 stations
where all possible combinations were calculated. As the re-
sults for the different timescales are similar, only the results
for the 1 min timescale are plotted in Fig.5b and discussed
here. Examining the minimum VRF values suggested that
setting up three rain stations in a specific configuration within
a radar pixel domain is sufficient to represent the rainfall
within the radar pixel, assuming that the VRF threshold of
5 % is satisfied. VRF values lower than 2 % will require at
least five rain stations in the domain. The lowest VRF was
found for the setting of 10 rain stations (0.99 %) in the do-
main. The VRF increases with the addition of more than 10
rain stations as the distances between the rain stations de-
crease, resulting in an increase of the first term in Eq. (3).

4.2 Convective rainfall

The contribution of convective rainfall to the total precipi-
tation over the study area cannot be overlooked. To check
whether there are differences in the spatial correlation of
the convective versus nonconvective rainfall, we divided the
rainfall series at the 5 min timescale as follows: if at least
one of the rain gauges recorded rain intensity exceeding
10 mmh−1, this 5 min interval was marked as convective
(it was summed up to 242 mm – about 47 % of the total
measured rainfall); if all rain gauges recorded rain intensity
lower than 10 mmh−1, it was marked as nonconvective. This
threshold was used byPeleg and Morin(2012) to distinguish
the convective rain cells from the total precipitation in the
same area.

The spatial correlation for the convective and nonconvec-
tive rainfall for the 5 min timescale was calculated using the
methodology explained in Sect.3, and is presented in Fig.6a.
The nugget of the convective precipitation is 0.97, while the
nugget of the nonconvective rainfall is 0.95. The convective
spatial correlation decreases rapidly to 0.4 at a separation dis-

tance of 1.8 km, while the nonconvective spatial correlation
decreases more moderately to 0.7 at the same distance. The
nonconvective spatial correlation decays in a manner simi-
lar to the 5 min correlation decay of the combined convective
and nonconvective rainfall presented in Fig.3. The fast de-
cay of the convective rainfall spatial correlation implies that
the areal rainfall variance is high. The standard deviation of
the convective rainfall, normalized by its mean, was plotted
against the fraction of rain gauges exceeding the threshold
of 10 mmh−1 (Fig. 6b). The normalized standard deviation
(NSTD) of the convective rainfall is about 0.4. The maxi-
mum NSTD is higher for fewer rain gauges that detect rain
intensity exceeding the threshold.

5 Radar estimation error

5.1 Error separation method

Ciach and Krajewski(1999) proposed the error separation
method (ESM) which separates the radar–rain gauge error
in two: the radar–true area-averaged rainfall error and the
rain gauge sampling error. Below is a short description of
the method; for further information the reader is referred to
Ciach and Krajewski(1999) and to an additional example by
Krajewski et al.(2000).

Let Rr be the rainfall estimated from the radar,Rg the
rainfall as measured by the rain gauge andRt the true area-
averaged rainfall. The normalized root mean square error of
the radar-estimated rainfall versus the rain gauges is found
by

NRMSE(Rr − Rg) =

√∑N
i=1(Rr(i)−Rg(i))

2

N

Rg
, (4)
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Fig. 6. (a) Correlogram presenting the convective (red plus symbol) and nonconvective (blue dots) spatial rainfall coefficient and its fit
(dashed lines) using the three-parameter exponential functions.(b) Convective rain intensity normalized standard deviation. The analysis
was performed for the 5 min rain intensity data.

whereN is the sample size andRg is the averaged rainfall
measured by the gauges. The normalized rain gauge sam-
pling error can be determined (based on Eq. (18) inCiach
and Krajewski, 1999) by

NRMSE(Rg − Rt) =

√
var(Rg) · (1− c1)

Rg
, (5)

wherec1 is the nugget. The radar–true area-averaged rainfall
error can be then solved by

var{Rr − Rt} = var
{
Rr − Rg

}
− var

{
Rg − Rt

}
, (6)

where var
{
Rr − Rg

}
and var

{
Rg − Rr

}
are derived from

Eqs. (4) and (5), respectively. For the above computation, we
assume that there is no bias between the rainfall measured
by the rain gauges and the rainfall measured by the weather
radar, as each radar pixel is adjusted separately for the data
derived from the gauges.

The results of the ESM for the different timescales are pre-
sented in Fig.7 for the relative magnitude of each of the
method components. The normalized radar–true rainfall er-
ror is presented for the maximum and minimum values ob-
tained from the 12 radar pixels tested (i.e. maximum and
minimum values represent one pixel each and the other 10
pixel values are found in the range between). The radar rain-
gauge error declines from a maximum 615 % error (mini-
mum of 351 %) for a timescale of 3 min to a maximum 78 %
error (minimum 68 %) for the daily timescale. The error de-
rived from the rain gauge sampling error is reduced from
71 % for a timescale of 3 min to 5 % for a daily timescale.
The gauge sampling error contributes only a relatively small
part of the overall error: it changes from 20 % (minimum
contribution of 11.5 %) for the 3 min timescale to 8 % (mini-
mum of 7 %) for the daily timescale.

Fig. 7. Errors of radar (Rr) vs. gauge (Rg) rainfall for different
timescales. The normalized root mean square errors of radar rain-
fall (Rr) vs. true rainfall (Rt) were analyzed independently for 12
radar pixels. The maximum and minimum are presented by the blue
sections. Gray section represents the spatial sampling error derived
from the rain gauge (Rg) vs. true areal rainfall (Rt).

5.2 Radar rainfall evaluation

The radar rainfall was evaluated using the critical success
index (CSI), false alarm ratio (FAR) and probability of de-
tection (POD) parameters, all well-known parameters which
have been used in numerous studies (for example:Dixon and
Wiener, 1993; Germann et al., 2006; Kyznarova and Novak,
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2009). These quality parameters are defined as

CSI=
H

H + F + M
(7)

FAR =
F

H + F
(8)

POD=
H

H + M
, (9)

whereH is the number of hits – both radar and gauged areal
average rainfall indicate rain;M means number of misses
– rainfall was only recorded by rain gauges;F means false
alarms – rainfall was only recorded by radar. A zero threshold
was used to mark the occurrence of rain. This means that the
lower threshold for the radar was defined as 0.1 mmh−1 (see
Sect.2.2), while the averaged gauged rainfall was indicative
for rain as at least one rain gauge recorded rain.

The evaluation was conducted for different timescales for
each of the radar pixels and for the radar pixel average, and
the results are presented in Fig.8. All quality parameters im-
proved as the timescale increased, in a manner similar to the
ESM results discussed in the previous section. The CSI for
the averaged radar pixel changed from 0.41 for the 3 min
timescale to 1 for the daily timescale and its POD increased
from 0.6 to 1 for the same timescales. The FAR decreased
from 0.42 for the 3 min timescale to zero for the 3 h timescale
and on. These results are affected by the threshold set to de-
fine a rain occurrence, where higher threshold changes the
CSI, POD and FAR results.

The ratio of averaged radar rainfall to true areal rainfall
was calculated for 3 min, 30 min and daily timescales. Here,
we assumed that the true rainfall is well represented by the
areal-averaged gauge-derived rainfall. The cumulative dis-
tribution (weighted by contribution to total rain amount) of
the radar-to-true rainfall ratio (in dB) is presented in Fig.9,
following Germann et al.(2006). For the 3 min timescale,
the radar underestimated about 70 % of the rainfall, with
the radar-to-true rainfall ratio reaching up to−22 dB. For
the daily timescale, the radar estimations improved, with
the inflection point between the under- and overestimation
found around the 50 % rainfall contribution and the radar-
to-true rainfall ratio being as low as−14 dB. The improve-
ment of the radar estimation for the true rainfall with in-
creasing timescale was also expressed by the scatter param-
eter, defined as half the distance between the 16th and 84th
percentiles of the error distribution (Germann et al., 2006).
The scatter decreased from 5.27 dB for the 3 min timescale
to 3.21 dB for the daily timescale.

6 Conclusions

Subpixel rain distribution was investigated using a high-
density network of rain gauges within a 4 km2 area as a
part of continuous efforts to better understand the uncertain-
ties and errors of rainfall estimation at this scale. This is

Fig. 8. Critical success index (CSI), probability of detection (POD)
and false alarm ratio (FAR) for the different timescales. Gray dots
represent the radar pixels and blue dots represent the averaged radar
pixels.
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Fig. 9. Cumulative distribution (weighted by contribution to total
rain amount) of the radar-to-true rainfall ratio (Rr/Rt, in dB) (see
Germann et al., 2006) for different timescales.

of particular importance when using remote sensing rainfall
data (from ground weather radar or from satellite) for hydro-
logical applications. In this study, we used the network of 27
tipping-bucket rain gauges located in northern Israel to eval-
uate the Shacham weather radar’s performance and to learn
about small-scale rainfall variability. From the first year of
observation three lessons were learned:

– First, we examined the spatial correlation of gauge
rainfall data as has been done before for different lo-
cations worldwide. We found that the nugget (zero-
distance correlation) between rain gauges is high (0.92
for the 1 min timescale) and it increases with increasing
timescale. Moreover, spatial rainfall correlations for all
separation distances generally increase with timescale.
The more important finding was that there is a differ-
ence in spatial correlations between convective and non-
convective rainfall, where the convective rainfall corre-
lation decreases much faster with distance than the non-
convective. Convective rainfall correlations have long
been a subject for study (for example, see papers by
Sharon, 1974; Osborn et al., 1979) but, to the best of
our knowledge, this is the first time that this examina-
tion has been performed at the radar pixel scale. The fast
decay of convective rainfall correlation within a radar
pixel may imply that the radar errors for high rainfall
intensity are even larger than thought. Further investi-
gation is needed to understand the spatial and temporal
differences between the different types of rainfall and
its effects on radar data.

– The second lesson learned was derived from the vari-
ance reduction factor. It was found that the VRF de-
creases as the timescale increases, from 1.6 % for the
1 min scale to 0.07 % for the daily timescale. This led to
the conclusion that for any given timescale the average
rainfall derived from the gauge network well represents
the pixel-scale. This raises the question of how many
rain stations are needed within a radar pixel for a good
representation of rainfall at this scale. We found this
question important for regular maintenance of the net-
work (for example, when it is necessary to remove some
rain gauges for calibration) and for future planning of
other networks in similar climatological conditions (as
the VRF is dependent on rainfall correlation). If the 5 %
threshold is selected as a criterion for adequate repre-
sentation of subpixel rainfall distribution then, accord-
ing to our analysis, three rain stations in a specific con-
figuration are sufficient to represent the rainfall within
the radar pixel. At least five rain stations are required to
represent the radar rainfall with a VRF threshold of 2 %.
The decision as to which VRF threshold to use, how-
ever, remains subjective. This finding can be used in val-
idation procedures of remote sensing rainfall products
with a similar pixel size. In the majority of cases, only
one rain gauge is located within each validated pixel,
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while our results indicate that to remove uncertainties
related to subpixel rainfall distribution three rain gauges
per pixel are better, at least for a similar climate. Obvi-
ously, this will increase the cost of such a network; how-
ever, it will also assure meaningful validation results.

– Lastly, we debate the question of which radar temporal
resolution should be used for hydrological applications.
A possible answer to this question is to fit the required
temporal resolution to the basin hydrological response
that depends on catchment size, land use and other prop-
erties (Morin et al., 2001). Berne et al.(2004) sug-
gested a temporal scale of 3–5 min for urban catchments
of the order of 1–10 km2, while Atencia et al.(2011)
suggested a temporal scale of 12–15 min for basins of
the order of 100–1000 km2. Another aspect to consider
is radar errors for the pixel scale and its change with
time (Fig. 7). It was found that the radar–rain gauge
error decreases from 477 % for the 3 min timescale to
345 % for the 10 min scale and down to 72 % for the
daily timescale (all are areal mean values). This error is
mainly the result of radar estimation errors, as the gauge
sampling error contributes only 8–20 % to the total er-
ror, depending on the timescale. The improvement in
radar rainfall estimations with increasing timescale is
reflected by the increase of the CSI and POD parame-
ters with timescale and the simultaneous decrease of the
FAR parameter. In addition, the radar-to-true rainfall ra-
tio, expressed by the scatter parameter, decreases with
increasing timescale from 5.27 dB for the 3 min scale to
3.21 dB for the daily scale. Based on these results, we
recommend utilizing the radar rainfall data at scales of
at least 10 min, thus benefiting from the large reduction
in error from 3 min timescale to the 10 min scale.

We intend to continue collecting rainfall measurements
with this network of rain gauges in the years to come. In De-
cember 2012, a disdrometer was installed at this site to mea-
sure rain drop size distribution (e.g.,Jaffrain et al., 2011).
We are looking for new and better ways to continue devel-
oping this network for future use with other weather radar or
satellite observations.

Acknowledgements.The authors thank Kibbutz Galed for their
valuable assistance and cooperation and also to Camille Vainstein
for her editorial work. The research was supported by the Israeli
Ministry of Environmental Protection and THE ISRAEL SCIENCE
FOUNDATION – The Recanati and IDB Group Foundation (grant
No. 332/11). We thank the two reviewers (Hidde Leijnse and the
second anonymous reviewer) and the editor for their significant
contribution to the quality of the paper.

Edited by: A. Langousis

References

Amitai, E., Unkrich, C. L., Goodrich, D. C., Habib, E., and
Thill, B.: Assessing satellite-based rainfall estimates in semi-
arid watersheds using the USDA-ARS walnut gulch gauge
network and TRMM PR, J. Hydrometeorol., 13, 1579–1588,
doi:10.1175/jhm-d-12-016.1, 2012.

Arnaud, P., Lavabre, J., Fouchier, C., Diss, S., and Javelle,
P.: Sensitivity of hydrological models to uncertainty in rain-
fall input, Hydrol. Sci. J.-J. Sci. Hydrol., 56, 397–410,
doi:10.1080/02626667.2011.563742, 2011.

Atencia, A., Mediero, L., Llasat, M. C., and Garrote, L.: Effect of
radar rainfall time resolution on the predictive capability of a dis-
tributed hydrologic model, Hydrol. Earth Syst. Sci., 15, 3809–
3827, doi:10.5194/hess-15-3809-2011, 2011.

Bahat, Y., Grodek, T., Lekach, J., and Morin, E.: Rainfall-runoff
modeling in a small hyper-arid catchment, J. Hydrol., 373, 204–
217, doi:10.1016/j.jhydrol.2009.04.026, 2009.

Berne, A. and Krajewski, W. F.: Radar for hydrology: Unfulfilled
promise or unrecognized potential?, Adv. Water Resour., 51,
357–366, doi:10.1016/j.advwatres.2012.05.005, 2013.

Berne, A., Delrieu, G., Creutin, J. D., and Obled, C.: Tem-
poral and spatial resolution of rainfall measurements re-
quired for urban hydrology, J. Hydrol., 299, 166–179,
doi:10.1016/j.jhydrol.2004.08.002, 2004.

Bras, R. L. and Rodrı́guez-Iturbe, I.: Evaluation of mean square
error involved in approximating the areal average of a rainfall
event by a discrete summation, Water Resour. Res., 12, 181–184,
doi:10.1029/WR012i002p00181, 1976.

Ciach, G. J.: Local random errors in tipping-bucket rain gauge
measurements, J. Atmos. Ocean. Technol., 20, 752–759,
doi:10.1175/1520-0426(2003)20<752:lreitb>2.0.co;2, 2003.

Ciach, G. J. and Krajewski, W. F.: On the estimation of radar
rainfall error variance, Adv. Water Resour., 22, 585–595,
doi:10.1016/s0309-1708(98)00043-8, 1999.

Ciach, G. J. and Krajewski, W. F.: Analysis and model-
ing of spatial correlation structure in small-scale rainfall
in Central Oklahoma, Adv. Water Resour., 29, 1450–1463,
doi:10.1016/j.advwatres.2005.11.003, 2006.

Dixon, M. and Wiener, G.: TITAN – thunderstorm identification,
tracking, analysis, and nowcasting – a radar-based methodol-
ogy, J. Atmos. Ocean. Technol., 10, 785–797, doi:10.1175/1520-
0426(1993)010<0785:ttitaa>2.0.co;2, 1993.

Faures, J. M., Goodrich, D. C., Woolhiser, D. A., and Sorooshian,
S.: Impact of small-scale spatial rainfall variability on
runoff modeling, J. Hydrol., 173, 309–326, doi:10.1016/0022-
1694(95)02704-s, 1995.

Fiener, P. and Auerswald, K.: Spatial variability of rainfall on
a sub-kilometre scale, Earth Surf. Proc. Land., 34, 848–859,
doi:10.1002/esp.1779, 2009.

Gebremichael, M. and Krajewski, W. F.: Assessment of the
statistical characterization of small-scale rainfall variabil-
ity from radar: Analysis of TRMM ground validation
datasets, J. Appl. Meteorol., 43, 1180–1199, doi:10.1175/1520-
0450(2004)043<1180:aotsco>2.0.co;2, 2004.

Germann, U., Galli, G., Boscacci, M., and Bolliger, M.: Radar pre-
cipitation measurement in a mountainous region, Q. J. Roy. Me-
teor. Soc., 132, 1669–1692, doi:10.1256/qj.05.190, 2006.

Habib, E., Krajewski, W. F., and Ciach, G. J.: Estimation of
rainfall interstation correlation, J. Hydrometeorol., 2, 621–629,

Hydrol. Earth Syst. Sci., 17, 2195–2208, 2013 www.hydrol-earth-syst-sci.net/17/2195/2013/

http://dx.doi.org/10.1175/jhm-d-12-016.1
http://dx.doi.org/10.1080/02626667.2011.563742
http://dx.doi.org/10.5194/hess-15-3809-2011
http://dx.doi.org/10.1016/j.jhydrol.2009.04.026
http://dx.doi.org/10.1016/j.advwatres.2012.05.005
http://dx.doi.org/10.1016/j.jhydrol.2004.08.002
http://dx.doi.org/10.1029/WR012i002p00181
http://dx.doi.org/10.1175/1520-0426(2003)20<752:lreitb>2.0.co;2
http://dx.doi.org/10.1016/s0309-1708(98)00043-8
http://dx.doi.org/10.1016/j.advwatres.2005.11.003
http://dx.doi.org/10.1175/1520-0426(1993)010<0785:ttitaa>2.0.co;2
http://dx.doi.org/10.1175/1520-0426(1993)010<0785:ttitaa>2.0.co;2
http://dx.doi.org/10.1016/0022-1694(95)02704-s
http://dx.doi.org/10.1016/0022-1694(95)02704-s
http://dx.doi.org/10.1002/esp.1779
http://dx.doi.org/10.1175/1520-0450(2004)043<1180:aotsco>2.0.co;2
http://dx.doi.org/10.1175/1520-0450(2004)043<1180:aotsco>2.0.co;2
http://dx.doi.org/10.1256/qj.05.190


N. Peleg et al.: Subpixel rainfall analysis from a dense gauge network 2207

doi:10.1175/1525-7541(2001)002<0621:eoric>2.0.co;2,
2001a.

Habib, E., Krajewski, W. F., and Kruger, A.: Sampling errors of
tipping-bucket rain gauge measurements, J. Hydrol. Eng., 6,
159–166, doi:10.1061/(asce)1084-0699(2001)6:2(159), 2001b.

Jaffrain, J., Studzinski, A., and Berne, A.: A network of dis-
drometers to quantify the small-scale variability of the rain-
drop size distribution, Water Resour. Res., 47, W00h06,
doi:10.1029/2010wr009872, 2011.

Jensen, N. E. and Pedersen, L.: Spatial variability of rainfall: Vari-
ations within a single radar pixel, Atmos. Res., 77, 269–277,
doi:10.1016/j.atmosres.2004.10.029, 2005.

Karklinsky, M. and Morin, E.: Spatial characteristics of radar-
derived convective rain cells over southern Israel, Meteorol. Z.,
15, 513–520, doi:10.1127/0941-2948/2006/0153, 2006.

Krajewski, W. F. and Smith, J. A.: Radar hydrology: rainfall esti-
mation, Adv. Water Resour., 25, 1387–1394, doi:10.1016/s0309-
1708(02)00062-3, 2002.

Krajewski, W. F., Kruger, A., and Nespor, V.: Experimental and nu-
merical studies of small-scale rainfall measurements and vari-
ability, Water Sci. Technol., 37, 131–138, doi:10.1016/s0273-
1223(98)00325-4, 1998.

Krajewski, W. F., Ciach, G. J., McCollum, J. R., and Ba-
cotiu, C.: Initial validation of the global precipitation cli-
matology project monthly rainfall over the United States,
J. Appl. Meteorol., 39, 1071–1086, doi:10.1175/1520-
0450(2000)039<1071:ivotgp>2.0.co;2, 2000.

Krajewski, W. F., Ciach, G. J., and Habib, E.: An analysis of small-
scale rainfall variability in different climatic regimes, Hydrol.
Sci. J., 48, 151–162, doi:10.1623/hysj.48.2.151.44694, 2003.

Krajewski, W. F., Villarini, G., and Smith, J. A.: Radar-rainfall un-
certainties – where are we after thirty years of effort?, B. Am.
Meteorol. Soc., 91, 87–94, doi:10.1175/2009bams2747.1, 2010.

Kyznarova, H. and Novak, P.: CELLTRACK – Convec-
tive cell tracking algorithm and its use for deriving
life cycle characteristics, Atmos. Res., 93, 317–327,
doi:10.1016/j.atmosres.2008.09.019, 2009.

Mandapaka, P. V., Villarini, G., Seo, B. C., and Krajewski, W. F.:
Effect of radar-rainfall uncertainties on the spatial characteriza-
tion of rainfall events, J. Geophys. Res.-Atmos., 115, D17110,
doi:10.1029/2009jd013366, 2010.

Moore, R. J., Jones, D. A., Cox, D. R., and Isham, V. S.: Design
of the HYREX raingauge network, Hydrol. Earth Syst. Sci., 4,
521–530, doi:10.5194/hess-4-521-2000, 2000.

Morin, E. and Gabella, M.: Radar-based quantitative precipitation
estimation over Mediterranean and dry climate regimes, J. Geo-
phys. Res.-Atmos., 112, D20108, doi:10.1029/2006jd008206,
2007.

Morin, E., Enzel, Y., Shamir, U., and Garti, R.: The character-
istic time scale for basin hydrological response using radar
data, J. Hydrol., 252, 85–99, doi:10.1016/s0022-1694(01)00451-
6, 2001.

Morin, E., Goodrich, D. C., Maddox, R. A., Gao, X. G.,
Gupta, H. V., and Sorooshian, S.: Spatial patterns in thun-
derstorm rainfall events and their coupling with watershed
hydrological response, Adv. Water Resour., 29, 843–860,
doi:10.1016/j.advwatres.2005.07.014, 2006.

Morin, E., Jacoby, Y., Navon, S., and Bet-Halachmi, E.: To-
wards flash-flood prediction in the dry Dead Sea region utilizing

radar rainfall information, Adv. Water Resour., 32, 1066–1076,
doi:10.1016/j.advwatres.2008.11.011, 2009.

Morrissey, M. L., Maliekal, J. A., Greene, J. S., and Wang,
J. M.: THe uncertainty of simple spatial averages using
rain-gauge networks, Water Resour. Res., 31, 2011–2017,
doi:10.1029/95wr01232, 1995.

Nikolopoulos, E. I., Anagnostou, E. N., Hossain, F., Gebremichael,
M., and Borga, M.: Understanding the scale relationships of
uncertainty propagation of satellite rainfall through a dis-
tributed hydrologic model, J. Hydrometeorol., 11, 520–532,
doi:10.1175/2009jhm1169.1, 2010.

Osborn, H. B., Renard, K. G., and Simanton, J. R.: Dense
networks to measure convective rainfall in the southwest-
ern United States, Water Resour. Res., 15, 1701–1711,
doi:10.1029/WR015i006p01701, 1979.

Pedersen, L., Jensen, N. E., Christensen, L. E., and Madsen, H.:
Quantification of the spatial variability of rainfall based on
a dense network of rain gauges, Atmos. Res., 95, 441–454,
doi:10.1016/j.atmosres.2009.11.007, 2010.

Peleg, N. and Morin, E.: Convective rain cells: Radar-derived
spatiotemporal characteristics and synoptic patterns over the
eastern Mediterranean, J. Geophys. Res., 117, D15116,
doi:10.1029/2011jd017353, 2012.
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