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Abstract. With a growing world population and a trend to-
wards more resource-intensive diets, pressure on land and
water resources for food production will continue to increase
in the coming decades. Large parts of the world rely on rain-
fed agriculture for their food security. In Africa, 90 % of the
food production is from rainfed agriculture, generally with
low yields and a high risk of crop failure. One of the main
reasons for crop failure is the occurrence of dry spells during
the growing season. Key indicators are the critical dry spell
duration and the probability of dry spell occurrence.

In this paper a new Markov-based framework is presented
to spatially map the length of dry spells for fixed probabilities
of non-exceedance. The framework makes use of spatially
varying Markov coefficients that are correlated to readily
available spatial information such as elevation and distance
to the sea. The dry spell map thus obtained is compared to
the spatially variable critical dry spell duration, based on soil
properties and crop water requirements, to assess the proba-
bility of crop failure in different locations.

The results show that in the Makanya catchment the length
of dry spell occurrence is highly variable in space, even over
relatively short distances. In certain areas the probability of
crop failure reaches levels that make rainfed agricultural un-
sustainable, even close to areas where currently rainfed agri-
culture is successfully being practised.

This method can be used to identify regions that are vul-
nerable to dry spells and, subsequently, to develop strategies
for supplementary irrigation or rainwater harvesting.

1 Introduction

Globally, increasing population causes increasing pressure
on the available water resources, which represents a major
challenge in water management (Falkenmark, 1997). In the
case of sub-Saharan Africa, population is growing rapidly
and a shift to a more land and water resource-intensive diet
is expected (Savenije, 1998, 2000; WWAP, 2009), requiring
more use of the resources. These resources vary both spa-
tially and temporally, alternating wet and dry years, with
large variations between different locations (e.g. Mul et al.,
2009). Climate change is expected to aggravate the situation.
At the same time, average yields produced by rainfed agri-
culture have not increased; despite decades of investments
in improving smallholder agricultural practices, yields still
fluctuate around 1 ton ha−1 (Rockstr̈om et al., 2004). With
increasing urbanisation, average food production per capita
is declining (Love et al., 2006). In rural areas, demographic
pressure and the limited availability of arable land force peo-
ple to move from areas where conditions are favourable to
areas and ecosystems where conditions are less favourable
or marginal (Enfors and Gordon, 2007).

In sub-Saharan Africa, rainfed agriculture is responsible
for 90 % of the food production and 80 % of the population
rely on it for a living (Rockstr̈om, 2000). However, rainfed
agriculture has a high risk of crop failure with water as a main
limiting factor (Savenije, 1998; Enfors et al., 2011; Makurira
et al., 2011; Mutiro et al., 2006). The dependency on the ir-
regular input of precipitation can cause a shortage of water,
commonly known as droughts or dry spells (Savenije, 1998;
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Fig. 1. The Pangani basin with the locations of the 8 rain gauges with daily rainfall data (1940–1989) (left map). The Makanya catchment
with the locations of the 16 rain gauges with daily rainfall data (2005–2006) (right map). Numbers (1), (2) and (3) indicate the location for
which the critical dry spell length was calculated.

Rockstr̈om, 2003; Enfors and Gordon, 2007). The definition
of a drought is differently used in meteorology, hydrology
and agriculture (Rossi et al., 1992). Each discipline has its
user-specific thresholds for declaring a drought (Mishra and
Singh, 2010; Rockström, 2003; Rossi et al., 1992; Wilhite
and Glantz, 1985). For a drought not only the amount of wa-
ter in terms of volume is relevant, but also its availability at
the time it is mostly needed. Especially for rainfed agricul-
ture, the knowledge of water fluxes and the alteration of wet
and dry periods is essential (Rockström, 2000, 2003).

Mathugama and Peiris (2011) showed that many authors in
different countries analysed long-term rainfall data related to
dry spell characteristics with different techniques and vary-
ing data availability. Although sub-Saharan Africa has a long
history of precipitation records, the spatial coverage of sta-
tions is coarse and data can be unreliable (De Groen and
Savenije, 2006; Røhr and Killingtveit, 2003). Constrained
by data availability, studies on precipitation usually give es-
timates on point-scale processes (Barron et al., 2003; El-
Seed, 1987; Sivakumar, 1992), which are sometimes gener-
alised for a region (Enfors and Gordon, 2007; Ochola and
Kerkides, 2003). Different studies tried to move beyond the
point scale and give estimates of risk on water stress for a
region (Deni et al., 2008; Yoo et al., 2012). For Tanzania,
Tilya and Mhita (2007) analysed the spatial and temporal
frequency of wet and dry spells with 22 rain gauges spread

over the country. This study shows the spatial structure of dry
spells of Tanzania: long wet spells in the north-eastern high-
lands and long dry spells in the centre part of the country
(Tilya and Mhita, 2007). At the same time, Mul et al. (2009)
show that precipitation can be very localised and highly vari-
able; this affects the reliability of interpolating precipitation
estimates from long but coarse spatial resolution rain gauge
data.

In addition to the meteorological input dynamics, site-
specific characteristics such as soil properties affect crop
yields, as they determine water availability in the root zone
(Enfors and Gordon, 2007). Crop water stress depends on the
water-holding capacity of soil, water demand and antecedent
wetness conditions (Barron et al., 2003). In rainfed agricul-
ture, soil water storage can buffer for dry spells. If the water
availability in the soil cannot buffer for the difference be-
tween supply and demand, the development of plants will be
hampered, and in the worst case the plants will wither. This
will happen if a dry spell lasts longer than the available soil
moisture can supply. We defined this period as the critical dry
spell.

The high spatial variability of both precipitation and soil
properties affects the success of rainfed agriculture. In this
paper we present a simple Markov-based framework to spa-
tially map the length of dry spells for fixed probabilities of
non-exceedance. The framework uses the Markov properties
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Fig. 2.Flow chart of the Markov-based framework for critical dry spell analysis. From left to right are the input variables which are processed
to generate the output of dry spell length maps for fixed probabilities of non-exceedance. Combining this together with critical dry spell
information, based on available soil moisture and evaporation, serves to assess the probability of crop failure.

of rainfall as applied by De Groen (2002) and De Groen
and Savenije (2006) and regionalises them by using avail-
able spatial information of elevation and distance to the sea,
creating a spatial map, showing the dry spell length with a
given probability of occurrence. The critical dry spell dura-
tion, based on soil properties and crop water requirement, is
then compared to this map to assess the probability of crop
failure at specific locations.

The framework is demonstrated in the data-scarce
Makanya catchment, where different sets of available spatial
and temporal resolutions of rainfall data have been combined
to map length of dry spell occurrence.

2 Methodology

2.1 Study area

The study area is a tributary in the Pangani basin
(43 600 km2), the Makanya catchment (±320 km2), which is
located in the South Pare Mountains (see Fig. 1). The area
experiences a bimodal rainfall pattern (Griffiths, 1972; Rohr
and Killingtveit, 2003), consisting of a short rainy season
calledVuli (October–December), followed by a longer rainy
season calledMasika(March–May) (Tilya and Mhita, 2007).
Rainfall in the catchment varies with altitude: the higher ar-
eas receive on average±800 mm yr−1 compared to the lower
regions with±550 mm yr−1 (Mul et al., 2008).

In this area, the majority of the people are traditional
small-scale farmers whose livelihoods depend on rainfed
agriculture and supplementary irrigation (Makurira et al.,
2007; Mul et al., 2011). Like other sub-Saharan regions, pop-
ulation growth leads to land pressure and an expansion of
agricultural land into other types of ecosystems (Rockström
et al., 2004; Enfors and Gordon, 2007). The dominant migra-
tion is from the higher elevation, with abundant water where
land is becoming scarce, to more water-scarce regions in the

valley. For most of the years, supplementary irrigation is re-
quired to obtain reasonable yields (Mul, 2009); the actual
need for supplementary irrigation is related to the occurrence
of dry spells at that particular location, and the water-holding
capacity of the soils (Enfors and Gordon, 2007).

As Mul et al. (2009) show, rainfall is highly variable in
this area. Farmers migrating to less favourable areas face
two-fold challenges: the rainfall distribution (in terms of dry
spell occurrences) and soil characteristics in the new loca-
tion. Therefore we need to improve the knowledge on spatial
and temporal rainfall characteristics in combination with site
and crop characteristics. In this study we present a Markov-
based framework which spatially maps the length of dry
spells for fixed probabilities of non-exceedance.

2.2 Markov-based framework for critical dry spell
analysis

The following Markov-based framework (see Fig. 2) has
been applied to spatially map the length of dry spells for fixed
probabilities of non-exceedance in the Makanya catchment
for which a short but high spatial resolution data set on rain-
fall exists. Data of 16 rain gauges for the year 2006 were used
for further analysis. However to be able to assess the proba-
bility of dry spell occurrences, long time series are required.
In the Pangani basin, there are a number of stations that have
up to 90 yr of daily rainfall data (PBWO, 2007). A selection
of rain gauges was made based on record length, data qual-
ity and consistency. This resulted in eight rain gauges with
daily rainfall data covering the period of 1940–1989 (Fig. 1).
The Markov chain properties for these stations were deter-
mined and then regionalised using a multiple linear regres-
sion (MLR) model using elevation and distance to the sea
derived from the Seamless Shuttle Radar Topography Mis-
sion data (USGS, 2007). Using these spatially determined
properties and the interpolated seasonal rainfall map for the
Makanya catchment, maps are created showing the duration
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Table 1.Markov properties for both transition probabilitiesp01 andp11 for the eight rain gauges of the Pangani basin for Masika season, on
monthly and seasonal basis.

trans.prop. par. rain gauge

9337004 9337021 9337028 9437003 9438003 9538003 9538004 9538019

Monthly

p01 avar a 0.03 0.05 0.03 0.05 0.07 0.04 0.03 0.02
bvar a 0.46 0.41 0.43 0.38 0.33 0.42 0.42 0.56
R2 0.90 0.94 0.68 0.89 0.55 0.92 0.80 0.92

āfixed 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
bfixed a 0.42 0.44 0.39 0.41 0.43 0.44 0.39 0.39

R2 0.88 0.94 0.66 0.90 0.54 0.92 0.78 0.88

p11 avar a 0.16 0.15 0.38 0.37 0.12 0.10 0.11 0.06
bvar a 0.26 0.28 0.05 0.07 0.34 0.36 0.31 0.43
R2 0.90 0.89 0.66 0.53 0.84 0.86 0.81 0.83

āfixed 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
bfixed a 0.24 0.25 0.22 0.24 0.25 0.26 0.23 0.21

R2 0.88 0.88 0.66 0.62 0.73 0.78 0.74 0.54

Seasonal

p01 avar a 0.03 0.24 0.02 0.03 0.05 0.09 0.02 0.01
bvar a 0.35 0.06 0.40 0.37 0.32 0.23 0.42 0.49
R2 0.80 0.11 0.84 0.64 0.84 0.30 0.77 0.85

āfixed 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
bfixed a 0.26 0.26 0.23 0.24 0.28 0.29 0.25 0.26

R2 0.79 0.37 0.90 0.59 0.79 0.30 0.61 0.65

p11 avar a 0.16 0.29 0.10 0.07 0.08 0.35 0.10 0.16
bvar a 0.22 0.15 0.28 0.37 0.35 0.12 0.29 0.22
R2 0.60 0.92 0.31 0.94 0.73 0.53 0.76 0.19

āfixed 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
bfixed a 0.23 0.25 0.21 0.23 0.24 0.25 0.22 0.21

R2 0.60 0.86 0.30 0.90 0.72 0.23 0.73 0.24

of a dry spell for a particular probability of occurrence (20,
50 and 80 %). At three locations, the probability of dry spells
was compared to the critical dry spell length, based on soil
properties and potential evaporation. In order to assess the
probability of a critical dry spell occurring at these locations,
the dry spell length was drawn as a function of the probabil-
ity.

2.3 Spatially distributed Markov chain properties

Dry spells are defined as a number of consecutive days with-
out rainfall, and consecutive days with rainfall are called wet
spells. In this study we used a threshold of 0.1 mm day−1

to distinguish between a wet and a dry day, similar to De
Groen (2002), Madamombe (1994) and El-Seed (1987). This
threshold was used as we focussed on the meteorological dry
spells. In future applications the threshold set should be com-
patible with the field of application and their end users (e.g.

for agricultural applications a threshold of 1 mm day−1 may
be more appropriate, e.g. Enfors and Gordon, 2007, used
0.8 mm day−1). The interchange between wet and dry days
can be stochastically described by Markov chains (Gabriel
and Neumann, 1962). This study adopted first-order two-
state Markov chains to describe wet and dry spells where
the probability of a wet or dry day only depends on whether
the previous day was a wet or dry day. This method was al-
ready successfully adopted in the region by several authors
(De Groen and Savenije, 2006; Biamah et al., 2005; Barron
et al., 2003; De Groen, 2002; Madamombe, 1994; Sharma,
1996). In Markov chains, the transition probability is defined
as the ratio of the number of transitions from one state to an-
othertxy to the total number of transitionstx (see Eq. 1). In
this way, the probability that a dry day is followed by a wet
dayt01 can be written as Eq. (2), and the probability of a wet
day after a wet dayt11 as Eq. (3).

Hydrol. Earth Syst. Sci., 17, 2161–2170, 2013 www.hydrol-earth-syst-sci.net/17/2161/2013/
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Fig. 3. Transition probabilitiesp01 vs. precipitation in Masika season. Scatter plot of one rain gauge 9337004 with(A) variablea andb,
(B) fixeda and variableb. Dots represent individual seasons, and squares represent the median value per rainfall class. Plot of all eight rain
gauges of the Pangani basin with(C) variablea andb, (D) fixeda and variableb. R2 values are listed in Table 1.

pxy =

∑
txy∑
tx

(1)

p01 =

∑
t01∑
t0

(2)

p11 =

∑
t11∑
t1

(3)

De Groen (2002) showed that individual monthly transi-
tion probabilitiesp01 andp11 can be expressed as a power
function of the monthly rainfallP (mm month−1) (see Eqs. 4
and 5).

p01 = a01P b01 (4)

p11 = a11P b11 (5)

From the work of De Groen and Savenije (2006), we ob-
served that the power function coefficientsa andb, describ-
ing the Markov probabilities, are station dependent. In this
study we derived a relationship between these Markov co-
efficients and their spatial location. To do so we fixed the
coefficientsa01 anda11 at the average value of all stations
(see Eqs. 6 and 7):

p01 = ā01P b01 (6)

p11 = ā11P b11. (7)

Subsequently we allowed the exponent,b, to vary in space.
We applied a simple formula whereby the Markov coefficient
b (–) is a function of altitudeH (m) and distance to seaD (m)
with α, β andε as the regression parameters (see Eq. 8):

b = α + β H + ε D. (8)

The values forα, β and ε, are derived by performing a
multiple linear regression using spatial information on alti-
tude and distance to the sea. In combination with an inter-
polated seasonal rainfall map, using ordinary co-kriging, the
spatially distributed transition probabilitiesp01 andp11 for
ungauged locations can be obtained.

2.4 Probability of dry spell duration

For rainfed farming, the critical factor determining crop fail-
ure is the maximum dry spell duration that can be expected
during a growing season. De Groen (2002) showed that the
probabilityp of a maximum dry spell lengthndry,max (days)

www.hydrol-earth-syst-sci.net/17/2161/2013/ Hydrol. Earth Syst. Sci., 17, 2161–2170, 2013
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can be written as a cumulative density function based on
transition probabilitiesp01 andp11, nm (days month−1) and
number ofn (days) (Eq. 9):

p
(
ndry,max ≤ n

)
(9)

= exp

[
−nm

(
p01

1− (p11− p01)

)
(1− p11)(1− p01)

n

]
.

Assuming that a dry spell is not longer than the num-
ber of days of a month or seasonns (days season−1), De
Groen (2002) showed that rewriting Eq. (9) for a point with
given probability of non-exceedancepne(−) results in the
maximum dry spell lengthndry,max (days) (Eq. 10):

ndry,max(pne) =

ln

(
ln(pne)

−ns

(
p01

p11−p01

)
(1−p11)

)
ln(1− p01)

. (10)

Using this equation with the interpolated transition prob-
abilities p01 andp11, the dry spell length for ungauged lo-
cations can be derived. The result is a spatial map with dry
spell length for a given probability of occurrence.

2.5 Critical dry spell

The critical dry spell length is the time period that the ecosys-
tem can bridge. It is the ratio between the available soil mois-
ture and the transpiration rate of the vegetation (see Eq. 11).
If the transpiration demand is larger than the available soil
moisture, the development of the plant will be hampered or,
in the worst case, the plant will wilt. The critical dry spell
length ncr (days) can thus be calculated at every point in
space as the ratio of the available soil moistureθ (mm) to
the potential evaporationEp (mm day−1):

ncr =
θ

Ep
. (11)

Due to data limitations of spatially distributed soil mois-
ture and evaporation measurements in the Makanya catch-
ment, the critical dry spell length has been calculated for only
three locations. Location 1 and 2 were selected in the lower
middle part of the catchment with coarse erosion sediments,
while location 3 was selected for higher altitudes with clayey
soils (see Fig. 1 for locations). Soil moisture measurements
in the catchment indicated that the maximum soil moisture
content varies between 8 and 12 % (Makurira et al., 2010).
To estimate the available soil moisture stock, it is assumed
that maize, the staple crop grown in the area, has a root depth
of approximately 500 mm. With the assumption that at the
beginning of the rainy seasons this stock has been replen-
ished, the available soil moisture for the crop is around 10 %
(50 mm). Data collected from a Class A-pan in locations 2
(valley) and 3 (mountain) were used to determine the poten-
tial evaporation (see Fig. 4 for locations). The critical dry
spell length is then compared with maximum dry spell length
derived from Eq. (11) for different probability values.

Fig. 4. (A) Ordinary co-kriging-derived synthetic rainfall map for
rain season Masika.(B–D) Map with dry spell length for fixed prob-
abilities of non-exceedance:pne= 80 %, 50 % and 20 %. Numbers
in brackets indicate locations for which the critical dry spell was
calculated.

3 Results

3.1 Markov properties

The Markov properties were determined by testing two meth-
ods using the eight available rain gauges of the Pangani basin
(period 1940–1989, Fig. 1):

1. For every individual month (March, April and May), the
transition probabilities (p01 andp11) are expressed as
function of their monthly rainfall amounts (all months
are presented in one graph). This resembles a seasonal
average power function with parametersa, b and R2

(Table 1) used in Eqs. (4) to (7).

Hydrol. Earth Syst. Sci., 17, 2161–2170, 2013 www.hydrol-earth-syst-sci.net/17/2161/2013/
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Table 2.Parameters and statistics of the seasonal derived multiple linear regression model of the Pangani basin.

parameter par. 95 % confidence R2 F

value intervals statistic statistic

b01 α 2.48×10−1 1.66×10−1 3.29×10−1 0.41 1.41
β 5.11×10−5

−7.47×10−5 1.77×10−4

ε −1.43×10−4
−3.88×10−4 1.03×10−4

b11 α 2.07×10−1 1.61×10−1 2.53×10−1 0.54 2.37
β 5.15×10−5

−1.93×10−5 1.22×10−4

ε −7.99×10−5
−2.18×10−4 5.82×10−5

Table 3.Ordinary co-kriging models and cross validation results for Masika season, ME (mean error), RMSE (root mean square error), ASE
(average standard error), MSE (mean standardized error), RMSSE (root-mean-squared standardized error).

Interpolation type Model ME RMSE ASE MSE RMSSE

Ordinary Co-Kriging

Exponential −5.07 59.46 57.68 −0.07 1.03
Stable −9.80 71.63 46.5 −0.15 1.58
Spherical −5.78 61.18 51.05 −0.08 1.23
Gaussian −10.03 71.43 46.74 −0.16 1.56

2. For a season as a whole (March–May), the transition
probabilities (p01 andp11) are expressed as a function
of the seasonal rainfall amounts to derive the seasonal
parametersa, b andR2 (Table 1) using Eqs. (4) to (7).

Figure 3a and b for the seasonal transition probabil-
ity values show a large scatter. To demonstrate the stabil-
ity of the power function, the approach of De Groen and
Savenije (2006) was followed. Here individual transition
probabilities were clustered in 6 rainfall classes with their
median transition probabilities plotted using the grey squares
in Fig. 3a and b. The transition probabilities expressed on a
monthly basis show better correlation (see Table 1). How-
ever, for the further analysis we will focus on the seasonal
Markov properties, as we intend to demonstrate the frame-
work related to the agricultural production, which is a func-
tion of seasonal precipitation. Figure 3 and Table 1 show the
variability of the coefficientsa andb of the power function
of the transitional probabilities calculated using Eqs. (4)–(7).
The coefficient of determination (R2) (Eq. 12) was calculated
to determine how well the power function approximates the
observed data points, usingyi, ŷ andȳ as the original, mod-
elled and mean of the original values respectively.

R2
= 1−

∑n
i (yi − ŷ )

2∑n
i (yi − ȳ )2

(12)

The results of the multiple linear regression model, us-
ing the eight rainfall stations in the Pangani basin, are pre-
sented in Table 2. The coefficient of determination (R2) and
F statistics (Eq. 13) were calculated to determine how well
the MLR model simulates the observed values and can cap-
ture the variance of the observed data (forF>1, the model

captures the variance adequately). TheF statistics were cal-
culated usingJ as the number of independent variables (in
our case two, the distance to sea and altitude) andK the
number of predictors, in our case the number of rain gauges
(8 rain gauges).

F =

∑n
i ( ŷi − ȳ )

2
/J∑n

i (yi − ŷ )
2
/(K − J − 1)

(13)

These coefficients are subsequently used in the Makanya
catchment to obtain the spatially variable Markov coeffi-
cientsb01 andb11. To obtain the spatial transition probabili-
ties p01 andp11, the daily rainfall data set in the Makanya
catchment (16 stations) was regionalised to produce rain-
fall maps. The Masika seasons used (2006) were considered
“wet” seasons with above average precipitation amounts. To
compensate for this, the rainfall amounts were scaled to an
average of the rainfall season. The scaling factor is derived by
dividing the seasonal rainfall value of the Masika season in
2006 by the long-term average amounts for the rain gauge lo-
cated in Same (1940–2007) resulting in a factor of 0.55 (−).
All rain gauge data of the Makanya catchment for Masika
season 2006 were scaled by this factor. This new “synthetic”
rainfall data have been used for ordinary co-kriging to make
a rainfall map for further analysis. Due to the slightly better
performance, the exponential model was chosen (see Table 3
for cross validation and Fig. 4a for the map). The combina-
tion of the fixed coefficients,̄a01 and ā11, the spatially dis-
tributed coefficients,b01 andb11, with the seasonal rainfall
map, making use of the power functions of Eqs. (6) and (7),
provides the spatially distributed transition probabilitiesp01
andp11 to be used in Eq. (10) to map the dry spell length for
fixed probabilities of non-exceedance.

www.hydrol-earth-syst-sci.net/17/2161/2013/ Hydrol. Earth Syst. Sci., 17, 2161–2170, 2013
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Fig. 5. Cumulative dry spell distribution for the three locations indicated in Fig. 4. This can be obtained from Eq. (10) calculating for each
probability of non-exceedance (pne) its ndry,max.

3.2 Dry spell maps

Three different dry spell maps (Fig. 4b–d) were compiled us-
ing the interpolated rainfall map of the Makanya catchment
(Fig. 4a). These three figures show the spatial distribution of
dry spell length for different probabilities of non-exceedance:
pne = 80 %, 50 % and 20 % (based on Eq. 9). A high spatial
variability of precipitation and dry spells is visible within the
Makanya catchment. In the higher parts of the catchment,
rainfall amounts are higher and the probability of long dry
spells is lower. This information is combined with the infor-
mation on critical dry spells length for the three locations,
which ranges between 8 and 17 days depending on the soil
type and potential evaporation (see Table 4 and Fig. 5).

The probability of occurrence of a critical dry spell for the
three sites ranges between 5 % for the higher areas and 90 %
for the lower areas (see Fig. 5). Not only is this a result of
the higher probability of dry spells, but this also is due to the
lower soil-moisture-holding capacities in the lower areas.

The results indicate that not only are the areas in the valley
affected by the higher probability of occurrence of dry spells,
but also these areas are more easily affected by dry spells due
to the soil properties and higher potential evaporation.

4 Discussion and conclusion

The presented Markov-based framework clearly shows the
high spatial variability of dry spell length. Previous research
focussed on evaluating point data, which is often very coarse.
In many areas, the required information is insufficient to
assess the spatial vulnerability of local agriculture to dry
spell occurrences. The results presented are based on pa-
rameters determined using the Masika season as a whole.
As we showed in Sect. 3.1, the transition probabilities using
monthly values showed a better correlation, but since farm-
ers require seasonal rather than monthly information we fo-
cussed on the Masika season. We applied the same approach
to the Vuli season, but the results were not as good as for

Table 4.Values of critical dry spell lengthncr for the three locations
indicated in Fig. 4.

location θ D θ available Ep ncr
available root depth to crop [mm d−1] [d]

[%] [mm] [mm]

1 8 500 40 4.9 8.2
2 10 500 50 4.9 10.2
3 12 500 60 3.5 17.1

the Masika season. In particular the multiple linear regres-
sion model performed worse due to the fact that the main
wind direction during the Vuli season is north and rainfall
is therefore not related to the distance to the sea (which is
located east of the catchment). As a result, an alternative
multiple linear regression model may have to be developed
for the Vuli season. The framework, however, requires a sub-
stantial amount of short-term data to be able to spatially dis-
tribute the Markov chain properties. In addition, the use of an
above average season of Masika in 2006 and its dry spell map
may underestimate the situation for certain years. Neverthe-
less compared to Tilya and Mhita (2007) the dry spell maps
clearly demonstrate the regional variability and underline the
need for spatially distributed dry spell analysis.

In applying this approach we have used average values
from Class A-pan evaporation as a proxy for potential evap-
oration. Although evaporation is a dynamic process and not
constant in time, we used the average dailyEp ratio in a way
to express the typical critical dry spell length rather than de-
veloping a dynamic model incorporating the long stochastic
time series ofEp. We realise this is a simplification of the
natural processes, but it was used to demonstrate the method,
rather than provide absolute values. The framework is inde-
pendent of the method used to determine the potential evapo-
ration or the available soil moisture. The essence is that both
the meteorologically expected dry spell length and the crit-
ical dry spell length vary in space and that the matching of
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these two quantities provides an indication of areas where
farmers have difficulty achieving a reliable yield.

This paper demonstrates a framework for assessing the
spatial distribution of critical dry spells in a data-scarce en-
vironment. The results showed that within a 5 km radius, the
probability of the occurrence of a critical dry spell can range
between 5 and 90 %. This is both the consequence of vary-
ing soil conditions and potential evaporation, which lead to a
wide range of critical dry spell length, between 8–17 days. In
addition, in the valley with lower rainfall amounts, the proba-
bility of dry spells is also higher. This combination – low soil
water content, high potential evaporation and long dry spell
occurrences – contributes to the high vulnerability of the val-
ley to droughts (90 %). At the same time, in this area, access
to surface water to supplement rainfall is limited. In contrast,
at location 3 in the mountains, dry spell occurrences are not
frequent, soil properties are good and potential evaporation
is low. In addition, surface water is plentiful to supplement
rainfall.

Using the spatial information on dry spell occurrence in
water management provides opportunities to develop new
water management strategies by (1) indicating potentially
water-scarce regions, (2) developing techniques to improve
soil characteristics or decrease non-productive evaporation
fluxes and/or (3) increasing storage to bridge dry spells or
decrease the vulnerability to dry spells.

This study sets the first step to use available rainfall data
to reveal more detailed spatial patterns of dry spell occur-
rence. The next step would consist of developing spatially
distributed soil and potential evaporation maps and of com-
bining these with dry spell maps for the entire region, result-
ing in a spatially distributed critical dry spell map.
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