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Abstract. Snowmelt-dominated streamflow of the Western
Himalayan rivers is an important water resource during the
dry pre-monsoon spring months to meet the irrigation and
hydropower needs in northern India. Here we study the
seasonal prediction of melt-dominated total inflow into the
Bhakra Dam in northern India based on statistical relation-
ships with meteorological variables during the preceding
winter. Total inflow into the Bhakra Dam includes the Satluj
River flow together with a flow diversion from its tributary,
the Beas River. Both are tributaries of the Indus River that
originate from the Western Himalayas, which is an under-
studied region. Average measured winter snow volume at the
upper-elevation stations and corresponding lower-elevation
rainfall and temperature of the Satluj River basin were con-
sidered as empirical predictors. Akaike information criteria
(AIC) and Bayesian information criteria (BIC) were used
to select the best subset of inputs from all the possible
combinations of predictors for a multiple linear regression
framework. To test for potential issues arising due to multi-
collinearity of the predictor variables, cross-validated predic-
tion skills of the best subset were also compared with the pre-
diction skills of principal component regression (PCR) and
partial least squares regression (PLSR) techniques, which
yielded broadly similar results. As a whole, the forecasts of
the melt season at the end of winter and as the melt season
commences were shown to have potential skill for guiding
the development of stochastic optimization models to man-

age the trade-off between irrigation and hydropower releases
versus flood control during the annual fill cycle of the Bhakra
Reservoir, a major energy and irrigation source in the region.

1 Introduction

The Satluj River is one of the five main tributaries of the
Indus river that traverse the Punjab region of northern In-
dia and Pakistan, whose name translates as “the land of five
rivers”. The waters of the Satluj are allocated to India under
the Indus Waters Treaty between India and Pakistan, and are
mostly diverted to irrigation canals in India. There are several
major hydroelectric plants on the Satluj, and the 1325 MW
Bhakra Dam at the foothill of the Himalayas is the largest of
them. The Bhakra Reservoir is the lifeline for water supply in
three major states in northern India including India’s “bread
basket” Punjab state. The current total inflow to the Bhakra
Dam comprises the Satluj River flow (65–80 %) and the flow
diverted from a tributary of the Satluj, the Beas River (via
the Beas Satluj Link (BSL), 20–35 %) (location is shown in
Fig. 1). Melting snow and ice provide the water supply to
much of the Himalayan region during the dry months before
the summer monsoon. Snowmelt is most important in the
Western Himalayas where meltwater comprises up to about
70 % of the annual discharge of the Indus and its tributaries
(Kattelmann, 1993; Archer, 2003). Both the Satluj and the
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Beas originate from the Western Himalayas. More than 50 %
of the annual flow of the Satluj River is contributed by snow
and ice melt (Singh and Jain, 2002, 2003). Forecasting sea-
sonal meltwater mean inflows into Bhakra has the potential
to improve the operational efficiency of the hydroelectric and
irrigation projects. The information about snow accumula-
tion in winter provides a key to spring total inflow with lead
times of a few months (Singh and Bengtsson, 2004; Schar et
al., 2004; Stewart, 2009). However, because of limited data
in this region of rugged topography and poor accessibility,
there have been few long lead prediction studies of the Satluj
and other Himalayan catchments. No published study exists
for the seasonal prediction of the mean inflow of the Bhakra
Reservoir.

Previous studies have developed regression relationships
between the winter snow-covered area derived from remote
sensing data and spring monthly accumulated Satluj runoff
(Ramamoorthy and Haefner, 1991). But the limited period of
data (1980–1990 with 3 yr data missing) used in that study
does not provide much statistical confidence. With an im-
proved data network, more recent studies have simulated the
“daily” flow of the Satluj River based on daily precipita-
tion, temperature and snow cover information from the satel-
lite images (Singh and Quick, 1993; Jain et al., 1998, 2010;
Singh and Jain, 2003). While these studies have reported bet-
ter results with time, these conceptual rainfall-runoff models
are not useful for longer-term (seasonal) forecasting since
they are based on near-real-time daily weather data. In ad-
dition, the relationship between snow-covered areas ver-
sus streamflow can be complicated by variations of snow
depth (Makhdoom and Solomon, 1986). However, snow wa-
ter equivalent or snow measurement information has not been
considered for Satluj Basin flow prediction because such
data has not been previously available. Better skills could
be achieved to predict spring seasonal (Mar/Apr/May/Jun
(MAMJ)) total inflow using currently available winter snow
information and other hydrometeorological data.

The size of the river basin also has an important impact: for
instance, Li et al. (2009) found that the larger the basin, the
stronger the influence of initial conditions. Meteorological
forcings also contribute to the predictive skill of seasonal hy-
drological forecasts as total precipitation has a predominant
effect on river flow (Li et al., 2009; Materia et al., 2010).
Different climatic regions provide seasonal hydrological pre-
dictability based on different variables. Real-time climate
data collected at nearby monitoring sites and/or large-scale
climate indices are typically used for seasonal streamflow
forecasting at different regions. For example, Wedgbrow et
al. (2002) analyzed dependence of river flows on several cli-
matic variables (as climatic indices and SST) and its useful-
ness to forecast the summer river flow for several rivers in
England. Wilby et al. (2004) carried out a seasonal forecast
of the River Thames flow in England using SSTs and other
variables. In the Iberian Peninsula, SST fields of Atlantic
Ocean were demonstrated to be useful in seasonal stream-

flow forecast (Gamiz-Fortis et al., 2008). In Australia, infor-
mation based on ENSO streamflow teleconnection and se-
rial correlation in streamflow was demonstrated to help ir-
rigators to take more-informed risk-based management de-
cisions (Chiew et al., 2003; Wang et al., 2010). The North
Atlantic Oscillation (NAO) or the Southern Oscillation In-
dex (SOI) was found to provide the magnitude of seasonal
streamflow in Iran (Araghinejad et al., 2006). For the past
years, quantitative methods for short-term and seasonal hy-
drological forecasting have been under development for sev-
eral subcatchments of the central Asian rivers, which receive
water through melting of snow accumulated in the previous
winter (Schar et al., 2004; Barlow and Tippet, 2008). It has
been indicated that winter climate information from regional-
scale patterns is sufficient to capture a great deal of the vari-
ability of river flow in central Asia during subsequent warm
seasons for the reason that river drainage basins act as a nat-
ural spatial integrator of regional climate (Schar et al., 2004;
Barlow and Tippet, 2008).

Seasonal forecasts of streamflows were issued by a num-
ber of researchers using both dynamical and statistical
approaches. A range of parametric/nonparametric statisti-
cal prediction-modeling techniques has been used globally,
which exhibit various levels of skill in regional streamflow
forecasting. Traditional parametric methods involve fitting
a linear function, also known as linear regression that as-
sumes a Gaussian distribution of data and errors, and a lin-
ear relationship between the predictors and the dependent
variable. Schar et al. (2004) and Barlow and Tippet (2008)
worked on the predictability of central Asian river flow us-
ing linear regression techniques. On the other hand several
nonparametric data-driven approaches, which are claimed to
overcome the limitations of linear regression, are also be-
ing used in practice, such as kernel-based ones, splines, K-
nearest neighbor (K-NN) local polynomials (Owosina, 1992;
Rajagopalan and Lall, 1999; Souza and Lall, 2003), and lo-
cally weighted polynomials (Loader, 1999). The K-NN lo-
cal polynomials and the local weighted polynomial (LOC-
FIT) approaches are very similar. Some of these methods
were also used in conjunction with the multimodel ensemble
forecasting framework that helps in determining the prob-
ability of exceedances of various thresholds useful for the
water resource management (Regonda et al., 2006; Bracken
et al., 2010). Existing studies also show that multimodel en-
semble forecasts tend to perform much better than a single-
model forecast, particularly in short-term and seasonal cli-
mate forecast (Krishnamurti et al., 1999, 2000; Rajagopalan
et al., 2002; Hagedorn et al., 2005; Wood and Lettenmaier,
2006; Singla et al., 2012). Other alternative statistical tech-
niques to multiple-regression models have also gained wider
acceptance in many hydrologic applications, including ar-
tificial neural networks (ANN), genetic algorithms, multi-
variate adaptive regression splines, and partial least squares
(Risley et al., 2001). Unlike multiple-regression models,
which assume a linear relationship between variables, these
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Fig. 1. (a) Indian part of Satluj River basin up to Bhakra Reservoir with location of hydrometeorological stations;(b) entire Satluj River
network including location of Beas Satluj Link (BSL) channel.

methods are capable of efficiently modeling nonlinear pro-
cesses that typically occur in natural systems. Canonical cor-
relation analysis (CCA) and principal components regres-
sion (PCR) are also alternatives that are appropriate for sit-
uations where the independent variables are correlated with
each other (Garen, 1992; Gamiz-Fortis et al., 2008; Barlow
and Tippet, 2008).

In the current study we used basin scale winter climate in-
formation as predictors of spring seasonal river flow. Spring
seasonal streamflow distribution of the Satluj River flow was
found to be Gaussian; hence we proposed using a best-subset
selection technique using AIC (Akaike information criteria)
and BIC (Bayesian information criteria) from all variable
combinations within a multiple linear regression framework
and also compare this with PCR and partial least squares re-
gression (PLSR) techniques, which will be discussed later.

2 Study region and data

The Satluj River originates from the Tibetan Plateau in the
southern slopes of Mount Kailash at an elevation of more
than 4500 m a m.s.l. and flows generally west and southwest
entering India in Himachal Pradesh. The entire basin area in
the Tibetan Plateau experiences a cold desert winter climate
and therefore the river has very low flow until it joins its ma-
jor tributary, Spiti, near Namgia in India. The Spiti catchment
(10 071 km2) experiences extensive snowfall due to westerly
weather disturbances in the winter months that contribute to
the Satluj flow in spring, or in MAMJ (Singh and Kumar,
1997), which is of our interest. In general the maximum snow
cover area exists in March, by when most of the snowfall has
occurred (Singh and Jain, 2003).

www.hydrol-earth-syst-sci.net/17/2131/2013/ Hydrol. Earth Syst. Sci., 17, 2131–2146, 2013
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The Satluj River is the largest among the five rivers of Hi-
machal Pradesh (Fig. 1). It leaves Himachal Pradesh to enter
the plains of Punjab at Bhakra, where Asia’s second highest
gravity dam was constructed. The Bhakra Dam is the major
point of water supply and electricity generation in northern
India. The Satluj finally drains into the Indus in Pakistan.
The river’s total length is 1448 km and total drainage area
up to Bhakra Reservoir is about 56 500 km2. For the present
study, the Indian part of the Satluj River basin up to Bhakra
Reservoir (area: 22 275 km2; elevation range: 500–7000 m)
was selected (Fig. 1).

The spring season (MAMJ) flow comes mainly from the
runoff generated by snowmelt from the upper elevations in
the greater Himalayas (Jain et al., 1998). About 65 % of
the Satluj Basin area is covered with snow during winter,
and about 12 % of the basin (2700 km2) is covered with
permanent snowfields and glaciers (Singh and Bengtsson,
2004). The glacier melt runoff in the months of July, Au-
gust and September occurs after the contribution of sea-
sonal snowmelt, when glaciers become snow free (Singh
and Quick, 1993). Peak values of total discharge in July
and August are essentially due to combining this with mon-
soon rainfall in the lower elevations. Minimum flow is ob-
served in winter when the base flow contribution sustains the
river flow.

Spring seasonal inflow anomalies are found to be strongly
correlated with large-scale precipitation and diurnal temper-
ature range in the preceding winter over the Western Hi-
malayas as well as adjoining northern and central Indian
plains (Fig. 2), suggesting a potentially usable predictability
for reservoir managers. Winter precipitation in the Western
Himalayas and adjoining regions is mainly brought about by
the midlatitude jet stream leading to the formation of low-
pressure synoptic systems known as Western Disturbances
(WD), and therefore the winter average precipitation over
this entire region (Fig. 2) is related. Since total spring sea-
sonal (MAMJ) inflow to Bhakra Dam is largely contributed
by the winter snow melt, winter precipitation and tempera-
ture data available from the Indian side of Satluj Basin in
addition to inflow itself were used as predictors.

Daily total inflow of Bhakra Reservoir (Satluj River flow
+ Beas Satluj Link (BSL) diversion) for 1963–2004, daily
rainfall, snow and temperature data (Tmax, Tmin) were pro-
vided by the Bhakra Beas Management Board (BBMB) of
India, the organization that is responsible for data collection
and operation of the Bhakra Dam. The lower-elevation rain-
fall stations and upper-elevation snow stations are marked in
Fig. 1. The daily snow measurements have a complete record
from 1976–2006 for 12 stations (Table 1). Daily rainfall data
had complete records for 1977–2006 for 15 stations (Ta-
ble 1). Maximum temperature data were available only for 5
stations and a complete record was found for 1983–2005 (Ta-
ble 1). Minimum-temperature data were available only for 2
stations in the entire basin (Table 1). The elevation informa-
tion for various rainfall and snow stations indicates that snow

Fig. 2.Pearson’s correlation fields of spring (MAMJ) seasonal total
Bhakra inflow with preceding winter (DJF/DJFM)(a) precipitation
and (b) daily temperature range over the Western Himalayas and
adjoining northern and central Indian plains (also includes part of
Pakistan and Afghanistan) for 1978–2004. Shading indicates local
statistical significance level at 90 % confidence.

stations are at much higher elevation. We determined average
temperature (Tavg) and diurnal temperature range (DTR) by
averagingTmax andTmin, and subtractingTmin from Tmax on
a daily basis.

As mentioned earlier, total Bhakra inflow is a joint con-
tribution from the Satluj River flow and BSL diversion
that came into effect in November 1977. Consequently, the
Bhakra total inflow data has a step jump since that time. To
avoid this step change, we considered the flow data from
1978–2004. This study only considers the flow component
in the spring season (MAMJ). Since station temperature data
were available only since 1983 and also had poor spatial cov-
erage (few stations in low elevations), we compared these
data with the data available from other sources. The com-
parison of station temperature data with the Indian Mete-
orological Department (IMD) 1-degree gridded daily tem-
perature data (Srivastava et al., 2008) for the Satluj Basin
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Table 1. Information about different meteorological stations in
Satluj River basin in India.

Elevation
Station Name Latitude (N) Longitude (E) (m a m.s.l.)

Rainfall

Berthin 31◦25′11′′ 76◦38′55′′ 668
Bhartgarh 31◦6′0 76◦36′0 284
Daslehra 31◦24′56′′ 76◦32′56′′ 562
Ganguwal 31◦24’ 76◦6’ 1220
Ghanauli 31◦1′33′′ 76◦35′22′′ 293
Kahu 31◦12′43′′ 76◦46′52′′ 526
Lohand 31◦10′31′′ 76◦34′14′′ 288
Naina Devi 31◦17′56′′ 76◦32′8′′ 985
Nangal 31◦23′50” 76◦22′21” 369
Rampur 31◦26′24′′ 77◦37′40′′ 987
Suni 31◦14′43′′ 77◦6′53′′ 701
Kasol 31◦30′0′′ 77◦19′0′′ 2614
Kotla 31◦30′0′′ 77◦15′0′′ 2824
Swarghat 31◦20′ 76◦45′? 1220

Snow measurement

Bahli 31◦22′17′′ 77◦38′48′′ 2285
Chitkul 31◦20′59′′ 78◦25′0′′ 3327
Giabong 31◦46′24” 78◦26′44” 2926
Jangi 31◦36′15” 78◦25′0” 2721
Kalpa 31◦31′60” 78◦15′0” 2662
Kaza 32◦13′25′′ 78◦4′11′′ 3618
Kilba 31◦31′0′′ 78◦9′0′′ 1988
Nichar 31◦33′7′′ 77◦58′34′′ 2225
Phancha 31◦35′45′′ 77◦43′54′′ 2348
Sangla 31◦25′14′′ 78◦15′44′′ 2780
Sarhan 31◦30’34′′ 77◦47′34′′ 2144
Tabo 32◦7′51′′ 78◦23′11′′ 4201

Maximum temperature

Bhakra1 31◦24′56′′ 76◦26′5′′ 554
Kasol 31◦30′0′′ 77◦19′0′′ 2614
Nangal1 31◦23′50” 76◦22′21” 369
Rampur 31◦26′24′′ 77◦37′40′′ 987
Suni 31◦14′43′′ 77◦6′53′′ 701

1 Also minimum temperature stations.

(30.5–33.5◦ N and 75.5–79.5◦ E) indicated that they have
similar variability on average at monthly time scales for the
study region. Therefore, given their longer period of record
(1969–2004) and better spatial coverage, IMD gridded tem-
perature data were used here for the Satluj Basin region. In
addition, since IMD rainfall data (Rajeevan et al., 2005) also
have good spatial and temporal (1-degree, daily) coverage for
the basin region and pose a similar variability with the station
data (Pal et al., 2013), we tested the prediction performance
of both the rainfall datasets separately combined with station
snow and IMD temperature data in this study.

 
 Fig. 3. Comparison of the seasonality of total inflow and
basin climatology (Q = normalized inflow,R = normalized rainfall,
S = normalized snow,Tmax= normalized maximum temperature).

Table 2 summarizes the cross-correlations of average
Dec/Jan/Feb/Mar (DJFM) climate data and spring seasonal
flow from 1978–2004. The table indicates that average mea-
sured snow in winter in the high elevation is positively cor-
related with the lower-elevation rainfall, which was true both
for the IMD and station rainfall (0.65 and 0.71, respectively).
IMD rainfall is very highly correlated with the station rainfall
(0.84). Winter precipitation (both rainfall and snow) is nega-
tively and highly correlated withTmax andTavg. SinceTavg is
the simple average betweenTmax andTmin, the correlations
betweenTavg andTmax andTmin are very high (> 0.8).

Figure 3 shows the average seasonality of the inflow and
Satluj River basin climatology (mean monthly over 1978–
2004). The figure suggests that the basin snow and rainfall
(IMD) patterns are masked by each other in different seasons.
The figure also depicts that the flow starts increasing contin-
uously from February relative to the increase in temperature.
Therefore one might expect that warmer winters contribute
positively to the melt in the months that followed. Tempera-
ture has a peak in June when the snowmelt-contributed flow
usually reaches its peak. In July and August when the flow
is highest, it is driven by a combination of monsoon rain at
lower elevations and glacier melt (Singh and Quick, 1993).
On the other hand, sinceTmax showed a strong and signif-
icant negative correlation with the spring inflow (Table 2),
winter Tmax might just be a reflection of concurrent precipi-
tation amount.

Considering different redundancies in the data, we consid-
ered prediction of spring flow at different lead times, using
two meteorological data combination settings:

– Setting 1: combining IMD rainfall and temperature data
with station snow data.

– Setting 2: using station precipitation (snow and rain-
fall) data as the predictors and omitting temperature
data. We considered this for three reasons: (i) station

www.hydrol-earth-syst-sci.net/17/2131/2013/ Hydrol. Earth Syst. Sci., 17, 2131–2146, 2013



2136 I. Pal et al.: Predictability of Western Himalayan river flow

Table 2.Cross-correlations for different hydrometeorological variables for 1978–2004.

Flow Station snow IMD rainfall Station rainfall IMD Tmax IMD Tmin IMD Tavg IMD DTR

Flow 1.00 0.58 0.48 0.55 −0.50 −0.02 −0.33 −0.55
Station snow 0.58 1.00 0.65 0.71 −0.44 −0.18 −0.37 −0.34
IMD rainfall 0.48 0.65 1.00 0.84 −0.67 −0.49 −0.68 −0.32
Station rainfall 0.55 0.71 0.84 1.00 −0.78 −0.38 −0.69 −0.54
IMD Tmax −0.50 −0.44 −0.67 −0.78 1.00 0.53 0.90 0.66
IMD Tmin −0.02 −0.18 −0.49 −0.38 0.53 1.00 0.84 −0.30
IMD Tavg −0.33 −0.37 −0.68 −0.69 0.90 0.84 1.00 0.27
IMD DTR −0.55 −0.34 −0.32 −0.54 0.66 −0.30 0.27 1.00

Note: the meteorological data is for winter season (DJFM) and flow data is for spring (MAMJ). DTR= Diurnal Temperature Range= Tmax–Tmin.

temperature data has a shorter length (1983 onwards)
and poor spatial coverage (2–5 stations); (ii) to avoid
the multicollinearity issue, i.e., high correlations be-
tween precipitation and temperature, as in Table 2; and
(iii) since there are difficulties associated with obtaining
meteorological data from the IMD on a real-time basis
(particularly the gridded datasets used in this study), we
want to demonstrate the predictability of the spring in-
flows, based entirely on the BBMB network so that they
can utilize the data in near-real time for making the best
use of the prediction schemes developed here for any
decisions they plan to initiate.

3 Predictor(s) selection

Selection of appropriate predictors is required for forecast-
ing streamflows. Poorly designed predictor selection proce-
dures can result in poor forecasts for independent events.
Best predictors vary with location and forecast date. This
section discusses the potential predictor(s) selection (most
influential variables) for forecasting the spring seasonal to-
tal inflow into Bhakra Dam, determined using the “bestglm”
technique at different lead times and for both settings stated
above (McLeod and Xu, 2010). The bestglm tool is freely
available to download for the publicly available statistical
software R. This method provides a flexible framework to
describe how a dependent variable can be explained by a set
of predictors. Fitting a single model is not satisfactory in all
circumstances (Rajagopalan et al., 2002, 2005). In particular,
this assumes that the model used is true or at least optimal in
some sense. Hence the resulting inference is conditional on
this model. A special case of this general problem is variable
selection in the multimodel and multiple regression frame-
work (Miller, 2002). The usual method to select a model is
stepwise – backward- or forward-selection approach based
on significance tests. However, backward and forward ap-
proaches are not generally expected to converge to the same
model (Venables and Ripley, 1997; Grafen and Hails, 2002).
Several model selection techniques have been developed to
avoid these pitfalls. One of these techniques is based on an

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4: Flowchart showing the bestglm method. 

Y = Predictand; X1,……Xp = 
predictors where p = total 

number of predictors 

Make all 2p combinations of 
predictors and do multiple linear 

regression 

Best subset Xi1,…….Xim (i = 
1,….n) where total number of 
subsets selected correspond to 
least AIC/BIC criteria estimate 

Multiple linear regression 

Fig. 4.Flowchart showing the bestglm method.

information criterion (IC) that compares all possible candi-
date models and ranks them based on their IC values. This
method ensures that the “best” model (according to the IC)
is identified, whereas stepwise explorations do not. Most im-
portantly, this method allows one to assess model-selection
uncertainty or to perform multimodel inference, rather than
using one and only one best model (Buckland et al., 1997;
Burnham and Anderson, 2002; Johnson and Omland, 2004).

The step-by-step procedure of the bestglm technique is
shown in Fig. 4 as a flowchart. We usually consider the lin-
ear model ofY on p inputs,X1,. . .Xp; but in many cases,
Y can be more parsimoniously modeled and predicted us-
ing just a subset ofm <p inputs,Xi1,. . .Xim (i = 1,. . .n).
Whenn >p, the best-subset problem is to find out all the
possible 2p regressions (subsets) and the best fit (subset) ac-
cording to some goodness-of-fit criterion, as in Fig. 4. When
p ≤ 25 or thereabouts (in our case maximump = 16), this
technique has proved to be very efficient, but problems with
large enoughp, such asp > 100, cannot be solved by this
method (McLeod and Xu, 2010). Other high-dimensional
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optimization algorithms such as genetic search and simulated
annealing are recommended for that case (cross references
from McLeod and Xu, 2010).

The bestglm model selection method includes a variety of
IC. The information criteria include the usual AIC and BIC
as well as two types of extended BIC. All the information
criteria that might be considered in the bestglm technique
are based on a penalized form of the deviance or minus the
log-likelihood. In the multiple linear regression the deviance
D = 2log L, whereL is the maximized log-likelihood, and
log L = −(n/2) log S / n, whereS is the residual sum of
squares. Akaike (1974) showed that AIC= D + 2k, where
k is the number of parameters, provides an estimate of
the entropy. The model with the smallest AIC is preferred.
While many other criteria (e.g., final prediction error cri-
terion), which are essentially equivalent to the AIC, have
also been suggested, in practice, with smalln, all those cri-
teria often select the same model. The BIC is derived us-
ing Bayesian methods. If a uniform prior is assumed for all
possible models, the usual BIC may be written BIC= D + k

log(n). The model with the smallest BIC corresponds to the
model with maximum posterior probability. The difference
between these criteria is in the penalty. Whenn > 7, the BIC
penalty is always larger than for the AIC, and consequently
the BIC will never select models with more parameters than
the AIC. In practice, BIC often proved to select more parsi-
monious models than the AIC (McLeod and Xu, 2010). In
large p problems (p > 25) a modified BIC called BICg is
suggested that considers a prior that is uniform of models of
fixed size instead of all possible models (as with the original
BIC case). On the other hand, BICq is another modified ver-
sion of BIC that is derived by assuming Bernoulli prior for
the parameters. Each parameter has a priori probability of q
of being included, whereq = [0, 1]. Whenq = 1/2, BICq is
equivalent to BIC, whileq = 0 andq = 1 correspond to se-
lecting the models withk = p (full model) andk = 0 (no pa-
rameters), respectively. If q is within 0.01 and 0.51, it gives
results equivalent to the AIC. Having a small dataset (only
27 data points), we used AIC and BIC in this paper and also
compared them in terms of their robustness for the best mod-
els and the prediction skills, as mentioned in Fig. 4.

While bestglm technique has various advantages over
many linear regression techniques, as discussed above, it is
not clear how this technique handles the multicollinearity is-
sue, which is a common redundancy with the hydrometeoro-
logical data and true here too, as Table 2 points out. Multi-
collinearity might create highly sensitive parameter estima-
tors with inflated variances, and improper model selection.
Regression techniques such as PCR or PLSR reduce the re-
dundancy due to multicollinearity. Therefore, we also com-
pared the prediction skills of best-subset multiple regression
to that of PCR and PLSR, considering all variables.

We considered the prediction of mean MAMJ (total) in-
flow on 1 December, 1 January, 1 February and 1 March
and of AMJ inflow on 1 April. All the possible predictors

at those lead times and corresponding Pearson’s correlation
coefficients with average MAMJ inflow are listed in Table 3.
Predictors corresponding to the correlation coefficient within
±0.10 were neglected. As stated earlier, March is a very im-
portant month since the maximum snow cover occurs during
this time. Therefore, incorporating March data as a predic-
tor is expected to show higher skills as also depicted in cor-
relations in Table 3. In addition,∼ 90 % of the volume of
MAMJ inflow on average occurs in AMJ alone. Therefore,
we also considered an 1 April prediction for AMJ inflow. As
the subsets are unknown, various possible monthly combina-
tions were considered in order to choose the best predictors
at different lead times, as shown in Table 3. As Table 3 re-
veals, all the correlations for the first three lead times are
very poor. This is because much of the snow accumulated
in Nov/Dec/Jan usually melts away before March, usually
starting in late January and early February (Pal et al., 2013).

The distribution of the predictand (MAMJ flow) was close
to Gaussian based on Lillifor’s test, and scatter plots between
predictors and predictand revealed nearly linear structures.
Therefore the link function used in this method is linear and
Gaussian, and the models turned out to be multiple linear
regressions. We also checked the linear relationship using
LOCFIT, or local weighted polynomial approach, and gener-
alized cross-validation (GCV) estimates for each fit between
the predictors and predictand to determine the optimum win-
dow width used for the local regression that corresponds to
the minimum GCV (Loader, 1999), as recommended by Ra-
jagopalan et al. (2002, 2005). In all the cases, we got al-
pha= 0.9–1.0, where alpha is the fraction of the total data
length. Therefore, we used bestglm with much confidence.

4 Prediction results and skills

Variable selection, measurement and comparison of the
model performance at different lead times were done using
K = 3 leave-out cross-validation. This method leaves three
randomly selected observations in turn, determines the best
subset from the remaining training data points and the best
multiple linear model fit. The dropped points form the test-
ing set against which the goodness of fit of the estimated
points are measured. This is repeated 100 times. PCR and
PLSR were also applied inK = 3 leave-out cross-validation
mode considering all thep variables at a time. Figure 5a–d
show the bar charts of the total frequency of the variables
selected in different lead times in 100 iterations correspond-
ing to AIC and BIC. Different variables within the different
settings are given the names V1 to Vp for the convenience in
plotting them, wherep = total number of variables used at
certain lead time. Variables corresponding to the namesV1
to Vp in Fig. 5 are listed in Table 4. For example, in the first
panel of Fig. 5a, a total of 7 variables were used for the 1 De-
cember prediction (Table 4), namely November flow (NQ),
November rainfall (NR), November snow (NS), November
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Table 3.Pearson’s correlation coefficients between average MAMJ inflow into Bhakra and spatially averaged Satluj River basin climatology
(showing setting 1 datasets) and inflow for 1978–2004.

Prediction 1 December 1 January 1 February

N D ND J DJ NDJ

Flow (Q) −0.05 0.17 0.04 0.07 0.12 0.05
Snow (S) 0.24 0.13 0.22 −0.17 −0.05 0.03
Rainfall (R) 0.30 0.43 0.48 −0.10 0.12 0.19
Tmax −0.06 −0.26 −0.19 0.18 −0.06 −0.07
Tmin −0.04 0.16 0.07 0.08 0.18 0.11
Tavg −0.06 −0.13 −0.11 0.16 0.06 0.01
DTR −0.02 −0.29 −0.21 0.10 −0.17 −0.14

1 March 1 April

F JF DJF M FM JFM

Flow (Q) 0.38 0.24 0.22 0.72 0.66 0.57
Snow (S) 0.48 0.28 0.36 0.57 0.70 0.54
Rainfall (R) 0.64 0.29 0.40 0.44 0.58 0.42
Tmax −0.42 −0.24 −0.31 −0.48 −0.53 −0.46
Tmin 0.12 0.11 0.19 −0.27 −0.13 −0.07
Tavg −0.22 −0.08 −0.09 −0.41 −0.40 −0.33
DTR −0.64 −0.34 −0.41 −0.63 −0.71 −0.54

Tmax (N Tmax), NovemberTmin (N Tmin), NovemberTavg
(N Tavg) and November DTR (NDTR). Likewise, the vari-
ables corresponding to other lead times in other settings were
also namedV1 to Vp. As mentioned above, BIC chooses the
best models more parsimoniously than the AIC, which is also
evident in the figure. However, the orders in which the vari-
ables are selected are the same for both of the criteria. Table 5
lists the final linear models those consider the best subsets
chosen corresponding to the AIC. The variables in the lin-
ear models in Table 5 were consistently chosen (> 80 % of
the times) or chosen for the maximum number of times (e.g.,
1 December). As noticed in Table 5, the variables selected
for 1 December and 1 February predictions were the same
for both the settings. For setting 1, temperature data were
important for 1 January and 1 March predictions. Previous
flow data (January, February and March) become important
for the 1 April prediction of AMJ flow. Snow in February
and March is important for MAMJ flow, which we have also
noticed before and which is also reflected here in the linear
models for 1 March and 1 April predictions.

To verify the cross-validated forecast model performance
for three techniques considered (bestglm, PCR, PLSR), we
divided both observed and predicted inflow time series into
tercile categories (below normal/normal/above normal) and
determined the joint distribution of them – characterized as
a 3× 3 contingency table (Wilks, 2006). We used 300 dis-
crete random predictions (K = 3, 100 iterations) and cor-
responding observations. Due to the fact that we have a
small sample size and high-dimensional verification situation
((3× 3)−1= 8), we opted for traditional scalar approaches

such as (a)accuracy, or proportion correct (PC), and (b)
forecast skill score, i.e., Heidke skill score (HSS) and Peirce
skill score (PSS). Accuracy refers to the average correspon-
dence between individual forecasts and the events they pre-
dict. Therefore, PC measure will summarize the overall qual-
ity of a set of forecasts in a single number determining the
proportion of correct forecasts (Wilks, 2006). On the other
hand, forecast skill scores will be interpreted as a percent im-
provement over the reference forecasts. While a large num-
ber of such scores are in use, one of the most frequently used
skill scores is the HSS. A perfect forecast receives HSS= 1,
forecasts equivalent to the reference forecasts receive zero
scores, and forecasts worse than the reference forecasts re-
ceive negative scores. The reference accuracy measure in the
HSS is the proportion correct that would be achieved by ran-
dom forecasts that are statistically independent of the obser-
vations (Wilks, 2006). Another equivalent and popular skill
score is the PSS, which can also be understood as the dif-
ference between the hit rate and the false alarm rate. Per-
fect forecast receives a score of 1, random forecast receives a
score of zero, and forecasts inferior to the random forecasts
receive negative scores (Wilks, 2006).

Table 6 lists different cross-validated prediction perfor-
mance measures on the two data settings considered and for
all of the three techniques (bestglm, PCR, PLSR). The table
shows that PC usually improves from 1 December to 1 April
gradually for all the cases. The best prediction skills corre-
sponding to each lead time is marked with an asterisk (*).
The table shows that for 1 January, 1 March and 1 April pre-
dictions corresponding to setting 1, bestglm performed better
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Fig. 5. (a) Number of times (in 100 iterations) the different variables were selected in setting 1 when AIC was used.V1 to Vp names are
listed in Table 4;(b) same as(a) but when BIC was used;(c) number of times (in 100 iterations) different variables were selected in setting
2. V1 to Vp names are listed in Table 4;(d) same as(c) but when BIC was used.

than the other techniques, with AIC as well as BIC yielding
more or less similar prediction skills. While 1 February and
1 December prediction skills were improved when PCR was
used for setting 1, 1 December skills were still negative. For
setting 2, bestglm showed the best performance for 1 January
and 1 March; on the other hand, PCR showed best perfor-
mance for 1 February and 1 April.

While the PC measurement corresponding to bestglm was
better for setting 2 as compared to setting 1 for the 1 Decem-
ber, 1 January and 1 March forecasts, setting 1 prediction was
improved for 1 April with 64 % of the forecasts falling into
the correct category, while for setting 2 it was 48 %. When
PCR was used in setting 2, PC jumped to 64 % but other
skills did not improve from bestglm. Song and Kroll (2011)
pointed out that for small sample size, PCR or PLSR de-
crease the variance of the watershed hydrologic parameters
only when the true model is known (i.e., known subset) and
do not improve model predictions compared to linear regres-

sion models. This might hold true in our case too since we
just have 27 data points.

Furthermore, correlation coefficients in Table 6 were bet-
ter for setting 1 for 1 January, 1 March and 1 April forecasts
corresponding to bestglm (AIC). HSS and PSS estimates
yielded the same estimates all the times, indicating that the
forecasts exhibit little bias (Wilks, 2006). Like PC, HSS/PSS
scores corresponding to bestglm were better for setting 2 for
the 1 March forecast, although the 1 April forecast was much
better when setting 1 was used. However, overall results im-
ply that, even if the temperature information is not available,
only the station precipitation information could be used to
produce real-time forecasts of spring inflow with positive cat-
egorical skills. The availability of reliable station tempera-
ture information and inclusion in setting 2 might improve the
categorical forecast skills for some lead times.

Figure 6 shows the range of cross-validated prediction
square error and average absolute residual errors for each
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Fig. 5.Continued.

setting corresponding to bestglm technique. These were done
after finding out the median forecast value of spring inflow
for each year from the ensemble of (random) forecasts gen-
erated in 100 iterations. The figure depicts that the error is
substantially reduced for 1 March predictions from the pre-
vious lead times for both settings, but the spread increases
for 1 April again, which is true for both AIC as well as BIC
best models. Figure 7 shows the (median) predictions made
on 1 March and 1 April from the ensemble predictions af-
ter 100 iterations, with corresponding 5 and 95 % prediction
intervals. Prediction intervals take into account uncertainty
about mean prediction and uncertainty associated with the
error term. 1 March nicely predicts all the years for setting 1
except a few in the early 1980s, 1996, 2003 and 2004, which
are better predicted on 1 April. For setting 2, 1 April pre-
diction is worse than 1 March, which is also reflected in the
errors in Fig. 6 and forecast skill in Table 6. With high er-
ror (average absolute∼ 18 %), the 1 December prediction
was the worst possible forecast for spring inflow while the

correlation coefficient was also negative (Table 5). All these
results suggest that as far as preplanning is concerned, the
1 March prediction would give us the most accurate esti-
mate of spring inflow before the season commences; how-
ever, the incorporation of the March data (i.e., forecast issued
on 1 April) would be useful for AMJ inflow as well. Fur-
thermore, while setting 1 dataset is more recommended for
spring seasonal inflow prediction, setting 2 could be used in-
terchangeably when IMD dataset is not available, albeit with
less precision.

5 Summary and discussion

The research presented the potential predictability and the
merits of different prediction models of melt-dominated in-
flow into the Bhakra Dam using the flow data and local
winter climatology at the basin scale from 1978–2004. Sev-
eral candidate methods for multiple linear regressions were
explored in a situation where the short data length is a
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Table 4.Names of different variables considered in best-subset selection in Fig. 5.

Setting 1

1 December 1 January 1 February 1 March 1 April

V1 = N Q
V2 = N R
V3 = N S
V4 = N Tmax
V5 = N Tmin
V6 = N Tavg
V7 = N DTR

V1 = ND R
V2 = ND S
V3 = ND Tmax
V4 = ND DTR
V5 = D Q
V6 = D R
V7 = D Tmax
V8 = D DTR

V1 = NDJ R
V2 = NDJ Tmin
V3 = NDJ DTR
V4 = J R
V5 = J Tmax
V6 = J Tavg

V1 = DJF R
V2 = DJF S
V3 = DJF Tmax
V4 = DJF DTR
V5 = JF R
V6 = JF S
V7 = JF DTR
V8 = F Q
V9 = F R
V10 = F S
V11 = F Tmax
V12 = F Tmin
V13 = F DTR

V1 = JFM Q
V2 = JFM R
V3 = JFM S
V4 = JFM Tmax
V5 = JFM DTR
V6 = FM Q
V7 = FM R
V8 = FM S
V9 = FM Tmax
V10 = FM DTR
V11 = M Q
V12 = M R
V13 = M S
V14 = M Tmax
V15 = M Tavg
V16 = M DTR

Setting 2

V1 = N Q
V2 = N R
V3 = N S

V1 = ND R
V2 = ND S
V3 = D Q
V4 = D R

V1 = NDJ R
V2 = J R

V1 = DJF R
V2 = DJF S
V3 = JF R
V4 = JF S
V5 = F Q
V6 = F R
V7 = F S

V1 = JFM Q
V2 = JFM R
V3 = JFM S
V4 = FM Q
V5 = FM R
V6 = FM S
V7 = M Q
V8 = M R
V9 = M S

Table 5. Variables selected using bestglm with AIC and the final models at different lead times for setting 1 (combining IMD rainfall and
temperature data with BBMB station snow data) and setting 2 (using station rainfall and snow data only as the predictors and omitting
temperature).

Setting 1

1 December QMAMJ = 16 974+ 44(N R)
1 January QMAMJ = – 10 622+ 213(ND R) – 139(NDS)

+ 2095(NDTmax) – 1224(DDTR)
1 February QMAMJ = 16 324+ 135(ND R) +80(JR)
1 March QMAMJ = 5546+ 47(F R) + 18(F S)+ 1227(FTmin)

1 April Q AMJ = – 2273+ 362(JQ) – 136(JR) – 82(FQ) + 108(FR)
– 78(M Q) + 35(M R) + 25(M S)

Setting 2

1 December QMAMJ = 17 037+ 37(N R)
1 January QMAMJ = 16 327+ 53(ND R)
1 February QMAMJ = 17 189+ 79(ND R) +37(JR)
1 March QMAMJ = 13 628+ 46(F R)
1 April Q AMJ = 13 995 – 71(JR) + 64(F R) + M Q +25(M R)

Note: flow (Q) is in cubic feet per sec (cfs), rainfall (R) and snow (S) are in millimeters (mm) and
temperature (T ) is in degrees centigrade (◦C)
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Fig. 6. (a)Cross-validated prediction square errors and average absolute errors corresponding to bestglm (AIC);(b) Cross-validated predic-
tion square errors and average absolute errors corresponding to bestglm (BIC).

challenge. We used basin level winter climatology to find the
predictability of spring seasonal streamflow. Given the direct
physical link between winter precipitation and snowmelt-
driven river flow, the spring inflow was found to be positively
correlated with the high-elevation winter snow and corre-
sponding rainfall in the lower elevations, and it is negatively
correlated with the basin-averaged winter temperatures. The
positive significant correlations of spring inflow with winter
precipitation also suggest that the winter atmospheric circu-
lation patterns driving these climate variables are also related
to spring inflow (Pal et al., 2013), and are consistent with
Schar et al. (2004), Tippet et al. (2003), and Barlow and Tip-
pet (2008), who showed spring- and summertime river flow
fluctuation due to winter climate patterns at the regional scale
in central and southern Asia.

One apparent major assumption in the multiple linear re-
gression prediction models is the stationary relationship be-
tween streamflow and snowmelt in time. Although precise
consideration was given to where this was not true (e.g., step

change from the late 1970s), since step changes caused by
the construction of a dam were obvious from the data as
well as the dam manager’s practical knowledge (Bhakra Beas
Management Board), a closer look was also taken at whether
there were more subtle changes such as nonstationarity of the
hydro-climatological data due to climate variability/change
that may also significantly change the relationship between
lagged snowmelt and streamflow. In addition, this consider-
ation could also potentially shed light on why the models
performed better during certain periods as compared to oth-
ers. To address this major assumption, first, a trend analysis
was carried out for all the hydroclimatic variables considered
in this paper, as predictors and predictand; it was found that
the spatially averaged data from 1978–2004 (the study pe-
riod) did not have any significant trend, and therefore they
were not shown in the paper. This was partly consistent with
the previous findings where some researchers noticed that the
Western Himalaya responded to global warming differently
as compared to the other regions (Fowler and Archer, 2006).
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Fig. 7. (a)Cross-validated prediction for 1 March and 1 April (MAMJ and AMJ inflow) corresponding to different datasets used, i.e., settings
1 and 2 (AIC);(b) cross-validated prediction for 1 March and 1 April (MAMJ and AMJ inflow) corresponding to different datasets used, i.e.,
settings 1 and 2 (BIC).

In addition, to our surprise, we also did not find an increasing
trend in the Satluj River basin average DTR as was reported
by Yadav et al. (2004). However, the best hypothesis for this
mismatch might be due to the fact that we aggregated all the
station/gridded data to have a spatial basin average, which
might have eventually smoothed out the spatially averaged
data to the extent of not showing the trends. Individual sta-
tion data might have had inconsistent precipitation trends, as
published recently by Dimri and Dash (2012) while reporting
the Western Himalayan climatic trend analysis, but this was
not within the scope of our study. Second, the “linearity” of
the relationship between the predictors and predictand was
checked according to the LOCFIT method (Loader, 1999),
a technique suggested by previous researchers (Rajagopalan
et al., 2002, 2005); in addition, the predictand distribution
was found to be Gaussian as per Lilifor’s test. The LOCFIT
method confirmed that the predictors and predictand relation-
ships were consistently found to be linear. Therefore, the util-
ity of the bestglm technique in the multiple linear regression

scenario based on selective information criteria was skillfully
used to forecast spring seasonal streamflow at the upstream
of Bhakra Dam over the Satluj River at different lead times.
We compared the forecasts to PCR and PLSR, which were
more widely used for the central and southern Asian rivers
(Schar et al., 2004; Tippet et al., 2004; Barlow and Tippet,
2008) and also in the US (Regonda et al., 2006). We find that
overall, the proposed method is equally skillful to (and ac-
tually more skillful than) existing operational models while
tending to better predict seasonal streamflow 1–4 months in
advance.

The results as a whole suggest that winter climatology
and inflow data allow a skillful forecast of the volume of
MAMJ/AMJ flow in late winter or when the spring season
commences. Inclusion of gridded rainfall data with station
snow information enhanced the forecast skill scores possi-
bly for the reason that rain gauge stations have poor cov-
erage within the basin (in particular the mountains) and/or
systematic rain gauge biases (wind losses during snowfall),
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Table 6. Cross-validated prediction performance corresponding to
different techniques.

Bestglm setting 1 (AIC)

CC HSS PSS PC

1 December −0.27 −0.18 −0.18 0.21
*1 January 0.37 −0.03 −0.03 0.29
1 February 0.18 -0.02 -0.02 0.32
*1 March 0.63 0.24 0.24 0.49
*1 April 0.72 0.47 0.47 0.64

Bestglm setting 1 (BIC)

1 December −0.26 −0.16 −0.16 0.22
1 January 0.06 −0.10 −0.10 0.27
1 February 0.02 −0.04 −0.04 0.31
1 March 0.61 0.23 0.23 0.49
1 April 0.70 0.39 0.39 0.59

PLSR setting 1

1 December −0.22 −0.14 −0.14 0.24
1 January −0.12 −0.12 −-0.12 0.32
1 February 0.30 −0.01 −0.01 0.33
1 March 0.14 0.14 0.14 0.42
1 April 0.51 0.27 0.27 0.52

PCR setting 1

*1 December −0.27 −0.1 −0.1 0.27
1 January −0.19 −0.08 −0.08 0.28
*1 February 0.32 0.13 0.13 0.42
1 March 0.24 0.16 0.16 0.44
1 April 0.60 0.39 0.39 0.59

Bestglm setting 2 (AIC)

1 December −0.14 −0.14 −-0.14 0.23
*1 January 0.21 0.12 0.12 0.41
1 February 0.19 −0.07 −0.07 0.28
1 March 0.53 0.37 0.37 0.58
1 April 0.52 0.21 0.21 0.48

Bestglm setting 2 (BIC)

1 December −0.28 −0.16 −0.16 0.23
1 January 0.22 −0.02 −0.02 0.32
1 February −0.03 −0.13 −0.13 0.25
*1 March 0.61 0.47 0.47 0.64
1 April 0.48 0.16 0.16 0.44

PLSR setting 2

*1 December −0.17 −0.04 −0.04 0.30
1 January −0.14 −0.05 −0.05 0.30
1 February 0.25 −0.02 −0.02 0.31
1 March 0.22 0.14 0.14 0.42
1 April 0.48 0.36 0.36 0.58

PCR setting 2

1 December −0.19 −0.09 −0.09 0.27
1 January −0.16 −0.06 −0.06 0.29
*1 February 0.28 0.05 0.05 0.37
1 March 0.20 0.15 0.15 0.43
*1 April 0.58 0.46 0.46 0.64

Note: CC= Pearson’s correlation coefficient; HSS= Heidke
skill score; PSS= Peirce skill score; PC= proportion correct; *
= best performance in a setting.

as speculated by Schar et al. (2004) while demonstrating
the predictability of the central Asian river flow. Overall the
above results indicate that the IMD rainfall and temperature
data along with station snow information is able to credibly
represent the variations of the spring seasonal Satluj River
flow, while it probably misses smaller-scale features associ-
ated with the complex structure of the topography. An anal-
ysis was also undertaken to look at the ability of precipi-
tation data from local meteorological stations to represent
observed interannual variability of streamflow of the Satluj
River, which was satisfactorily skillful. This is consistent
with Schar et al. (2004) who also demonstrated that precipi-
tation data in winter alone is sufficient to skillfully predict the
next seasonal river flow in central Asia. Despite the low res-
olution of IMD precipitation data and poor coverage of sta-
tion meteorological data, the results appeared highly promis-
ing. In most years the models provided excellent predictions
on 1 March and 1 April, and only a few years (includes
2004) had a departure from the prediction interval (based on
ap = 95 % prediction interval, one would expect at least one
miss in a 15 yr series, according to Schar et al. (2004)). The
1 March and 1 April models also enabled forecasts that rep-
resent an improvement in comparison with the climatological
forecast.

Water managers depend on seasonal forecasts of reser-
voir inflow volume to support operations and planning in
advance. Careful planning is necessary to meet water de-
mands in the dry pre-monsoon season (MAMJ) under the
stress of increased climate variability. This is particularly
true for the Bhakra Reservoir because total volume of
MAMJ inflow into Bhakra depends largely on the highly
variable winter climatology of the Western Himalayas. The
forecasting model developed here could significantly help
water resource decision-making associated with Bhakra
Reservoir operations.

For reservoir operation, a key question in April, May and
June is how much space to leave for flood control and how
full to keep the reservoir. Retaining water in the reservoir
during this fill cycle allows more reliable irrigation and hy-
dropower releases and a better buffering capacity for the
failure of the monsoon. However, it increases exposure to
flood risk. This trade-off is traditionally managed using a rule
curve for storage allocation that is based on the historical cli-
matology of the monsoon and the snowmelt period. The in-
novation presented here is now being used to foster the devel-
opment of a stochastic optimization model for dynamic rule
curve determination considering the probability distribution
of fill during MAMJ/AMJ, and the flows and consumptive
water demand in the subsequent monsoon season. Flood vol-
ume predictions are also needed to complete such an anal-
ysis, and to date very few efforts have been made at long
lead flood volume forecasting. Nonlinear or nonparametric
methods are often used to address such problems effectively
(Kwon et al., 2012). However, given the short record avail-
able here with potential data quality issues, these methods
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were contra-indicated based on our initial exploratory analy-
ses. The list of abbreviations are included in the supplement.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
17/2131/2013/hess-17-2131-2013-supplement.pdf.
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