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Abstract. Showmelt-dominated streamflow of the Western age the trade-off between irrigation and hydropower releases
Himalayan rivers is an important water resource during theversus flood control during the annual fill cycle of the Bhakra

dry pre-monsoon spring months to meet the irrigation andReservoir, a major energy and irrigation source in the region.
hydropower needs in northern India. Here we study the
seasonal prediction of melt-dominated total inflow into the
Bhakra Dam in northern India based on statistical relation-
ships with meteorological variables during the preceding
winter. Total inflow into the Bhakra Dam includes the Satluj

River flow together with a flow diversion from its tributary,

the Beas River. Both are tributaries of the Indus River that’ . ; B .
originate from the Western Himalayas, which is an under_dla and Pakistan, whose name translates as “the land of five

studied region. Average measured winter snow volume at théivers". The waters of the Satluj are a_llocated to. India under
upper-elevation stations and corresponding Iower—elevatior*he Indus Waters Treaty between India and Pakistan, and are

rainfall and temperature of the Satluj River basin were Con_mostly diverted toirrigation canals in India. There are several
sidered as empirical predictors. Akaike information criteria major hydroelectric p'a”FS on the $at|u1, anql the 1325 MW
(AIC) and Bayesian information criteria (BIC) were used Bhakra Dam at the foothill of the Himalayas is the largest of

to select the best subset of inputs from all the possiblethem.The Bhakra Reservoir is the lifeline for water supply in

combinations of predictors for a multiple linear regression Lhrelt(e g}?:{or _stgtets Itn n_?rr]thern lndt'atl |{1<:|Igdf||ﬂ9 Itnd;as Bbhresd
framework. To test for potential issues arising due to multi- askel’ Funjab state. 1he current total inflow 1o the bhakra

collinearity of the predictor variables, cross-validated predic—D‘Elm comprises the Satluj River flow (65-80 %) and the flow

tion skills of the best subset were also compared with the pre?r:\'eged fré)rr:l a It_r_'b;t"gél_o f tzhoe S;t)l/uj’ lthe Eeag R|r\]/er (v_|a
diction skills of principal component regression (PCR) and € Beas Satlyj Link ( ), 20-359%) (location is shown in

partial least squares regression (PLSR) techniques, whicﬁ'g' L. Meltmg snow and lce pro_vlde the water supply to
yielded broadly similar results. As a whole, the forecasts ofmUCh of the Himalayan region durmg the dry months pefore
the melt season at the end of winter and as the melt seasc{ﬁ/e summer monsoon. Snowmelt is most mportant in the
commences were shown to have potential skill for guiding - oet;:egpt:;rgilgzgf dvi\;hc?\r:rg;egf\l\;ﬂ:ee:ncdourgF:;:"nsc?istsutpri:)%;?i?e l:
the development of stochastic optimization models to man (Kattelmann, 1993: Archer, 2003). Both the Satluj and the

1 Introduction

The Satluj River is one of the five main tributaries of the
Indus river that traverse the Punjab region of northern In-
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2132 I. Pal et al.: Predictability of Western Himalayan river flow

Beas originate from the Western Himalayas. More than 50 %flow forecast (Gamiz-Fortis et al., 2008). In Australia, infor-
of the annual flow of the Satluj River is contributed by snow mation based on ENSO streamflow teleconnection and se-
and ice melt (Singh and Jain, 2002, 2003). Forecasting seadal correlation in streamflow was demonstrated to help ir-
sonal meltwater mean inflows into Bhakra has the potentiakigators to take more-informed risk-based management de-
to improve the operational efficiency of the hydroelectric andcisions (Chiew et al., 2003; Wang et al., 2010). The North
irrigation projects. The information about snow accumula- Atlantic Oscillation (NAO) or the Southern Oscillation In-
tion in winter provides a key to spring total inflow with lead dex (SOI) was found to provide the magnitude of seasonal
times of a few months (Singh and Bengtsson, 2004; Schar ettreamflow in Iran (Araghinejad et al., 2006). For the past
al., 2004; Stewart, 2009). However, because of limited datayears, quantitative methods for short-term and seasonal hy-
in this region of rugged topography and poor accessibility,drological forecasting have been under development for sev-
there have been few long lead prediction studies of the Satlugral subcatchments of the central Asian rivers, which receive
and other Himalayan catchments. No published study existsvater through melting of snow accumulated in the previous
for the seasonal prediction of the mean inflow of the Bhakrawinter (Schar et al., 2004; Barlow and Tippet, 2008). It has
Reservaorr. been indicated that winter climate information from regional-
Previous studies have developed regression relationshipscale patterns is sufficient to capture a great deal of the vari-
between the winter snow-covered area derived from remotebility of river flow in central Asia during subsequent warm
sensing data and spring monthly accumulated Satluj runofseasons for the reason that river drainage basins act as a nat-
(Ramamoorthy and Haefner, 1991). But the limited period ofural spatial integrator of regional climate (Schar et al., 2004;
data (1980-1990 with 3yr data missing) used in that studyBarlow and Tippet, 2008).
does not provide much statistical confidence. With an im- Seasonal forecasts of streamflows were issued by a num-
proved data network, more recent studies have simulated theer of researchers using both dynamical and statistical
“daily” flow of the Satluj River based on daily precipita- approaches. A range of parametric/nonparametric statisti-
tion, temperature and snow cover information from the satel-cal prediction-modeling techniques has been used globally,
lite images (Singh and Quick, 1993; Jain et al., 1998, 2010which exhibit various levels of skill in regional streamflow
Singh and Jain, 2003). While these studies have reported beferecasting. Traditional parametric methods involve fitting
ter results with time, these conceptual rainfall-runoff modelsa linear function, also known as linear regression that as-
are not useful for longer-term (seasonal) forecasting sincesumes a Gaussian distribution of data and errors, and a lin-
they are based on near-real-time daily weather data. In adear relationship between the predictors and the dependent
dition, the relationship between snow-covered areas vervariable. Schar et al. (2004) and Barlow and Tippet (2008)
sus streamflow can be complicated by variations of snowworked on the predictability of central Asian river flow us-
depth (Makhdoom and Solomon, 1986). However, snow wa-ing linear regression techniques. On the other hand several
ter equivalent or snow measurement information has not beenonparametric data-driven approaches, which are claimed to
considered for Satluj Basin flow prediction because suchovercome the limitations of linear regression, are also be-
data has not been previously available. Better skills coulding used in practice, such as kernel-based ones, splines, K-
be achieved to predict spring seasonal (Mar/Apr/May/Junnearest neighbor (K-NN) local polynomials (Owosina, 1992;
(MAM))) total inflow using currently available winter snow Rajagopalan and Lall, 1999; Souza and Lall, 2003), and lo-
information and other hydrometeorological data. cally weighted polynomials (Loader, 1999). The K-NN lo-
The size of the river basin also has an importantimpact: forcal polynomials and the local weighted polynomial (LOC-
instance, Li et al. (2009) found that the larger the basin, theFIT) approaches are very similar. Some of these methods
stronger the influence of initial conditions. Meteorological were also used in conjunction with the multimodel ensemble
forcings also contribute to the predictive skill of seasonal hy-forecasting framework that helps in determining the prob-
drological forecasts as total precipitation has a predominangbility of exceedances of various thresholds useful for the
effect on river flow (Li et al., 2009; Materia et al., 2010). water resource management (Regonda et al., 2006; Bracken
Different climatic regions provide seasonal hydrological pre- et al., 2010). Existing studies also show that multimodel en-
dictability based on different variables. Real-time climate semble forecasts tend to perform much better than a single-
data collected at nearby monitoring sites and/or large-scalenodel forecast, particularly in short-term and seasonal cli-
climate indices are typically used for seasonal streamflonmate forecast (Krishnamurti et al., 1999, 2000; Rajagopalan
forecasting at different regions. For example, Wedgbrow etet al., 2002; Hagedorn et al., 2005; Wood and Lettenmaier,
al. (2002) analyzed dependence of river flows on several cli2006; Singla et al., 2012). Other alternative statistical tech-
matic variables (as climatic indices and SST) and its usefulniques to multiple-regression models have also gained wider
ness to forecast the summer river flow for several rivers inacceptance in many hydrologic applications, including ar-
England. Wilby et al. (2004) carried out a seasonal forecastificial neural networks (ANN), genetic algorithms, multi-
of the River Thames flow in England using SSTs and othervariate adaptive regression splines, and partial least squares
variables. In the Iberian Peninsula, SST fields of Atlantic (Risley et al., 2001). Unlike multiple-regression models,
Ocean were demonstrated to be useful in seasonal stream¢hich assume a linear relationship between variables, these
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Fig. 1. (a) Indian part of Satluj River basin up to Bhakra Reservoir with location of hydrometeorological stdbprsitire Satluj River
network including location of Beas Satluj Link (BSL) channel.

methods are capable of efficiently modeling nonlinear pro-2 Study region and data
cesses that typically occur in natural systems. Canonical cor-
relation ana|ysis (CCA) and principa| components regres_The Satluj River originates from the Tibetan Plateau in the
sion (PCR) are also alternatives that are appropriate for sitsouthern slopes of Mount Kailash at an elevation of more
uations where the independent variables are correlated witfhan 4500 mam:.s.l. and flows generally west and southwest
each other (Garen, 1992; Gamiz-Fortis et al., 2008; Barlowentering India in Himachal Pradesh. The entire basin area in
and Tippet, 2008). the Tibetan Plateau experiences a cold desert winter climate
In the current study we used basin scale winter climate in-2nd therefore the river has very low flow until it joins its ma-
formation as predictors of spring seasonal river flow. Springior tributary, Spiti, near Namgia in India. The Spiti catchment
seasonal streamflow distribution of the Satluj River flow was (10 071 knf) experiences extensive snowfall due to westerly
found to be Gaussian; hence we proposed using a best-subs&gather disturbances in the winter months that contribute to
selection technique using AIC (Akaike information criteria) the Satluj flow in spring, or in MAMJ (Singh and Kumar,
and BIC (Bayesian information criteria) from all variable 1997), whichis of our interest. In general the maximum snow
combinations within a multiple linear regression framework cover area exists in March, by when most of the snowfall has
and also compare this with PCR and partial least squares reaccurred (Singh and Jain, 2003).
gression (PLSR) techniques, which will be discussed later.
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The Satluj River is the largest among the five rivers of Hi- 4ox
machal Pradesh (Fig. 1). It leaves Himachal Pradesh to ente
the plains of Punjab at Bhakra, where Asia’s second highest3
gravity dam was constructed. The Bhakra Dam is the major
point of water supply and electricity generation in northern "
India. The Satluj finally drains into the Indus in Pakistan.
The river’s total length is 1448 km and total drainage area
up to Bhakra Reservoir is about 56 500%rfor the present
study, the Indian part of the Satluj River basin up to Bhakra *"
Reservoir (area: 22 275 Kmelevation range: 500-7000 m)
was selected (Fig. 1). o

The spring season (MAMJ) flow comes mainly from the .
runoff generated by snowmelt from the upper elevations in o }
the greater Himalayas (Jain et al., 1998). About 65% of o :
the Satluj Basin area is covered with snow during winter, , 5 F ©0F ©% 7 75 80F 8F 90F 95 100
and about 12% of the basin (2700&mis covered with (b}
permanent snowfields and glaciers (Singh and Bengtsson.,
2004). The glacier melt runoff in the months of July, Au-
gust and September occurs after the contribution of sea-su
sonal snowmelt, when glaciers become snow free (Singh
and Quick, 1993). Peak values of total discharge in July
and August are essentially due to combining this with mon-
soon rainfall in the lower elevations. Minimum flow is ob-  2ox
served in winter when the base flow contribution sustains the
river flow. 15N

Spring seasonal inflow anomalies are found to be strongly
correlated with large-scale precipitation and diurnal temper- 1o
ature range in the preceding winter over the Western Hi- .
malayas as well as adjoining northern and central Indian ™ 5% 6 9% o o o o Tooc
plains (Fig. 2), suggesting a potentially usable predictability
for reservoir managers. Winter precipitation in the WesternFig- 2. Pearson’s correlation fields of spring (MAMJ) seasonal total
Himalayas and adjoining regions is mainly brought about bthakra |nf!ow with preceding winter (DJF/DJFNB) preplpltatlon
the midlatitude jet stream leading to the formation of low- and (b) daily temperature range over the Western Himalayas and

. . adjoining northern and central Indian plains (also includes part of
pressure synoptic SyStems.known as WeSte”.‘ Pls.turbancq§akistan and Afghanistan) for 1978-2004. Shading indicates local
(V\_/D)’ gnd thgreforg the wlnter average preCIpltatlpn OVel gtatistical significance level at 90 % confidence.
this entire region (Fig. 2) is related. Since total spring sea-
sonal (MAMJ) inflow to Bhakra Dam is largely contributed
by the winter snow melt, winter precipitation and tempera-
ture data available from the Indian side of Satluj Basin in stations are at much higher elevation. We determined average
addition to inflow itself were used as predictors. temperatureXavg) and diurnal temperature range (DTR) by

Daily total inflow of Bhakra Reservoir (Satluj River flow averaginglinax and Tmin, and subtractin@min from Tmax on
+ Beas Satlyj Link (BSL) diversion) for 1963—2004, daily a daily basis.
rainfall, snow and temperature datBnby, Tmin) Were pro- As mentioned earlier, total Bhakra inflow is a joint con-
vided by the Bhakra Beas Management Board (BBMB) of tribution from the Satluj River flow and BSL diversion
India, the organization that is responsible for data collectionthat came into effect in November 1977. Consequently, the
and operation of the Bhakra Dam. The lower-elevation rain-Bhakra total inflow data has a step jump since that time. To
fall stations and upper-elevation snow stations are marked iravoid this step change, we considered the flow data from
Fig. 1. The daily snow measurements have a complete recorti978—-2004. This study only considers the flow component
from 1976-2006 for 12 stations (Table 1). Daily rainfall data in the spring season (MAMJ). Since station temperature data
had complete records for 1977-2006 for 15 stations (Ta-were available only since 1983 and also had poor spatial cov-
ble 1). Maximum temperature data were available only for 5erage (few stations in low elevations), we compared these
stations and a complete record was found for 1983—-2005 (Tadata with the data available from other sources. The com-
ble 1). Minimum-temperature data were available only for 2 parison of station temperature data with the Indian Mete-
stations in the entire basin (Table 1). The elevation informa-orological Department (IMD) 1-degree gridded daily tem-
tion for various rainfall and snow stations indicates that snowperature data (Srivastava et al., 2008) for the Satluj Basin

(a)

25N

=
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Table 1. Information about different meteorological stations in " g——x T T
Satluj River basin in India.

Elevation !
Station Name Latitude (N) Longitude (E) (mam.s.l.)

Rainfall
Berthin 3P2511  76°3855" 668 C
Bhartgarh 3160 76°360 284 08
Daslehra 312456 76°3256" 562
Ganguwal 3124 76°6’ 1220 -
Ghanauli 3$1/33” 76°3522" 293 »
Kahu 371243’ 76°46/52" 526 L
Lohand 321031" 76°3414" 288 S S S S |
Naina Devi 321756" 76°328" 985 ‘ ‘
Nangal 392350" 76°2221” 369 Fig. 3. Comparison of the seasonality of total inflow and
Rampur 3226247 773740’ 987 basin climatology Q = normalized inflow,R = normalized rainfall,
Suni 3P1443 77°6'53" 701 S =normalized snowlmax=normalized maximum temperature).
Kasol 3P300” 77°190" 2614
Kotla 31°300” 77150" 2824
Swarghat 3120 76°457? 1220 Table 2 summarizes the cross-correlations of average

Dec/Jan/Feb/Mar (DJFM) climate data and spring seasonal

Snhow measurement .
flow from 1978-2004. The table indicates that average mea-

Bahli 3102217/i 77°38’4/18’i 2285 sured snow in winter in the high elevation is positively cor-
g"g(“' 331322(&33 7?2?43’ 33% related with the lower-elevation rainfall, which was true both

labong ’ ’ for the IMD and station rainfall (0.65 and 0.71, respectively).
Jangi 3236'15” 78°250” 2721 N d station ra (06 and0 ' pec ey)

IMD rainfall is very highly correlated with the station rainfall

/7 ” / "
iglzp; g; ilyggu Zgislcl)” ggié (0.84). Winter precipitation (both rainfall and snow) is nega-
Kilba 31°31'0/ 78290 1988 tively and highly correlated witlfimax andTayvg. SinceTayg is
Nichar 3p337" 77°58 34" 2225 the simple average betwedmax and Tmin, the correlations
Phancha 313545’ 77°4354' 2348 betweerTayg and Tmax and Tin are very high ¢ 0.8).
Sangla 3125'14" 78°1544" 2780 Figure 3 shows the average seasonality of the inflow and
Sarhan 3130'34” T77°4734" 2144 Satluj River basin climatology (mean monthly over 1978—
Tabo 327'51" 78°2311" 4201 2004). The figure suggests that the basin snow and rainfall

(IMD) patterns are masked by each other in different seasons.

Maximum temperature / . . . .
The figure also depicts that the flow starts increasing contin-

Bhakra 31°24/5€: 76°265/: 554 uously from February relative to the increase in temperature.
Kasol 3t 30(0/" 77019/0/” 2614 Therefore one might expect that warmer winters contribute
Nangat 31°2350 7672221 369 positively to the melt in the months that followed. Tempera-

Rampur 3226'24" 77°3740" 987

ture has a peak in June when the snowmelt-contributed flow
usually reaches its peak. In July and August when the flow
1 Also minimum temperature stations. is highest, it is driven by a combination of monsoon rain at

lower elevations and glacier melt (Singh and Quick, 1993).
On the other hand, sincEnax showed a strong and signif-

(30.5-33.8N and 75.5-79.3E) indicated that they have jcant negative correlation with the spring inflow (Table 2),

similar variability on average at monthly time scales for the winter Tmax m|ght just be a reflection of concurrent precipi_

study region. Therefore, given their longer period of recordiation amount.

(1969-2004) and better spatial coverage, IMD gridded tem-  Considering different redundancies in the data, we consid-

perature data were used here for the Satluj Basin region. Igred prediction of spring flow at different lead times, using
addition, since IMD rainfall data (Rajeevan et al., 2005) a'SOtWO meteoro]ogica| data combination settings:

have good spatial and temporal (1-degree, daily) coverage for
the basin region and pose a similar variability with the station — Setting 1: combining IMD rainfall and temperature data
data (Pal et al., 2013), we tested the prediction performance  With station snow data.

of both the rainfall datasets separately combined with station
snow and IMD temperature data in this study.

Suni 311443’ 77653’ 701

— Setting 2: using station precipitation (snow and rain-
fall) data as the predictors and omitting temperature
data. We considered this for three reasons: (i) station

www.hydrol-earth-syst-sci.net/17/2131/2013/ Hydrol. Earth Syst. Sci., 17, 2121146 2013
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Table 2. Cross-correlations for different hydrometeorological variables for 1978—2004.

I. Pal et al.: Predictability of Western Himalayan river flow

Flow Stationsnow IMD rainfall Stationrainfall IMD Tmax IMD Tmin IMD Tavg IMD DTR
Flow 1.00 0.58 0.48 0.55 —0.50 —0.02 -0.33 —0.55
Station snow 0.58 1.00 0.65 0.71 -0.44 -0.18 —0.37 —-0.34
IMD rainfall 0.48 0.65 1.00 0.84 —0.67 —0.49 —0.68 —-0.32
Station rainfall 0.55 0.71 0.84 1.00 —0.78 —0.38 —0.69 —0.54
IMD Tmax —-0.50 —-0.44 —0.67 —-0.78 1.00 0.53 0.90 0.66
IMD Tmin —0.02 —-0.18 —0.49 —0.38 0.53 1.00 0.84 —0.30
IMD Tavg —0.33 -0.37 —0.68 —0.69 0.90 0.84 1.00 0.27
IMD DTR —0.55 —-0.34 —0.32 —-0.54 0.66 —-0.30 0.27 1.00

Note: the meteorological data is for winter season (DJFM) and flow data is for spring (MAMJ)=IiRnal Temperature RangeTmax—Tmin-

temperature data has a shorter length (1983 onwards
and poor spatial coverage (2-5 stations); (ii) to avoid
the multicollinearity issue, i.e., high correlations be-

Y = Predictand; Xj,...... X, =
predictors where p = total
number of predictors

tween precipitation and temperature, as in Table 2; and
(iii) since there are difficulties associated with obtaining
meteorological data from the IMD on a real-time basis
(particularly the gridded datasets used in this study), we
want to demonstrate the predictability of the spring in-
flows, based entirely on the BBMB network so that they
can utilize the data in near-real time for making the best
use of the prediction schemes developed here for any!
decisions they plan to initiate.

A 4

Make all 2° combinations of
predictors and do multiple linear
regression

A

Best subset Xjy,....... Kim (1= q
1,....n) where total number of
subsets selected correspond to
least AIC/BIC criteria estimate

Multiple linear regression

3 Predictor(s) selection

Selection of appropriate predictors is required for forecast-
ing streamflows. Poorly designed predictor selection procegig. 4. Fiowchart showing the bestglm method.

dures can result in poor forecasts for independent events.

Best predictors vary with location and forecast date. This

section discusses the potential predictor(s) selection (most

influential variables) for forecasting the spring seasonal to-information criterion (IC) that compares all possible candi-
tal inflow into Bhakra Dam, determined using the “bestglm” date models and ranks them based on their IC values. This
technique at different lead times and for both settings stateanethod ensures that the “best” model (according to the IC)
above (McLeod and Xu, 2010). The bestgim tool is freely is identified, whereas stepwise explorations do not. Most im-
available to download for the publicly available statistical portantly, this method allows one to assess model-selection
software R. This method provides a flexible framework to uncertainty or to perform multimodel inference, rather than
describe how a dependent variable can be explained by a sesing one and only one best model (Buckland et al., 1997;
of predictors. Fitting a single model is not satisfactory in all Burnham and Anderson, 2002; Johnson and Omland, 2004).
circumstances (Rajagopalan et al., 2002, 2005). In particular, The step-by-step procedure of the bestglm technique is
this assumes that the model used is true or at least optimal ishown in Fig. 4 as a flowchart. We usually consider the lin-
some sense. Hence the resulting inference is conditional oear model ofY on p inputs, X3,...X,; but in many cases,
this model. A special case of this general problem is variableY can be more parsimoniously modeled and predicted us-
selection in the multimodel and multiple regression frame-ing just a subset ofn < p inputs, X;1,...X;n (i =1,...n).
work (Miller, 2002). The usual method to select a model is Whenn > p, the best-subset problem is to find out all the
stepwise — backward- or forward-selection approach basegossible 2 regressions (subsets) and the best fit (subset) ac-
on significance tests. However, backward and forward ap-cording to some goodness-of-fit criterion, as in Fig. 4. When
proaches are not generally expected to converge to the same < 25 or thereabouts (in our case maximyra= 16), this
model (Venables and Ripley, 1997; Grafen and Hails, 2002)technique has proved to be very efficient, but problems with
Several model selection techniques have been developed targe enouglp, such asp > 100, cannot be solved by this
avoid these pitfalls. One of these techniques is based on amethod (McLeod and Xu, 2010). Other high-dimensional
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optimization algorithms such as genetic search and simulatedt those lead times and corresponding Pearson’s correlation
annealing are recommended for that case (cross referencesefficients with average MAMJ inflow are listed in Table 3.
from McLeod and Xu, 2010). Predictors corresponding to the correlation coefficient within
The bestglm model selection method includes a variety 0f+-0.10 were neglected. As stated earlier, March is a very im-
IC. The information criteria include the usual AIC and BIC portant month since the maximum snow cover occurs during
as well as two types of extended BIC. All the information this time. Therefore, incorporating March data as a predic-
criteria that might be considered in the bestgim techniquetor is expected to show higher skills as also depicted in cor-
are based on a penalized form of the deviance or minus theelations in Table 3. In additior;- 90 % of the volume of
log-likelihood. In the multiple linear regression the deviance MAMJ inflow on average occurs in AMJ alone. Therefore,
D =2log L, whereL is the maximized log-likelihood, and we also considered an 1 April prediction for AMJ inflow. As
log L=—(n/2) log S/n, whereS is the residual sum of the subsets are unknown, various possible monthly combina-
squares. Akaike (1974) showed that AHD + 2k, where  tions were considered in order to choose the best predictors
k is the number of parameters, provides an estimate oft different lead times, as shown in Table 3. As Table 3 re-
the entropy. The model with the smallest AIC is preferred. veals, all the correlations for the first three lead times are
While many other criteria (e.g., final prediction error cri- very poor. This is because much of the snow accumulated
terion), which are essentially equivalent to the AIC, havein Nov/Dec/Jan usually melts away before March, usually
also been suggested, in practice, with smalill those cri-  starting in late January and early February (Pal et al., 2013).
teria often select the same model. The BIC is derived us- The distribution of the predictand (MAMJ flow) was close
ing Bayesian methods. If a uniform prior is assumed for all to Gaussian based on Lillifor's test, and scatter plots between
possible models, the usual BIC may be written B{® + k predictors and predictand revealed nearly linear structures.
log(r). The model with the smallest BIC corresponds to the Therefore the link function used in this method is linear and
model with maximum posterior probability. The difference Gaussian, and the models turned out to be multiple linear
between these criteria is in the penalty. When 7, the BIC regressions. We also checked the linear relationship using
penalty is always larger than for the AIC, and consequentlyLOCFIT, or local weighted polynomial approach, and gener-
the BIC will never select models with more parameters thanalized cross-validation (GCV) estimates for each fit between
the AIC. In practice, BIC often proved to select more parsi- the predictors and predictand to determine the optimum win-
monious models than the AIC (McLeod and Xu, 2010). In dow width used for the local regression that corresponds to
large p problems p > 25) a modified BIC called BICg is the minimum GCV (Loader, 1999), as recommended by Ra-
suggested that considers a prior that is uniform of models ofagopalan et al. (2002, 2005). In all the cases, we got al-
fixed size instead of all possible models (as with the originalpha=0.9-1.0, where alpha is the fraction of the total data
BIC case). On the other hand, BICq is another modified ver-length. Therefore, we used bestgim with much confidence.
sion of BIC that is derived by assuming Bernoulli prior for
the parameters. Each parameter has a priori probability of g
of being included, wherg =[0, 1]. Wheng =1/2, BICqis 4 Prediction results and skills
equivalent to BIC, whileg =0 andg =1 correspond to se-
lecting the models wittk = p (full model) andk =0 (no pa-  Variable selection, measurement and comparison of the
rameters), respectively. If q is within 0.01 and 0.51, it gives model performance at different lead times were done using
results equivalent to the AIC. Having a small dataset (only K = 3 leave-out cross-validation. This method leaves three
27 data points), we used AIC and BIC in this paper and alsaandomly selected observations in turn, determines the best
compared them in terms of their robustness for the best modsubset from the remaining training data points and the best
els and the prediction skills, as mentioned in Fig. 4. multiple linear model fit. The dropped points form the test-
While bestglm technique has various advantages oveing set against which the goodness of fit of the estimated
many linear regression techniques, as discussed above, it oints are measured. This is repeated 100 times. PCR and
not clear how this technique handles the multicollinearity is- PLSR were also applied ik = 3 leave-out cross-validation
sue, which is a common redundancy with the hydrometeoromode considering all the variables at a time. Figure 5a—d
logical data and true here too, as Table 2 points out. Multi-show the bar charts of the total frequency of the variables
collinearity might create highly sensitive parameter estima-selected in different lead times in 100 iterations correspond-
tors with inflated variances, and improper model selection.ing to AIC and BIC. Different variables within the different
Regression techniques such as PCR or PLSR reduce the reettings are given the names ¥ Vj, for the convenience in
dundancy due to multicollinearity. Therefore, we also com- plotting them, wherep =total number of variables used at
pared the prediction skills of best-subset multiple regressiorcertain lead time. Variables corresponding to the names
to that of PCR and PLSR, considering all variables. to Vp in Fig. 5 are listed in Table 4. For example, in the first
We considered the prediction of mean MAMJ (total) in- panel of Fig. 5a, a total of 7 variables were used for the 1 De-
flow on 1 December, 1 January, 1 February and 1 Marchcember prediction (Table 4), namely November flow @)
and of AMJ inflow on 1 April. All the possible predictors November rainfall (NR), November snow (N8), November
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Table 3.Pearson’s correlation coefficients between average MAMJ inflow into Bhakra and spatially averaged Satluj River basin climatology
(showing setting 1 datasets) and inflow for 1978-2004.

Prediction 1 December 1 January 1 February

N D ND J DJ NDJ
Flow (Q) —0.05 0.17 0.04 0.07 0.12 0.05
Snow (5) 0.24 0.13 0.22 -0.17 -0.05 0.03
Rainfall (R) 0.30 0.43 0.48 —0.10 0.12 0.19
Tmax —0.06 -0.26 -0.19 0.18 -0.06 -0.07
Trmin —0.04 0.16 0.07 0.08 0.18 0.11
Tavg —0.06 -0.13 -0.11 0.16 0.06 0.01
DTR —-0.02 -0.29 -0.21 0.10 -0.17 -0.14

1 March 1 April

F JF DJF M FM JFM
Flow (Q) 0.38 0.24 0.22 0.72 0.66 0.57
Snow (5) 0.48 0.28 0.36 0.57 0.70 0.54
Rainfall (R) 0.64 0.29 0.40 0.44 0.58 0.42
Tmax —-0.42 —-0.24 -0.31 —-0.48 -0.53 -0.46
Trmin 0.12 0.11 0.19 -0.27 -0.13 -0.07
Tavg -0.22 —-0.08 -0.09 —-041 -0.40 -0.33
DTR —0.64 -0.34 -0.41 —-0.63 -0.71 -0.54

Tmax (N-Tmax), NovemberTmin (N-Tmin), NovemberTayg such as (ajccuracy or proportion correct (PC), and (b)
(N_Tavg) and November DTR (NDTR). Likewise, the vari-  forecast skill scorgi.e., Heidke skill score (HSS) and Peirce
ables corresponding to other lead times in other settings werskill score (PSS). Accuracy refers to the average correspon-
also named/; to Vp. As mentioned above, BIC chooses the dence between individual forecasts and the events they pre-
best models more parsimoniously than the AIC, which is alsodict. Therefore, PC measure will summarize the overall qual-
evident in the figure. However, the orders in which the vari- ity of a set of forecasts in a single number determining the
ables are selected are the same for both of the criteria. Table proportion of correct forecasts (Wilks, 2006). On the other
lists the final linear models those consider the best subsetland, forecast skill scores will be interpreted as a percent im-
chosen corresponding to the AIC. The variables in the lin-provement over the reference forecasts. While a large num-
ear models in Table 5 were consistently choser8Q % of ber of such scores are in use, one of the most frequently used
the times) or chosen for the maximum number of times (e.g. skill scores is the HSS. A perfect forecast receives HIS
1 December). As noticed in Table 5, the variables selectedorecasts equivalent to the reference forecasts receive zero
for 1 December and 1 February predictions were the sameacores, and forecasts worse than the reference forecasts re-
for both the settings. For setting 1, temperature data wereeive negative scores. The reference accuracy measure in the
important for 1 January and 1 March predictions. PreviousHSS is the proportion correct that would be achieved by ran-
flow data (January, February and March) become importantiom forecasts that are statistically independent of the obser-
for the 1 April prediction of AMJ flow. Snow in February vations (Wilks, 2006). Another equivalent and popular skill
and March is important for MAMJ flow, which we have also score is the PSS, which can also be understood as the dif-
noticed before and which is also reflected here in the lineaference between the hit rate and the false alarm rate. Per-
models for 1 March and 1 April predictions. fect forecast receives a score of 1, random forecast receives a
To verify the cross-validated forecast model performancescore of zero, and forecasts inferior to the random forecasts
for three techniques considered (bestgim, PCR, PLSR), weeceive negative scores (Wilks, 2006).
divided both observed and predicted inflow time series into Table 6 lists different cross-validated prediction perfor-
tercile categories (below normal/normal/above normal) andmance measures on the two data settings considered and for
determined the joint distribution of them — characterized asall of the three techniques (bestgim, PCR, PLSR). The table
a 3x 3 contingency table (Wilks, 2006). We used 300 dis- shows that PC usually improves from 1 December to 1 April
crete random predictionsk(=3, 100 iterations) and cor- gradually for all the cases. The best prediction skills corre-
responding observations. Due to the fact that we have &ponding to each lead time is marked with an asterisk (*).
small sample size and high-dimensional verification situationThe table shows that for 1 January, 1 March and 1 April pre-
((3x 3)-1=28), we opted for traditional scalar approaches dictions corresponding to setting 1, bestglm performed better
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Fig. 5. (@) Number of times (in 100 iterations) the different variables were selected in setting 1 when AIC wa¥usedy names are
listed in Table 4{b) same aga) but when BIC was usedg) number of times (in 100 iterations) different variables were selected in setting
2.Vq to Vp names are listed in Table @) same agc) but when BIC was used.

than the other techniques, with AIC as well as BIC yielding sion models. This might hold true in our case too since we
more or less similar prediction skills. While 1 February and just have 27 data points.
1 December prediction skills were improved when PCR was Furthermore, correlation coefficients in Table 6 were bet-
used for setting 1, 1 December skills were still negative. Forter for setting 1 for 1 January, 1 March and 1 April forecasts
setting 2, bestglm showed the best performance for 1 Januargorresponding to bestglm (AIC). HSS and PSS estimates
and 1 March; on the other hand, PCR showed best perforyielded the same estimates all the times, indicating that the
mance for 1 February and 1 April. forecasts exhibit little bias (Wilks, 2006). Like PC, HSS/PSS
While the PC measurement corresponding to bestglm wascores corresponding to bestglm were better for setting 2 for
better for setting 2 as compared to setting 1 for the 1 Decemthe 1 March forecast, although the 1 April forecast was much
ber, 1 January and 1 March forecasts, setting 1 prediction wabetter when setting 1 was used. However, overall results im-
improved for 1 April with 64 % of the forecasts falling into ply that, even if the temperature information is not available,
the correct category, while for setting 2 it was 48 %. Whenonly the station precipitation information could be used to
PCR was used in setting 2, PC jumped to 64 % but othemproduce real-time forecasts of spring inflow with positive cat-
skills did not improve from bestgim. Song and Kroll (2011) egorical skills. The availability of reliable station tempera-
pointed out that for small sample size, PCR or PLSR de-ture information and inclusion in setting 2 might improve the
crease the variance of the watershed hydrologic parametersategorical forecast skills for some lead times.
only when the true model is known (i.e., known subset) and Figure 6 shows the range of cross-validated prediction
do not improve model predictions compared to linear regressquare error and average absolute residual errors for each
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Fig. 5. Continued.

setting corresponding to bestgim technique. These were doneorrelation coefficient was also negative (Table 5). All these

after finding out the median forecast value of spring inflow results suggest that as far as preplanning is concerned, the

for each year from the ensemble of (random) forecasts geni March prediction would give us the most accurate esti-

erated in 100 iterations. The figure depicts that the error ismate of spring inflow before the season commences; how-

substantially reduced for 1 March predictions from the pre-ever, the incorporation of the March data (i.e., forecast issued

vious lead times for both settings, but the spread increasesn 1 April) would be useful for AMJ inflow as well. Fur-

for 1 April again, which is true for both AIC as well as BIC thermore, while setting 1 dataset is more recommended for

best models. Figure 7 shows the (median) predictions madspring seasonal inflow prediction, setting 2 could be used in-

on 1 March and 1 April from the ensemble predictions af- terchangeably when IMD dataset is not available, albeit with

ter 100 iterations, with corresponding 5 and 95 % predictionless precision.

intervals. Prediction intervals take into account uncertainty

about mean prediction and uncertainty associated with the

error term. 1 March nicely predicts all the years for setting 15 Summary and discussion

except a few in the early 1980s, 1996, 2003 and 2004, which

are better predicted on 1 April. For setting 2, 1 April pre- The research presented the potential predictability and the

diction is worse than 1 March, which is also reflected in the merits of different prediction models of melt-dominated in-

errors in Fig. 6 and forecast skill in Table 6. With high er- flow into the Bhakra Dam using the flow data and local

ror (average absolute 18 %), the 1 December prediction winter climatology at the basin scale from 1978-2004. Sev-

was the worst possible forecast for spring inflow while the eral candidate methods for multiple linear regressions were
explored in a situation where the short data length is a
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Table 4. Names of different variables considered in best-subset selection in Fig. 5.

Setting 1
1 December 1 January 1 February 1 March 1 April
V1=N.Q V1=NDR V1=NDJR V1=DJFR V1=JFMQ
V2=NR V2=ND_S V2 =NDJ.Tmin V2=DJES V2 =JFMR
V3 =N_S V3=ND_Tmax V3=NDJDTR V3 =DJFTmax V3=JFM.S
V4=N_Tmax V4=NDDTR V4=JR V4 =DJFEDTR V4 = JFM_Tmax
V5=N_Tmnn V5=D0Q V5 = J_Tmax V5 =JFR V5 =JFM.DTR
V6=NTag V6=DR V6 = J.Tavg V6 =JES V6 = FM_Q
V7 =N.DTR V7 =D_Tmax V7 =JEDTR V7 =FM_R
V8 =D_DTR V8=F.Q V8 =FM_S
V9 =FR V9 = FM_Tmax
V10=F.S V10 =FM_DTR
V11=F.Tmax V11=M2Q
V12 = F_Tpin V12=M_R
V13=F.DTR V13=M_S
V14 = M,Tmax
V15 =M _Tayg
V16 =M_DTR
Setting 2
V1=NJQ V1=NDR V1=NDJR V1=DJFR V1=JFMQ
V2=NR V2=ND._S V2=JR V2 =DJFS V2 =JFMR
V3 =N_S vV3=D.Q V3=JER V3 =JFM.S
V4=DR V4 =JFES V4 =FM_Q
V5 =F.Q V5 =FM_R
V6 =F.R V6 = FM_S
V7=FS V7 =MQ
V8 =MR
V9 =M.S

Table 5. Variables selected using bestglm with AIC and the final models at different lead times for setting 1 (combining IMD rainfall and
temperature data with BBMB station snow data) and setting 2 (using station rainfall and snow data only as the predictors and omitting

temperature).

Setting 1

1 December QMAMJ = 16974+ 44(N.R)

1 January QMAMJ = -10622+ 213(ND.R) — 139(ND.S)
+ 2095(ND.Tmax) — 1224(DDTR)
1 February QVAMJ = 16 324+ 135(ND.R) +80(1R)
1 March QMAMJ = 5546+ 47(FR) + 18(F-S) + 1227(FTmin)
1 April Q-AMJ = — 2273+ 362(1Q) — 136(JR) — 82(EQ) + 108(ER)

— 78(M.Q) + 35(M_R) + 25(M_S)

Setting 2

1 December QMAMJ = 17037+ 37(N.R)

1 January QVMAMJ = 16 327+ 53(ND-R)

1 February QMAMJ = 17189+ 79(ND.R) +37(1R)

1 March QMAMJ = 13628+ 46(FR)

1 April Q_AMJ = 13995 — 71(:R) + 64(FR) + M_Q +25(M_R)

Note: flow (Q) is in cubic feet per sec (cfs), rainfalR] and snow §) are in millimeters (mm) and

temperatureX) is in degrees centigradeQ)
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Fig. 6. (a) Cross-validated prediction square errors and average absolute errors corresponding to bestgifin)(Bt63s-validated predic-
tion square errors and average absolute errors corresponding to bestglm (BIC).

challenge. We used basin level winter climatology to find thechange from the late 1970s), since step changes caused by
predictability of spring seasonal streamflow. Given the directthe construction of a dam were obvious from the data as
physical link between winter precipitation and snowmelt- well as the dam manager’s practical knowledge (Bhakra Beas
driven river flow, the spring inflow was found to be positively Management Board), a closer look was also taken at whether
correlated with the high-elevation winter snow and corre-there were more subtle changes such as nonstationarity of the
sponding rainfall in the lower elevations, and it is negatively hydro-climatological data due to climate variability/change
correlated with the basin-averaged winter temperatures. Théhat may also significantly change the relationship between
positive significant correlations of spring inflow with winter lagged snowmelt and streamflow. In addition, this consider-
precipitation also suggest that the winter atmospheric circuation could also potentially shed light on why the models
lation patterns driving these climate variables are also relategherformed better during certain periods as compared to oth-
to spring inflow (Pal et al., 2013), and are consistent withers. To address this major assumption, first, a trend analysis
Schar et al. (2004), Tippet et al. (2003), and Barlow and Tip-was carried out for all the hydroclimatic variables considered
pet (2008), who showed spring- and summertime river flowin this paper, as predictors and predictand; it was found that
fluctuation due to winter climate patterns at the regional scaleghe spatially averaged data from 1978-2004 (the study pe-
in central and southern Asia. riod) did not have any significant trend, and therefore they
One apparent major assumption in the multiple linear re-were not shown in the paper. This was partly consistent with
gression prediction models is the stationary relationship bethe previous findings where some researchers noticed that the
tween streamflow and snowmelt in time. Although preciseWestern Himalaya responded to global warming differently
consideration was given to where this was not true (e.g., steps compared to the other regions (Fowler and Archer, 2006).
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Fig. 7. (a)Cross-validated prediction for 1 March and 1 April (MAMJ and AMJ inflow) corresponding to different datasets used, i.e., settings
1 and 2 (AIC);(b) cross-validated prediction for 1 March and 1 April (MAMJ and AMJ inflow) corresponding to different datasets used, i.e.,
settings 1 and 2 (BIC).

In addition, to our surprise, we also did not find an increasingscenario based on selective information criteria was skillfully
trend in the Satluj River basin average DTR as was reportedised to forecast spring seasonal streamflow at the upstream
by Yadav et al. (2004). However, the best hypothesis for thisof Bhakra Dam over the Satluj River at different lead times.
mismatch might be due to the fact that we aggregated all th&Ve compared the forecasts to PCR and PLSR, which were
station/gridded data to have a spatial basin average, whicmore widely used for the central and southern Asian rivers
might have eventually smoothed out the spatially averagedSchar et al., 2004; Tippet et al., 2004; Barlow and Tippet,
data to the extent of not showing the trends. Individual sta-2008) and also in the US (Regonda et al., 2006). We find that
tion data might have had inconsistent precipitation trends, asverall, the proposed method is equally skillful to (and ac-
published recently by Dimri and Dash (2012) while reporting tually more skillful than) existing operational models while
the Western Himalayan climatic trend analysis, but this wastending to better predict seasonal streamflow 1-4 months in
not within the scope of our study. Second, the “linearity” of advance.

the relationship between the predictors and predictand was The results as a whole suggest that winter climatology
checked according to the LOCFIT method (Loader, 1999),and inflow data allow a skillful forecast of the volume of

a technique suggested by previous researchers (RajagopaldAMJI/AMJ flow in late winter or when the spring season
et al., 2002, 2005); in addition, the predictand distribution commences. Inclusion of gridded rainfall data with station
was found to be Gaussian as per Lilifor’s test. The LOCFIT snow information enhanced the forecast skill scores possi-
method confirmed that the predictors and predictand relationbly for the reason that rain gauge stations have poor cov-
ships were consistently found to be linear. Therefore, the util-erage within the basin (in particular the mountains) and/or
ity of the bestglm technique in the multiple linear regressionsystematic rain gauge biases (wind losses during snowfall),

www.hydrol-earth-syst-sci.net/17/2131/2013/ Hydrol. Earth Syst. Sci., 17, 21321146 2013



2144

I. Pal et al.: Predictability of Western Himalayan river flow

as speculated by Schar et al. (2004) while demonstrating

Table 6. Cross-validated prediction performance corresponding tothe predictability of the central Asian river flow. Overall the

different techniques.

Bestglm setting 1 (AIC)

CcC HSS PSS PC
1 December -0.27 -0.18 -0.18 0.21
*1 January 0.37 -0.03 -0.03 0.29
1 February 0.18 -0.02 -0.02 0.32
*1 March 0.63 0.24 0.24 0.49
*1 April 0.72 0.47 0.47 0.64
Bestglm setting 1 (BIC)
1 December -0.26 -0.16 -0.16 0.22
1 January 0.06 -0.10 -0.10 0.27
1 February 0.02 -0.04 -0.04 0.31
1 March 0.61 0.23 0.23 0.49
1 April 0.70 0.39 0.39 0.59
PLSR setting 1
1 December -0.22 -0.14 -0.14 0.24
1 January -0.12 -0.12 --0.12 0.32
1 February 0.30 -0.01 -0.01 0.33
1 March 0.14 0.14 0.14 042
1 April 0.51 0.27 0.27 0.52
PCR setting 1
*1 December —-0.27 -0.1 -0.1 0.27
1 January -0.19 -0.08 -0.08 0.28
*1 February 0.32 0.13 0.13 0.42
1 March 0.24 0.16 0.16 0.44
1 April 0.60 0.39 0.39 0.59
Bestglm setting 2 (AIC)
1 December -0.14 -0.14 —--0.14 0.23
*1 January 0.21 0.12 0.12 041
1 February 0.19 -0.07 -0.07 0.28
1 March 0.53 0.37 0.37 0.58
1 April 0.52 0.21 0.21 0.48
Bestglm setting 2 (BIC)
1 December -0.28 -0.16 -0.16 0.23
1 January 0.22 —-0.02 -0.02 0.32
1 February -0.03 -0.13 -0.13 0.25
*1 March 0.61 0.47 0.47 0.64
1 April 0.48 0.16 0.16 0.44
PLSR setting 2
*1 December —0.17 -0.04 —-0.04 0.30
1 January -0.14 -0.05 -0.05 0.30
1 February 0.25 -0.02 -0.02 0.31
1 March 0.22 0.14 0.14 042
1 April 0.48 0.36 0.36 0.58
PCR setting 2
1 December -0.19 -0.09 -0.09 0.27
1 January —-0.16 -0.06 —-0.06 0.29
*1 February 0.28 0.05 0.05 0.37
1 March 0.20 0.15 0.15 0.43
*1 April 0.58 0.46 0.46 0.64

Note: CC= Pearson’s correlation coefficient; HsSSHeidke
skill score; PSS= Peirce skill score; P& proportion correct; *

= best performance in a setting.
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above results indicate that the IMD rainfall and temperature
data along with station snow information is able to credibly
represent the variations of the spring seasonal Satluj River
flow, while it probably misses smaller-scale features associ-
ated with the complex structure of the topography. An anal-
ysis was also undertaken to look at the ability of precipi-
tation data from local meteorological stations to represent
observed interannual variability of streamflow of the Satluj
River, which was satisfactorily skillful. This is consistent
with Schar et al. (2004) who also demonstrated that precipi-
tation data in winter alone is sufficient to skillfully predict the
next seasonal river flow in central Asia. Despite the low res-
olution of IMD precipitation data and poor coverage of sta-
tion meteorological data, the results appeared highly promis-
ing. In most years the models provided excellent predictions
on 1 March and 1 April, and only a few years (includes
2004) had a departure from the prediction interval (based on
a p = 95 % prediction interval, one would expect at least one
miss in a 15yr series, according to Schar et al. (2004)). The
1 March and 1 April models also enabled forecasts that rep-
resent an improvement in comparison with the climatological
forecast.

Water managers depend on seasonal forecasts of reser-
voir inflow volume to support operations and planning in
advance. Careful planning is necessary to meet water de-
mands in the dry pre-monsoon season (MAMJ) under the
stress of increased climate variability. This is particularly
true for the Bhakra Reservoir because total volume of
MAMJ inflow into Bhakra depends largely on the highly
variable winter climatology of the Western Himalayas. The
forecasting model developed here could significantly help
water resource decision-making associated with Bhakra
Reservoir operations.

For reservoir operation, a key question in April, May and
June is how much space to leave for flood control and how
full to keep the reservoir. Retaining water in the reservoir
during this fill cycle allows more reliable irrigation and hy-
dropower releases and a better buffering capacity for the
failure of the monsoon. However, it increases exposure to
flood risk. This trade-off is traditionally managed using a rule
curve for storage allocation that is based on the historical cli-
matology of the monsoon and the snowmelt period. The in-
novation presented here is now being used to foster the devel-
opment of a stochastic optimization model for dynamic rule
curve determination considering the probability distribution
of fill during MAMJ/AMJ, and the flows and consumptive
water demand in the subsequent monsoon season. Flood vol-
ume predictions are also needed to complete such an anal-
ysis, and to date very few efforts have been made at long
lead flood volume forecasting. Nonlinear or nonparametric
methods are often used to address such problems effectively
(Kwon et al., 2012). However, given the short record avail-
able here with potential data quality issues, these methods
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