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Abstract. The quality of precipitation forecasts from four
Numerical Weather Prediction (NWP) models is evaluated
over the Ovens catchment in Southeast Australia. Precipita-
tion forecasts are compared with observed precipitation at
point and catchment scales and at different temporal resolu-
tions. The four models evaluated are the Australian Commu-
nity Climate Earth-System Simulator (ACCESS) including
ACCESS-G with a 80 km resolution, ACCESS-R 37.5 km,
ACCESS-A 12 km, and ACCESS-VT 5 km.

The skill of the NWP precipitation forecasts varies consid-
erably between rain gauging stations. In general, high spa-
tial resolution (ACCESS-A and ACCESS-VT) and regional
(ACCESS-R) NWP models overestimate precipitation in dry,
low elevation areas and underestimate in wet, high elevation
areas. The global model (ACCESS-G) consistently underes-
timates the precipitation at all stations and the bias increases
with station elevation. The skill varies with forecast lead time
and, in general, it decreases with the increasing lead time.
When evaluated at finer spatial and temporal resolution (e.g.
5 km, hourly), the precipitation forecasts appear to have very
little skill. There is moderate skill at short lead times when
the forecasts are averaged up to daily and/or catchment scale.
The precipitation forecasts fail to produce a diurnal cycle
shown in observed precipitation. Significant sampling uncer-
tainty in the skill scores suggests that more data are required
to get a reliable evaluation of the forecasts. The non-smooth
decay of skill with forecast lead time can be attributed to di-
urnal cycle in the observation and sampling uncertainty.

Future work is planned to assess the benefits of using the
NWP rainfall forecasts for short-term streamflow forecast-
ing. Our findings here suggest that it is necessary to remove

the systematic biases in rainfall forecasts, particularly those
from low resolution models, before the rainfall forecasts can
be used for streamflow forecasting.

1 Introduction

Forecasts of streamflow with lead times up to 10 days are
important for water resources management and mitigating
impacts of floods. Streamflow forecasts are produced by ini-
tialising the state variables of a hydrological model to their
condition at the forecast time and subsequently forcing the
model with future weather conditions for the forecast pe-
riod. A major source of uncertainty in this process is future
precipitation. Numerical Weather Prediction (NWP) models
have been used since 1946 to forecast precipitation and other
atmospheric variables. However, forecasting precipitation is
challenging because it is discontinuous and varies rapidly in
space and time. The precipitation process depends not only
on the synoptic situation, but also on processes that are not
explicitly considered by NWP models, including condensa-
tion, vertical convective transport of heat and moisture and
phase transitions of water between vapour, clouds and ice
(Damrath et al., 2000). Increased computing power and im-
provement of the NWP models have lead to considerable ad-
vancement in the ability to predict precipitation. However,
ability of the NWP models to forecast precipitation is still rel-
atively low, especially for very short lead times (e.g.< 12 h),
for long lead times (e.g.> 5 days) and for fine scale weather
systems such as local-regional convective systems (e.g. thun-
derstorms) (Cuo et al., 2011).
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Some of the earliest experiments linking precipitation
forecasts to hydrological applications began three decades
ago (see Georgakakos and Hudlow, 1984). Accurate precipi-
tation forecasts can reduce forcing uncertainty in hydrologi-
cal (e.g. rainfall-runoff) models and can greatly improve the
quality of streamflow forecasts. However, NWP precipitation
forecasts are inherently uncertain and subject to three types
of error (Habets et al., 2004): localisation, timing and inten-
sity of precipitation events, which potentially limit their use-
fulness for streamflow forecasting. Hydrological models are
sensitive to uncertainty in the precipitation forecasts, which
are propagated to the model outputs. Thus, it is required to
address the quantification of the uncertainty in meteorolog-
ical observation and forecasting along with their effect on
hydrological forecasting (Rossa et al., 2011).

The contribution of precipitation forecasts to the skill of
streamflow forecasts is dependent on many factors, including
lead time. At lead times that are less than the time of concen-
tration of a catchment, precipitation forecasts will contribute
little skill to streamflow forecasts. During this period, catch-
ment and channel storage and the passage of an existing flood
wave downstream are the main influences on the streamflow
forecasts. NWP model precipitation forecasts are also typi-
cally unable to resolve the observed precipitation distribution
at very short lead times, and persistence or extrapolation-
based methods can provide better forecasts. Hence, NWP
model precipitation forecasts are more useful for streamflow
forecasting in extending forecast lead time, particularly in
the range of a few days to one or two weeks (Cloke and
Pappenberger, 2009; Cuo et al., 2011). However, the extent
to which precipitation forecasts are beneficial for streamflow
forecasts depends considerably on the ability of the NWP
models to resolve the scale and processes relevant for hy-
drological applications and whether the surface hydrology in
the catchment is dominated by precipitation (Clark and Hay,
2004; Gebhardt et al., 2008).

Understanding the quality of NWP precipitation forecasts
is important step in assessing their potential contribution to
the skill of streamflow forecasts. Objective evaluation or ver-
ification of precipitation forecasts did not begin until the
mid 1990s (e.g. WMO Working Group on Numerical Ex-
perimentation, WWRP/WGNE, 2008). The overall purpose
of evaluation is to ensure that forecasts are accurate, skil-
ful and reliable from a technical point of view. Evaluation of
precipitation forecasts is important to monitor forecast qual-
ity over space and time, to compare the quality of different
forecast systems and to discover sources of model error to
improve the forecast quality (WMO, 2000; WWRP/WGNE,
2008; Casati et al., 2008). However, from a streamflow fore-
casting perspective, forecast evaluation is also to understand
the nature of forecast errors (e.g. bias, error on light precip-
itation versus heavy precipitation) which can inform the de-
velopment of methods for post-processing raw forecasts to
improve their accuracy and reliability.

Evaluation of NWP model forecasts of precipitation is not
a new topic. Numerous forecasters, researchers have veri-
fied precipitation forecasts from a meteorological perspective
(e.g. Jolliffe and Stephenson, 2012). A much smaller num-
ber of them have evaluated precipitation forecasts from a hy-
drological perspective (see e.g. Pappenberger et al., 2008).
Georgakakos and Hudlow (1984) highlighted the relevance
of precipitation forecasts products to real-time hydrologi-
cal forecasting. Golding (2000) identified the critical areas
where NWP products fall short, and illustrated techniques
being developed to address them. Damrath et al. (2000) ver-
ified 7 yr of precipitation forecasts from NWP models of the
German Weather Services. Kaufmann et al. (2003) evalu-
ated the quality of 8 yr of precipitation forecasts from the
Swiss Model in Switzerland. Hay and Clark (2003) used
40 yr of 8 day ahead precipitation forecasts over the con-
tiguous United States from the National Centres for Envi-
ronmental Prediction reanalysis project to assess the possi-
bilities for using the medium-range forecast model output.
Richard et al. (2003) compared four European and Cana-
dian mesoscale models for precipitation forecasting to repro-
duce heavy precipitation events. Habets et al. (2004) used
precipitation forecasts from two French NWP models as in-
puts to a hydrologic model. Roy Bhowmik et al. (2007) eval-
uated precipitation predictive skill of the Indian Meteoro-
logical Department operational NWP system over the In-
dian monsoon region. Roberts (2008) assessed the spatial
and temporal variation in the skill of precipitation forecasts
from a NWP model. Rotach et al. (2009) tested real-time,
end-to-end multi-model hydrometeorological forecasts from
heavy precipitation and related flooding in many different
catchments in the Alps. Roberts et al. (2009) demonstrated
the benefit of using high resolution NWP model precipi-
tation forecasts for flood and short-term streamflow fore-
casting. Ghile and Schulze (2010) verified the skill and ac-
curacy of the precipitation forecasts by three NWP mod-
els over the Mgeni catchment in South Africa. Ament et
al. (2011) evaluated the performances of 13 mesoscale NWP
models with respect to heavy precipitation alerts by these
models in Switzerland during the summer 2007. Ghelli and
Ebert (2008) and Jolliffe and Stephenson (2012) presented a
comprehensive review and the state of art in forecast verifi-
cation.

Few studies have verified NWP precipitation forecasts for
Australia. McBride and Ebert (2000) verified precipitation
forecasts from 7 international (including Australian) NWP
models over Australia. They verified 24 h total (daily) precip-
itation forecasts for the first 24 h of the forecast period over
a one-year period using only categorical verification scores.
The verification statistics were presented over a standardised
1◦ latitude-longitude grid over the continent of Australia.
Ebert et al. (2003) reported the WGNE assessment of short-
term precipitation forecasts from several international NWP
global and regional models in different areas of the globe in-
cluding Australia. Forecasts of 24 h precipitation totals were

Hydrol. Earth Syst. Sci., 17, 1913–1931, 2013 www.hydrol-earth-syst-sci.net/17/1913/2013/



D. L. Shrestha et al.: Evaluation of numerical weather prediction model precipitation forecasts 1915

verified at lead times of 24 and 48 h over Australia using only
two categorical evaluation scores.

This study focuses on comprehensive analysis of the NWP
precipitation forecasts in Australia from a hydrological per-
spective. Unlike many synoptic-scale precipitation verifica-
tion studies undertaken from a meteorological perspective,
this study evaluates the precipitation forecasts on scales rel-
evant to hydrology. The evaluation of the precipitation fore-
casts and other meteorological variables from a hydrologi-
cal point of view is challenging because the resolution of the
NWP model is often too coarse to resolve the small catch-
ment scale. Irregular catchment boundaries do not necessar-
ily coincide with NWP model grids. This may require an in-
terpolation of the NWP model precipitation forecasts. The
verification of precipitation forecasts from a hydrological
perspective requires at short temporal resolution (e.g. sub-
daily). Furthermore, hydrological catchment has a memory
of several hours, days, weeks or months based on its size. Re-
sponse of the catchment depends on the previous events and
on the timing of the present events, thus, it requires to evalu-
ate the forecasts on several forecast times. However, most of
the meteorological verification is based on evaluating fore-
casts on several model grid cells at a particular forecast time
and does spatial aggregating of forecasts rather than tempo-
ral aggregating. For example, in meteorological verification,
hit rates are often calculated by counting number of grid cells
of correct forecasts at a particular time rather than counting
number of events of correct forecasts on several days at a
particular location. Spatial aggregating also ignores the loca-
tion error whereas it is crucial for hydrological application
as an error of a few kilometres can lead the precipitation in
the wrong catchment (Habets et al., 2004) which does not
contribute to the streamflow forecasts to the catchment of in-
terest.

This study is the first part of a research programme to
support the production of ensemble streamflow forecasts by
the Australian Bureau of Meteorology. The forecasting ser-
vice seeks to produce ensemble streamflow forecasts out to
10 days using continuous hydrological modelling and NWP
rainfall forecasts. The main objectives of this study are to (i)
compare the skill of NWP models with different spatial res-
olutions at station locations and at the catchment scale, (ii)
evaluate the effect of lead time, precipitation accumulation
period, and precipitation threshold values on forecast skill,
and (iii) investigate the effect of diurnal cycle and sampling
uncertainty on forecast skill. The contribution and benefit of
NWP model rainfall forecasts for use in streamflow forecast-
ing will be presented in a subsequent paper. In comparison
with previous studies, the main contributions of this study
are to (i) evaluate the quality of the ACCESS model suite
which is the latest generation Australian NWP model, (ii) use
both continuous and categorical evaluation scores, (iii) anal-
yse the evaluation scores of precipitation forecasts at multi-
ple sub-daily temporal resolutions out to longer forecast lead
times, (iv) investigate diurnal cycle and uncertainty analysis

of the evaluation scores. The Ovens catchment in Southeast
Australia is selected to evaluate the skill of the precipitation
forecasts from ACCESS models.

2 Numerical weather prediction models and data

2.1 Description of ACCESS models

The Australian Community Climate Earth-System Simula-
tor (ACCESS) model suite (BoM, 2010) has been the op-
erational NWP system employed by the Australian Bureau
of Meteorology (BoM) since August 2010. The ACCESS
NWP model system is based on the UK Met Office’s Uni-
fied Model/Variational Assimilation (UM/VAR) system with
multiple resolutions and spatial domains extending from a
course resolution global model down to the high resolution
city-based models. This study uses the initial rollout of the
ACCESS system APS0 (Australian Parallel Suite version 0).
The APS0 version of ACCESS uses version 6.4 of the Uni-
fied Model from the UK Met Office. Key features of various
components and physical parameterisations given below are
taken from BoM (2010).

ACCESS is a non-hydrostatic model with prognostic
variables of winds, air density, temperature, mixing ratios
of water-vapour, cloud-liquid-water and cloud-frozen-water.
The model uses an Arakawa C-grid in the horizontal and a
Charney-Phillips grid in the vertical. The model is config-
ured such that each grid point in the horizontal is spaced
a constant latitude and longitude increment apart from ad-
jacent grid points. The vertical levels are constructed in
a hybrid fashion so they conform to terrain heights near
the surface and become constant height surfaces in the up-
per atmosphere. Two-time-level semi Lagrangian with non-
interpolating scheme is used for vertical advection of tem-
perature. Acoustic terms are treated using a semi-implicit ap-
proach yielding a Helmholtz equation for the Exner pressure
tendency, which is solved using a preconditioned generalised
conjugate residual method.

Water clouds are derived from sub-grid scale probabil-
ity distribution of conserved variables of liquid/frozen water
temperature and total water content using an assumed critical
relative humidity (Smith, 1990). Ice water content is deter-
mined by the prognostic mixed phase microphysics scheme
with ice cloud fraction calculated diagnostically from ice
water content. Precipitation is computed by single-moment
bulk microphysics scheme with explicit calculation of trans-
fers between vapour, liquid and ice phases. The microphys-
ical processes calculated in the scheme are sedimentation of
the ice and rain, heterogeneous and homogeneous nucleation
of ice particles, deposition and sublimation of ice, riming
and melting of ice, collection of cloud droplets by raindrops,
etc. The model computes atmospheric radiation using rigor-
ous solution of the two-stream scattering equations including
partial cloud cover.

www.hydrol-earth-syst-sci.net/17/1913/2013/ Hydrol. Earth Syst. Sci., 17, 1913–1931, 2013
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Table 1.Precipitation forecasts available from NWP models for the study.

Resolution Lead time Forecast
Domain NWP system (km) (days) Earliest date Latest date dates

Global ACCESS-G 80 10 27 Aug 2009 18 Apr 2011 597
Regional ACCESS-R 37.5 3 27 Aug 2009 18 Apr 2011 597
Australia ACCESS-A 12 2 1 Feb 2010 18 Apr 2011 437
VICTAS ACCESS-VT 5 1.5 31 Mar 2010 18 Apr 2011 381

Mixing in unstable layers uses a first order non-local
scheme that parameterises eddy diffusivity profiles of unsta-
ble layers driven either by fluxes at the surface or by cloud-
top processes. Cumulus mixing uses the mass-flux convec-
tion scheme. Cumulus convection is diagnosed if air at the
first model level is unstable to adiabatic ascent above the lift-
ing condensation level. The cloud base mass-flux is calcu-
lated based on the reduction of zero convectively available
potential energy over a given timescale. The representation
of convective momentum transport for deep and shallow con-
vection is based on an eddy viscosity model.

The ACCESS APS0 system comprises a global model
(ACCESS-G) with a 80 km resolution and forecast duration
of 10 days; regional models (ACCESS-R, and ACCESS-T)
with a 37.5 km resolution and forecast duration of 3 days;
an Australian model (ACCESS-A) with a 12 km resolution
and forecast duration of 2 days, city models (ACCESS-VT,
ACCESS-S, ACCESS-P, ACCESS-BR) with a 5 km resolu-
tion and forecast duration of 36 h, and a tropical cyclone
(ACCESS-TC) with 12 km resolution, a relocatable spatial
domain and forecast duration of 3 days. Currently new ver-
sions of the ACCESS models (APS1) with improved reso-
lution and model physics are being introduced at the BoM.
Figure 1 shows the domains of ACCESS APS0 (ACCESS-G,
ACCESS-R, ACCESS-A, and ACCESS-VT) models which
are used in this study.

All models except ACCESS-G use boundary conditions
that are provided by coarser resolution models, for example,
ACCESS-R is nested inside the previous run of ACCESS-
G, while ACCESS-A and ACCESS-VT are nested inside the
concurrent run of ACCESS-R. ACCESS system uses a four-
dimensional variational data assimilation scheme which al-
lows observations made at a range of times and locations to
be used to initialise the model in a dynamically consistent
way. Data assimilation occurs 4 times daily for nominal as-
similation base times of 00:00, 06:00, 12:00 and 18:00 UTC.
However, for ACCESS-G and ACCESS-VT, full model fore-
casts are only run at 00:00 and 12:00 UTC. In contrast, for
ACCESS-R and ACCESS-A full model forecasts are run
4 times daily at 00:00, 06:00, 12:00, and 18:00 UTC. For
ACCESS-R and ACCESS-A, a second update data assimi-
lation step is run 4 h later than the main run to make use of
any additional observational data that were not available at
the time of the earlier main assimilation step (BoM, 2010).

ACCESS−VT 5km

ACCESS−A 12km
ACCESS−R 37.5km

ACCESS−G 80km

Fig. 1. Domains of initial ACCESS (APS0) NWP models used in
this study.

This study uses the archive of precipitation forecasts gen-
erated in real time by the ACCESS models. This archive be-
gan on late 2009 and has been maintained through to the
present. Table 1 shows the archive of precipitation fore-
casts (issued at 12:00 UTC) available for the study. The
BoM expects to run the hydrologic models around 09:00 LT
(Fig. 2). The most recent ACCESS model forecasts available
at 09:00 LT are those initialised at 12:00 UTC (22:00 LT in
Victoria). Therefore, the results presented in this study disre-
gard the first 11 h of the NWP forecasts. NWP forecasts for
the first few hours are generally regarded as not reliable be-
cause of the so-called “spin-up” time (Kasahara et al., 1992).
Thus, our results are considered to be free from model spin-
up effects.

Precipitation forecasts from all models are available
at hourly intervals for this study, with the exception of
ACCESS-G which are available at 3 hourly intervals. In or-
der to compare the skill among the models, only one year
period of data from 31 March 2010 to 30 March 2011 (see
Table 1) is selected for the analysis.

2.2 Study area

In this study, the Ovens catchment in Southeast Australia is
selected to evaluate the skill of the precipitation forecasts
from ACCESS models (Fig. 3). The Ovens catchment is the
focus of a prototype flood and short-term streamflow fore-
casting service with lead times up to 10 days run by the
BoM. The Ovens catchment provides a significant source
of unregulated inflow to the Murray Darling Basin and has

Hydrol. Earth Syst. Sci., 17, 1913–1931, 2013 www.hydrol-earth-syst-sci.net/17/1913/2013/
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Fig. 2.Schematic of NWP model runs.

several urban centres that have experienced significant eco-
nomic damage from flooding.

The Ovens river rises in the Victorian Alps and the catch-
ment is bounded by several significant peaks, including
Mount Hotham (elevation 1861 m, longitude 147.33◦, lat-
itude −37.05◦), Mount Feathertop (elevation 1922 m, lon-
gitude 147.13◦, latitude −36.9◦) and Mount Buller (ele-
vation 1805 m, longitude 146.41◦, latitude −37.14◦). The
Wangaratta streamflow gauge (elevation 140 m, longitude
146.30◦, latitude−36.42◦) drains an area of 5552 km2. The
upper catchment is steep and hilly, and covered by native for-
est and tree plantations. The lower catchment is relatively
flat with a wide floodplain and is mainly used for graz-
ing and cropping. Snow is limited to the higher elevations,
but is sufficient to support a seasonal skiing industry when
supplemented with artificial snow. The catchment has two
small sized (total capacity 37.5 million m3) reservoirs which
support irrigation and hydropower. Average annual potential
evapotranspiration is 1164 mm (Raupach et al., 2008), ap-
proximately equal to the catchment average annual precip-
itation. There is a seasonal variability of precipitation and
a strong gradient in the average annual precipitation, typi-
cally 550 mm in the lowlands near the catchment outlet and
1950 mm in the highlands near catchment headwaters.

Figure 3 also shows the spatial resolution of the ACCESS
models with respect to the resolution of the hydrological
model (93 sub-catchment areas) currently used in operational
streamflow forecasting. The figure shows that the hydrolog-
ical model resolution is roughly comparable to the 12 km
ACCESS-A model grid. Furthermore, the coarser NWP mod-
els (viz. ACCESS-R and ACCESS-G) are unlikely to capture
gradients of precipitation across the catchment. The 80 km
resolution ACCESS-G model has only 4 grid cells across the
catchment and more than three-quarter of the catchment is
covered by a single grid cell.

Observed precipitation data were collected from 33 mea-
surement stations that are used for operational forecasting
in the Ovens catchment (Table 2). The measurement sta-
tions are reasonably distributed across the catchment and sur-
roundings as shown in Fig. 3. Some stations at high eleva-
tion have heated rain gauge to measure snow fall. Careful
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(37.5 km); and the thickest line; ACCESS-G (80 km). The shaded
region is the catchment area draining to Wangaratta gauging station.
In inset, location of the Ovens catchment is shown.

preparation of the precipitation observations was necessary
and included removal of outliers and infilling of missing val-
ues. Data which are significantly different from the neigh-
bouring stations and gridded daily precipitation data or pre-
vious time step are marked as missing. A visual inspection
of the precipitation hyetograph and corresponding observed
streamflow hydrograph was also used to identify outliers in
the precipitation. We believe such data are resulted from hu-
man error, and there are a few such data records in the evalu-
ation period. The infilling process related daily precipitation
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Table 2.Precipitation stations in and near the Ovens catchment. The period of record for the annual average precipitation is September 1991
to February 2011.

Average Missing
Station Longitude Latitude Altitude precipitation data
number Station name (◦) (◦) (m) (mm yr−1) (%)

1 Albury AWS 146.95 −36.07 164 660 11.9
2 Rutherglen AWS 146.51 −36.11 175 556 12.5
3 Osbornes Flat 146.9 −36.31 225 855 0.6
4 Wangaratta AWS 146.31 −36.42 153 593 0.6
5 Bloomfield 146.56 −36.42 251 688 1.9
6 Bobinawarrah 146.45 −36.51 202 737 0.6
7 Greta West 146.22 −36.53 174 724 0.6
8 Rocky Point 146.67 −36.54 195 812 0.6
9 Greta South 146.25 −36.58 192 814 0.6
10 Rosewhite 146.82 −36.58 253 949 0.6
11 Mongans Bridge 147.1 −36.6 263 1069 0.6
12 Angleside 146.36 −36.61 189 799 0.6
13 Carboor Upper 146.55 −36.64 298 947 0.6
14 Eurobin 146.86 −36.65 266 1121 0.6
15 Loombah Reservoir 146.22 −36.72 356 967 0.6
16 Lake Buffalo 146.67 −36.72 238 1176 0.6
17 Mount Buffalo 146.82 −36.72 1350 1930 0.6
18 Harris Lane 146.88 −36.72 277 1240 0.6
19 Bright 146.95 −36.73 319 1147 0.6
20 Myrhee 146.34 −36.74 352 1134 0.6
21 Black Range Trout Farm 146.54 −36.75 425 1139 0.6
22 Handcocks 146.28 −36.79 425 1318 0.6
23 Cheshunt 146.4 −36.83 293 1186 0.6
24 Upper Buckland 146.86 −36.86 500 1306 0.6
25 Harrietville 147.06 −36.87 396 1349 13.3
26 Falls Creek AWS 147.27 −36.87 1510 1409 0.3
27 Archerton 146.24 −36.91 907 1243 0.6
28 L Will Hov 146.39 −36.92 440 1235 0.6
29 Mt Tabletop 146.22 −36.95 915 1045 0.6
30 Mt Hotham AWS 147.13 −36.98 1750 1647 11.6
31 Bald Hill 146.35 −37.03 1202 848 0.6
32 Mt Hotham Airport AWS 147.33 −37.05 1750 899 11.9
33 Mt Buller AWS 146.44 −37.15 1707 1494 0.4

totals at the measurement stations to gridded daily precip-
itation data from the Australian Water Availability Project
(Jones et al., 2009) and disaggregated the daily total using
the concurrent temporal pattern from the nearest available
station. The percentage of missing data is given in Table 2.

Catchment average precipitation was estimated as the
area-weighted average of sub-catchment precipitation. Sub-
catchment precipitation data were derived by inverse distance
weighting of precipitation from the nearby stations. The sta-
tion precipitation time series were serially complete before
inverse distance weighting to sub-catchment centroids. The
sub-catchment precipitation was used to drive hydrological
model, whereas catchment average precipitation was used
to evaluate precipitation forecasts from NWP models at the
catchment scale. The spatial resolution of the global model is
too coarse to carry out the evaluation at sub-catchment scale.

3 Evaluation methods

The skill of NWP precipitation forecasts is known to vary in
space and time. Therefore, an evaluation of the NWP precip-
itation forecasts should be aimed to reflect this characteris-
tic. WWRP/WGNE (2008) recommended that evaluation be
done both against gridded (model-oriented evaluation) obser-
vations and station observations (user-oriented evaluation).
Model-oriented evaluation includes processing of observa-
tion data to match the spatial and temporal scales of the
model. User-oriented evaluation uses station observations to
evaluate model output from the overlying model grid cell.

In this study the evaluation of the quality of NWP precipi-
tation forecasts is done both at stations and gridded observa-
tions. Station-based evaluation is done by directly compar-
ing the station and NWP precipitation amounts at the model
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grid cell in which the station exists. While this method is
simplistic, any alternative would involve a spatial interpola-
tion of precipitation data from irregularly spaced measure-
ment stations which may introduce further bias (Richard et
al., 2003). Although this verification approach has deficien-
cies (Roberts, 2008), direct comparison facilitates the under-
standing of skill from a user’s perspective (i.e. without any
interpolation or reanalysis). Furthermore, hydrological mod-
els are commonly calibrated with station observations and,
therefore, an evaluation of quality and skill of NWP model
has to be performed using observations (Pappenberger et al.,
2008). The evaluation scores (described below) are computed
for all 33 measurement stations over the Ovens catchment in-
dividually by aggregating forecasts over a period of one year
(time averaging).

Evaluation using gridded observations is done at catch-
ment scale where the grid is defined by an irregular catch-
ment boundary rather than the NWP model grid. Evalua-
tion is done by comparing interpolated catchment average
precipitation and corresponding NWP precipitation forecast.
Catchment average precipitation forecastFc is computed by
weighting each precipitation forecastFi at grid celli by the
fraction of the catchment area within the grid celli and given
by

Fc =

Ng∑
i=1

AiFi

Ng∑
i=1

Ai

(1)

whereAi is the area of catchment within the grid celli, Ng
is the number of the grid cells covered partly or fully by the
catchment.

As no single evaluation score is adequate to judge the qual-
ity of NWP model precipitation forecasts, a large variety of
scores are used operationally to verify them (see e.g. Stanski
et al., 1989; Wilks, 2006; Wilson, 2001; WWRP/WGNE,
2008). A detailed assessment of the strengths and weak-
nesses of a set of forecasts usually requires more than one
or two summary scores (Jolliffe and Stephenson, 2012). In
this study, forecasts of precipitation amount are evaluated
using three commonly used continuous verification scores:
root-mean-square error (RMSE), bias and correlation coeffi-
cient. These scores assess different aspects of forecast qual-
ity. RMSE is one of the most basic and widely used meth-
ods of verification, and assesses the average magnitude of
forecast errors (Stanski et al., 1989). Bias assesses the dif-
ference between the mean of forecasts and mean of the cor-
responding observations. The correlation coefficient reflects
linear association between the forecasts and observations.
The Pearson product moment correlation coefficient is not
sensitive to biases that may be present in the forecasts, it is,
however, sensitive to outliers (Wilks, 2006). Thus, Spearman
rank correlation coefficient is more appropriate than Person
correlation when data are not normally distributed. Note that

above three evaluation scores are related according to the fol-
lowing equation (Murphy, 1988)

RMSE2
= Bias2 + S2

f + S2
o − 2SfSoCorr (2)

whereS2
f andS2

o are the sample variances of the forecasts
and observations, respectively, Corr is the Pearson correla-
tion between the forecasts and observations.

From user point of view, it is also important to know
whether precipitation occurs or not. Continuous precipita-
tion values can be viewed categorically (or binary for “yes”
or “no” events) according to whether or not the precipitation
exceeds a given threshold value. The “event” here means just
an instance of precipitation (not) exceeding a given threshold
value at a particular time. Categorical verification scores are
then used to evaluate the occurrence of precipitation. These
scores are less sensitive to large errors than continuous ver-
ifications scores (especially those involving squared errors)
which is particularly relevant for highly skewed data such as
precipitation amounts. Thus, categorical verification scores
may give more meaningful information for precipitation ver-
ification (WWRP/WGNE, 2008).

A number of the categorical verification scores are com-
puted by building contingency table (Table 3) which shows
the joint distribution of observed and forecast events and
non-events. In the Table 3, “Hits” represents the number of
events for which both forecasts and observations exceed a
given threshold, “Misses” represents the number of events
for which only observations exceed the threshold, “False
Alarms” represents the number of events for which only fore-
casts exceed the threshold and “Correct Negatives” repre-
sents the number of events for which neither forecasts nor
observations exceed the threshold.

In this study, probability of detection (POD), false alarm
ratio (FAR), frequency bias (FBI) and critical success index
(CSI) have been calculated from the contingency table. Ta-
ble 4 shows the formulae of categorical verification scores
with their perfect and possible ranges values. POD measures
the fraction of observed events that were correctly forecast
and is insensitive to false alarms. FAR gives the fraction of
forecast events that were observed to be non-events and ig-
nores the misses. FBI gives the ratio of frequency of forecast
rain to the observed rain and does not take into account ac-
curacy. CSI gives the fraction of all forecast and observed
events that were correctly diagnosed and does consider both
misses and false alarms.

The value of any evaluation score is limited if uncertainty
associated with the score is not quantified (Jolliffe, 2007).
Any evaluation score must be regarded as a sample esti-
mate of the “true” value for an infinitely large verification
dataset. There is, therefore, some uncertainty associated with
the score’s value, especially when the sample size is small
or the data are not independent, or both (WWRP/WGNE,
2008). In this study, the uncertainty associated with the eval-
uation scores is estimated using re-sampling technique. Al-
though it is also possible to compute uncertainty of some
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Table 3. Contingency table of binary events for categorical verifi-
cation scores.

Observation exceeding

Forecast exceeding
a given threshold

a given threshold Yes No

Yes Hits False Alarms
No Misses Correct Negatives

scores theoretically assuming some distribution (e.g. Gaus-
sian distribution for correlation coefficient), the distribution
of other scores cannot be modelled exactly or approximated
by theoretical distributions. Thus, we have used re-sampling
techniques in order to generate an empirical distribution for
the values of the evaluation scores to compute sampling un-
certainty.

A bootstrap procedure (Efron and Tibshirani, 1993) is
used to analyse the sampling uncertainty which addresses the
question of what range of scores would be obtained given dif-
ferent sets of forecasts from the same forecast system. We
sample forecast-observation pairs randomly with replace-
ment, keeping the forecast and the corresponding observation
together. The new sample has the same size as the original.
Since it is sampled with replacement, it is likely to include
some forecast-observation pairs more than once, and some
pairings will not be drawn at all. The verification score is
computed from the generated sample. This procedure is re-
peated many times (typically a few thousand) and the various
statistics (e.g. mean, percentiles) are computed from the dis-
tribution of the verification scores. The bootstrap procedure
is given below.

Pseudo-code for bootstrap procedure
Let {x1,y1}, {x2,y2} . . . , {xn,yn} be forecast-observation
paris andnB be the number of bootstrap sample
for i = 1 tonB

Samplen pairs of forecast-observation from the original
pair {x,y} (with replacement)
Compute verification scores fromn pairs of observation
and forecasts

end
Compute various statistics (mean, percentiles) fromnB values
of the verifications scores.

In this study, we present absolute evaluation scores rather
than scores relative to some reference (e.g. climatology, per-
sistence, etc.). This allows for direct comparison of the pre-
cipitation forecasts from NWP models of different spatial
resolutions between many stations and at different temporal
resolutions. Thus, the term “skill” means absolute evaluation
score in this study.

4 Results

The first step of the evaluation is to compare the NWP fore-
casts to the observations at the point scale (rain gauge sta-
tions). Although this eliminates any possible errors due to
the spatial interpolation of the station data, errors due to sub-
grid scale variability and representativeness may remain. For
example, the frequency of zero precipitation at a grid cell will
necessarily be less than at a randomly selected point within
that (because if it rains anywhere, the grid cell precipitation
will be non-zero). In Sect. 4.6, we evaluate the skill of NWP
model forecasts at the catchment scale.

4.1 Forecasts of 1–24 h lead time

Figure 4 shows a map of 24 h mean precipitation accumula-
tion for the measurement stations and for the ACCESS model
grid cells over the Ovens catchment. The 24 h (daily) precipi-
tation on a given date and time (09:00 LT) is the accumulated
forecast precipitation of lead times from 1 to 24 h on that
date and time. The precipitation is averaged over a period for
1 April 2010 to 8 February 2011. Here, dark blue colour in-
dicates higher precipitation and white is relatively drier. The
ACCESS-VT model has a precipitation maximum adjacent
to the eastern extremity of the catchment just to the west
of Mount Bogong (elevation 1988 m, longitude 147.2◦, and
latitude−36.8◦, between stations 11 and 26). The average
daily precipitation forecast at this location is about 10.5 mm.
Regrettably the area of the highest forecast precipitation is
without a measurement station. The closest measurement sta-
tion (26) is about 10 km southeast of the highest precipitation
forecast location. This station has observed precipitation of
5.89 mm, while the corresponding grid cell forecast by the
ACCESS-VT model is 7.95 mm. The measurement stations
with the highest precipitation observations are 17 (8.81 mm),
33 (7.03 mm) and 30 (6.88 mm). The forecast precipitation
for the corresponding model grid cells for these stations are
7.26 mm, 4.97 mm and 5.98 mm, respectively. The ACCESS-
VT model has a tendency to overforecast in lowland areas
(north of the catchment) and underforecast in highland areas
(south of the catchment).

The ACCESS-A model places the highest precipitation
over Mount Feathertop (southeast, near station 25) and east
of Wabonga in the southwest interior of the catchment (near
stations 16, 20, 21, and 23). The observed precipitation at sta-
tion 25 is 6.3 mm and the corresponding ACCESS-A forecast
is 6.44 mm. Purely based on elevation, one would not neces-
sarily expect a maximum in long-term average precipitation
in this ungauged area, although it may be due to the precipi-
tation patterns in this particular year. Like the ACCESS-VT,
the ACCESS-A model has a tendency to overforecast in low-
land areas and underforecast in highland areas.

The ACCESS-R model has a precipitation minimum in the
headwaters of the catchment (east of station 33 and near sta-
tions 25, 26 30, and 32). These are some of the wettest areas
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Table 4.Categorical verification scores used in the study.

Score Formula Range Perfect

Probability of detection (POD) Hits/(Hits+ Misses) [0, 1] 1
False alarm ratio (FAR) False Alarms/(Hits+ False Alarms) [0, 1] 1
Frequency bias (FBI) (Hits+ False Alarms)/(Hits+ Misses) [0,∞] 1
Critical success index (CSI) Hits/(Hits+ Misses+ False Alarms) [0, 1] 1

Fig. 4. A comparison of daily average (1–24 h accumulated) ob-
served precipitation at stations and forecasted precipitation by the
ACCESS models in Ovens catchment for 1 April 2010 to 8 Febru-
ary 2011:(a) Observed station precipitation,(b) ACCESS-VT,(c)
ACCESS-A,(d) ACCESS-R, and(e)ACCESS-G.

for the high resolution models. Also, the cluster of stations in
the southwest part of the catchment has a range of averages
that is wide enough to suggest that there is significant within-
grid cell variability at this scale. The precipitation maximum
is in the northeast corner of the catchment which is a dry re-
gion in the higher resolution models. The ACCESS-R model
also has a tendency to overforecast in lowland areas and un-
derforecast in highland areas. The coarse resolution model
ACCESS-G places the highest precipitation over the north-
west of the catchment. Like the ACCESS-R, the ACCESS-
G model has a precipitation minimum in the headwaters of
the catchment. Note that the ACCESS-G model has only 4
grid cells to cover the entire catchment. Unlike other models,
the ACCESS-G underestimates precipitation over the entire
catchment. The ACCESS-VT and ACCESS-A model fore-
casts appear to capture the gradient of precipitation across the
catchment although they appear to have less variability than
the observations. The ACCESS-R and ACCESS-G model
resolutions do not meaningfully represent the fine scale pat-
terns of variability across the catchment. Clearly, downscal-
ing and bias adjustment are operationally recommended for
the ACCESS-R and ACCESS-G models.

Figure 5 shows the evaluation scores of the ACCESS
models for forecasts of 24 h precipitation accumulations
at measurement stations. The RMSE score is shown in
Fig. 5a. ACCESS-VT model has a minimum RMSE score
of about 5.41 mm day−1 for Wangaratta station (4) and
a maximum value of 12.06 mm day−1 for Falls Creek
station (26). ACCESS-A model has the highest RMSE
score of 14.64 mm day−1 at Cheshunt station (23) and
the lowest value of 6.4 mm day−1 at Rocky Point station
(8). ACCESS-R model has a minimum RMSE value of
6.5 mm day−1 at Loombah Reservoir station (15) and a max-
imum RMSE value of 13.24 mm day−1 at Falls Creek sta-
tion (26). ACCESS-G model has a minimum RMSE value
of 4.67 mm day−1 at Bloomfield station (5) and a maximum
RMSE value of 13.24 mm day−1 at Mount Buffalo station
(17). Average RMSE values of ACCESS-VT, ACCESS-R
and ACCESS-G models for all stations are comparable. In
general, the RMSE score does not exhibit any strong spatial
pattern with respect to the altitude of the stations.

Figure 5b depicts the bias of the ACCESS model forecasts
as a percentage of the observed values. The ACCESS-VT
and ACCESS-A models overestimate dry (low elevation) ar-
eas by up to 60 % and underestimate wet (high elevation)
areas by up to 30 %. This finding supports the hypothesis
that orographically enhanced precipitation is underestimated
by NWP models. The ACCESS-R model also shows a sim-
ilar pattern, but the bias is much greater than that of high
resolution models. The coarse resolution model ACCESS-
G has a systematic positive bias (underforecasting) for all
stations and bias generally increases with altitude. The bias
of the coarse resolution NWP model is up to 70 %. Other
studies have reported the NWP biases on the order of 100 %
(see e.g. Clark and Hay, 2004). As the model resolution be-
comes progressively coarser (i.e. regional and global mod-
els), large systematic biases emerge. Unlike RMSE score, the
bias shows some spatial pattern.

Spearman rank correlation coefficients between the station
precipitation and the corresponding ACCESS model fore-
casts are shown in Fig. 5c. The correlation coefficients of
high resolution models ACCESS-VT, ACCESS-A, and the
regional model ACCESS-R are comparable and vary be-
tween about 0.7 and 0.8. In some stations like Rosenwhite
(10), all these models give consistently lower correlation val-
ues (about 0.7) and stations like Cheshnut (23), all models
give consistently higher correlation values (about 0.8). The
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Fig. 5.Evaluation scores of the ACCESS models for daily precipita-
tion forecast at stations:(a) RMSE,(b) bias, and(c) Spearman rank
correlation. Stations are ordered according to latitude then longi-
tude.

correlations between station precipitation and ACCESS-G
forecasts are generally lower than those of the higher reso-
lution models, and vary across the stations. This may be due
to mainly two reasons: (i) the ACCESS-G model resolution
is coarse and the spatial variability of precipitation across the
stations within a model grid cell is high; and (ii) the spatial
variability of the forecast precipitation across the model grid
cells is small. Thus, the spatial variability of correlation co-
efficients (Fig. 5c) comes mainly from the variability of the
observed precipitation across the stations and, but not nec-
essarily from the ACCESS-G forecasts. For example, Wan-
garatta AWS (4) and Mount Buffalo (17) stations share the
same value of precipitation forecasts as they lie in the same
grid cell of the ACCESS-G model, but have quite different
observed precipitation (mean daily values of 2.77 mm vs.
8.81 mm). The variability of mean daily precipitation across
the stations (standard deviation of 1.41) is much higher than
that of the ACCESS-G model (standard deviation of 0.32).
The very low value of correlation at Mongans Bridge (11)
may be due to forecast and/or observation outlier in a month
of March 2011 (forecast of 150 mm against observation of
5 mm precipitation).

Further analysis has been done to understand the contri-
bution of bias and variance to RMSE (see Eq. 2). The vari-
ances of the forecasts and observations are of same order of
magnitude. However, the biases of the precipitation forecasts

from ACCESS models are much smaller than the standard
deviations of the forecasts and observations and, therefore,
reducing the biases of the forecasts may not necessarily re-
duce the RMSE significantly.

4.2 Variation of evaluation scores with forecast
lead times

NWP model skill varies with time for three main reasons: the
quality of the initial analysis, baroclinic and/or barotropic in-
stability of the large scale flow, and model systematic errors
(Stanski et al., 1989). When model forecasts are accurate at
the start of a model run it does not necessarily mean it will
stay that way or vice versa. Even during the times when the
models had more skill overall there can still be some hours
where the forecasts are significantly less skilful (Roux and
Seed, 2011). In this section, we examine the skill of the NWP
model forecasts at different lead times. We present analy-
sis of forecasts from the ACCESS-G model because it has
the longest lead time. We focus on a single precipitation sta-
tion, Carboor Upper (13), which is close to the centre of the
Ovens catchment and ACCESS-G model grid cell, and anal-
yse forecast skill of 3 h precipitation accumulations. Anal-
ysis of other models and locations produces similar results.
The score for 3 h precipitation accumulations at 3 h lead time
means the score of total precipitation for the period 09:00–
12:00 LT.

Figure 6 shows the forecast skill of 3 h precipitation accu-
mulations for the ACCESS-G model at Carboor Upper sta-
tion. The RMSE score standardised by standard deviation of
observations (sRMSE) is shown in Fig. 6a. The sRMSE value
will be greater than 1 when the mean-square error (MSE)
exceeds the variance of the observation. This is analogue
to a negative value of Nash–Sutcliffe efficiency (Nash and
Sutcliffe, 1970) when the MSE exceeds the variance of the
observation. For the rest of analysis, we present sRMSE in-
stead of RMSE as the former is independent to the magnitude
of the data. The sRMSE score displays considerable variation
with lead time. The sRMSE score is below 1 for lead times
up to 39 h and subsequently fluctuates around 1. Figure 6b
shows that the forecast bias varies significantly at different
lead times and shows some diurnal cycle. Further investi-
gation into the diurnal cycle is presented in Sect. 4.5. The
forecasts have a bias of up to 75 % and consistently under-
estimate 3 h precipitation accumulations for most lead times.
Figure 6c shows the Spearman rank correlation coefficient
between forecast and observed of 3 h precipitation accumu-
lations. One can see that the skill with respect to correlation
coefficient decreases with lead time which is not obvious in
sRMSE and bias mentioned before. The correlation coeffi-
cient starts with a value of about 0.6 at the shortest lead time
and decreases to a value of about 0.1 at the longest lead time.

Figure 6 also shows the 95 % confidence intervals of
sampling uncertainty for the evaluation scores using 10 000
number of samples. Although this number seems somewhat
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Fig. 6. Evaluation scores of the ACCESS-G model for 3 h accumu-
lated precipitation forecasts at Carboor Upper station at different
lead times:(a) sRMSE,(b) bias, and(c) Spearman rank correla-
tion. The shaded area corresponds to the 95 % confidence intervals
of sampling uncertainty.

arbitrary, an analysis of the convergence of the mean of eval-
uation scores (results not shown) suggests that this number is
sufficient. The top panel shows that the sRMSE score has a
considerable sampling uncertainty (light shaded area) which
varies at different lead times. Particularly at 39 and 138 h,
the uncertainty is very large, indicating that some extreme
events strongly influence the sRMSE score. Further analysis
of forecasts at these lead times shows on the one hand the
model is not able to forecast some extreme events, but on the
other hand the model is producing very large forecasts for
some low events.

Figure 6b illustrates sampling uncertainty in the bias score.
Like the sRMSE, this score also reveals that there is a con-
siderable sampling uncertainty and particularly at 42, 75,
123 h, and some other forecast hours, uncertainty of the bias
score is very large. The 95 % confidence intervals of sam-
pling uncertainty associated with the Spearman rank corre-
lation coefficient are presented in Fig. 6c, which seem to be
more symmetrical than for other scores. They are consistent
with the correlation coefficients between precipitation fore-
casts and the corresponding observations and do not fluctuate
like other scores as Spearman correlation is less sensitive to
the extreme values. The skill of ACCESS-VT, ACCESS-A
and ACCESS-R models is also shown in Fig. 6 to compare
with ACCEE-G model. sRMSE value of ACCESS-G model
is as good as that of other models (up to 2.5 days lead time).
The bias of other models is positive (over forecasting) for
most of the lead time, whereas it is negative for ACCESS-G.

Correlation coefficients of all models are comparable. These
results are consistent with the results obtained from Fig. 5.

Figure 7 shows the categorical evaluation scores and their
95 % confidence intervals as a function of forecast lead time.
In this study, threshold value of 0.1 mm (3 h)−1 is considered
to define the precipitation event “yes” or “no”. A non-zero
threshold is imposed because there is a minimum measur-
able precipitation amount for the operational tipping bucket
rain gauges. Figure 7a shows the POD score of the model
forecasts. As expected the score decreases with increasing
lead time. For example, at the shortest lead time more than
70 % of the observed events are correctly detected, while at
the longest lead times, the POD score reduces to 30 %. Like
continuous scores, the sampling uncertainty is quite large.
Figure 7b shows that the FAR score increases with lead time
which is consistent with the POD score. The FAR score in-
creases from a value of about 0.5 at the shortest lead time to
0.75 at the longest lead time. As far as uncertainty results are
concerned, the FAR score behaves similar to the POD.

The equivalent diagram for the FBI as a function of fore-
cast lead time is shown in Fig. 7c. Unlike the POD and FAR
scores, the FBI score does not increase with lead time, rather
it fluctuates around a value of 1.3 and shows evidence of a
diurnal cycle. Comparing the bias (Fig. 6c) and frequency
bias (Fig. 7c) of the forecasts produces an interesting re-
sult; forecasts of the precipitation amount tend to be too low,
but the occurrence of precipitation is overestimated for most
forecast lead times. This indicates that the model forecasts
small amounts of precipitation too frequently. This is the
well known behaviour of many NWP models and has been
reported elsewhere. One can notice a considerable sampling
uncertainty in the FBI score as well.

The CSI score reported in Fig. 7d displays results similar
to the POD and the FAR scores. The CSI score is similar to
the POD except it also considers false alarms. If there are no
false alarms, then both scores are equal. Thus, the CSI score
is smaller than the POD. For the ACCESS-G model fore-
casts, the score varies from about 0.45 at the shortest lead
time to about 0.15 at the longest lead time. Likewise the un-
certainty results are similar to that in the POD score; how-
ever, the variation across the lead times is smaller.

The categorical skill of the reference forecasts is also
shown in Fig. 7. The reference forecasts are generated us-
ing a permutation procedure (see e.g. Mason, 2008; Deque,
2012). The permutation procedure generates a new set of
forecasts-observation pairs in which observation are unre-
lated to the forecasts except by chance. This procedure ad-
dresses the question of what is the chance that the given
value of evaluation score could have been obtained by acci-
dent. The mean scores of 10 000 such reference forecasts are
shown in dashed lines. Note that FBI of the reference fore-
casts is same as that of the ACCESS forecasts; hence, it is not
shown in the figure. The results show that ACCESS-G model
might not necessarily have significant skill beyond 7 days
given sampling uncertainty.
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4.3 Variation of evaluation scores with precipitation
accumulation periods

An analysis of evaluation scores of the ACCESS-models (ex-
cept ACCESS-G) indicates that the skill of the hourly pre-
cipitation forecasts is very low and varies significantly from
hour to hour (results not shown). However, there is some skill
for forecasts of 3 h precipitation accumulations. Increases in
forecast skill due to temporal accumulation arise because
errors in the timing of precipitation decrease. In this sec-
tion, we have further analysed the scores of forecasts from
the ACCESS-G model for different accumulation periods
(Fig. 8). The sRMSE score is the highest (about 1.48) at 136 h
lead time for 3 h precipitation accumulations (Fig. 8a). This
drops to 1.44, 1.41 and 1.22 for 6, 12 and 24 h precipita-
tion accumulations, respectively. At the lead times between
36 and 72 h, the sRMSE skill increases (or sRMSE score de-
creases) significantly from shorter accumulation periods to
longer ones. Further analysis of sampling uncertainty (not
shown) supports the finding that skill at 24 h accumulation
period is significantly better than skill at 3 h accumulation
period at shorter lead times. For the longer lead times, the
skill at all accumulation periods is not significantly different.
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Fig. 8. A comparison of the evaluation scores of the ACCESS-G
model for different temporal precipitation accumulation periods at
Carboor Upper station:(a) sRMSE,(b) bias, and(c) Spearman cor-
relation coefficient.

Figure 8b shows that the maximum bias of−75 % is re-
duced to−46 % when accumulation period increases from 3
to 24 h at the lead times between 144 and 168 h. The bias
of forecasts of 24 h precipitation accumulations decreases
from −38 % at 1 day to−26 % at 3 days lead time and then
increases to−54 % at the longest lead time. The model is
overestimating 3 h precipitation accumulations for some lead
times (e.g. 51, 75, 99 and 123 h). For the corresponding peri-
ods, the biases of the 24 h precipitation accumulations are
negative (underestimating) because the biases of other 3 h
precipitation accumulations within these periods are negative
and the net effect is negative.

Figure 8c shows the Spearman correlation coefficients be-
tween forecast and observed precipitation as a function of
lead time and accumulation period. The Spearman corre-
lation coefficient displays less variation than the other two
scores, because it is less sensitive to outliers and extreme
events. The correlation increases from 0.52 at the shortest
accumulation period (3 h) to 0.74 for the longest accumula-
tion period (24 h) at the shortest lead time. It is observed that
a plot of correlation coefficients for 24 h precipitation accu-
mulations now exhibits smooth monotonic decay which now
seems to have less affected by sampling fluctuations.

The analysis presented in this section suggests that, in gen-
eral, the skill of ACCESS-G precipitation forecasts increases
with increasing accumulation period. However, the appropri-
ate accumulation period to adopt will depend not only upon
the forecast skill, but also upon the intended use of NWP
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precipitation forecasts. For example for flood forecasting ap-
plications, daily forecasts are likely to be too coarse as the
flood peak may remain for only a few hours. For other pur-
poses such as water resources management, hourly precipita-
tion forecasts may not be needed. Further analysis is required
to select the optimal temporal resolution for streamflow fore-
casting purposes.

4.4 Variation of evaluation scores with precipitation
threshold values

In Sect. 4.2, we presented the categorical evaluation scores of
3 h total precipitation forecasts from the ACCESS-G model
for a threshold value of 0.1 mm (3 h)−1. The skill of the
NWP precipitation forecast may also be expected to vary
with precipitation intensity. We evaluate the skill of the
ACCESS-G model forecasts for threshold values of 0.1, 1,
2, 5, 10, and 20 mm day−1 based on recommendations of
WWRP/WGNE (2008).

Figure 9 depicts the categorical evaluation scores of the
ACCESS-G forecasts as a function of precipitation threshold
value. The scores are computed for forecasts of 24 h precipi-
tation accumulations for lead times of 1 to 9 days. The cate-
gorical evaluation scores are strongly related to the threshold
and in general, decrease with increasing threshold values. For
example the POD score (Fig. 9a) decreases from about 0.8
for low threshold value (1 mm day−1) to about 0.35 for pre-
cipitation amounts above 20 mm day−1 for forecasts of the
first 24 h. Furthermore, as expected the POD score decreases
with increasing lead times. The scores for the high threshold
values must be used with care because only few cases may
occur, for example 11.9 % of all cases occur for threshold
greater than 10 mm day−1, 7.2 % for threshold greater than
20 mm day−1.

The remaining panels show the FAR (Fig. 9b), the FBI
(Fig. 9c), and the CSI (Fig. 9d) scores. Consistent with the
POD score, the FBI and the CSI decreases with increasing
threshold values whereas the FAR score increases with in-
creasing threshold values. At 1 and 2 days lead time, the FAR
score decreases, whereas at 3 to 6 days lead time, it first de-
creases for low threshold values and then increases for higher
values. From Fig. 9c it can be seen that, for a low thresh-
old value (e.g. 0.1 mm day−1) the FBI score is greater than
1 at all lead times whereas for higher threshold values it is
less than 1. This indicates that occurrence of precipitation or
light precipitation is overestimated while the heavy precipi-
tation events are consistently underestimated. As far as CSI
score is concerned, it increases slightly at low threshold val-
ues of 1 and 2 mm day−1 at shorter lead times (1 to 3 days)
and then decreases, which is consistent with FAR score.

One samplet test indicates that the evaluation scores for
higher precipitation threshold values are significantly differ-
ent (at 5 % significant level) than that of lower threshold val-
ues for all lead times. All evaluation scores except FAR for
lower threshold value are significantly different for longer
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Fig. 9. Categorical evaluation scores of the ACCESS-G model for
24 h accumulated precipitation forecasts as a function of precipita-
tion threshold and lead time:(a) POD, (b) FAR, (c) FBI, and(d)
CSI.

lead times. Further analysis shows that all evaluation scores
except FBI for longer lead times (day 8 and 9) is significantly
different for all precipitation threshold values. FAR and CSI
scores for shorter lead times (day 1 and 2) are significantly
different for all precipitation threshold values. Note that sam-
ple sizes for the significant test of evaluation scores at differ-
ent precipitation thresholds and forecast lead time are 6 and
9, respectively.

4.5 Further results

Results from Fig. 6 indicate that there might be some diur-
nal cycle in the evaluation scores, particularly for the bias.
We investigate the diurnal cycle of the observed precipita-
tion and corresponding ACCESS-R model forecasts at Car-
boor Upper station. ACCESS-R is chosen for this analysis
because ACCESS-G precipitation forecasts are not available
at hourly temporal resolution and a more thorough analysis
of the diurnal cycle would require a forecast length beyond
24 h. Figure 10 shows the diurnal cycle of observed precip-
itation at the station and the ACCESS-R forecasts for the
corresponding model grid cell. Observed precipitation dis-
plays a diurnal cycle, with maximum at 07:00, then 10:00
and 11:00 UTC and minimum at 01:00 UTC. This finding
for Carboor Upper station is consistent with results reported
by Westra and Sharma (2010) that the hourly maximum and
minimum in precipitation occurrence was found between
08:00 and 10:00 UTC and between 23:00 and 24:00 UTC,
respectively for more than 80 % of Australian stations. The
precipitation forecasts do not seem to have a diurnal cycle
except the outlier at 13:00 UTC which is the first hour of
the forecast. Poorly representing the timing and magnitude
of the diurnal cycles, particularly in precipitation, is a known
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Fig. 10.Diurnal cycle of the observed and the ACCESS-R precipi-
tation forecasts. Precipitation climatology (thick gray line) is based
on a period from September 1991 to February 2011.

problem with many NWP models and is commonly related
to the representation and parameterisation of convective pro-
cesses (Kaufmann et al., 2003; Dai and Trenberth, 2004;
Evans and Westra, 2012).

Since it is difficult to see the diurnal cycle of the evalua-
tion scores of the ACCESS-R model (because the lead time
is only up to 60 h), we have further analysed the diurnal
cycle for the bias of the ACCESS-G model. From Fig. 6b,
some of the lowest biases are at 27, 51, 75, 99 h lead times,
which corresponds to 12:00 LT. This is consistent with the
minimum value of observed precipitation which occurs at
11:00 (12:00 during daylight saving) LT. Similarly the max-
imum bias occurs at 21:00 LT while the maximum values of
observed precipitation are around 18:00–21:00 LT (daylight
saving time). Thus, there is some consistent between the tim-
ing of hourly maximum and minimum of the observations
and the bias score. The cyclic nature of the biases in the
ACCESS-G model precipitation forecasts is likely the prod-
uct of the limited ability of the model to describe the diurnal
cycle. Furthermore, given that the precipitation forecasts do
not seem to have a pronounced diurnal cycle, the bias score
being linear (as opposed to e.g. RMSE which is quadratic)
exhibits similar cyclic patterns as the observations. Synthetic
data were generated to understand the diurnal cycle in the
forecast skill. About 20 yr of daily precipitation data from
one of the stations were disaggregated to hourly precipitation
using sine curve of one cycle period. The hourly forecast val-
ues were generated disaggregating uniformly from daily pre-
cipitation value by adding some random noise. RMSE, bias
and correlation coefficients scores were computed from these
synthetic data. The results (not shown) support the finding
that the evidence of diurnal cycle in observation is likely to
be seen in the bias score compared to sRMSE or correlation
coefficient score.

4.6 Evaluation at catchment scale

Previous sections presented the evaluation scores of the AC-
CESS model precipitation forecasts at point scale (i.e. at rain
gauge station). For hydrological applications the localisation
of precipitation is important at the catchment scale so that it
is useful to evaluate precipitation forecasts on catchment av-
erages (e.g. Oberto et al., 2006; Rossa et al., 2008). We are
using lumped model GR4J (Perrin et al., 2003) for each sub-
catchment and the flow from each sub-catchment is routed to
the outlet of the catchment using Muskingum channel routing
algorithms. Thus, average precipitation over sub-catchment
is used input to the GR4J model for hydrological forecast-
ing. BoM currently uses the event-based model URBS (Mal-
one, 1999) for real-time flood forecasting in Australia. URBS
is a lumped model which uses a single catchment average
forecast rainfall as compared to sub-catchment average rain-
fall for the GR4J model. BoM is planning to use continuous
modelling with semi distributed lumped model (connected
lumped model) for real-time flood forecasting services in
Australia.

Figure 11 gives the performance scores for forecasts for
3 h accumulations of catchment average precipitation. These
results smooth over some of the errors related to displace-
ment and are a better indicator of the quality of forecasts
of precipitation volume. Compared to station precipitation
(Fig. 6a), the sRMSE score (Fig. 11a) of the catchment aver-
age precipitation exhibits similar pattern, but the magnitude
of the score is lower. As expected, the sRMSE score of the
ACCESS-G model, in general, increases with increasing lead
times (e.g. 0.8 at 3 h lead time to about 1.0 at the longest lead
time). The 95 % sampling uncertainty plot shows that there
is a considerable sampling variation in the sRMSE score. For
several lead times (e.g. at 42, 180 h), the uncertainty is very
large, indicating that some extreme events strongly influence
the sRMSE score.

Figure 11b depicts the bias score of catchment average
precipitation forecasts from the ACCESS-G model. System-
atic biases in the forecasts are evident, where it struggles
to produce high enough intensity forecasts. The bias of the
ACCESS-G model forecasts is around−48 % at the shortest
lead time, then fluctuates around−50 %, and finally reaches
to about−67 % at the longest lead time. The ACCESS-G
model forecasts tend to be lower than the interpolated catch-
ment average precipitation. Like station precipitation, a di-
urnal cycle is present in the bias score of catchment aver-
age precipitation. The uncertainty analysis shows that there
is also a considerable sampling uncertainty in the bias score
and this is not surprising given that only one year of data is
used which has some extreme precipitation events.

Figure 11c shows the Spearman correlation coefficient be-
tween observed and catchment average rainfall forecasts of
3 h total from ACCESS-G model. Unlike other two scores,
correlation exhibits a relatively smooth decay as the lead time
increases. The correlation coefficient declines from about 0.7
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Fig. 11. As in Fig. 6, but for the catchment average precipitation
above Wangaratta stream gauging station:(a) aRSME,(b) bias, and
(c) Spearman rank correlation.

at the shortest lead time to about 0.22 at the longest lead time.
The 95 % sampling uncertainty shows similar behaviour like
that of the station precipitation (Fig. 6c).

Figure 12 shows the categorical evaluation scores for
catchment average precipitation forecasts. In general, these
scores exhibit similar patterns to station precipitation. How-
ever, as expected the skill of the catchment average precipita-
tion forecasts are higher. The POD of the ACCESS-G model
forecasts decreases from about 0.68 at the shortest lead time
to about 0.38 at the longest lead time (Fig. 12a). Similarly,
the FAR of the ACCESS-G model forecasts increases from
about 0.2 at the shortest lead time to about 0.53 at the longest
lead time (Fig. 12b). Figure 12c shows that there is a signif-
icant variation in the FBI score across the lead times and a
diurnal cycle similar to that of station precipitation is present
(Fig. 7c). However, the FBI of the catchment average precip-
itation forecasts is less than 1 for most lead times, whereas
it is greater than 1 for the station precipitation. This differ-
ence is logical because if there is precipitation at any mea-
surement station within the catchment, then the catchment
average precipitation is non-zero and the probability of ob-
served rain events is higher. The last panel shows that the
CSI score, like other scores, is higher than that of the station
precipitation. It decreases from about 0.6 at the shortest lead
time to about 0.27 at the longest lead time. Uncertainty anal-
ysis of the categorical evaluation scores is also reported in
Fig. 12. The results are consistent with the continuous eval-
uation scores. The mean scores of the reference forecasts are
shown in Fig. 12. The results are consistent with the station
precipitation that the ACCESS-G model is unlikely to have
significant skill beyond 7–8 days.
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Fig. 12. As in Fig. 7, but for the catchment average precipitation
above Wangaratta stream gauging station:(a) POD, (b) FAR, (c)
FBI, and(d) CSI. The mean scores (except FBI) of the reference
forecasts are also shown in dashed lines.

5 Discussion

There is a general perception that the variability of NWP
model output does not match the observed variability. Specif-
ically, it is thought that there is a tendency for too frequent
small amounts of precipitation in the NWP model output.
NWP models are much less successful in their handling of
low level stratiform cloud, and generally have a tendency to
overestimate light precipitation (Golding, 2000). The results
(not shown) reveal that the ACCESS models have a tendency
to have too many small precipitation events. For events less
than 0.13 mm h−1 the model frequency is greater than that of
the observed data. For events between 0.13 and 2 mm h−1,
the models do not produce enough events. For events greater
than 2 mm h−1, the sample size is not big enough to draw
reliable conclusions. For all precipitation frequencies the
ACCESS-G global model does not produce enough intense
events.

The NWP forecasts and observations are highly skewed
and the error does not necessarily appear to be linear in
log-transformed space. Specifically, both time series contain
many zeros and the relative error can be very large for small
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precipitation amounts. NWP post-processing method rely-
ing on Gaussian error distribution would need to transform
the observations and forecasts in a way that the variables or
residuals are relatively normally distributed. However, un-
due weight should not be placed on the small precipitation
amounts as these are relatively inconsequential for flood and
streamflow forecasting applications.

The NWP models do not appear to be the most skilful at 1
or 3 hourly temporal resolutions and their native spatial reso-
lutions (i.e. individual grid cells). There is greater skill when
the NWP model forecasts are averaged over coarser spatial
and temporal resolutions (e.g. catchment average, daily av-
erage). Further analysis is necessary to determine the opti-
mal resolution for extracting useful information from NWP,
as this resolution may depend on the catchment and/or sea-
son. However, any techniques for quantifying NWP forecast
uncertainty that use only the native resolution data may un-
necessarily conclude that the NWP forecasts contain no skill.

Prior to the commencement of this study, it was antici-
pated that the NWP precipitation forecasts would have sig-
nificant and systematic biases that would have to be corrected
to make them useful for predicting streamflow. Even if the
precipitation forecasts were good at predicting the “true” pre-
cipitation (i.e. what actually fell on the catchment), the “mea-
sured” precipitation may depend on the mix of available sta-
tion data. Operational datasets used for streamflow forecast-
ing contain a subset of the full station network because of
the requirement that data be available in real time and have
a long records. As a result the geographic characteristics of
stations used for operational streamflow forecasting may not
be representative of the catchment as a whole (e.g. clustered
in valley bottoms). The data for the Ovens catchment used in
this study passed through a thorough quality control and in-
filling process which produced serially complete hourly data
at stations, checked against an independent gridded precipi-
tation dataset. Such processes often cannot be performed in
real time and, therefore, the observed data used in this study
are closer to the true precipitation than the data currently used
in the operational system (which does not check for flat lined
sensors and does not infill missing data). The satellite obser-
vations (see e.g. Xie and Arkin, 1996; Skomorowski et al.,
2001; McPhee and Margulis, 2005; Joshi et al., 2012) can
be used to estimate precipitation in area where the density
of rain gauge networks are very poor (e.g. in the central part
of the Australia). These precipitation estimates are useful for
NWP data assimilation. However, the temporal and spatial
resolution of satellite observations is too coarse to be used
for the short-term streamflow forecasting purpose.

The skill of the precipitation forecasts from the NWP mod-
els at two nearby stations can be quite different because (i)
they (the stations) are in same model grid cell, but have
different precipitation observation (observed variability), or
(ii) they are in different model grid cells, thus, have differ-
ent forecasts (forecast variability), or (iii) they are in dif-
ferent model grid cells, have similar forecasts, but different

precipitation observation (model’s inability to resolve the
scale). In this study, precipitation forecasts from the NWP
models are compared with station and catchment average
precipitation whose spatial resolution is different than that
of the model. A better understanding of the quality of fore-
casts would be gained if the spatial resolution of the model
matches with that of the observation. Since the catchment
average precipitation is interpolated from nearby station, the
skill of spatial evaluation results would have been influenced
by interpolation method used. Cherubini et al. (2002) showed
that evaluation scores computed by comparing model grid
box values to gridded rainfall data were more favourable than
those computed by comparing interpolated model output to
the original point observations.

It is believed that the skill of NWP model also depends
on the season. Australia has a highly variable climate. Rain-
fall in this continent is largely influenced by El Niño and La
Niña events. Thus, it is very difficult to draw any conclu-
sions about seasonality based on only one year of data. This
study has evaluated the precipitation forecasts for conditions
where precipitation is principally due to large scale synop-
tic systems. Large scale synoptic systems tend to be better
predicted by NWP models because they tend to evolve rela-
tively slowly and occur on spatial scales that are resolved by
the models (Roux and Seed, 2011; Roux et al., 2012). NWP
models tend not to predict precipitation from convective sys-
tems well because there processes evolve rapidly and com-
monly occur on spatial scales finer than those resolved by the
model. Further work has been planned to extend experiments
for catchments experiencing a range of climatic conditions in
Australia, particularly in areas where significant precipitation
is the result of convective processes.

6 Conclusions

This study evaluates the performance of precipitation fore-
casts from the latest generation of Australian Numerical
Weather Prediction (NWP) models over the Ovens catch-
ment in Southeast Australia. The precipitation forecasts from
four NWP models (viz. ACCESS-G, ACCESS-R, ACCESS-
A and ACCESS-VT) are compared to observed precipitation
at measurement stations and to interpolated catchment av-
erage precipitation over one year period. A number of con-
tinuous and categorical evaluation scores have been used to
assess the skill of the ACCESS models at different lead times
and temporal resolutions. The effect of diurnal cycle of the
precipitation observations and sampling uncertainty in the
model performance is also investigated.

The results show that the skill of the NWP precipitation
forecasts varies a lot across the stations with some structure
with respect to the altitude of the stations. The high resolu-
tion models ACCESS-VT and ACCESS-A overestimate 24 h
precipitation accumulations in dry, low elevation areas by up
to 60 % and underestimate 24 h precipitation accumulations
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in wet, high elevation areas up to 30 %. The low resolution
model ACCESS-G underestimates 24 h precipitation accu-
mulations by up to 70 % over all stations and in general, the
bias increases with the altitude. The correlation of the high
resolution NWP (ACCESS-VT, and ACCESS-A) and the re-
gional (ACCESS-R) models is as good as of the low reso-
lution model (ACCESS-G). Overall, high resolution NWP
models capture the variability of the precipitation across the
stations and perform better at predicting aggregated precipi-
tation amount that the precise location or timing of the pre-
cipitation. There is a tendency for small amounts of precipi-
tation to be forecasted too frequently by the NWP models.

The skill of the NWP model forecasts varies significantly
with forecast lead time. In general, forecast skill decreases
with the lead time, however, there are many instances where
the skill at shorter lead times is lower than at longer lead
times. This can be attributed to mainly sampling and diur-
nal variation. Observed precipitation displays a diurnal cycle,
with maximum mean precipitation occurring between 17:00
and 21:00 LT, while the NWP precipitation forecasts fails to
capture the cycle. Consequently some evaluation scores such
as bias and frequency bias show the evidence of the diurnal
cycle which is consistent with that of the observation. Un-
certainty analysis reveals that the evaluation scores have a
significant sampling variation. The NWP forecasts appear to
have little skill when evaluated at a short temporal resolution
(e.g. hourly or 3 hourly). The skill of the forecasts increase
with increasing precipitation accumulation periods (at least
up to 24 h) because timing errors in individual periods will
tend to compensate for each other.

The skill of the ACCESS model forecasts is higher at the
catchment scale than for measurement stations. Spatial av-
eraging of precipitation over a catchment reduces displace-
ment errors and provides a better indicator of the quality of
the forecast of precipitation volume. Systematic biases in the
global ACCESS model are also evident in catchment aver-
age precipitation forecasts. The model struggles to produce
high enough intensity forecasts. The resolution of the global
model is too coarse to resolve the small catchment scale.

Future work is planned to assess the benefits of using the
NWP precipitation forecasts for short-term streamflow fore-
casting. Our findings here suggest that it is necessary to re-
move the systematic biases in precipitation forecasts, partic-
ularly those from low resolution models, before the forecasts
can be used for streamflow forecasting. Post-processing tech-
niques to remove biases and reliably quantify precipitation
forecast uncertainty are being currently developed and tested
by the authors.
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