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Abstract. In the United States, estimation of flood frequency
quantiles at ungauged locations has been largely based on
regional regression techniques that relate measurable catch-
ment descriptors to flood quantiles. More recently, spatial in-
terpolation techniques of point data have been shown to be
effective for predicting streamflow statistics (i.e., flood flows
and low-flow indices) in ungauged catchments. Literature re-
ports successful applications of two techniques, canonical
kriging, CK (or physiographical-space-based interpolation,
PSBI), and topological kriging, TK (or top-kriging). CK per-
forms the spatial interpolation of the streamflow statistic of
interest in the two-dimensional space of catchment descrip-
tors. TK predicts the streamflow statistic along river net-
works taking both the catchment area and nested nature of
catchments into account. It is of interest to understand how
these spatial interpolation methods compare with general-
ized least squares (GLS) regression, one of the most com-
mon approaches to estimate flood quantiles at ungauged lo-
cations. By means of a leave-one-out cross-validation proce-
dure, the performance of CK and TK was compared to GLS
regression equations developed for the prediction of 10, 50,
100 and 500 yr floods for 61 streamgauges in the southeast
United States. TK substantially outperforms GLS and CK
for the study area, particularly for large catchments. The per-
formance of TK over GLS highlights an important distinc-
tion between the treatments of spatial correlation when us-
ing regression-based or spatial interpolation methods to es-
timate flood quantiles at ungauged locations. The analysis
also shows that coupling TK with CK slightly improves the
performance of TK; however, the improvement is marginal
when compared to the improvement in performance over
GLS.

1 Introduction

An important application of hydrologic science is to provide
an accurate estimate of the design flood (i.e., the flood quan-
tile associated with a given non-exceedance probability, usu-
ally expressed in terms of return period) at a site which lacks
sufficient measured hydrological information (seeSivapalan
et al., 2003). This problem has been addressed by adopting
a number of different approaches that are all characterized
by the samefil rouge: transferring hydrologic information or
knowledge from gauged catchments to ungauged or poorly
gauged ones (e.g.,Blöschl and Sivapalan, 1997; Merz and
Blöschl, 2008; Pallard et al., 2009).

One such widely used approach to predict the design flood
in ungauged catchments is regional flood frequency analy-
sis (RFFA). RFFA pools flood information across hydrolog-
ically homogenous sites and then transfers this information
to an ungauged location or a location with data lengths con-
sidered too short to provide an estimate of the desired de-
sign flood. Although several approaches of RFFA have been
proposed (traditional approaches are illustrated for instance
in Dalrymple, 1960; Burn, 1990; Gabriele and Arnell, 1991;
Stedinger et al., 1993; Hosking and Wallis, 1997; Castellarin
et al., 2001; Merz and Bl̈oschl, 2005), standard accepted
techniques have been detailed by Hosking and Wallis (1997)
and in the Flood Estimation Handbook (FEH, 1999); in the
United States, the US Geological Survey utilizes generalized
least squares (GLS) regression (RFFA-GLS) as the standard
method for the estimation of flood quantiles at ungauged
sites.

RFFA is a mature discipline and some aspects are con-
sidered to be so well studied that additional investigation of
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those aspects would result in limited improvements. Exam-
ples include the estimation of the regional parent distribution
(how to pool the information found at gauged locations) or
statistical homogeneity testing (Viglione et al., 2007). How-
ever, some aspects of RFFA have still yet to be resolved
and further research could result in substantial improvements
to predictions of the design flood in ungauged catchments
(Castiglioni et al., 2011). Notably, the determination and use
of hydrologically homogenous groups is one such topic (see
e.g.,McDonnell and Woods, 2004; Di Prinzio et al., 2011;
Castiglioni et al., 2011) and is the focus of this paper.

In looking to maximize the information contained within
a hydrologically similar region, there has been increased
attention to the application of geostatistical techniques to
RFFA. Recent studies show that these techniques, which
have been originally adopted for the spatial interpolation of
point data (see e.g., kriging interpolators,De Marsily, 1986;
De Marsily and Ahmed, 1987), can be effectively applied for
regionalization of a number of hydrologic indices (Skøien
et al., 2006; Skøien and Bl̈oschl, 2007; Chokmani and
Ouarda, 2004) and even hydrologic time series (Skøien and
Blöschl, 2007). To this end, two geostatistical approaches
have been introduced and studied in the literature for the es-
timation of various properties of streamflow (including de-
sign floods) at ungauged locations. The first approach, named
topological kriging or top-kriging, exploits the nested struc-
ture of the study area for spatially interpolating the stream-
flow index of interest (e.g., flood quantiles, low-flow in-
dices, etc.) along the stream network (Skøien et al., 2006;
Skøien and Bl̈oschl, 2007). The second approach, termed
canonical kriging (or physiographical-space-based interpo-
lation, PSBI), interpolates the streamflow index of interest
using a two-dimensional spatial representation of the physio-
graphical and climatic descriptors (the physiographic space)
of the contributing area to the catchment (Chokmani and
Ouarda, 2004), usually through multivariate techniques such
as principal components analysis, PCA, or canonical correla-
tion analysis, CCA (Chokmani and Ouarda, 2004; Hundecha
et al., 2008).

Topological and canonical kriging (referred to as TK and
CK respectively in this study for the sake of brevity) have
been shown to be effective methods for the regionalization of
flood quantiles (Skøien et al., 2006; Chokmani and Ouarda,
2004) and low flows (Castiglioni et al., 2009, 2011). In par-
ticular, CK indirectly takes into account some effects of spa-
tial correlation through catchment descriptors such as lati-
tude and longitude and, to some extent, MAP (mean annual
precipitation).Castiglioni et al.(2011) present a comparison
of TK and CK for predicting low-flow indices for ungauged
sites within a broad geographical region in Central Italy. The
study shows that CK slightly outperforms TK and points out
the complementarity of the procedures in terms of (i) basic
principle of interpolation (i.e., the support for the interpola-
tion is the geographical space for TK and the physiographi-
cal space for CK); (ii) data requirements (i.e., topology and

catchment boundaries of the stream network for TK and ge-
omorphologic and climatic descriptors for CK); and (iii) pre-
dictive performances (i.e., better results in homogeneous sit-
uations along the main rivers for TK, and in heterogeneous
situations in headwater catchments for CK).

A comparison between TK and CK that focuses on the
prediction of the design flood in ungauged catchments is
not available in the literature yet. Furthermore, the possi-
ble advantages associated with a combination of CK and
TK against traditional RFFA methods were never investi-
gated before, althoughCastiglioni et al.(2011) indicates the
potential for such a combination. These considerations to-
gether with the complementarity between TK and CK in-
spired our study, which primarily addresses three different
science questions:

a. How reliable and accurate are TK and CK predictions of
flood quantiles for ungauged sites relative to predictions
resulting from traditional RFFA approaches, which for
this study is generalized least squares regression?

b. When should each of the methods (GLS, CK, or TK) be
preferred, and what are the strengths and weaknesses of
each procedure?

c. Can we increase the accuracy and reliability of predic-
tions in ungauged catchments by combining TK and
CK?

We considered a set of 61 gauged basins located across
the southeast US for which several catchment properties and
empirical flood quantiles for a number of recurrence inter-
vals are readily available (Gotvald et al., 2009). We com-
pare five design flood quantiles predicted by GLS regression,
TK and CK methods, as well as the potential for improve-
ments to TK and CK by blending these two methods. Since
GLS is the current method for flood regionalization, we use
it as the benchmark approach, while our study focuses on
the application of kriging techniques to the Prediction in Un-
gauged Basins (PUB) problem. We first introduce the study
area, data, and flood quantiles in Sect. 2. The GLS regression
and kriging procedures considered in this study are briefly
illustrated in Sect. 3. Section 4 answers questions (a) and (b)
through application and comparison of the kriging methods
with the RFFA-GLS method. Section 5 addresses question
(c) and describes the utility of combining TK and CK to es-
timate flood quantiles at ungauged catchments.

2 Study area and data

The study area is located in the southeast United States
(Fig. 1a), which is characterized by a temperate climate and
annual precipitation between 1000 and 1500 mm per year
(Gotvald et al., 2009). The study area was the recent focus
of a flood regionalization study where GLS regression had
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Fig. 1. Map (A) shows the locations of and contributing catchment
areas to the 61 study streamgauges located in the southeast United
States. The range of record lengths(B) across the study stream-
gauges is also shown.

been applied to estimate design flood quantiles for rural un-
gauged catchments in the southeast United States (Gotvald
et al., 2009). Study streamgauges are considered to have un-
developed upstream catchments and to have minimal reg-
ulation. Additionally, the study streamgauges have at least
10 yr of annual peak-streamflow data (Fig.1b) and were
screened to ensure no significant trends were present in the
annual peak streamflows (Gotvald et al., 2009). A number
of catchment characteristics describing the morphology, cli-
mate, land cover and soil properties of the contributing areas
to the study streamgauges are available (see Table1, Fig. 2,
andGotvald et al., 2009). Where applicable, the catchment
characteristics listed in Table1 were computed as an average
over the drainage area.

Empirical quantiles corresponding to the 10, 50, 100, and
500 yr floods (Table 2) were determined as described by
the widely used guidelines outlined in Bulletin 17-B of the
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Fig. 2.Normalized values of catchment descriptors (see also Table1
for label description) used in the study; box plots report minimum
and maximum values (whiskers), 25th, 50th and 75th percentiles
(box), and outliers (circles).

Hydrology Subcommittee of the Interagency Advisory Com-
mittee on Water Data (1982;Gotvald et al., 2009). This in-
teragency document describes how to obtain empirical esti-
mates of flood quantiles by fitting a Pearson Type III distri-
bution to the annual peak-streamflow time series at each of
the study streamgauges and pooling at-site and regional in-
formation to estimate the parameters of the fitted distribution
(Gotvald et al., 2009). Specific details of the procedure as
applied to the study streamgauges can be found inGotvald
et al.(2009).

3 Methods to regionalize flood quantiles

3.1 Generalized least squares regression

Regression-based methods to estimate flood quantiles at un-
gauged locations relate catchment characteristics to the flood
quantile of interest and then use this relation to estimate the
flood quantile at an ungauged location. For a flood quantile
of interest, the regression equation typically has the general
form

Y =

M∑
i=1

aiXi + ε, (1)

whereY is a vector of the log-transformed values of the ob-
served floods across the gauged locations,Xi ’s are the vec-
tors of the log-transformed values of the observed catchment
characteristics,ai ’s are the coefficients estimated by the re-
gression,M is the total number of catchment characteristics,
andε is the vector of the model residuals.

When the true residuals of the regression model have the
same variance and are independent, ordinary least squares
(OLS) regression can be used to estimate the model coeffi-
cients. However, it is unlikely that rivers across a given spa-
tial extent would experience flooding completely indepen-
dent of one another, and therefore, the assumption of inde-
pendence of the residuals is likely to be violated (Stedinger
et al., 1993). Furthermore, because different record lengths
are available to compute the empirical flood quantiles at each

www.hydrol-earth-syst-sci.net/17/1575/2013/ Hydrol. Earth Syst. Sci., 17, 1575–1588, 2013



1578 S. A. Archfield et al.: Kriging techniques for design flood prediction in ungauged catchments

Table 1. Catchment characteristics describing the morphology, climate, land cover and soil properties of the contributing areas to the 61
study streamgauges (Gotvald et al., 2009). Where applicable, catchment characteristics were computed as an average over the drainage area.

Catchment characteristic Unit of Minimum Median Maximum
measure value value value

Morphology
A – Drainage area km2 0.10 13.73 13752.84
DrD – Drainage density km per km2 0.05 0.06 0.26
ChL – Main channel length km 0.14 1.80 17.12
ChS – Main channel slope m per km 0.03 0.06 0.60
BPe – Catchment perimeter km 0.26 4.76 1071.68
BSF – Catchment shape factor dimensionless 0.12 0.23 0.52
MeE – Mean catchment elevation m 1.98 7.25 31.60
MaE – Maximum catchment elevation m 4.33 10.51 1351.54
MiE – Minimum catchment elevation m 0.40 4.61 18.14
BMS – Mean catchment slope percent 0.07 0.23 1.38

Precipitation
MAP – Mean annual precipitation mm 45.0 54.2 79.1
RQ1 – 24 h, 2 yr maximum mm 4.2 4.2 5.3
RQ2 – 24 h, 10 yr maximum mm 6.3 6.5 8.1
RQ3 – 24 h, 25 yr maximum mm 7.4 7.5 9.4
RQ4 – 24 h, 50 yr maximum mm 8.2 8.5 10.7
RQ5 – 24 h, 100 yr maximum mm 8.5 9.2 11.8

Land cover and soil properties
SDI – Soil drainage index dimensionless 0.10 0.13 0.19
HSI – Hydrologic soil index dimensionless 0.10 0.09 0.14
Imp – Percent of catchment that is impervious percent 0.01 0.04 0.36
For – Percent of catchment that is forested percent 0.16 2.46 3.96

gauged location, the certainty for which the flood quantile
is known differs across gauged locations, and the assump-
tion of equal variance is also likely to be violated. To over-
come the potential violations of these assumptions, general-
ized least squares regression is utilized. GLS accounts for the
unequal variances and spatial correlation by weighting each
flood quantile value by a function of its record length, esti-
mated cross-correlation between floods, and an estimate of
the variance determined from OLS regression (Stedinger and
Tasker, 1985). Further technical details of GLS as applied to
flood quantile estimation at ungauged locations can be found
in Tasker and Stedinger(1989). Stedinger and Tasker(1985)
found that when the cross-correlation between floods was
greater than 0.6, GLS regression was able to estimate regres-
sion coefficients that result in more accurate estimates of the
regression model coefficients than OLS regression. This is
one reason GLS regression is commonly utilized as a method
of regionalization, particularly for estimating flood quantiles.

3.2 Geostatistical approaches

In general, smoothing techniques can be applied to interpo-
late spatially autocorrelated variables, where the spatial coor-
dinates may either identify geographical location (this is the
case for TK and all the so-called geostatistical techniques)

or a position in a generic bidimensional space. In particular,
kriging is a method for optimizing the estimation of a quan-
tity that is distributed in space and measured at a network
of points (see e.g.,Journel and Huijbregts, 1978; De Marsily
and Ahmed, 1987; Isaaks and Srivastava, 1989; Rossi et al.,
1992; Chokmani and Ouarda, 2004). In kriging, the spatial
interpolation is obtained by a linear combination of the ob-
served values according to the following equation:

Ẑ(x0) =

N∑
i=1

λiZ(xi), (2)

whereẐ(x0) is the prediction of the variable of interest,Z, at
locationx0, Z(xi) is the observed value at point (catchment)
xi , with i = 1, . . .,N , andλi is a weighting coefficient. These
weights are estimated by considering spatial correlation and
configuration of the observations through variogram mod-
els fitted to experimental variograms. An experimental var-
iogram expresses the semivariance between observations as
a function of distance and direction of pairs of sampling lo-
cations, and describes the spatial correlation structure of the
sample data (see e.g.,Journel and Huijbregts, 1978; Cressie,
1993).

In practical applications, theoretical variogram models are
fitted to experimental variograms to ensure a positive-definite

Hydrol. Earth Syst. Sci., 17, 1575–1588, 2013 www.hydrol-earth-syst-sci.net/17/1575/2013/
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Table 2. Range of empirical flood quantiles across the 61 study
streamgauges (Gotvald et al., 2009).

Flood Minimum, Median, Maximum,
quantile in m3 s−1 in m3 s−1 in m3 s−1

10 yr 3.54 168.77 1673.53
50 yr 7.48 302.99 2489.05
100 yr 9.94 368.12 2860.00
500 yr 13.82 535.19 3822.77

covariance matrix. The literature proposes several theoreti-
cal variograms (linear, spherical, gaussian, exponential var-
iogram, etc.; see for instanceCressie, 1993; Journel and
Huijbregts, 1978). For this study, statistical interpolation
(kriging) is used to regionalize flood quantiles by TK, which
is applied over a geographical space, and CK, which is ap-
plied over a two-dimensional space of catchment descriptors
(physiographical space).

3.2.1 Top-kriging

TK applies kriging methods over a geographical space and
combines two groups of forcings for hydrological variabil-
ity (Skøien et al., 2006; Skøien and Bl̈oschl, 2007). The first
group consists of variables that are continuous in space such
as rainfall, evapotranspiration and soil characteristics, which
are related to local runoff generation. In TK, the variabil-
ity of these continuous processes in space is represented by
the variogram. The second group of forcings are related to
aggregation and routing in the stream network. The result-
ing stream flow variables are only defined for points on the
stream network. In TK the aggregation effects that lead to
these groups of variables are represented by the catchment
boundaries associated with each point on the stream network.
Rather than using variograms directly, TK uses point vari-
ograms averaged over the catchment areas. These averaged
variograms depend on the point variogram as well as the sizes
and the relative positions of the two catchments that are com-
pared. In a first step of the analysis, a point variogram model
needs to be estimated from the data. This is done by esti-
mating a sample variogram from the data, not only based on
the center-to-center distance between catchments, but also on
their size. From this, the point variogram model can be back-
calculated by fitting aggregated variogram values to the sam-
ple variogram, taking into account the nugget effect as pro-
posed inSkøien et al.(2006). Additional details, including
a discussion of the fitting method for a point variogram, are
also described inSkøien et al.(2006). In a second step, the
point variogram is aggregated to the sizes and positions of
the catchments for which the hydrometric index of interest is
to be estimated and kriging is performed to predict the vari-
ables at the ungauged locations (Skøien et al., 2006; Skøien
and Bl̈oschl, 2007). TK provides both the estimates as well
as the kriging variance (uncertainty).

3.2.2 Canonical kriging

CK applies statistical interpolation techniques, i.e., kriging,
to the physiographical space defined by the catchment de-
scriptors of the selected group of catchments (seeChokmani
and Ouarda, 2004; Castiglioni et al., 2009). CK is a kernel
smoothing technique that uses a covariance-based kernel. CK
should not be termed a geostatistical technique in the strict
sense as it does not explicitly address autocorrelation of ob-
servations or residuals in geographic space (seePebesma,
2010). The space is defined using two orthogonal coordinates
x andy, which can be computed as a function of geomor-
phoclimatic catchment descriptors; so catchments with sim-
ilar characteristics have similar coordinates in physiographi-
cal space. In particular, any given catchment (gauged or un-
gauged) can be represented as a point in thex–y space men-
tioned above. In the same way the set of gauged catchments
of the study area can be represented by a cloud of points in
this space. The empirical values of the quantity of interest
(e.g., empirical flood quantiles associated with a given re-
turn periodT ) can be represented along the third dimension
z for each gauged catchment, and can then be interpolated
via kriging to estimate it at ungauged sites lying within the
same portion of the physiographical space. The term canon-
ical kriging originates from the procedure that is generally
adopted to definex andy, that is canonical correlation anal-
ysis, or CCA (see e.g.,Ouarda et al., 2001; Chokmani and
Ouarda, 2004; Di Prinzio et al., 2011).

CCA is an important multivariate statistical tool for re-
ducing the dimensionality of an original data set. CCA is
most commonly used in the context where there are two
sets of random multidimensional and correlated variables,
N = {N1,N2, . . .,Nn} and M = {M1,M2, . . .,Mm}. For in-
stance,N could be a set ofn geomorphologic and climatic
catchment descriptors, whileM could represent a set of
streamflow indices, such as the empirical flood quantiles as-
sociated withm different T values. CCA enables one to
identify the dominant linear modes of covariability between
the setsN and M (e.g., Krzanowski, 1988; Ouarda et al.,
2001). In other words, CCA identifies two new groups of ar-
tificial variables (canonical variables),U = {U1,U2, . . .,Ur}

andV = {V1,V2, . . .,Vr}, with r = min{n,m}, by finding lin-
ear combinations of the originalNi , with i = 1, . . .,n, and
Mj , with j = 1, . . .,m, in such a way that the correlation be-
tween the canonical variables of a pair (Ui,Vi) is maximized
and the correlation between the variables of different pairs is
null (Chokmani and Ouarda, 2004; Shu and Ouarda, 2007).
If we denote byN andM the independent and dependent
variables, respectively, and we consider the linear transfor-
mations

U = uT
N · N and V = vT

M · M (3)

characterized by the basis vectorsuN andvM , CCA can be
defined as the following optimization problem:

www.hydrol-earth-syst-sci.net/17/1575/2013/ Hydrol. Earth Syst. Sci., 17, 1575–1588, 2013
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ρ = max
uN ,vM

{
corr

(
U,V

)}
= max

cov(U,V )
√

var(U)
√

var(V )
. (4)

Once the linear transformations of Eq. (3) are identified
by solving the optimization problem Eq. (4), U1 andU2 can
be used asx andy coordinates to define the physiograph-
ical space.U1 andU2 are suitable for defining a Cartesian
metric as they are uncorrelated with each other by defini-
tion, and therefore orthogonal. Furthermore,U1 andU2 are
characterized by the maximum linear correlation with the
canonical variablesV1 andV2 (i.e., linear combinations of
the streamflow indices, or flood quantiles in our case); hence
they are also very effective in explaining the variability ofV .
In this new physiographic space,U1 andU2 are normalized
to have zero mean and variance proportional to the explana-
tory power.

4 Application and comparison of flood
regionalization methods

4.1 Implementation of the regionalization methods
to the study area

GLS was applied to the study area by closely following the
methods described byGotvald et al.(2009). Log-transformed
values of the flood quantiles and basin attributes were used
with the procedures described inTasker and Stedinger(1989)
and as implemented by the weighted multiple linear regres-
sion (WREG) program (Eng et al., 2009). Gotvald et al.
(2009) initially tested all possible subsets of the 22 catch-
ment characteristics shown (Table1) for inclusion as pre-
dictor variables in the final regression equations. Based on
an analysis of these regression subsets,Gotvald et al.(2009)
determined that drainage area and percent of catchment in
each of five hydrologic regions was able to best predict flood
quantiles in the GLS regression equations. Hydrologic re-
gions were determined by examining the spatial distribu-
tion of residuals obtained from an OLS regression of flood
quantiles and catchment area and their correspondence with
US Environmental Protection Agency Level III Ecoregions
(Gotvald et al., 2009). For this study, we chose not to apply
the hydrologic regions because they were defined based on
the larger study area inGotvald et al.(2009).

TK was applied to the study area using the R soft-
ware packagertop (Jon Skøien, personal communication,
2011), which implements the TK procedure as described in
Sect. 3.2. The flood quantile values corresponding to the 10,
50, 100 and 500 yr floods were first scaled by the factor
A0.65, whereA is the drainage area of the considered catch-
ment. Considering that the values for a particular flood quan-
tile increase with area, the flood quantiles were first divided
by the drainage area to give specific flood quantiles (flood
per square kilometer), which is equal to an exponent of one.

However, the specific flood quantile typically decreases with
drainage area, as a result of smoothing. After some manual
testing, it was found that scaling the flood quantiles by an
exponent of 0.65 performed the best. Other studies support
the use of a scaling factor in this range for regionalization
of flood quantiles (as an example, seeGupta and Dawdy,
1995). The sample variogram was estimated from a cloud
variogram (rather than binned), and an exponential theoret-
ical variogram model was then fit to the sample variogram
using a neutral weighted least squares method, just as was
done inSkøien et al.(2006).

The implementation of CK to the study area was per-
formed using the GLOBEC Kriging Software Package
EasyKrig3.0 © for Matlab® (Chu and WHOI, 2004). The
implementation of CK required some preliminary analyses
in cross-validation (see next subsection) to identify the most
suitable approach for predicting flood quantiles in ungauged
sites. These preliminary investigations show that the best
performances of CK are associated with (i) the utilization
of the universal kriging (as compared with other types of
kriging techniques such as ordinary kriging); (ii) a physio-
graphical space defined by canonical variablesU1 and U2
derived by applying CCA to the set of 22 available catch-
ment descriptors (N variables; Table1) and 4 standardized
flood quantiles (M variables) obtained by dividing the 10,
50, 100 and 500 yr floods again by the scaling factorA0.65,
whereA is the drainage area of the considered catchment;
and using (iii) a gaussian theoretical variogram, which pro-
vided the most stable and accurate representation of the em-
pirical variograms amongst all the models we tested (i.e.,
linear, exponential, spherical, exponential-Bessel, Gaussian-
Bessel, etc.). The possibility of anisotropy was investigated
but did not improve the fit of the variogram models in the
cross-validation. Therefore, isotropy was assumed.

Moreover concerning (ii), it is possible to prove that the
first two canonical variables can explain more than 70 % of
the original variance of the catchment descriptors; therefore
we decided to neglect the residual information of the remain-
ing canonical variables in this study. It is worth noting here
that additional canonical variables could in principle be con-
sidered when they are informative using higher dimensional
kriging procedures.

4.2 Prediction performance in ungauged catchments

To compare the flood quantiles predicted by GLS, TK and
CK, a leave-one-out cross-validation approach was applied.
In this validation approach, each of the 61 study stream-
gauges was subsequently removed from the data set, and the
GLS, TK, and CK methods, respectively, were then applied
to estimate the flood quantiles at the removed streamgauge
from the remaining 60 streamgauges. The overall goodness
of fit of each method was evaluated by examining the Nash–
Sutcliffe efficiency (NSE) values (Nash and Sutcliffe, 1970)
computed from the empirical and predicted flood quantiles
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Fig. 3. Error (or residual) between the empirical and predicted flood quantile by study streamgauge and estimation method. Inset in each
panel are bars showing the efficiency and log efficiency of the empirical and predicted flood quantiles for the generalized least squares
regression, topological kriging, and canonical kriging methods. The log efficiency is the efficiency computed from the natural logarithms of
the empirical and predicted flood quantiles.

(Fig. 3). The flood quantile values span 4 orders of mag-
nitude; therefore, the NSE value will be more sensitive to
the prediction errors for the largest flood quantiles and the
largest catchments. That is, using the NSE index for compar-
ing models, the emphasis is on the magnitude of the devia-
tions between predictions and observations. As floods are to
a large degree linearly dependent on the catchment size, the
NSE index will then also emphasize on the fit to the largest
catchments. To provide a more equally weighted assessment
of the fits between the empirical and predicted quantiles
across all flood quantiles, the NSE value computed from the
natural logarithms of the empirical and predicted flood quan-
tiles (NSE-L) were also compared (Fig.3). Therefore, the
comparison of NSE-L across methods dampens out the ef-
fect of the largest catchments and provides an additional and
more fair quantification of prediction performance for the
whole set of catchments in the study area. Errors between

empirical and predicted flood quantiles for each method were
compared by streamgauge to examine which methods per-
formed better than others at the individual streamgauges.

4.3 Discussion of prediction accuracy

Based on these NSE and NSE-L metrics, TK consistently
outperformed GLS and CK, with NSE values consistently
above 0.8 across all flood quantiles (Fig.3); GLS and CK
were unable to achieve this level of performance for any
of the flood quantiles (Fig.3). GLS, the commonly used
method for estimating flood quantiles at ungauged locations
in the United States, does not appear to outperform TK or CK
(Fig. 3). The difference between NSE and NSE-L values for
CK appears to indicate that the lack of agreement between
the empirical and CK-predicted flood quantiles is for catch-
ments with the highest values of the flood quantiles. This is
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Fig. 4.Comparison of the absolute error between empirical and predicted flood quantiles resulting from topological and canonical kriging to
the absolute error resulting from generalized least squares regression.

confirmed in the site-by-site comparison in Fig.3, showing
that catchment 02352500, the largest catchment in the study
area, results in a much larger error than the error that results
from GLS or TK. The application of CK to the two largest
catchments (02352500 and 02347500; Fig.3) produced two
extremely high residuals, one positive (∼ 3000 m3 s−1) and
one negative (∼ −1000 m3 s−1). The drainage area of these
catchments is remarkably larger that the area of all other
study catchments (see outliers in Fig.2). As a result, CK
significantly overestimates the former and underestimates
the latter, severely impacting the NSE value. This result is
partially similar to that observed for low-flow estimation
by Castiglioni et al.(2011), which showed that TK performs
better in larger catchments than CK. It should be noted that
there was no observed relation between length of the stream-
gauge record and prediction error across the three methods
and four flood quantiles.

The NSE-L values indicate that GLS resulted in the poor-
est fit between empirical and predicted flood quantiles when
compared to CK and TK; however, it should be noted that

all methods have NSE-L values above 0.7. To further under-
stand the differences between the methods, a comparison of
the absolute error obtained by GLS was compared to the ab-
solute errors obtained by CK and TK (Fig.4). In Fig.4, study
streamgauges falling into the lower right portion of the fig-
ure indicate that TK or CK resulted in smaller absolute errors
than GLS. Both CK and TK generally show smaller absolute
errors across sites and across flood quantiles with CK and TK
having smaller absolute errors than GLS for more than 40 of
the 61 study streamgauges (Fig.4).

5 Blending flood regionalization methods

5.1 Motivation for blending methods

Castiglioni et al.(2011) show that the nature and data re-
quirements of TK and CK are complementary, implicitly
suggesting the possibility of improving the prediction accu-
racy by blending the two methods. Further analysis of the
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Fig. 5. Differences in absolute error resulting from the application of(A) canonical kriging and the coupling of canonical kriging with
topological kriging of the residuals (CK-TK), and(B) topological kriging and the coupling of topological with canonical kriging of the
residuals (TK-CK) by catchment area for the 100 yr flood quantile.

results obtained in the previous section may provide some
additional insights on possible advantages that result from
blending the two kriging procedures. Similarly to the results
of this study,Castiglioni et al.(2011) found TK performs
better in larger catchments whereas CK performs better in
headwater catchments when estimating low-flow statistics at
ungauged locations.

5.2 Blending strategies and results

To better assess the utility of blending TK and CK, two
strategies were tested for each streamgauge in a leave-one-
out cross-validation approach:

1. Use CK to model the flood quantiles, then apply TK
to the residuals resulting from cross-validation. Add the
TK-predicted residual to the CK-predicted flood quan-
tile to obtain the CK-TK blended estimate.

2. Use TK to model the flood quantiles, then apply CK
to the cross-validation residuals. Add the CK-predicted
residual to the TK-predicted flood quantile to obtain the
TK-CK blended estimate.

The resulting estimates of the flood quantiles were compared
by subtracting the absolute error resulting from CK-TK and
TK-CK from the absolute errors obtained by TK and CK
alone. Negative differences imply that the absolute errors ob-
tained by either CK or TK were smaller than the differences
obtained by CK-TK or TK-CK, respectively. This difference
was then related to drainage area (Fig.5). Only the results for
the 100 yr flood quantile are shown for clarity; however, this
result is similar to that of the other flood quantiles examined

in this study. If the blended methods improve the flood quan-
tile estimates, it is of interest to understand which catchments
were improved and if the improvements are related to the
size of the catchment. The absolute errors from the blended
methods were also compared with the absolute errors result-
ing from GLS (Fig.6).

CK-TK generally leads to improved results over the use of
CK alone to estimate flood quantiles, particularly for catch-
ments greater than approximately 250 km2 (Fig. 5a). In con-
trast, TK-CK does not seem to improve flood quantile es-
timates except at a few catchments (Fig. 5b). The blended
methods are not effective in improving the flood quantile es-
timates at the largest catchments. In fact, the TK-CK method
substantially degrades the TK-predicted flood quantiles at the
largest catchment (Fig. 5b). Despite this, TK-CK-predicted
flood quantiles have smaller errors than GLS for a major-
ity the study streamgauges (Fig.6). CK-TK was able to im-
prove on predicted flood quantiles when compared to CK-
predicted flood quantiles; however, the improvements are not
substantial relative to the comparison with GLS-predicted
flood quantiles as both CK (Fig.5) and CK-TK (Fig.6) have
the same number of streamgauges where they have smaller
errors than GLS. It should also be noted that for two catch-
ments, CK-TK produced estimates of the flood quantile that
were negative.

5.3 Further examination of the blended methods

To have a clearer picture of why blending did not substan-
tially improve the flood quantile predictions in ungauged
sites, we investigated the empirical relationship between the
residuals resulting from cross-validation and the distance
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Fig. 6. Comparison of the absolute errors between empirical and predicted flood quantiles resulting from the coupling of topological with
canonical kriging of the residuals (TK-CK) and canonical kriging with topological kriging of the residuals (CK-TK) to the absolute error
resulting from generalized least squares regression.

between pairs of catchments on the two-dimensional space
used for interpolation, that is geographical space for TK
and physiographic space for CK. We expressed distances be-
tween sitesi andj in terms of Euclidean distance,

di,j =

√
(xi − xj )2 + (yi − yj )2, (5)

wherex andy are the latitude and longitude of catchment
centroids if the distance is measured in the geographical
space, or the first and second canonical variables (i.e.,U1
andU2) when distances are measured in the physiographical
space. In particular,U1 andU2 are obtained in this case by
applying CCA to the set of 22 geomorphologic and climatic
catchment descriptors (N ) and the set of 4 unit residuals (M)
obtained in cross-validation from the prediction of the four
considered flood quantiles. Catchment descriptors were first
normalized over the study area (i.e., coordinates with 0 mean
and unit variance) before the distances between the canonical
variables were computed.

We then plotted the distance between pairs of catchments
against their differences between prediction residuals to eval-
uate dissimilarity. That is, two catchments are close to each
other if they are both associated with large overpredictions
of empirical flood quantiles, whereas they are far apart if one
catchment is associated with overprediction and the other
with underprediction. We defined this distance as follows:
first, we considered the 100 yr flood residuals and their rel-
ative values (i.e., residuals divided by the empirical quan-
tile) obtained in cross-validation for TK and CK; secondly,
for each methodology we normalized residuals and relative
residuals to obtain series with 0 mean and unit variance, and
we used these series asx and y in Eq. (5) to express the
distance between pairs of catchments in terms of prediction
errors; finally, we plotted the distance between catchments in
the geographical (or physiographical) space against the cor-
responding distance in terms of residuals for CK (or TK) (see
Fig.7). If pairs of catchments that are far apart in terms of TK
(or CK) residuals are also far apart in the physiographical (or
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Fig. 7. Dimensionless distances between catchment locations and
prediction residuals (gray circles); top panel: distances between
catchment centroids in the geographical space (x-axis) and CK
residuals (y-axis); bottom panel: distances between catchment pairs
in the physiographical space (x-axis) and TK residuals (y-axis)
(black thick line: running mean for 250 values).

geographical) space, and vice versa, there are good chances
that modeling TK (or CK) residuals with CK (or TK) may
improve the overall prediction performance. As illustrated
by Fig.7, distances between catchments in terms of location
and residuals do not show an obvious increasing relationship.
This empirical evidence suggests why blending TK and CK
may have led to limited improvements of the prediction per-
formance over the study area.

6 Discussion

Given the discussion in Sect. 5, the performance of the
blended methods was not a surprising result; however, the
good performance of CK and TK relative to GLS is cause for
further examination of the fundamental objectives of each
method. In particular, TK and GLS are fundamentally dif-
ferent in their formulation and in their treatment of spatial
correlation in annual flood series. Regression methods use
observations as training data for fitting a regression model,
where the fitting procedure of GLS reduces the weights of
highly correlated observations (> 0.6) as they represent re-
dundant information for the model (Stedinger and Tasker,
1985). Geostatistical methods such as TK will interpolate a
surface that passes through the observations, where the value
of the surface between the observations is predicted from the
observations and the expected local variability.

To explore the extent of spatial correlation that is present
amongst the flood quantiles, the cross-correlation between
the annual flood time series was computed and compared
across the study streamgauges (Fig.8). Correlations between
the annual flood series are relatively low or insignificant
for most pairs of streamgauges despite the fact that most

streamgauges had coincident years of record from which
to estimate a correlation between annual floods (Fig. 8a);
however, some pairs of streamgauges are highly correlated
(greater than 0.6) and unsurprisingly these pairs are those
which are close together in distance (Fig. 8b). These obser-
vations support the suggestion that TK – and to some extent
CK – are able to use the correlated information across sites
in a way that results in better estimates of flood quantiles at
ungauged locations when compared to GLS.

It should also be noted that all of the results in this study
are based on a comparison of the ability of TK, CK, and GLS
to predict empirical flood quantiles, whereas we are not able
to compare their ability to predict (unknown) “true” flood
quantiles. When the goal is the prediction of empirical flood
quantiles in an ungauged catchment, it is likely that utilizing
methods like TK that exploit the cross-correlation between
the annual flood series results in better predictive models than
GLS. But if the intent is to predict an unknown “true” flood
quantile based on a limited set of observations, then it is un-
clear whether spatial correlation helps to illuminate actual re-
lationships between floods at different locations, or whether
the spatial correlation obscures information about the true
flood magnitude. Including spatial information in predictive
models for flood quantiles may be of benefit if the spatial cor-
relation is caused by real differences in hydrologic processes.
If, however, the spatial correlation is merely an artifact of the
particular extreme storm events experienced in the region,
then inclusion of the spatial correlation may be detrimental
to the estimation of flood quantiles.

To illustrate the difference better, we can consider the ef-
fect of record-breaking floods in the track of a particular hur-
ricane on predictions of the two different methods. The fact
that the hurricane made landfall in one region may or may
not mean that areas directly to the north or south are not
also susceptible to hurricane flooding. Methods that place too
much emphasis on the observed spatial structure may over-
estimate the flooding potential in the region hit by the hurri-
cane while underestimating the flooding potential in the areas
surrounding it. The assumption behind a regression model is
that all the regions in the area have the same susceptibility
to flooding if long-term records (hundreds to thousands of
years) were available and the impact of the hurricane will be
smoothed over all regions. If the hurricane made landfall in
an area with a high density of streamgauges, the GLS ap-
proach will further reduce the impact of the region on the
regression model due to the highly correlated samples. In-
terpolation methods such as TK will treat all observations
as correct, although some smoothing between streamgauges
can take place if the variogram model has a high nugget ef-
fect. On the other hand, if topography or other features may
tend to bring storms into the region that experienced the hur-
ricane and this feature is not included in the regressors of the
regression model, GLS will underestimate the flood risk in
this region and overestimate it elsewhere, whereas TK will
predict correctly.
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Fig. 8. (A) shows the correlation matrix of the annual flood series between each pair of the 61 study streamgauges. The values on the upper
right of the matrix show the number of pairs for which there was no coincident data to compute the correlation between the annual flood
series or the correlation was not significant at thep = 0.05 level.(B) shows empirical cross-correlation coefficients for couples of catchments
(dots), a moving weighted-average curve that weights empirical values proportionally to the record length (black line) and the Tasker and
Stedinger (1989) model fitted to data (red line).

It should be noted that GLS requires that the individ-
ual model errors are independent. If streamgauges used in
development of the GLS regression equations are nested,
they are likely to have had the same hydrologic experi-
ence and, therefore, could potentially violate this assump-
tion (Veilleux, 2011). In this study, only one of the study
catchments (streamgauge 02349695; Fig.1a) was flagged as
a nested basin according to the screening criteria applied by
Gotvald et al.(2009). Although nestedness was not likely an
issue for the streamgauges used in this study, the effect of
nested catchments on GLS remains an open area of research
(A. Veilleux, personal communication, 2012).

The results of the comparison between TK and CK study
are consistent with those found byCastiglioni et al.(2011),
who compared TK and CK for the purpose of estimating low-
flow statistics. In both studies, TK outperforms CK for larger
catchments. However, in this study, TK and CK performed
similarly for smaller catchments whereas,Castiglioni et al.
(2011) had found that CK outperformed TK at smaller, head-
water catchments.Castiglioni et al.(2009) found that CK
outperformed multivariate regression methods to estimate
low-flow statistics but did not test TK and GLS regression
in their comparison. This paper advances the growing litera-
ture which shows that geostatistical methods provide greater
prediction accuracy over traditional regression approaches to
estimate streamflow at ungauged locations.

7 Conclusions

Recent advances in geostatistical techniques have shown
promise as an approach to estimate streamflow at ungauged
locations. The performance of two such methods, top-kriging
and canonical kriging, were compared to the performance of
generalized least squares regression, which is the most com-
mon method to estimate design flood values at ungauged lo-
cations in the United States. This study represents the first
such comparison of these geostatistical methods to GLS re-
gression. The performance of each method was evaluated
at 61 streamgauges in the southeast United States using a
leave-one-out cross-validation. TK outperformed both CK
and GLS regression for estimating the quantiles correspond-
ing to the 10, 50, 100 and 500 yr design floods, particularly
for large catchments. Combining methods (adjusting TK-
predicted flood quantiles with CK-predicted residuals and
vice versa) offered some small improvements; however, this
improvement was marginal when compared to the perfor-
mance of TK and CK over GLS regression. The performance
of TK over GLS highlights important differences in geosta-
tistical versus regression-based methods, and the results of
this study lend support to other studies which have found that
geostatistical methods outperform regression-based meth-
ods. As a consequence of the very results of this study, cou-
pling TK and GLS and with consideration of a weighting
scheme in blending these methods becomes an interesting
research idea. Attention to the role of spatial correlation in
regional estimation of flood quantiles is necessary for a more
complete understanding of this finding.
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