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Abstract. Estimating the spatial variability of hydraulic con-
ductivity K in natural aquifers is important for predicting
the transport of dissolved compounds. Especially in the non-
reactive case, the plume evolution is mainly controlled by
the heterogeneity ofK. At the local scale, the spatial distri-
bution of K can be inferred by combining the Lagrangian
formulation of the transport with a Kalman-filter-based tech-
nique and assimilating a sequence of time-lapse concentra-
tion C measurements, which, for example, can be evaluated
on site through the application of a geophysical method. The
objective of this work is to compare the ensemble Kalman
filter (EnKF) and the ensemble smoother (ES) capabilities
to retrieve the hydraulic conductivity spatial distribution in
a groundwater flow and transport modeling framework. The
application refers to a two-dimensional synthetic aquifer in
which a tracer test is simulated. Moreover, since Kalman-
filter-based methods are optimal only if each of the involved
variables fit to a Gaussian probability density function (pdf)
and since this condition may not be met by some of the
flow and transport state variables, issues related to the non-
Gaussianity of the variables are analyzed and different trans-
formation of the pdfs are considered in order to evaluate their
influence on the performance of the methods. The results
show that the EnKF reproduces with good accuracy the hy-
draulic conductivity field, outperforming the ES regardless
of the pdf of the concentrations.

1 Introduction

One of the most challenging tasks in groundwater flow and
transport modeling is the assessment of hydraulic properties

of the porous media such as the hydraulic conductivity (K),
whose spatial heterogeneity is typically very pronounced in
natural aquifers and thus particularly difficult to character-
ize. For this reason, many efforts have been made for the de-
velopment of inverse models capable of estimating aquifer
hydraulic properties at various scales. Extensive reviews of
these methods have been provided byCarrera et al.(1993);
McLaughlin and Townley(1996); Zimmerman et al.(1998)
andVrugt et al.(2008). Hydraulic conductivity and head data
have been typically used to constrain inverse models (e.g.,
Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach,
2008; Rubin et al., 2010). More recently, the use of informa-
tion derived by geophysical methods has been increasingly
proposed and investigated for the estimation of parameters in
groundwater modeling (e.g.,Camporese et al., 2011; Pollock
and Cirpka, 2012).

Among the several mathematical tools available for the in-
version of hydrologic data, approximate Bayesian methods
such as the ensemble Kalman filter (EnKF) and its varia-
tions (Evensen, 2009b) allow for seeking an ensemble of in-
dependent samples conditional to the measurements, all rep-
resenting equally likely realizations of the actual variability
of the hydraulic parameters. These methods have been ap-
plied, for example, by the following authors:Chen and Zhang
(2006), who used the EnKF to estimate the hydraulic con-
ductivity both in two- and three-dimensional domains assim-
ilating hydraulic head data andK measurements;Liu et al.
(2008), who obtained theK distribution at the MADE site
(e.g.,Boggs et al., 1992) by assimilating, in two subsequent
steps, hydraulic head and concentration data collected dur-
ing a tracer test; andBailey and Báu (2010), who used the
ensemble smoother (ES) by assimilating hydraulic head and
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1518 E. Crestani et al.: EnKF vs. ES for tracer test data assimilation

groundwater return flow volume measurements to estimate
the hydraulic conductivity distribution in a synthetic two-
dimensional case.

More recently,Hendricks Franssen et al.(2011) applied
the EnKF to jointly calibrate the hydraulic conductivity and
leakage coefficient in real time in an unconfined aquifer. In
Li et al. (2012), the EnKF was used to map the hydraulic con-
ductivity and porosity fields by assimilating dynamic piezo-
metric data and multiple concentration data. InBailey and
Baú (2012), the ES was iteratively applied to estimate the
parameters of a geostatistical model through assimilation
of water table elevation data.Tong et al.(2012) used the
EnKF in a synthetic two-dimensional aquifer to estimate the
hydraulic conductivity by assimilating solute concentration
data measured in a large number of observation wells.

A fundamental hypothesis for the application of Kalman-
filter-based methods is that all the variables must be dis-
tributed as a joint multivariate Gaussian probability den-
sity function (pdf). In many applications, including ground-
water flow and transport in heterogeneous aquifers, the
“Gaussian approximation” is not honored and few efforts
have been made recently trying to enforce this hypothe-
sis by means of different data transformations.Béal et al.
(2010), for instance, applied the Gaussian anamorphosis
transformation to the variables of a three-dimensional cou-
pled physical–biogeochemical model of the North Atlantic,
while Schoeniger et al.(2012) used the same technique to
estimate hydraulic conductivity through the assimilation of
3-D hydraulic tomography data. Another example includes
Zhou et al. (2011), who applied the normal score trans-
form to piezometric data used for the estimation of hydraulic
conductivity.

A limitation of the above methods to enforce Gaussian-
ity is that they operate univariate (marginal) transformations
to multivariate problems. As a result, the multivariate de-
pendence structure between the variables cannot be ensured
(Zhou et al., 2011). A possible alternative to data transfor-
mation is the use of particle filter (PF) methods, which, like
EnKF, are also based on a Monte Carlo approach, but do
not require the variables to be normally distributed. On the
other hand, a very large number of particles is needed for
adequate sampling of high-dimensional state and parameter
spaces, resulting in an excessive amount of computational
time (Montzka et al., 2012).

Given the importance that the EnKF and the ES are ac-
quiring as parameter estimation modeling tools in groundwa-
ter hydrology, there is the need to investigate in more detail
their capabilities and the theoretical implications related to
their use in a context that is much different from the one for
which they were originally developed, i.e., the optimal esti-
mation of system states only (Nowak, 2009). The objective
of this work is thus to compare the EnKF and the ES capa-
bilities to retrieve the hydraulic conductivity spatial distri-
bution in a groundwater flow and transport modeling frame-
work. In addition, the issues related to the non-Gaussianity

of concentration data are analyzed by considering different
transformations of the relevant pdfs.

The EnKF and the ES are here implemented in the
same Lagrangian transport modeling framework proposed by
Crestani et al.(2010) andCamporese et al.(2011) in order
to estimate the hydraulic conductivity field by assimilating
concentration measurements derived from a tracer test in a
two-dimensional synthetic aquifer. We hypothesize to follow
the full spatio-temporal evolution of the solute plume, which
would be observed in an electrical resistivity tomography ex-
periment (e.g.,Perri et al., 2012).

2 Theory and methods

2.1 The ensemble Kalman filter and the ensemble
smoother

According toEvensen(2009a), the combined parameter and
state estimation problem for a dynamical model can be for-
mulated as finding the joint pdf of the parameters and model
state, given a set of measurements and a dynamical model
with known uncertainties. Using Bayes’ theorem, the prob-
lem can be written in the simplified form

f (y, α|z) = γf (y, α)f (z|y, α), (1)

wheref (y, α) is the joint pdf for the model statey (as func-
tion of space and time) and the parametersα, f (z|y, α) are
the likelihood function of the measurementsz, andγ is a
normalization constant whose computation requires the eval-
uation of the integral of Eq. (1) over the multi-dimensional
solution and parameter space. Note that in writing Eq. (1), we
implicitly assume that the only uncertainty in the model for-
mulation lies in the parameters, while boundary and initial
conditions are perfectly known. If, as usual, we work with
a model state that is discretized in time, we can represent
y at fixed time intervals asyi =y(ti), with i = 0, 1, . . . ,k.
If we further assume that the model is a first-order Markov
process, we can define the pdf for the model integration from
time ti−1 to ti asf (yi |yi−1, α). Let us now assume that also
the measurementsz can be divided into subsets of measure-
ment vectorszi , collected at the same time steps of the model
ti , and that the measurement errors are uncorrelated in time.
Under these hypotheses and from Bayes’ theorem, Eq. (1)
becomes (Evensen, 2009a)

f (y1, . . . , yk, α|z) = γf (α)

k∏
i=1

f (yi |yi−1, α) f (zi |yi, α) ,(2)

in which the pdf of the parametersf (α) is expressed explic-
itly. By rewriting Eq. (2) as a sequence of iterations and inte-
grating out the state variables at all previous times, we obtain

f (yi, α|z1, . . . , zi) = γf (α) f (yi |yi−1, α) f (zi |yi, α) .(3)
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The combined parameter and state estimation can thus be
formulated sequentially using Bayesian statistics, under the
condition that measurement errors are independent in time
and the dynamical model is a Markov process. Equations (1)
and (3) can be solved numerically by means of a Monte Carlo
approach, which approximates the probabilistic information
conveyed by the conditional pdfs of the state, parameters,
and measurements with an ensemble of realizations of size
NMC. Each of the NMC state vectors is propagated in time
according to the forecast model, which can be expressed as a
vector-valued discrete-time state equation:

yj (t) = A
[
yj (τ ), αj , t, τ

]
; t0 ≤ τ < t; yj (t0) = y

j

0, (4)

whereyj (t) is the j -th (j = 1, . . . , NMC) state vector pre-
dicted by the model at the timet , αj is thej -th set of model
parameters,A is the operator relating the system state at the
current timet to the system state at the previous timeτ , and
y

j

0 is the initial condition at timet0. We assume here that the
model is error free and only the parameters are affected by
uncertainty.

At time ti , mi measurements are available and the model
describing the relation between these measurements and the
system state is also expressed as the following vectorial
equation:

zj (ti) = H ytrue(ti) + wj (ti) , (5)

whereH is the operator that maps the model state to the mea-
surement locations,ytrue(ti) is the true state, andzj (ti) is the
j -th vector of observations at the timeti , which is obtained
by perturbing themi measurements with a random noise
wj (ti), representing the measurement errors. Here we as-
sume thatwj (ti) is normally distributed with expected value
equal to zero and assigned varianceσ 2

meas. Under the hypoth-
esis that the pdfs for the model prediction as well as the likeli-
hood are Gaussian, it is possible to update each realization of
the system state according to the following equation, which
is obtained by minimizing the model error covariance matrix
(Evensen, 2009a):

y
j

upd = yj
+ PeHT

(
HPeHT

+ Re

)−1(
zj

− H yj
)
, (6)

wherey
j

upd is thej -th realization of the updated system state,
Pe is the prior estimate of the system state error covariance
matrix, which is computed by sampling the ensemble statis-
tics, andRe is the measurement error covariance matrix.

Within the formulation of the ES, Eq. (1) requires that the
pdfs are approximated from an integration of the ensemble
through the whole assimilation time period. In other words,
all of the data are processed by Eq. (6) in one step, and the
solution is updated as a function of space and time, using
the space-time covariances estimated from the ensemble of
model realizations.

On the other hand, within the EnKF formulation, Eq. (3)
is a sequential expression that can be solved through incre-
mental updates given by Eq. (6) with the data at the current
time step only.

Note that if the model is linear and all states, errors, and
parameters are multivariate Gaussian, then both the EnKF
and the ES are exact in the Bayesian sense, and lead to iden-
tical results at the final time of data assimilation. The tech-
nical difference between the EnKF and the ES is analogous
to the difference between kriging and sequential kriging as
described byVargas-Guzman and Yeh(1999), who proved
the identity between step-wise and one-in-all conditioning
for the linear/multi-Gaussian case.

Moreover, in both the EnKF and the ES, when the model
pdfs and the likelihood function are Gaussian, the Bayesian
formulation corresponds to the minimization of a quadratic
cost function (Evensen, 2009a). The only difference is that
in the ES the time dimension is included in the optimization,
while in the EnKF the minimization is performed at each as-
similation time. However, when the pdfs are not Gaussian,
Eq. (6) is an approximation and no longer yields optimal up-
dates in terms of a cost function minimization, although the
general Bayesian formulation remains valid, i.e., sampling of
a posterior pdf is still performed.

2.2 The inversion model

The Lagrangian approach described inDagan(1989) is here
adopted to describe the movement of a tracer plume through
a saturated, spatially heterogeneous porous medium. As de-
scribed inCrestani et al.(2010) andCamporese et al.(2011),
the solute cloud is driven by the effective velocity field ob-
tained at steady state solving the groundwater flow equation
with appropriate boundary conditions. In natural sedimen-
tary aquifers the spatial variability of the porosityφ can be
considered negligible with respect to that ofK (e.g.,Gel-
har, 1993). Consequently, the concentrationC, related to the
pdf of the Lagrangian trajectory of equationx = Xt (t; a, t0),
wherea is the initial position of the considered particle and
t0 the injection time, is fully controlled by the spatial distri-
bution of the hydraulic conductivity. When dealing with real-
world applications, our interest is related to the average con-
centrationC over a finite volume1V whose centroid is atx.
By defining asM =φC0V0, the total mass of initial concen-
trationC0 uniformly injected in the volumeV0, an estimation
of the concentration value is given by

C (x, t; t0) =
φ

M

∫
1V

∫
V0

C0(a)δ
[
x′

− Xt (t; a, t0)
]

da dx′

=
1

N1V

∫
1V

N∑
i=1

δ
[
x′

− Xt (t; a, t0)
]
1a dx′, (7)

whereN is the number of particles released to simulate the
solute andδ is the Dirac delta function. Here we assume that
any diffusion or local scale dispersion is negligible.

www.hydrol-earth-syst-sci.net/17/1517/2013/ Hydrol. Earth Syst. Sci., 17, 1517–1531, 2013
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The problem of estimating the hydraulic conductivity field
by using concentration measurements is solved by consider-
ing a system state constituted only by the model parameters:

yj
= [Y1, . . . , Yn]j = αj , (8)

whereY1, . . . , Yn are the log-transformed hydraulic con-
ductivity values (Y = lnK) at then nodes discretizing the do-
main. At time t0, NMC realizations of the log-transformed
hydraulic conductivity field are generated from a prior pdf
f (α) and the state vectors are built as in Eq. (8).

In the EnKF application, starting with the same initial con-
centrationC0 for eachY field, the solute plume is propagated
forward in time to the first measurement timet1, using the
Lagrangian transport model. At timet1 the log-transformed
hydraulic conductivities(Y1, . . . , Yn)

j are updated based on
them1 measurements available by means of Eq. (6), which
leverages the cross correlation betweenY andC, expressed
by the productPeHT . The process continues sequentially:
first, a propagation step over each interval betweent0 and
ti and, second, an update step of the log-transformed hy-
draulic conductivity values at each measurement timeti are
performed. The process stops at the timettm corresponding
to the last measurement. It must be observed that, in order to
ensure mass conservation and consistency between updated
hydraulic conductivities and concentrations throughout the
simulation, after each assimilation step the plume evolves
in the updatedY fields starting fromt0 and with the same
initial solute distribution. This recursive application of the
EnKF, also known as re-start EnKF (Wen and Chen, 2006;
Hendricks Franssen and Kinzelbach, 2008), differs from the
classic sequential one commonly adopted since by restarting
the plume evolution with the same initial concentration in the
updatedY fields, we apply the predictive analysis expressed
by the Kalman gain on a system state that is improved at each
assimilation step.

In the ES application there is no need for sequential up-
dates, and the parameters are estimated in a single offline
step. At timet0 each realization of the ensemble ofY fields
is initialized with the same concentration distributionC0 and
the solute plume is propagated forward in time until the last
assimilation time, and the concentration distributions for all
measurement times are recorded. The measurement vectors
are thus assembled as

zj
= [z (t1) , z (t2) , . . . , z (ttm)]j

T

, (9)

i.e., the perturbed measurements for all the measurement

times (tm) are stored in a vector of dimension [
tm∑
i=1

mi ], for

each Monte Carlo simulation. Since the ES does not require
sequential updates, the computational time is significantly
lower than in the EnKF (about 10 times in the tests presented
in the following sections) even though the dimension of the
vectors and matrices in Eq. (6) is larger than in the EnKF.

10 Crestani et al.: EnKF vs ES for tracer test data assimilation

Table 1. Description, prior geostatistical parameters, and measure-
ment errors of the numerical experiments. CV stays for the mea-
surement coefficient of variation. In scenarios labelled with “a” the
normal score transform is applied independently to the ensemble of
concentration data in each assimilation node. In scenarios labelled
with “b ” the normal score transform is applied to the ensemble of
concentration data over all assimilation nodes.

prior statistics
assimilated data technique <Y > σ2

Y λ (L) CV
Reference field / / 0.03 0.43 1 /

Scenario 1a C EnKF -0.50 0.75 1 0.1
Scenario 1b C ES -0.50 0.75 1 0.1

Scenario 2a lnC EnKF -0.50 0.75 1 0.1
Scenario 2b lnC ES -0.50 0.75 1 0.1
Scenario 3a NST(C)a EnKF -0.50 0.75 1 0.1
Scenario 3b NST(C)a ES -0.50 0.75 1 0.1
Scenario 4a modNST(C)b EnKF -0.50 0.75 1 0.1
Scenario 4b modNST(C)b ES -0.50 0.75 1 0.1

Table 2. Inversion performance for scenarios 1a, 4a, 1b, and 4b (in
terms of Y RMSE relative changes between prior and estimated
solutions) as a function of the reference field Y variance.
σ2

Y Scenario 1a Scenario 4a Scenario 1b Scenario 4b
0.05 -0.373 -0.373 -0.096 -0.232
0.5 -0.379 -0.398 -0.056 -0.194
1.5 -0.116 -0.110 -0.045 -0.067

Fig. 1. Spatial distribution of log-transformed hydraulic conductiv-
ity in the reference field. The color bar indicates log-transformed
hydraulic conductivity Y in ln(L/T ).

Fig. 1. Spatial distribution of log-transformed hydraulic conductiv-
ity in the reference field. The color bar indicates log-transformed
hydraulic conductivityY in ln(L/T ).

3 Numerical experiments

3.1 Model setup

A two-dimensional referenceY field is taken into account
to compare the proposed inversion models in a number
of numerical experiments. Following the recommendation
by Ababou et al.(1989), the domain has dimensions of
8L × 8L, whereL is an arbitrary and consistent unit length,
and is discretized along each direction intoL/4 sided cells,
for a total of 33× 33 = 3297 corresponding nodes. The multi-
variate normal distribution of the reference field is the result
of a single unconditional generation fitting to an isotropic
exponential covariance model with spatial mean〈Y 〉 = 0.35,
variance ofσ 2

Y = 0.42, and correlation scaleλ = 1L. The ran-
dom function Y is generated by an improved sequential
Gaussian simulation algorithm (Baú and Mayer, 2008). The
flow field is simulated using a standard finite volume solver
at steady state with appropriate boundary conditions that en-
sure a constant mean gradient. The resulting Eulerian veloc-
ity field is used for the computation of the trajectories of
N particles suitable for the simulation of a contaminant re-
lease. Dirichlet boundary conditions are applied atx = 0L

(h = 100.0L) and atx = 8L (h = 95.2L), while Neumann no-
flow boundary conditions are imposed along the remaining
sides of the domain. A graphic representation of the reference
field is given in Fig.1. A tracer test is simulated by assum-
ing an instantaneous solute injection with initial transversal
size of 6L (from y = 1L to y = 7L) and longitudinal size of
0.5L (centered inx = 0.875L). The solute is simulated by
16 983 particles uniformly distributed, with the particle tra-
jectories computed by means of the Pollock’s particle track-
ing post-processing algorithm (Pollock, 1988) and the con-
centration computed according to Eq. (7) every 0.5T , where
T is any consistent time unit. The total simulation time is
t = 4T . Figure2 shows the plume evolution in the reference
field att = 2T andt = 4T .

Hydrol. Earth Syst. Sci., 17, 1517–1531, 2013 www.hydrol-earth-syst-sci.net/17/1517/2013/
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Table 1.Description, prior geostatistical parameters, and measurement errors of the numerical experiments. CV stays for the measurement
coefficient of variation. In scenarios labeled with “a”, the normal score transform is applied independently to the ensemble of concentration
data in each assimilation node. In scenarios labeled with “b ”, the normal score transform is applied to the ensemble of concentration data
over all assimilation nodes.

Prior statistics

Assimilated data Technique < Y > σ2
Y

λ (L) CV

Reference field – – 0.03 0.43 1 –

Scenario 1a C EnKF −0.50 0.75 1 0.1
Scenario 1b C ES −0.50 0.75 1 0.1
Scenario 2a lnC EnKF −0.50 0.75 1 0.1
Scenario 2b lnC ES −0.50 0.75 1 0.1
Scenario 3a NST(C)a EnKF −0.50 0.75 1 0.1
Scenario 3b NST(C)a ES −0.50 0.75 1 0.1
Scenario 4a modNST(C)b EnKF −0.50 0.75 1 0.1
Scenario 4b modNST(C)b ES −0.50 0.75 1 0.1

Crestani et al.: EnKF vs ES for tracer test data assimilation 11

Fig. 2. Plume evolution in the reference field at a) t= 2 T and b) t= 4 T . The color bar denotes dimensionless concentration C. Dotted
lines show the direction along which the cross-correlation structure between Y and C is evaluated.

Fig. 3. Scenario 1: log-transformed hydraulic conductivity field retrieved by a) the EnKF and b) ES using untransformed concentration data.
The color bar indicates log-transformed hydraulic conductivity in ln(L/T ). Panels c) and d) show the estimation variance maps after the
inversion for the EnKF and ES, respectively.

Fig. 2.Plume evolution in the reference field at(a) t = 2T and(b) t = 4T . The color bar denotes dimensionless concentrationC. Dotted lines
show the direction along which the cross-correlation structure betweenY andC is evaluated.

In this work the inversion is carried out by assimilating
concentration data. In particular, we include in the mea-
surement vectors all the concentration data greater than
zero in order to use all the available information on the
plume evolution. For the EnKF, the resulting dimension
of the measurement vector (number of concentration data
assimilated) is 79, 90, 92, 102, 111, 116, 123, and 122
at times 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4T , respectively.
Consequently, the measurement vector in the ES has dimen-
sion 79+ 90+ 92+ 102+ 111+ 116+ 123+ 122 = 835.
The performances of the EnKF and the ES in retrieving
the Y fields are compared to one another in a number of
different scenarios described in Table1. In these scenarios
we also analyze the implications of the concentration non-
Gaussianity through various marginal transformations of the
pdf. The prior geostatistical parameters and the measurement
uncertainty are kept constant in all scenarios as the objective
is to study the issues related to the effect of the pdf of the
model variables on the EnKF and the ES performances

in terms of parameter estimation. Note that the spatial
mean and the variance of the prior distributions ofY are
significantly different from the corresponding parameters for
the reference system (see Table1). These assumptions serve
to represent typical conditions in which both< Y > andσ 2

Y

of the true system are unknown. In scenario 1, concentration
measurements are assimilated without any transformation,
i.e., with their original pdf, whereas in scenarios 2, 3, and 4,
different pdf transformations are used to evaluate how they
affect the parameter estimation by approaching the Gaussian
requirement.

Based on preliminary sensitivity analyses, all scenarios are
simulated using an ensemble size of 2000. This number of
realizations is computationally affordable and guarantees a
proper description of the dispersion process for the range
of log-transformed hydraulic conductivity variance used here
(Bellin et al., 1992; Salandin and Fiorotto, 1998).

It should be noted that the ensemble of priorY fields is
synthetically generated by the same algorithm used to create

www.hydrol-earth-syst-sci.net/17/1517/2013/ Hydrol. Earth Syst. Sci., 17, 1517–1531, 2013
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Fig. 2. Plume evolution in the reference field at a) t= 2 T and b) t= 4 T . The color bar denotes dimensionless concentration C. Dotted
lines show the direction along which the cross-correlation structure between Y and C is evaluated.

Fig. 3. Scenario 1: log-transformed hydraulic conductivity field retrieved by a) the EnKF and b) ES using untransformed concentration data.
The color bar indicates log-transformed hydraulic conductivity in ln(L/T ). Panels c) and d) show the estimation variance maps after the
inversion for the EnKF and ES, respectively.

Fig. 3. Scenario 1: log-transformed hydraulic conductivity field retrieved by(a) the EnKF and(b) ES using untransformed concentration
data. The color bar indicates log-transformed hydraulic conductivity in ln(L/T ). (c) and(d) show the estimation variance maps after the
inversion for the EnKF and ES, respectively.

the true field and that the application of the Lagrangian trans-
port model in the true field yields exactly the true concentra-
tion distribution. The knowledge of the true state allows us
to select the concentration measurements used during the as-
similation and to evaluate the performance of the EnKF and
the ES with respect to a known reference system.

The estimate of the hydraulic conductivity fields in the var-
ious simulated scenarios is assessed by means of the root-
mean-square error (RMSE), computed as

RMSE =

√√√√√ n∑
i=1

(
Ysim,i − Ytrue,i

)2

n
, (10)

wheren is the total number of nodes of the discretized do-
main,Ysim,i is the ensemble mean of theY values estimated
at thei-th node, andYtrue,i is the trueY value at thei-th node.

Finally, we also assess the plume evolution as simulated
in the reconstructedY fields by means of the concentration
RMSE, whose formulation is analogous to that ofY .

3.2 Results

3.2.1 Scenarios with untransformed concentration pdfs

In scenarios 1a and 1b, the concentration values are assimi-
lated in the update procedure without modifying their orig-
inal pdf, for both the EnKF and the ES. The spatial distri-
butions ofY resulting from the inversions are reported in
Fig. 3. The comparison between the retrieved fields and the
reference field (Fig.1) shows that the EnKF is quite effective
in estimating the lnK field, whereas the ES performs rather
poorly. The same figure shows also the ensemble variance
maps ofY estimation for both the EnKF and the ES. As ex-
pected, the final variance is much smaller for the EnKF be-
cause of the numerous updates that bring the ensemble to
converge toward a unique solution. Obviously, the ES, rely-
ing only on one update, shows a larger final variance. This
indicates that the ES solution could probably be improved
if an iterative procedure was used. However, we elected not
to follow such an approach since applying the ES itera-
tively would lead to losing one of the main advantages of the
scheme, i.e., its offline, one-time application at the end of the
simulation period, and thus its lower computational demand
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Fig. 4. Scenario 1: empirical bivariate pdf of concentration and log-transformed hydraulic conductivity computed in the vertical line at the
expected x value of the plume centroid for a) the EnKF at time 1 T , b) the EnKF at time 4 T , c) ES at time 1 T , and d) ES at time 4 T .

Fig. 5. Scenario 2: log-transformed hydraulic conductivity field retrieved by a) the EnKF and b) ES using log-transformed concentration
data. The color bar indicates log-transformed hydraulic conductivity in ln(L/T ).

Fig. 4. Scenario 1: empirical bivariate pdf of concentration and log-transformed hydraulic conductivity computed in the vertical line at the
expectedx value of the plume centroid for(a) the EnKF at time 1T , (b) the EnKF at time 4T , (c) ES at time 1T , and(d) ES at time 4T .

(computational time for the ES in these simulations is about
1/10 of the time required by the EnKF).

In these scenarios, both the EnKF and the ES are affected
by the approximations related to the Gaussian assumption of
Eq. (6) as the tracer concentration pdf at early travel times
departs significantly from the normal pdf (e.g.,Salandin and
Fiorotto, 1998). Nevertheless, the EnKF can handle these ap-
proximations better than the ES as, at each update, the real-
izations are steered toward the true solution and the Gaus-
sian increments of the ensemble members lead to an approx-
imately Gaussian ensemble distributed around the true so-
lution. This property of the sequential updating is not ex-
ploited in the ES, where realizations evolve freely until the
end of the simulation, exacerbating the effects related to
non-Gaussian ensemble distributions. This is demonstrated
clearly by Fig.4, which shows, for both the EnKF and the
ES, the bivariate pdf of concentration and log-transformed
hydraulic conductivity computed at times 1T and 4T in the
vertical line at the expected value of the plume centroid.
In the ES scenario, where the prior plumes are left free to
evolve, the pdf tends to develop into a bimodal distribution.
Instead, in the EnKF scenario, this behavior is prevented by
the sequential updates and the final distribution, although still
non-Gaussian, can be better approximated by a multivariate
normal pdf.

A further explanation for the good performance of the
EnKF can be found in its recursive application, through
which, at each assimilation step, the plume is restarted with
the same initial concentration in the updatedY fields. This
is a known property of the restart EnKF: the state update is
performed by invoking the governing equations with the up-
dated parameters. Therefore, the parameter–state relation is
always backed by the physics of the transport process (Wen
and Chen, 2006; Hendricks Franssen and Kinzelbach, 2008;
Nowak, 2009). This procedure is analogous to the advanced
first-order second-moment (AFOSM) method adopted in risk
analysis (Yen et al., 1986). As in AFOSM, the lack of Gaus-
sianity is overcome by approaching recursively the solution
with improved values of the estimator, here represented by
the Kalman gain, which leads to improved estimates of the
solution itself.

3.2.2 Scenarios with log-transformed concentration
pdfs

In scenarios 2a and 2b, we assimilate log-transformed con-
centration values in order to evaluate if a proper transforma-
tion of the concentration pdf can improve the effectiveness
of the assimilation algorithms. Although previous analyses
highlight that beta-type pdfs can be effectively used to re-
produce the concentration distribution (Caroni and Fiorotto,
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Fig. 4. Scenario 1: empirical bivariate pdf of concentration and log-transformed hydraulic conductivity computed in the vertical line at the
expected x value of the plume centroid for a) the EnKF at time 1 T , b) the EnKF at time 4 T , c) ES at time 1 T , and d) ES at time 4 T .

Fig. 5. Scenario 2: log-transformed hydraulic conductivity field retrieved by a) the EnKF and b) ES using log-transformed concentration
data. The color bar indicates log-transformed hydraulic conductivity in ln(L/T ).

Fig. 5. Scenario 2: log-transformed hydraulic conductivity field retrieved by(a) the EnKF and(b) ES using log-transformed concentration
data. The color bar indicates log-transformed hydraulic conductivity in ln(L/T ).
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Fig. 6. Scenario 3: log-transformed hydraulic conductivity field retrieved by a) the EnKF and b) ES using normal score-transformed
concentration data. The color bar indicates log-transformed hydraulic conductivity in ln(L/T ).

Fig. 6. Scenario 3: log-transformed hydraulic conductivity field retrieved by(a) the EnKF and(b) ES using normal-score-transformed
concentration data. The color bar indicates log-transformed hydraulic conductivity in ln(L/T ).

2005), the log-normal pdf is easier to handle and often rep-
resents a reasonable assumption (e.g.,Bellin et al., 1994;
Zhang et al., 2000).

Figure5 shows theY fields estimated by the EnKF and the
ES when assimilating log-transformed concentration mea-
surements. The EnKF produces again a good reproduction of
the true hydraulic conductivity field, with only small differ-
ences with the results of scenario 1a, while the ES confirms
its difficulty in retrieving theY spatial distribution. Nonethe-
less, the comparison between scenarios 1b and 2b shows a
slight improvement of the ES solution, indicating that the ES
is more sensitive than the EnKF to the pdf of the assimilated
variable.

3.2.3 Scenarios with normal-score-transformed
concentration pdfs

Since the log-transformation of concentration values does
not ensure a normal pdf in all cases, in scenarios 3a and 3b
another type of transformation is applied to the concentra-
tion data. Here a Gaussian pdf is obtained by applying a

normal score transform (NST) (Zhou et al., 2011) to theC

values. The NST is a tool through which any cumulative
probability distribution function (cdf)F(x) is mirrored to
the standard normal distribution cdfG(y). In other words,
the generic variablex of theF(x) distribution can be trans-
formed into the corresponding normally distributed vari-
abley through the relationF(x) =G(y), i.e.,y =G−1

[F(x)].
In this casex =C and a cdf is built for each node of
the domain with the ensemble ofC values simulated by
the model, using the Hazen formulaF(C) = (i − 0.5)/NMC,
wherei = 1, . . . , NMC is the rank of the concentration values
after sorting the data in ascending order. For each node, dif-
ferent values ofC are univocally associated to the cdf values,
which are always the same and depend only on NMC.

The results obtained by assimilating normal-score-
transformed concentration data are reported in Fig.6 for both
the EnKF and the ES. Despite the Gaussian distribution of
the model variables, the retrieved fields are unsatisfactory for
both techniques, and when compared to the results of scenar-
ios 1a and 2a, even the EnKF performs poorly.
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Fig. 7. Y −C cross-correlation at t= 2 T for the nodes located at y=5.75 L in scenario 1a (subpanel a), scenario 1b (subpanel b), scenario
3a (subpanel c), scenario 3b (subpanel d), scenario 4a (subpanel e), and scenario 4b (subpanel f). Each color corresponds to a correlation
structure centered at a different node sampled by the plume (see Figure 2, subpanel a)
.

Fig. 7.Y − C cross correlation att = 2T for the nodes located aty = 5.75L in scenario 1a(a), scenario 1b(b), scenario 3a(c), scenario 3b(d),
scenario 4a(e), and scenario 4b(f). Each color corresponds to a correlation structure centered at a different node sampled by the plume (see
Fig. 2a)

.

Since in scenario 3 the approximations related to the Gaus-
sian assumption are removed, another reason must explain
the poor performance of both EnKF and ES. The results seem
to suggest that the NST might corrupt the cross-correlation
structure betweenY andC in the measurement locations. In-
deed, when theC values are log-transformed, the relation
that maps the original pdf ofC to the transformed one is the
same for all the different positions in space and thus the cor-
relation structure is conserved. This is not the case for sce-
nario 3, where a different NST is independently applied to
the concentration ensemble at each node.

In order to illustrate this point, theY − C cross-correlation
structures, evaluated in the measurement nodes by means of
the productPHT in Eq. (6), are compared for scenarios 1

and 3. The cross-correlation structures for scenario 1 at time
t = 2T and t = 4T are reported in panels a and b of Figs.7
and8, respectively, while panels c and d of the same figures
refer to scenario 3. The analysis considers only the longi-
tudinal behavior of the cross correlation by reporting in the
figures only the results calculated on the nodes aligned on
the dotted line shown in Fig.2. Each of the profiles shown
in Figs.7 and8 provides the cross correlation betweenY at
the node of interest, to which the profile corresponds, and
the concentration values simulated at any given lag distance
from that node.

In Figs.7 and8, we note that there are relevant differences
between the EnKF and the ES cross-correlation structures.
The EnKF cross-correlation behavior shows always higher
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Fig. 8. Y −C cross-correlation at t=4 T for the nodes located at y=5.75 L in scenario 1a (subpanel a), scenario 1b (subpanel b), scenario
3a (subpanel c), scenario 3b (subpanel d), scenario 4a (subpanel e), and scenario 4b (subpanel f). Each color corresponds to a correlation
structure centered at a different node sampled by the plume (see Figure 2, subpanel b)

Fig. 8.Y − C cross correlation att = 4T for the nodes located aty = 5.75L in scenario 1a(a), scenario 1b(b), scenario 3a(c), scenario 3b(d),
scenario 4a(e), and scenario 4b(f). Each color corresponds to a correlation structure centered at a different node sampled by the plume (see
Fig. 2b).

values at the origin (zero lag) and a rapid decay with increas-
ing lag, i.e., moving away from the measurement location.
This confirms that the effectiveness of the EnKF is limited
in a portion of the domain around the measurement location
(Camporese et al., 2011). With the ES the peak of correla-
tion at the measurement location is usually smaller than with
the EnKF, and the cross-correlation structure is more spread
out. As the cross correlation betweenY andC is usually sig-
nificant only for a limited lag distance, proportional to the
product of theY correlation scale and the length of the area
covered by the plume, the relatively high correlation values
characterizing the ES results at large lag values are proba-
bly spurious. For the same reason, the ES tends to produce
a Y field more smoothed, and thus less accurate, than that
estimated with the EnKF. Second, when the NST is applied

(compare panels c and d with a and b in Figs.7 and8), there
is an overall decrease of the peaks, and the cross-correlation
structures are even more smoothed, showing the significant
alterations operated by the transformation.

In addition to the cross-correlation corruption described
above, it must also be noted that the NST “fixes” only the
marginal distributions, but not the multivariate dependence.
Thus, there remains also a condition of non-multi-Gaussian
dependency among all states and parameters.

3.2.4 Scenarios with modified normal
score-transformed concentration pdfs

In order to maintain the originalY − C cross-correlation
structure and, at the same time, to operate within the
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Fig. 9. Scenario 4: log-transformed hydraulic conductivity field retrieved by a) the EnKF and b) ES using concentration data transformed
with a modified normal score transform. The color bar indicates log-transformed hydraulic conductivity in ln(L/T ).

Fig. 10. Root mean square error of a) the retrieved log-transformed hydraulic conductivity field and b) the concentration distribution in the
retrieved field for the all scenarios.

Fig. 9. Scenario 4: log-transformed hydraulic conductivity field retrieved by(a) the EnKF and(b) ES using concentration data transformed
with a modified normal score transform. The color bar indicates log-transformed hydraulic conductivity in ln(L/T ).
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Fig. 9. Scenario 4: log-transformed hydraulic conductivity field retrieved by a) the EnKF and b) ES using concentration data transformed
with a modified normal score transform. The color bar indicates log-transformed hydraulic conductivity in ln(L/T ).

Fig. 10. Root mean square error of a) the retrieved log-transformed hydraulic conductivity field and b) the concentration distribution in the
retrieved field for the all scenarios.

Fig. 10.Root mean square error of(a) the retrieved log-transformed hydraulic conductivity field and(b) the concentration distribution in the
retrieved field for the all scenarios.

assumption of Gaussianity required by both the EnKF and
the ES, a modified application of the NST is proposed. At
every time step, only one cumulative distribution function
is built by using the concentration values simulated in all
the measurement nodes. We underline that this is different
from the previous application of the NST, in which a re-
lation betweenC and its cdf is defined in each node in-
dependently. Now the cdfF(C), estimated at timeti , is
F(C) = (i − 0.5)/(NMC× mi), wheremi is the number of
measurement locations andi = 1, . . . , NMC× mi is the rank
of the concentration values after sorting all data in ascending
order. With this modified application of the NST we obtain a
satisfactory reproduction of the Gaussian distribution in each
node, and by using an invariant transformation, we manage
not to alter theY − C cross-correlation structure as much as
in the previous scenario using the classic NST. This is shown
in panels e and f of Figs.7 and8, where the cross-correlation
structures are more similar to the original ones in scenario 1,
especially at late times.

The results of the inversions, reported in Fig.9 for both
the EnKF and the ES, demonstrate the effectiveness of the

modified NST as the estimatedY fields are now showing an
improvement (with respect to the prior fields) comparable to
that in scenario 2 and look much better than those of sce-
nario 3 (Fig.6). As in the previous scenarios, the EnKF out-
performs the ES. The latter, however, shows significant im-
provements and seems to benefit more from the application
of the modified NST.

3.3 Discussion

In Fig. 10, the results of all the scenarios are summarized
and compared in terms of root mean square errors of both
Y andC vs. time. All of the observations made in the pre-
vious sections, which were based merely on visual compar-
ison, are confirmed by the RMSE profiles. The EnKF con-
sistently outperforms the ES, regardless of the adopted con-
centration pdfs, except for scenario 3a, in which the NST de-
teriorates the EnKF solution due to alterations of theY − C

cross-correlation structure. This result, which reveals the in-
adequacy of the NST for this application, is in accordance
with the conclusions drawn bySchoeniger et al.(2012). In
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their work,Schoeniger et al.(2012) applied the NST in con-
junction with the EnKF to assimilate aquifer drawdown mea-
surements and showed that the dependence between these
data and the parameters is higher than the one between con-
centrations and parameters. The ES is more sensitive to the
transformations operated to the assimilated data, as indicated
by the RMSE ofY in the various scenarios, even though the
same sensitivity is not reflected by the RMSE ofC (Fig. 10).
For all scenarios, with the exception of 2b (ES with log-
transformed concentration data), the RMSE ofC is consis-
tently lower than in the open loop, i.e., a Monte Carlo simu-
lation carried out with the prior ensemble ofY fields and no
data assimilation.

Overall, the problem of retrieving the hydraulic conductiv-
ity field through the assimilation of concentration measure-
ments is better handled by the EnKF due to the violation of
Gaussianity investigated earlier with the different scenarios
and to the high nonlinearity of the problem under consider-
ation. With the EnKF, theY fields are progressively updated
and the simulated plumes gradually converge toward the true
one. With the ES, the plumes evolve freely in the prior fields
until the end of the simulation and, consequently, their evo-
lution is very different from the true one, especially at late
times. To highlight this point, the true plume distributions at
t = 2T andt = 4T (Fig.2) are compared with the correspond-
ing ensemble means of the plume distribution simulated in
the prior fields (Fig.11a and b). Figure11c–f also shows the
evolution of the ensemble average of the plumes as simulated
in theY fields estimated att = 2T andt = 4T , respectively,
in scenario 1a (EnKF with original concentration pdfs). In
other words, in Fig.11c and d the EnKF is applied only un-
til t = 2T , and thereafter the plumes are left to evolve in the
estimatedY fields. The progressive correction of the mean
simulated plume is evident, and att = 2T it is already very
similar to the true one. With the ES, instead, there are no
recursive updates that modify the ensemble to resemble the
true Y field, and the nonlinearity of the problem cannot be
captured.

To further demonstrate our main findings, we simulated
two additional scenarios, in which we changed the variance
of the trueY field to 0.05 and 1.50 in order to decrease or
increase, respectively, the non-Gaussianity and nonlinearity
of the numerical experiments. We then carried out the inver-
sions with both the EnKF and the ES with the same prior
geostatistical parameters as in scenarios 1a, 1b, 4a, and 4b
(Table1). Table2 reports the inversion performance for all
scenarios in terms of relative changes ofY RMSE computed
as (RMSEt=4 − RMSEt=0)/RMSEt=0. With both assimila-
tion strategies (assimilation of untransformed and modified
NST-transformedC), the EnKF is able to decrease RMSE
by almost 40 % forσ 2

Y of up to 0.50, while some difficul-
ties arise only for the strongly heterogeneous case, probably
due to the lower variability in the initial ensemble (σ 2

Y = 0.75)
that could not capture all the variability of the highly hetero-
geneous reference field. However, a RMSE decrease of 11 %

Table 2. Inversion performance for scenarios 1a, 4a, 1b, and 4b (in
terms ofY RMSE relative changes between prior and estimated so-
lutions) as a function of the reference fieldY variance.

σ2
Y

Scenario 1a Scenario 4a Scenario 1b Scenario 4b

0.05 −0.373 −0.373 −0.096 −0.232
0.5 −0.379 −0.398 −0.056 −0.194
1.5 −0.116 −0.110 −0.045 −0.067

is still achieved. These reductions are always larger than the
corresponding values for the ES scenarios, confirming that
the EnKF can handle conditions of nonlinearity and non-
Gaussianity better than the ES does. The results also con-
firm that the ES is more sensitive than the EnKF to the trans-
formation of the pdfs, with better performances consistently
achieved by using the modified NST. Finally, the ES per-
formance progressively worsens as the heterogeneity of the
reference field increases, both with assimilation of untrans-
formed and transformed data.

4 Summary and conclusions

The present work investigated the capabilities of the EnKF
and the ES to retrieve the hydraulic conductivity spatial dis-
tribution through the assimilation of concentration measure-
ments. The objective was to compare the performance of
the two techniques and to analyze the effects of the lack of
Gaussianity in the system variables. A tracer injection test
was simulated in a two-dimensional domain representing a
heterogeneous aquifer. Different scenarios were analyzed to
determine how different transformations of the concentra-
tion probability distribution impact the inversion results. In
the first scenario, concentration data were assimilated in the
model without any manipulation, while in other three scenar-
ios we considered a log-transformation of the data and two
variants of the normal score transform (NST). In addition,
we analyze also the cross-correlation structure between log-
transformed hydraulic conductivityY and concentrationC.

The main conclusion of our study is that the EnKF can re-
produce with good accuracy the hydraulic conductivity field
and consistently outperforms the ES, regardless of the pdf
of the concentrations. This is due to two reasons: (i) with
the EnKF the lack of Gaussianity is overcome via the re-
cursive Gaussian increments given by the EnKF updates,
which eventually lead to an ensemble of members normally
distributed around the true solution; (ii) the same recursive
procedure progressively steers the ensemble of realizations
toward the true solution, thus easing the inversion problem
of the strong inherent nonlinearity of the dispersion process.
The only case in which the EnKF does not work properly
is when the NST is applied to ensure that the concentra-
tion pdf is Gaussian in each node of the domain. This is due
to the consequent alteration of theY − C cross-correlation
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Fig. 11. Ensemble mean of the plume evolution at a) t= 2 T and b) t= 4 T in the prior Y fields, at c) t= 2 T and d) t= 4 T in the Y field
estimated at t=2 T by the EnKF in scenario 1a and at e) t= 2 T and f) t=4 T in the Y field estimated at t= 4 T by the EnKF in scenario
1a. The color bar indicates concentration values.

Fig. 11.Ensemble mean of the plume evolution at(a t = 2T and(b) t =4T in the priorY fields, at(c) t = 2T and(d) t = 4T in theY field
estimated att = 2T by the EnKF in scenario 1a and at(e) t = 2T and(f) t = 4T in theY field estimated att = 4T by the EnKF in scenario 1a.
The color bar indicates concentration values.

structure, which instead must be correctly evaluated in order
to assure the effectiveness of the EnKF inversion procedure.
This suggests that the NST must be applied with caution in
any Kalman-filter-based inversion scheme by checking for
possible corruptions of the cross correlation between param-
eters and assimilation variables.

The ES performs always worse than the EnKF as it
does not involve recursive updates of theY fields. This has
two consequences: (i) the solute plumes are free to evolve
in the prior fields without corrections, eventually leading
to significant differences from the true plume evolution;

(ii) non-Gaussian contributions in the concentration pdf are
not kept under control.
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