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Abstract. Estimating the spatial variability of hydraulic con- of the porous media such as the hydraulic conductivty,
ductivity K in natural aquifers is important for predicting whose spatial heterogeneity is typically very pronounced in
the transport of dissolved compounds. Especially in the nonnatural aquifers and thus particularly difficult to character-
reactive case, the plume evolution is mainly controlled byize. For this reason, many efforts have been made for the de-
the heterogeneity oK. At the local scale, the spatial distri- velopment of inverse models capable of estimating aquifer
bution of K can be inferred by combining the Lagrangian hydraulic properties at various scales. Extensive reviews of
formulation of the transport with a Kalman-filter-based tech- these methods have been providedGarrera et al(1993;
nique and assimilating a sequence of time-lapse concentravicLaughlin and Townley1996; Zimmerman et al(1998
tion C measurements, which, for example, can be evaluateéndVrugt et al.(2008. Hydraulic conductivity and head data
on site through the application of a geophysical method. Thehave been typically used to constrain inverse models (e.g.,
objective of this work is to compare the ensemble KalmanChen and Zhan@006 Hendricks Franssen and Kinzelbach
filter (EnKF) and the ensemble smoother (ES) capabilities2008 Rubin et al, 2010. More recently, the use of informa-
to retrieve the hydraulic conductivity spatial distribution in tion derived by geophysical methods has been increasingly
a groundwater flow and transport modeling framework. Theproposed and investigated for the estimation of parameters in
application refers to a two-dimensional synthetic aquifer in groundwater modeling (e.dSamporese et aR01% Pollock
which a tracer test is simulated. Moreover, since Kalman-and Cirpka2012).
filter-based methods are optimal only if each of the involved Among the several mathematical tools available for the in-
variables fit to a Gaussian probability density function (pdf) version of hydrologic data, approximate Bayesian methods
and since this condition may not be met by some of thesuch as the ensemble Kalman filter (EnKF) and its varia-
flow and transport state variables, issues related to the nortions Evensen2009) allow for seeking an ensemble of in-
Gaussianity of the variables are analyzed and different transdependent samples conditional to the measurements, all rep-
formation of the pdfs are considered in order to evaluate theiresenting equally likely realizations of the actual variability
influence on the performance of the methods. The result®f the hydraulic parameters. These methods have been ap-
show that the EnKF reproduces with good accuracy the hyplied, for example, by the following authoiGhen and Zhang
draulic conductivity field, outperforming the ES regardless (2006, who used the EnKF to estimate the hydraulic con-
of the pdf of the concentrations. ductivity both in two- and three-dimensional domains assim-
ilating hydraulic head data anki measurementd;iu et al.
(2008, who obtained the distribution at the MADE site
(e.g.,Boggs et al.1992 by assimilating, in two subsequent
1 Introduction steps, hydraulic head and concentration data collected dur-
ing a tracer test; anBailey and B& (2010, who used the

One of the most challenging tasks in groundwater flow andensemble smoother (ES) by assimilating hydraulic head and
transport modeling is the assessment of hydraulic properties
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1518 E. Crestani et al.: EnKF vs. ES for tracer test data assimilation

groundwater return flow volume measurements to estimat®f concentration data are analyzed by considering different
the hydraulic conductivity distribution in a synthetic two- transformations of the relevant pdfs.
dimensional case. The EnKF and the ES are here implemented in the
More recently,Hendricks Franssen et gR011) applied same Lagrangian transport modeling framework proposed by
the EnKF to jointly calibrate the hydraulic conductivity and Crestani et al(2010 and Camporese et a{2011) in order
leakage coefficient in real time in an unconfined aquifer. Into estimate the hydraulic conductivity field by assimilating
Lietal. (2012, the EnKF was used to map the hydraulic con- concentration measurements derived from a tracer test in a
ductivity and porosity fields by assimilating dynamic piezo- two-dimensional synthetic aquifer. We hypothesize to follow
metric data and multiple concentration data.Bailey and  the full spatio-temporal evolution of the solute plume, which
Bali (2012, the ES was iteratively applied to estimate the would be observed in an electrical resistivity tomography ex-
parameters of a geostatistical model through assimilatiorperiment (e.g.Perri et al, 2012).
of water table elevation datdong et al.(2012 used the
EnKF in a synthetic two-dimensional aquifer to estimate the
hydraulic conductivity by assimilating solute concentration
data measured in a large number of observation wells.
A fundamental hypothesis for the application of Kalman-
filter-based methods is that all the variables must be dis-
tr_ibuted as a joint multivariate _Gagssialj prot_)ability den- According toEvenser(20093, the combined parameter and
sity function (pdf). In many applications, including ground- g¢ate estimation problem for a dynamical model can be for-
water flow and transport in heterogeneous aquifers, thenjated as finding the joint pdf of the parameters and model
“Gaussian approximation” is not honored and few efforts (516 given a set of measurements and a dynamical model
have been made recently trying to enforce this hypothesyih known uncertainties. Using Bayes' theorem, the prob-

2 Theory and methods

2.1 The ensemble Kalman filter and the ensemble
smoother

sis by means of different data transformatioB&al et al. lem can be written in the simplified form
(2010, for instance, applied the Gaussian anamorphosis
transformation to the variables of a three-dimensional cou-f(y, «|z) = vf(y, a) f(z|y, @), (1)

pled physical-biogeochemical model of the North Atlantic,
while Schoeniger et al(2012 used the same technique to wheref(y, «) is the joint pdf for the model state (as func-
estimate hydraulic conductivity through the assimilation of tion of space and time) and the parameters (z|y, ) are
3-D hydraulic tomography data. Another example includesthe likelihood function of the measurementsandy is a
Zhou et al.(2011), who applied the normal score trans- normalization constant whose computation requires the eval-
form to piezometric data used for the estimation of hydraulicuation of the integral of Eq.1j over the multi-dimensional
conductivity. solution and parameter space. Note that in writing Egwe

A limitation of the above methods to enforce Gaussian-implicitly assume that the only uncertainty in the model for-
ity is that they operate univariate (marginal) transformationsmulation lies in the parameters, while boundary and initial
to multivariate problems. As a result, the multivariate de- conditions are perfectly known. If, as usual, we work with
pendence structure between the variables cannot be ensuradmodel state that is discretized in time, we can represent
(Zhou et al, 2011). A possible alternative to data transfor- y at fixed time intervals ag; = y(t;), with i =0, 1, ... k.
mation is the use of particle filter (PF) methods, which, like If we further assume that the model is a first-order Markov
EnKF, are also based on a Monte Carlo approach, but derocess, we can define the pdf for the model integration from
not require the variables to be normally distributed. On thetimer;_1tot; asf (y;|yi—1, o). Letus now assume that also
other hand, a very large number of particles is needed fothe measurementscan be divided into subsets of measure-
adequate sampling of high-dimensional state and parametenent vectorg;, collected at the same time steps of the model
spaces, resulting in an excessive amount of computationa}, and that the measurement errors are uncorrelated in time.
time (Montzka et al.2012. Under these hypotheses and from Bayes’ theorem, Bq. (

Given the importance that the EnKF and the ES are achecomesKvensen20093
quiring as parameter estimation modeling tools in groundwa- .
ter hydrology, there is the need to investigate in more detail _ . .
their capabilities and the theoretical implications related to! QL -0 Yo @lt) = Yf(a)i:l_{f(y'ly“l’ O [ Gilyi. @) (2)
their use in a context that is much different from the one for
which they were originally developed, i.e., the optimal esti- in which the pdf of the parameteyd«) is expressed explic-
mation of system states onljN¢wak 2009. The objective itly. By rewriting Eq. ) as a sequence of iterations and inte-
of this work is thus to compare the EnKF and the ES capa-grating out the state variables at all previous times, we obtain
bilities to retrieve the hydraulic conductivity spatial distri-
bution in a groundwater flow and transport modeling frame-/ (Vi @lz1, ..., zi) = y.f (@) f (yilyi-1, @) f zilyi, @) (3)
work. In addition, the issues related to the non-Gaussianity
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The combined parameter and state estimation can thus be On the other hand, within the EnKF formulation, E) (
formulated sequentially using Bayesian statistics, under thés a sequential expression that can be solved through incre-
condition that measurement errors are independent in timenental updates given by Ed)(with the data at the current
and the dynamical model is a Markov process. Equatitps ( time step only.
and @) can be solved numerically by means of a Monte Carlo  Note that if the model is linear and all states, errors, and
approach, which approximates the probabilistic informationparameters are multivariate Gaussian, then both the EnKF
conveyed by the conditional pdfs of the state, parametersand the ES are exact in the Bayesian sense, and lead to iden-
and measurements with an ensemble of realizations of sizéical results at the final time of data assimilation. The tech-
NMC. Each of the NMC state vectors is propagated in timenical difference between the EnKF and the ES is analogous
according to the forecast model, which can be expressed asta the difference between kriging and sequential kriging as
vector-valued discrete-time state equation: described bywargas-Guzman and Ye(1999, who proved

' the identity between step-wise and one-in-all conditioning
¥y (1) = A[yj(r), ol 1, r]; n<t<t y) =y 4 for the linear/multi-Gaussian case.

Moreover, in both the EnKF and the ES, when the model
where y/(r) is the j-th (j =1, ..., NMC) state vector pre- pdfs and the likelihood function are Gaussian, the Bayesian
dicted by the model at the tinrea/ is the j-th set of model ~ formulation corresponds to the minimization of a quadratic
parametersA is the operator relating the system state at thecost function Evensen20093. The only difference is that
current timer to the system state at the previous timeand in the ES the time dimension is included in the optimization,
yé is the initial condition at timey. We assume here that the while in the EnKF the minimization is performed at each as-

model is error free and only the parameters are affected byimilation time. However, when the pdfs are not Gaussian,
uncertainty. Eqg. 6) is an approximation and no longer yields optimal up-

At time 1;, m; measurements are available and the modeldates in terms of a cost function minimization, although the

describing the relation between these measurements and tig¢neral Bayesian formulation remains valid, i.e., sampling of
system state is also expressed as the following vectoriaf Posterior pdfis still performed.

equation: 2.2 The inversion model

2/ () = Hywe(t:) + w' (1), ®) " the Lagrangian approach describediagan(1989 is here
whereH is the operator that maps the model state to the mea@dopted to describe the movement of a tracer plume through
surement locationgyyue(t;) is the true state, and (1;) isthe @ sgturqted, spatllally heterogeneous porous medium. As de-
j-th vector of observations at the time which is obtained ~ Scribed inCrestani et al2010 andCamporese et 82011,

by perturbing them; measurements with a random noise th_e solute cloud is driven py the effective velocity field ob_-
w/ (1;), representing the measurement errors. Here we ast_a_med at stegdy state solving the_ groundwater flow eq_uatlon
sume thaw/ (,) is normally distributed with expected value With appropriate boundary conditions. In natural sedimen-
equal to zero and assigned varian@g,, Under the hypoth- tary gqun‘ers the_ s_patlal _varlablllty of the porositycan be
esis that the pdfs for the model prediction as well as the likeli-considered negligible with respect to that &f (e.g., Gel-
hood are Gaussian, it is possible to update each realization ¢t&% 1993. Consequently, the concentrationrelated to the

the system state according to the following equation, whichPdf of the Lagrangian trajectory of equatior X, (t; a, fo),

is obtained by minimizing the model error covariance matrix wherea is the initial position of the considered particle and
(Evensen20093: to the injection time, is fully controlled by the spatial distri-

bution of the hydraulic conductivity. When dealing with real-
world applications, our interest is related to the average con-
centrationC over a finite volumeA V whose centroid is at.

By defining asM = ¢Cq Vp, the total mass of initial concen-

wherey/, 4is the j-th realization of the updated system state, tration Co uniformly injected in the volum@j, an estimation
Pe is the prior estimate of the system state error covariancef the concentration value is given by

yépd = y/ + PeHT (HF’eHT + Re)fl(z"' - Hy-"), (6)

matrix, which is computed by sampling the ensemble statis- ¢

tics, andRe is the measurement error covariance matrix. C(x, t; tg) = u / /Co(a)5[x’ — X (t; a, 19)] dadx’
Within the formulation of the ES, Eql) requires that the AV Vo

pdfs are approximated from an integration of the ensemble 1 N

through the whole assimilation time period. In other words, = —— f Z §[x" = X, (t; a, t0)] Aadx’,(7)

all of the data are processed by E6) in one step, and the NAVAV i=1

solution is updated as a function of space and time, USinQNhereN
the space-time covariances estimated from the ensemble
model realizations.

is the number of particles released to simulate the
%folute and is the Dirac delta function. Here we assume that
any diffusion or local scale dispersion is negligible.
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The problem of estimating the hydraulic conductivity field 8 e - w2
by using concentration measurements is solved by consider- .. _‘ -
ing a system state constituted only by the model parameters: 6"-. " '_ ‘ 1
y =[r, .... ) = o/, (8) 5 s -.i'l...- .i 05

m u
whereYi, ..., Y, are the log-transformed hydraulic con- >4 .-. 0
ductivity values ¥ =In K) at then nodes discretizing the do- 3 "_ ..;_ ' a8 0.5
main. At timezg, NMC realizations of the log-transformed ) . | F 1 B
hydraulic conductivity field are generated from a prior pdf 7 el
f (o) and the state vectors are built as in E). ( 1“,‘ Ll -.'Ill h 1.5
In the EnKF application, starting with the same initial con- 0 - , - " . g2

centrationCq for eachy field, the solute plume is propagated
forward in time to the first measurement time using the
Lagrangian transport model. At time the log-transformed Fig. 1. Spatial distribution of log-transformed hydraulic conductiv-
hydraulic conductivitiegYs, ..., Yn)j are updated based on ity in th_e referenc_e_ fielq. The color bar indicates log-transformed
the m1 measurements available by means of By, which ~ hvdraulic conductivityt” in In(L/T).
leverages the cross correlation betwéeand C, expressed
by the productPeH”. The process continues sequentially:
first, a propagation step over each interval betwgeand
t; and, second, an update step of the log-transformed hy3 1 \odel setup
draulic conductivity values at each measurement tinregre
performed. The process stops at the tigaecorresponding A two-dimensional referencé field is taken into account
to the last measurement. It must be observed that, in order t&p compare the proposed inversion models in a number
ensure mass conservation and consistency between updatg¢l numerical experiments. Following the recommendation
hydraulic conductivities and concentrations throughout theby Ababou et al.(1989, the domain has dimensions of
simulation, after each assimilation step the plume evolves L. x 8 L, whereL is an arbitrary and consistent unit length,
in the updated fields starting fronmy and with the same  and is discretized along each direction int6t sided cells,
initial solute distribution. This recursive application of the for a total of 33x 33 = 3297 corresponding nodes. The multi-
EnKF, also known as re-start EnKKVen and Chen2006 variate normal distribution of the reference field is the result
Hendricks Franssen and Kinzelba@008, differs from the  of a single unconditional generation fitting to an isotropic
classic sequential one commonly adopted since by restartingxponential covariance model with spatial mean=0.35,
the plume evolution with the same initial concentration in the variance ofg; =0.42, and correlation scale=1 L. The ran-
updatedy fields, we apply the predictive analysis expresseddom functionY is generated by an improved sequential
by the Kalman gain on a system state that is improved at eaclgaussian simulation algorithnB&( and Mayer2008. The
assimilation step. flow field is simulated using a standard finite volume solver
In the ES application there is no need for sequential up-at steady state with appropriate boundary conditions that en-
dates, and the parameters are estimated in a single offlingure a constant mean gradient. The resulting Eulerian veloc-
step. At timerp each realization of the ensembleloffields ity field is used for the computation of the trajectories of
is initialized with the same concentration distributiGpand N particles suitable for the simulation of a contaminant re-
the solute plume is propagated forward in time until the lastlease. Dirichlet boundary conditions are appliedcat0 L
assimilation time, and the concentration distributions for all (» = 100.0L) and atx =8 L (h = 95.2L), while Neumann no-
measurement times are recorded. The measurement vectoiisw boundary conditions are imposed along the remaining

3 Numerical experiments

are thus assembled as sides of the domain. A graphic representation of the reference
i i field is given in Fig.1. A tracer test is simulated by assum-
=z, 2(@2), ..oy 2(Em)]’ (®)  ing an instantaneous solute injection with initial transversal

. size of 6L (from y =1L to y =7 L) and longitudinal size of
i.e., the perturbed measurements for all th(t-:‘mmeasuremelaISL (centered inx =0.875L). The solute is simulated by

times (tm) are stored in a vector of dimension [m;], for 16 983 particles uniformly distributed, with the particle tra-

hM o simulati ) he E é=1 . jectories computed by means of the Pollock’s particle track-
eac qnte Carlo simulation. Slnc_et € .S 0€s _not_ requir ng post-processing algorithnPéllock 1988 and the con-
sequential updates, the computational time is significantly

. . ) entration computed according to E@) évery 0.5', where
lower than in the EnKF (about 10 times in the tests presente(;

i the followi . h h the di | fth is any consistent time unit. The total simulation time is
in the following sections) even though the dimension of the, _ 4 7 Figyre2 shows the plume evolution in the reference
vectors and matrices in EcB)(is larger than in the EnKF.

fieldatzr=27 andr=4T.
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Table 1. Description, prior geostatistical parameters, and measurement errors of the numerical experiments. CV stays for the measurement
coefficient of variation. In scenarios labeled with “a”, the normal score transform is applied independently to the ensemble of concentration
data in each assimilation node. In scenarios labeled with “b ”, the normal score transform is applied to the ensemble of concentration data
over all assimilation nodes.

Prior statistics

Assimilated data  Technique < Y > 2 A(L) cV

Oy
Reference field - - 0.03 0.43 1 -
Scenario 1a C EnKF —-0.50 0.75 1 0.1
Scenario 1b C ES -0.50 0.75 1 0.1
Scenario 2a InC EnKF -0.50 0.75 1 0.1
Scenario 2b InC ES —-0.50 0.75 1 0.1
Scenario 3a NST(®) EnKF —-0.50 0.75 1 0.1
Scenario 3b NST(®) ES -0.50 0.75 1 0.1
Scenario 4a modNST(é) EnKF —-0.50 0.75 1 0.1
Scenario 4b modNST(é) ES —0.50 0.75 1 0.1

0.025

0.02

0.015

0.005

Fig. 2. Plume evolution in the reference field@) s =27 and(b) r =4 T. The color bar denotes dimensionless concentratiobotted lines
show the direction along which the cross-correlation structure betWeemC is evaluated.

In this work the inversion is carried out by assimilating in terms of parameter estimation. Note that the spatial
concentration data. In particular, we include in the mea-mean and the variance of the prior distributionsYofare
surement vectors all the concentration data greater thasignificantly different from the corresponding parameters for
zero in order to use all the available information on the the reference system (see TalhjeThese assumptions serve
plume evolution. For the EnKF, the resulting dimension to represent typical conditions in which bothY > anda§
of the measurement vector (number of concentration dataf the true system are unknown. In scenario 1, concentration
assimilated) is 79, 90, 92, 102, 111, 116, 123, and 122measurements are assimilated without any transformation,
at times 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and"4respectively. i.e., with their original pdf, whereas in scenarios 2, 3, and 4,
Consequently, the measurement vector in the ES has dimemifferent pdf transformations are used to evaluate how they
sion  794+90+92+ 102+ 111+ 1164 1234 122=835.  affect the parameter estimation by approaching the Gaussian
The performances of the EnKF and the ES in retrievingrequirement.
the Y fields are compared to one another in a number of Based on preliminary sensitivity analyses, all scenarios are
different scenarios described in Taldleln these scenarios simulated using an ensemble size of 2000. This number of
we also analyze the implications of the concentration non-realizations is computationally affordable and guarantees a
Gaussianity through various marginal transformations of theproper description of the dispersion process for the range
pdf. The prior geostatistical parameters and the measuremeinf log-transformed hydraulic conductivity variance used here
uncertainty are kept constant in all scenarios as the objectiv€Bellin et al, 1992 Salandin and Fiorottd 998.
is to study the issues related to the effect of the pdf of the It should be noted that the ensemble of pribfields is
model variables on the EnKF and the ES performancesynthetically generated by the same algorithm used to create
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Fig. 3. Scenario 1: log-transformed hydraulic conductivity field retrievedd)the EnKF andb) ES using untransformed concentration
data. The color bar indicates log-transformed hydraulic conductivity (b A@'). (c) and (d) show the estimation variance maps after the
inversion for the EnKF and ES, respectively.

the true field and that the application of the Lagrangian trans3.2 Results

port model in the true field yields exactly the true concentra-

tion distribution. The knowledge of the true state allows us ) . .

to select the concentration measurements used during the as:2-1  Scenarios with untransformed concentration pdfs
similation and to evaluate the performance of the EnKF and

the ES with respect to a known reference system. In scenarios 1a and 1b, the concentration values are assimi-
_ Thelestlmate of the h_ydrfaullc conductivity fields in the var- |a1ad in the update procedure without modifying their orig-
ious simulated scenarios is assessed by means of the rogj; pdf, for both the EnKF and the ES. The spatial distri-
mean-square error (RMSE), computed as butions of Y resulting from the inversions are reported in
Fig. 3. The comparison between the retrieved fields and the
3 (Ysim,i _ Ytruei) _refere_nce _fleld (Figl) §h0ws that the EnKF is quite effective
i=1 in estimating the I field, whereas the ES performs rather
RMSE = , (10) ' .
n poorly. The same figure shows also the ensemble variance
_ ) ) maps ofY estimation for both the EnKF and the ES. As ex-
wheren is the total number of nodes of the discretized do- pected, the final variance is much smaller for the EnKF be-
main, Ysim; is the ensemble mean of thevalues estimated  cause of the numerous updates that bring the ensemble to
atthei-th node, andtre; is the truey value at thé-thnode.  converge toward a unique solution. Obviously, the ES, rely-
~ Finally, we also assess the plume evolution as simulategng only on one update, shows a larger final variance. This
in the reconstructed f|e_lds_by means of the concentration jndicates that the ES solution could probably be improved
RMSE, whose formulation is analogous to that'of if an iterative procedure was used. However, we elected not
to follow such an approach since applying the ES itera-
tively would lead to losing one of the main advantages of the
scheme, i.e., its offline, one-time application at the end of the
simulation period, and thus its lower computational demand

Hydrol. Earth Syst. Sci., 17, 15174531, 2013 www.hydrol-earth-syst-sci.net/17/1517/2013/
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Fig. 4. Scenario 1: empirical bivariate pdf of concentration and log-transformed hydraulic conductivity computed in the vertical line at the
expectede value of the plume centroid fda) the EnKF at time T, (b) the EnKF at time 47, (c) ES at time 1", and(d) ES at time 4I".

(computational time for the ES in these simulations is about A further explanation for the good performance of the
1/10 of the time required by the EnKF). EnKF can be found in its recursive application, through
In these scenarios, both the EnKF and the ES are affectedhich, at each assimilation step, the plume is restarted with
by the approximations related to the Gaussian assumption ahe same initial concentration in the updatédields. This
Eq. 6) as the tracer concentration pdf at early travel timesis a known property of the restart EnKF: the state update is
departs significantly from the normal pdf (e.§alandin and  performed by invoking the governing equations with the up-
Fiorotto, 1998. Nevertheless, the EnKF can handle these ap-dated parameters. Therefore, the parameter—state relation is
proximations better than the ES as, at each update, the readdways backed by the physics of the transport procé&n(
izations are steered toward the true solution and the Gausand Chen2006 Hendricks Franssen and Kinzelba@008§
sian increments of the ensemble members lead to an approNowak 2009. This procedure is analogous to the advanced
imately Gaussian ensemble distributed around the true sdfirst-order second-moment (AFOSM) method adopted in risk
lution. This property of the sequential updating is not ex- analysis ¥en et al, 1986. As in AFOSM, the lack of Gaus-
ploited in the ES, where realizations evolve freely until the sianity is overcome by approaching recursively the solution
end of the simulation, exacerbating the effects related towith improved values of the estimator, here represented by
non-Gaussian ensemble distributions. This is demonstratethe Kalman gain, which leads to improved estimates of the
clearly by Fig.4, which shows, for both the EnKF and the solution itself.
ES, the bivariate pdf of concentration and log-transformed
hydraulic conductivity computed at timegland 4T in the 3.2.2 Scenarios with log-transformed concentration
vertical line at the expected value of the plume centroid. pdfs
In the ES scenario, where the prior plumes are left free to
evolve, the pdf tends to develop into a bimodal distribution. In scenarios 2a and 2b, we assimilate log-transformed con-
Instead, in the EnKF scenario, this behavior is prevented bycentration values in order to evaluate if a proper transforma-
the sequential updates and the final distribution, although stiltion of the concentration pdf can improve the effectiveness
non-Gaussian, can be better approximated by a multivariatef the assimilation algorithms. Although previous analyses
normal pdf. highlight that beta-type pdfs can be effectively used to re-
produce the concentration distributio@groni and Fiorottp
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Fig. 5. Scenario 2: log-transformed hydraulic conductivity field retrievedd)ythe EnKF andb) ES using log-transformed concentration
data. The color bar indicates log-transformed hydraulic conductivity(ib ).
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Fig. 6. Scenario 3: log-transformed hydraulic conductivity field retrieved(@ythe EnKF and(b) ES using normal-score-transformed
concentration data. The color bar indicates log-transformed hydraulic conductivityZinm.

2009, the log-normal pdf is easier to handle and often rep-normal score transform (NSTYkou et al, 201) to theC
resents a reasonable assumption (eBgllin et al, 1994 values. The NST is a tool through which any cumulative
Zhang et al.2000). probability distribution function (cdf)F (x) is mirrored to
Figure5 shows the fields estimated by the EnKF and the the standard normal distribution cdf(y). In other words,
ES when assimilating log-transformed concentration meathe generic variable of the F(x) distribution can be trans-
surements. The EnKF produces again a good reproduction dbrmed into the corresponding normally distributed vari-
the true hydraulic conductivity field, with only small differ- abley through the relatio (x) =G (y), i.e.,y = G1[F (x)].
ences with the results of scenario 1a, while the ES confirmdn this casex=C and a cdf is built for each node of
its difficulty in retrieving theY spatial distribution. Nonethe- the domain with the ensemble @f values simulated by
less, the comparison between scenarios 1b and 2b showsthe model, using the Hazen formul&C) = (i — 0.5)/NMC,

slight improvement of the ES solution, indicating that the ESwherei =1, ..., NMC is the rank of the concentration values
is more sensitive than the EnKF to the pdf of the assimilatedafter sorting the data in ascending order. For each node, dif-
variable. ferent values o are univocally associated to the cdf values,
which are always the same and depend only on NMC.
3.2.3 Scenarios with normal-score-transformed The results obtained by assimilating normal-score-
concentration pdfs transformed concentration data are reported in@igr both

) ) ) the EnKF and the ES. Despite the Gaussian distribution of
Since the log-transformation of concentration values doeghe model variables, the retrieved fields are unsatisfactory for
not ensure a normal pdf in all cases, in scenarios 3a and 3Qoth techniques, and when compared to the results of scenar-

another type of transformation is applied to the concentrajgs 13 and 2a, even the EnKF performs poorly.
tion data. Here a Gaussian pdf is obtained by applying a
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Fig. 7.Y — C cross correlation at=2 T for the nodes located at=5.75L in scenario 14a), scenario 1i§b), scenario 3#c), scenario 3i§d),

scenario 44e), and scenario 4ff). Each color corresponds to a correlation structure centered at a different node sampled by the plume (see

Fig. 2a)

Since in scenario 3 the approximations related to the Gausand 3. The cross-correlation structures for scenario 1 at time
sian assumption are removed, another reason must explain=27 andt=4T are reported in panels a and b of Figs.
the poor performance of both EnKF and ES. The results seerand8, respectively, while panels ¢ and d of the same figures
to suggest that the NST might corrupt the cross-correlatiorrefer to scenario 3. The analysis considers only the longi-
structure betweeli andC in the measurement locations. In- tudinal behavior of the cross correlation by reporting in the
deed, when the” values are log-transformed, the relation figures only the results calculated on the nodes aligned on
that maps the original pdf af to the transformed one is the the dotted line shown in Fig2. Each of the profiles shown
same for all the different positions in space and thus the corin Figs.7 and8 provides the cross correlation betwegrat
relation structure is conserved. This is not the case for scethe node of interest, to which the profile corresponds, and
nario 3, where a different NST is independently applied tothe concentration values simulated at any given lag distance
the concentration ensemble at each node. from that node.

In order to illustrate this point, thE — C cross-correlation In Figs.7 and8, we note that there are relevant differences
structures, evaluated in the measurement nodes by means bétween the EnKF and the ES cross-correlation structures.
the productPH” in Eq. (6), are compared for scenarios 1 The EnKF cross-correlation behavior shows always higher
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Fig. 2b).

values at the origin (zero lag) and a rapid decay with increas{compare panels ¢ and d with a and b in Figand8), there

ing lag, i.e., moving away from the measurement location.is an overall decrease of the peaks, and the cross-correlation
This confirms that the effectiveness of the EnKF is limited structures are even more smoothed, showing the significant
in a portion of the domain around the measurement locatioralterations operated by the transformation.

(Camporese et al2017). With the ES the peak of correla-

In addition to the cross-correlation corruption described

tion at the measurement location is usually smaller than withabove, it must also be noted that the NST “fixes” only the
the EnKF, and the cross-correlation structure is more spreadharginal distributions, but not the multivariate dependence.

out. As the cross correlation betweErandC is usually sig-

Thus, there remains also a condition of non-multi-Gaussian

nificant only for a limited lag distance, proportional to the dependency among all states and parameters.

product of theY correlation scale and the length of the area

covered by the plume, the relatively high correlation values3z 2 4 Scenarios with modified normal

characterizing the ES results at large lag values are proba-

score-transformed concentration pdfs

bly spurious. For the same reason, the ES tends to produce
a Y field more smoothed, and thus less accurate, than tha}, qrqer to maintain the original’ — C cross-correlation
estimated with the EnKF. Second, when the NST is appliedgi,cture and, at the same time, to operate within the

Hydrol. Earth Syst. Sci., 17, 15174531, 2013
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Fig. 10.Root mean square error () the retrieved log-transformed hydraulic conductivity field &nythe concentration distribution in the
retrieved field for the all scenarios.

assumption of Gaussianity required by both the EnKF andmodified NST as the estimatatfields are now showing an
the ES, a modified application of the NST is proposed. Atimprovement (with respect to the prior fields) comparable to
every time step, only one cumulative distribution function that in scenario 2 and look much better than those of sce-
is built by using the concentration values simulated in all nario 3 (Fig.6). As in the previous scenarios, the EnKF out-
the measurement nodes. We underline that this is differenperforms the ES. The latter, however, shows significant im-
from the previous application of the NST, in which a re- provements and seems to benefit more from the application
lation betweenC and its cdf is defined in each node in- of the modified NST.

dependently. Now the cdF(C), estimated at time;, is

F(C)=(i — 0.5)/(NMCx m;), wherem; is the number of 33 Discussion

measurement locations and 1, ..., NMCx m; is the rank

of the copcen.tration.v_alues af_ter §orting all data in asceqdinqn Fig. 10, the results of all the scenarios are summarized
ord'er. With this modﬂed application of'the NST we opta|n a and compared in terms of root mean square errors of both
satisfactory reproduction of the Gaussian distribution in eachY and C vs. time. All of the observations made in the pre-

node, and by using an invariant trz_insformanon, We Managdg;q s sections, which were based merely on visual compar-
not to alter the¥ — C cross-correlation structure as much as ison, are confirmed by the RMSE profiles. The EnKF con-
In the pTewousasfcefn;rl; usgg thﬁ clast?c NST. This IIS ‘:'.howr%istently outperforms the ES, regardless of the adopted con-
IN panels € and T ot F1gs. ands, Where the Cross-correlation o yration pdfs, except for scenario 3a, in which the NST de-
structures are more similar to the original ones in scenario 1teri0rates the EnKE solution due to alterations of the C
especially at late times. cross-correlation structure. This result, which reveals the in-

The results of the inversions, reported in mor both adequacy of the NST for this application, is in accordance
the EnKF and the ES, demonstrate the effectiveness of thSVith the conclusions drawn bgchoeniger et a(2012. In
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their work, Schoeniger et a(2012 applied the NST in con-  Table 2. Inversion performance for scenarios 1a, 4a, 1b, and 4b (in
junction with the EnKF to assimilate aquifer drawdown mea- terms ofy RMSE relative changes between prior and estimated so-
surements and showed that the dependence between thelgtions) as a function of the reference figidzariance.

data and the parameters is higher than the one between con-
centrations and parameters. The ES is more sensitive to theof ~ Scenario 1a  Scenario 4a  Scenario 1b  Scenario 4b

transformations operated to the assimilated data, as indicatedq g5  _g 373 _0.373 _0.096 _0.232
by the RMSE ofY in the various scenarios, even thoughthe 05 —0.379 —0.398 —0.056 —0.194
same sensitivity is not reflected by the RMSHED(Fig. 10). 15 —-0.116 —-0.110 —0.045 —0.067

For all scenarios, with the exception of 2b (ES with log-
transformed concentration data), the RMSEfs consis-

tently lower than in the open loop, i.e., a Monte Carlo simu- s stjl| achieved. These reductions are always larger than the
lation carried out with the prior ensemble bffields and no  ¢oresponding values for the ES scenarios, confirming that
data assimilation. o . _ the EnKF can handle conditions of nonlinearity and non-
~ Overall, the problem of retrieving the hydraulic conductiv- Gayssianity better than the ES does. The results also con-
ity fleld_ through the assimilation of concentration Measure-firm that the ES is more sensitive than the EnKF to the trans-
ments is better handled by the EnKF due to the violation oftormation of the pdfs, with better performances consistently
Gaussianity investigated earlier with the different scenarios;chieved by using the modified NST. Finally, the ES per-
and to the high nonlinearity of the problem under consider-foymance progressively worsens as the heterogeneity of the

ation. With the EnKF, the’ fields are progressively updated yeference field increases, both with assimilation of untrans-
and the simulated plumes gradually converge toward the tru¢y med and transformed data.

one. With the ES, the plumes evolve freely in the prior fields
until the end of the simulation and, consequently, their evo-
lution is very different from the true one, especially at late 4 Summary and conclusions
times. To highlight this point, the true plume distributions at
t=2T andr =4T (Fig. 2) are compared with the correspond- The present work investigated the capabilities of the EnKF
ing ensemble means of the plume distribution simulated inand the ES to retrieve the hydraulic conductivity spatial dis-
the prior fields (Figlla and b). Figurd 1c—f also shows the tribution through the assimilation of concentration measure-
evolution of the ensemble average of the plumes as simulatethents. The objective was to compare the performance of
in theY fields estimated at=2T and:=4T, respectively, the two techniques and to analyze the effects of the lack of
in scenario la (EnKF with original concentration pdfs). In Gaussianity in the system variables. A tracer injection test
other words, in Figlic and d the EnKF is applied only un- was simulated in a two-dimensional domain representing a
til t =27, and thereafter the plumes are left to evolve in the heterogeneous aquifer. Different scenarios were analyzed to
estimatedy fields. The progressive correction of the mean determine how different transformations of the concentra-
simulated plume is evident, andmat 2T it is already very tion probability distribution impact the inversion results. In
similar to the true one. With the ES, instead, there are nahe first scenario, concentration data were assimilated in the
recursive updates that modify the ensemble to resemble thmodel without any manipulation, while in other three scenar-
true Y field, and the nonlinearity of the problem cannot be ios we considered a log-transformation of the data and two
captured. variants of the normal score transform (NST). In addition,
To further demonstrate our main findings, we simulatedwe analyze also the cross-correlation structure between log-
two additional scenarios, in which we changed the variancdaransformed hydraulic conductivity and concentratiod'.
of the trueY field to 0.05 and 1.50 in order to decrease or The main conclusion of our study is that the EnKF can re-
increase, respectively, the non-Gaussianity and nonlinearityproduce with good accuracy the hydraulic conductivity field
of the numerical experiments. We then carried out the inver-and consistently outperforms the ES, regardless of the pdf
sions with both the EnKF and the ES with the same priorof the concentrations. This is due to two reasons: (i) with
geostatistical parameters as in scenarios 1a, 1b, 4a, and 4be EnKF the lack of Gaussianity is overcome via the re-
(Tablel). Table?2 reports the inversion performance for all cursive Gaussian increments given by the EnKF updates,
scenarios in terms of relative changeYoRMSE computed ~ which eventually lead to an ensemble of members normally
as (RMSE_4 — RMSE_p)/RMSE_g. With both assimila-  distributed around the true solution; (ii) the same recursive
tion strategies (assimilation of untransformed and modifiedprocedure progressively steers the ensemble of realizations
NST-transformed’), the EnKF is able to decrease RMSE toward the true solution, thus easing the inversion problem
by almost 40 % fora§ of up to 0.50, while some difficul- of the strong inherent nonlinearity of the dispersion process.
ties arise only for the strongly heterogeneous case, probabl¥he only case in which the EnKF does not work properly
due to the lower variability in the initial ensemblﬁﬁ(z 0.75) is when the NST is applied to ensure that the concentra-
that could not capture all the variability of the highly hetero- tion pdf is Gaussian in each node of the domain. This is due
geneous reference field. However, a RMSE decrease of 11 % the consequent alteration of thle— C cross-correlation
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Fig. 11. Ensemble mean of the plume evolutionf@t =27 and(b) =4 T in the priorY fields, at(c) t=2T and(d) r=4T in theY field
estimated at=2T by the EnKF in scenario laand(@): =27 and(f) t =4 T in theY field estimated at=4T by the EnKF in scenario 1a.
The color bar indicates concentration values.

structure, which instead must be correctly evaluated in orde(ii) non-Gaussian contributions in the concentration pdf are
to assure the effectiveness of the EnKF inversion procedurenot kept under control.

This suggests that the NST must be applied with caution in

any Kalman-filter-based inversion scheme by checking for

possible corruptions of the cross correlation between paramAcknowledgementsThis work was supported by the University
eters and assimilation variables. of Padova (projects CPDA089375 and STPDO8RWBY). We

The ES performs always worse than the EnKF as itgratefully acknowledge Wolfgang Nowak (University of Stuttgart,

does not involve recursive undates of thdields. This has Germany) and two anonymous reviewers for their comments and
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two consequences: (i) the solute plumes are free to evolve

in the prior fields without corrections, eventually leading ggjted by: H.-J. Hendricks Franssen

to significant differences from the true plume evolution;
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