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Abstract. Conceptual hydrological models rely on calibra-
tion for the identification of their parameters. As these mod-
els are typically designed to reflect real catchment pro-
cesses, a key objective of an appropriate calibration strategy
is the determination of parameter sets that reflect a “realis-
tic” model behavior. Previous studies have shown that pa-
rameter estimates for different calibration periods can be sig-
nificantly different. This questions model transposability in
time, which is one of the key conditions for the set-up of a
“realistic” model. This paper presents a new approach that
selects parameter sets that provide a consistent model perfor-
mance in time. The approach consists of testing model per-
formance in different periods, and selecting parameter sets
that are as close as possible to the optimum of each individ-
ual sub-period. While aiding model calibration, the approach
is also useful as a diagnostic tool, illustrating tradeoffs in
the identification of time-consistent parameter sets. The ap-
proach is applied to a case study in Luxembourg using the
HyMod hydrological model as an example.

1 Introduction

Conceptual hydrological models represent an abstraction of
real world processes, and are typically constituted of a num-
ber of interconnected reservoirs which are supposed to rep-
resent the main catchment compartments and dominant pro-
cesses (Wagener et al., 2003). Typically, several of these
model parameters are not measurable, even if they are sup-
posed to represent physical catchment characteristics, and as

a result they have to be determined by calibration (Wheater
et al., 1993). Different approaches to infer parameter val-
ues and their distributions have been developed, for exam-
ple single or multi-objective calibration (Gupta et al., 1998),
generalized likelihood uncertainty estimation (GLUE,Beven
and Binley, 1992), dynamic identifiability analysis (DYNIA,
Wagener et al., 2003) and Bayesian inference (Wood and
Rodŕıguez-Iturbe, 1975).

A key objective for hydrological modeling is the develop-
ment of “realistic” models, that is, models which are able to
reflect real catchment processes (Wagener, 2003). The set-up
of a realistic model requires the determination of a realistic
model structure and a suitable parameterization. While the
determination of a suitable model structure is a theoretical
development in its own right (e.g.Wagener et al., 2002; Feni-
cia et al., 2007, 2011; Clark et al., 2008; Savenije, 2009), we
focus here on the determination of realistic parameter sets,
and in particular, on parameter sets that reflect a consistent
model behavior in time.

Model transposability in time is in fact recognized as one
of the main requirements to a successful “validation” of
model performance (Kleměs, 1986). Hartmann and B́ardossy
(2005) advocate that “if a model is to be used under non-
stationary conditions, its parameters and process descriptions
should be transferable”.

The calibration–validation approach (or the split-sample
test proposed byKleměs, 1986) has become standard in
hydrological practice (Andréassian et al., 2009). A model
is calibrated for a period of time and the parameter sets
which are selected as behavioral in the calibration period
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are subsequently evaluated for a different validation pe-
riod. Several combinations of calibration and validation
for multiple-response data were suggested byMroczkowski
et al.(1997). Calibration and validation is proposed as a cru-
cial step in the comprehensive model developing scheme pro-
posed byRefsgaard et al.(2005).

Seibert(2003) pointed out that the success of identifying
the best parameter set (or model structure) relies on the se-
lection of time periods with similar characteristics. He ar-
gued that the reason for the scarce literature on models which
perform well in time periods with characteristics different
from the calibration period is due to the fact that they most
probably fail this test (i.e. the differential split sample test
proposed byKleměs, 1986). Kirchner(2006) criticized com-
monly used model evaluation methods. He argued that “such
models are often good mathematical marionettes; they often
can dance to the tune of the calibration data. However, their
predictive validity is often in doubt”. This shortcoming was
repeatedly addressed in the literature (Anderson and Woess-
ner, 1992; Hassan, 2004; Gupta et al., 2008; Refsgaard and
Hansen, 2010).

The failure of validation tests has its counterpart in the
fact that calibrated model parameters are inherently linked
to the calibration time period, and may be inadequate to
represent other periods.Wagener et al.(2003) developed a
method to screen across the time series of model prediction
in order to investigate the identifiability of model parameters.
They show that uncertainties associated to model parameters
can vary substantially in different time periods.Coron et al.
(2012) used a similar concept to investigate the performance
of the three models in contrasting climate conditions. They
questioned the validity of parameter transferability in time
due to varying climate conditions.

Previously,Freer et al.(2003) evaluated the dynamic TOP-
MODEL using GLUE with different objective functions
based on the rising or falling limbs of the hydrograph. They
showed that it may be difficult to propose a consistently
parameterized model structure due to the significant vari-
ability of the observed responses. They concluded that the
model fails to meet even relaxed acceptability thresholds.
Hartmann and B́ardossy(2005) investigated parameter trans-
ferability in different climatic conditions (“warm”, “cold”,
“wet” and “dry”) and for different time scales (from days
to years). They designed a calibration method that allows a
good performance on different time scales simultaneously.
Li et al. (2012) investigated the transferability of model pa-
rameters for dry and wet conditions. They showed that the
dry period contains more information for model calibration
than the wet period.Bárdossy and Singh(2008), using the
depth function (Tukey, 1975), concluded “that equally per-
forming parameters are not necessarily equally transferable
or equally sensitive”.

While the decrease of model performance in the valida-
tion period can have many causes, we focus here on how
it is affected by the parameter selection approach. Various

approaches have been proposed to extract meaningful hy-
drological information from the observed time series.Boyle
et al. (2000, 2001) used the multi-objective calibration ap-
proach proposed byGupta et al.(1998) to calibrate a model
for different flow segments of the hydrograph. The multi-
objective approach makes it possible to identify optimal pa-
rameter sets for a set of objective functions. This approach
was extensively used in several applications (for a review see
Efstratiadis and Koutsoyiannis, 2010). Incorporating multi-
ple calibration-criteria, for instance tracer data or remotely
sensed evaporation, into model calibration helps in identi-
fying a more realistic model structure and parameter sets
(e.g.Weiler et al., 2003; Freer et al., 2004; Uhlenbrook and
Sieber, 2005; Vach́e and McDonnell, 2006; Son and Siva-
palan, 2007; Winsemius et al., 2008; Dunn et al., 2008;
Birkel et al., 2010; Fenicia et al., 2010; Hrachowitz et al.,
2012).

Both multi-objective and multi-criteria optimizations con-
strain the feasible parameter space and facilitate parameter
selection on the basis of performance trade-offs, i.e. Pareto
fronts. However, as argued byBeven(2006), the mere map-
pings of optimum parameter sets after calibration are: “too
simplistic, since they arbitrarily exclude many models that
are very nearly as good as theoptima”. As argued by
Andréassian et al.(2012), mathematically optimum param-
eter sets may be far different from hydrologically optimum
parameter sets. These arguments simply imply that the pa-
rameter realization should include “sub-optimal” parameter
sets as well.

Hence the question of how to retain model parameters that
have a consistent model behavior in time deserves further
investigations. A related challenge is how to establish the
tradeoff between behavioral and non-behavioral parameters
in a meaningful way.

With the attempt to address this question, we introduce a
new approach for parameter identification including optimal
and sub-optimal parameter sets which are more time con-
sistent. The method is based on the calibration on different
periods, and determines the parameter sets which perform
best for all these sub-periods. As the selected parameter sets
are evaluated in different periods, only the time consistent
parameter sets are selected. The new method is applied to
a case study in the Wark catchment in Luxembourg, using
the lumped conceptual model HyMod, and compared with
a calibration–validation approach with respect to parameter
identifiability and performance.

2 Sub-period calibration

The aim of the sub-period calibration is to identify a time
consistent parameterization for a certain model structure and
data set. The approach involves two steps. First, the avail-
able input and output data sets are split into (ideally equal-
length) k sub-periods. These sub-periods and their lengths
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Fig. 1. Schematic illustration of the sub-period calibration approach (circles, stars and triangles represent the performance of different
parameter sets in the 2 periods):(a) Calibration–validation of a two dimensional optimization problem; the lines represent the Pareto fronts
in 2 periods (CPF1 and CPF2 for sub-period calibration, respectively).(b) Proposed method of calibration that aims at minimizing the
distance to the 2 Pareto fronts (CPF1 and CPF2) of each sub-period.(c) Minimum distance Pareto front (MDPF). Performance of parameter
sets in every sub-period is depicted by the same color as the calibration Pareto front (CPF) of that specific sub-period.

can be arbitrarily chosen. They can, for example, be months,
seasons, years, or wetness conditions (e.g.Hartmann and
Bárdossy, 2005; Seiller et al., 2012). Additionally, a number
n of objective functions is defined.

Each sub-period is then calibrated individually by sam-
pling the parameter space and identifying then-dimensional
Pareto front for each sub-period. Thereforek n-dimensional
calibration Pareto fronts (CPF) are obtained.

Subsequently, the parameter space is sampled to find pa-
rameter sets which minimize the distance to thek Pareto
fronts. Distance measures can, for example, be the Euclid-
ian distance to the Pareto front or any other measure which
evaluates the performance of a parameter set relative to the
Pareto front. This leads, for each parameter set, tok distances
for each of thek sub-periods.

The goal is to find parameter sets that minimize the dis-
tances to all Pareto fronts. In order to achieve this, in ak-
dimensional space, we represent each parameter set by its
distance to each of thek Pareto fronts. The Pareto front of this
cloud of points represents the parameter sets with minimum
distance to all Pareto fronts. We call it the minimum distance

Pareto front (MDPF). It contains the parameter sets that have
the most consistent performance in each sub-period.

The concept is illustrated in Fig. 1 with a schematic 2-
objective function, 2-sub-period example. The CPFs for the
two sub-periods are shown in Fig. 1a. The circle represents
a parameter set that is a Pareto member of the first sub-
period (zero distance to the CPF1); however, it does not per-
form well compared to the optimum in the second sub-period
(large distance to the CPF2). The parameter set represented
by the triangle, although sub-optimal in the first sub-period,
is a Pareto member in the second sub-period. The parameter
set represented by the star, on the other hand, although not
a Pareto member in both sub-periods, performs rather well
overall (small distance to both the CPF1 and CPF2).

Figure 1c plots the distance of each parameter set to the
Pareto fronts. The circle has zero distance to CPF1, and large
distance to CPF2. It does not belong to the MDPF. The tri-
angle has zero distance to CPF2, and small distance to CPF1,
indicating the edge of MDPF. The star has small distances to
both CPF1 and CPF2, and it belongs to the MDPF at some
intermediate position.
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Table 1.Rainfall, runoff and potential evaporation for year 1998 to
2009 for the Wark catchment.

Potential
year Rainfall Runoff evaporation

(mm yr−1) (mm yr−1) (mm yr−1)

1998 997 370 709
1999 1065 381 738
2000 1062 419 729
2001 1198 397 725
2002 1025 406 744
2003 788 225 797
2004 865 247 713
2005 738 154 741
2006 830 244 774
2007 983 410 750
2008 966 418 727
2009 886 397 749

3 Case study

3.1 Study area and data

The outlined methodology will, in the following, be illus-
trated with a case study using data from the Wark catch-
ment in the Grand Duchy of Luxembourg. The catchment
has an area of 82 km2 with the catchment outlet located
downstream of the town of Ettelbrück at the confluence with
the Alzette River (49.85◦ N, 6.10◦ E). With an average pre-
cipitation of 850 mm yr−1 and an average potential evapo-
ration of 650 mm yr−1 the average runoff is approximately
250 mm yr−1. The geology in the northern part is domi-
nated by schist while the southern part of the catchment is
mostly underlain by sandstone and conglomerate. The dom-
inant land uses are forest on hillslopes, agricultural land
on plateaus and pastures in the valley bottoms. The eleva-
tion varies between 195 to 532 m a.s.l. with an average of
380 m a.s.l. The slope of the catchment varies between 0–
200 %, with an average of 17 % (Gharari et al., 2011). The
hydrological data include: discharge at the outlet of the Wark
catchment, potential evaporation estimated by the Hamon
equation (Hamon, 1961) with data measured at Findel (Lux-
embourg airport;Fenicia et al., 2008), and precipitation by
three tipping bucket rain gauges. The data series has been
discretized at 12-h resolution. For model evaluation, the pe-
riod 1998–2009 was used. The meteorological conditions of
each year are summarized in Table 1.

3.2 Hydrological model

The rainfall-runoff model applied to the Wark catchment is
the lumped conceptual HyMod model (Wagener et al., 2001).
HyMod was chosen for its low number of parameters while
still maintaining adequate process representation including

slow and fast responses together with a non-linear soil mois-
ture component.

HyMod is characterized by five reservoirs, including the
soil moisture reservoir (SM [L]), three linear reservoirs in se-
ries (SF1[L], SF2[L], SF3[L]) mimicking the fast runoff com-
ponent, and one slow reservoir (SS1[L]). It has five parame-
ters representing the maximum soil moisture storage capac-
ity (SM,max(L)), the spatial variability of soil moisture (β[-]),
the partitioning between fast reservoirs and slow reservoir
(α[-]), as well as the timescales of the fast and slow reser-
voirs (RF[T−1], RS[T−1]). Model equations were solved us-
ing the forward explicit Euler method using 12-h resolution
time series.

P [LT−1], Ea[LT−1], Ep[LT−1] and Qm[LT−1] repre-
sent precipitation, actual evaporation, potential evaporation
and modeled runoff, respectively. The simulated runoff by
the model is the summation of slow and fast components
(Qm =QS1 +QF3). The water balance equations and con-
stitutive relations are listed in Table 2 and the HyMod
schematic illustration is depicted in Fig. 2.

3.3 Implementation of sub-period calibration

In the following, two case studies are presented where
we compare performance and selected parameter sets by
two approaches: (1) calibration over the entire length of a
(sub-)period, which for sake of simplicity thereafter is re-
ferred to as standard calibration; and (2) calibration over de-
composed sub-periods which is referred to as SuPer (sub-
period) calibration. The case studies are designed to show
the performance of SuPer calibration for parameter identifi-
cation extracting information from sub-periods. The first case
study intends to make the best use of limited available data by
decomposing it into different sub-periods. The second case
study intends to investigate how standard calibration might
average out the characteristics of the sub-periods over the
long time series.

3.3.1 Case study 1 – Short data series

The 3 consecutive years 2001–2003 are used for model eval-
uation, with the year 2001 selected as the warm-up period.

1. The model is calibrated using standard calibration on
the year 2002 and Pareto front members (CPF2002) are
validated for the year 2003.

2. The model is calibrated using standard calibration on
the year 2003 and Pareto front members (CPF2003) are
validated for the year 2002.

3. The model is calibrated using standard calibration
on the years 2002–2003 and Pareto front members
(CPF2002−2003) are validated for the individual years of
2002 and 2003.
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Table 2.Equations used in HyMod.

Reservoir Water balance equations Constitutive relations

Soil moisture (SM ) dSM/dt = P − Pe− Ea Pe = FP F = 1− (1− SM/SM,max)
β

Ea = WEp W = d
SM

SM,max
e

First fast reservoir (SF1) dSF1/dt = αPe− QF1 QF1 = SF1RF
Second fast reservoir (SF2) dSF2/dt = QF1 − QF2 QF2 = SF2RF
Third fast reservoir (SF3) dSF3/dt = QF2 − QF3 QF3 = SF3RF
Slow reservoir (SS1) dSS1/dt = (1− α)Pe− QS1 QS1 = SS1RS
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Fig. 2.Schematic illustration of HyMod rainfall/runoff conceptual model.

4. The model is calibrated using SuPer calibration
using the years 2002 and 2003 as sub-periods.
The performances of the obtained parameter sets
(MDPF2002−2003) are then validated in each sub-period
(2002 and 2003).

Note that the years 2002 and 2003 are hydrologically very
different. Rainfall, runoff and potential evaporation are pre-
sented in Table 1 for the two years. Year 2002 is wet com-
pared to 2003.

3.3.2 Case study 2 – Long data series

The available time series of the Wark catchment are divided
into three parts. The years 1996–1997 are used as warm up
period. The years 1998–2005 are used for parameter identi-
fication. The years 2006–2009 are retained for validation to
compare the performance of parameter sets selected by the
different calibration approaches. Two parameter identifica-
tion approaches are compared:

1. The model is calibrated using standard calibration for
the eight-year period of 1998–2005.

2. The model is calibrated using SuPer calibration consid-
ering each individual year of the period 1998–2005 as a

sub-period. This requires the determination of the 8 sub-
period calibration Pareto fronts CPF1998, ..., CPF2005.
Therefore parameter set identification is based on an 8-
dimensional MDPF1998−2005.

The two approaches are compared both with respect to per-
formance and parameter distributions. The performance of
the different parameter sets retained by each calibration ap-
proach is compared relative to the calibration Pareto front of
each individual year (CPF2006, ..., CPF2009) and of the entire
validation period (CPF2006−2009).

The sensitivity of model parameters by standard calibra-
tion (1998–2005) is assessed with 3 different approaches
(graphically illustrated in Fig. 3):

1. Pareto optimal parameter sets (CPF1998−2005).

2. Parameter sets within a pre-defined distance to the ori-
gin. In this case study, the parameter sets with a distance
smaller than 1.05 times of the closest Pareto member to
the origin.

3. Parameter sets contained within the quadrant deter-
mined by the single objective optima.

The parameter distributions of both standard calibration and
SuPer calibration (MDPF) are compared with the optimal
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Fig. 3.Different approaches for the selection of behavioral parameter sets for a two-dimensional ([f1 f2]) multi-objective problem; behavioral
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Pareto front to origin (radial), and(c) parameter sets which perform simultaneously better than the lowest performance of any dimension of
Pareto front (quadrant).

parameter sets of each individual year of the entire calibra-
tion and validation periods (CPFs).

In the two case studies presented, HyMod was evaluated
by two objective functions. These are the root mean square
error of flows (IRMSE) and the root mean square error of the
logarithm of flows (ILRMSE), which emphasize high flow and
low flow respectively:

IRMSE =

√√√√ 1

N

N∑
i=1

(Qm,i − Qo,i)2, (1)

ILRMSE =

√√√√ 1

N

N∑
i=1

(log(Qm,i) − log(Qo,i))2, (2)

whereQm,i andQo,i are the modeled and observed flow for
time stepi, andN is the number of time steps.IRMSE was
used instead of the Nash–Sutcliffe efficiency (INSE), asINSE
depends on the average of the observations, which may be
different in different sub-periods (Schaefli and Gupta, 2007).

The relative performance of a parameter set is presented
by calculating the Euclidian distance to the calibration Pareto
front (CPF) for every individual sub-period. We assume that
the two objective functions in this case study are in the same
order of magnitude and therefore do not need normalization.

Parameter search was performed using the MOSCEM-UA
algorithm (Vrugt et al., 2003) for both calibration Pareto
fronts (CPFs) and minimum distance Pareto front (MDPF).
SuPer calibration selects parameter sets with the best perfor-
mance relative to CPFs; therefore MOSCEM-UA was chosen
as it uses Zitzler strength Pareto ranking (Zitzler and Thiele,
1999), which allows robust estimation of CPF.

4 Results

4.1 Case study 1 – Short data series

The calibration Pareto fronts, CPF2002, CPF2003 and
CPF2002−2003are shown in Fig. 4. CPF2003and CPF2002−2003
show a large tradeoff betweenIRMSE andILRMSE. In Fig. 4,
model performance in periods outside the calibration period
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Fig. 4.The calibration Pareto fronts based on 2002, 2003 and 2002–
2003 (CPF2002, CPF2003, CPF2002−2003) are illustrated by blue,
red and black respectively. The blue and red crosses show the
performance of CPF2002 members in 2003 and the performance
of CPF2003 members in 2002 respectively. The blue and red as-
terisks illustrate performance of CPF2002−2003 in 2002 and 2003
respectively. The blue and red dots illustrate the performance of
MDPF2002−2003 in year 2002 and 2003 respectively.

is indicated by crosses of the same color as the sub-period
CPF. Figure 4 shows the performance of CPF2002 members
in 2003 and the performance of CPF2003 in 2002. Moreover
the performance of CPF2002−2003 in 2002 and 2003 are illus-
trated with stars of the same color as the sub-period CPF of
the same year. It can be observed that model performance in
periods outside the calibration period may differ significantly
from the optimal performance. Even the standard calibration
based on the entire time period (2002–2003) deviates signif-
icantly from the optimal performance in each sub-period.

The parameter sets as identified with the SuPer calibration
approach are shown by dots in Fig. 4 for the sub-periods 2002
and 2003 with the same color as the sub-period CPFs. As
shown in Fig. 4, SuPer calibration picks parameter sets with
relatively good performance in both sub-periods, excluding
parameter sets that work well in one period, but very poorly
in another. Moreover, Fig. 4 shows SuPer calibration empha-
sizes on the parameter sets with better performance regard-
ing ILRMSE, indicating low flow can be modeled more con-
sistent over time. The relative performance of parameter sets
selected with SuPer calibration to CPFs of every sub-period
(2002 and 2003) are illustrated in Fig. 5 (MDPF2002−2003).

Figure 6 illustrates the distribution of the parameters of
the fast and slow reservoirs (RF, RS) selected by different
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Fig. 5. The two-dimensional minimum distance Pareto front (red
dots) based on year 2002–2003 (MDPF2002−2003).

approaches. We can see that the parameter distributions as-
sociated to CPF2002 and CPF2003 are very different from
each other. However, the parameter distributions associated
to MDPF2002−2003 are close to the intersection of the distri-
butions in the two individual periods. The parameter distri-
butions identified by SuPer calibration indicate a narrower
range compared to calibration over the entire time series
(CPF2002−2003).

4.2 Case study 2 – Long data series

The comparison between standard calibration and SuPer cal-
ibration using each year as an individual sub-period over the
period of 1998–2005 is illustrated in Fig. 7. The parameter
sets obtained by SuPer calibration are different from those
identified by the different selection rules (Pareto optimal, ra-
dial and quadrant see Sect. 3.3), but similarly to the previous
case study, SuPer calibration tends to select parameter sets
towards theILRMSE objective function, indicating that low
flow parameters are more consistent in time.

The distance to Pareto front (relative performance) of pa-
rameter sets obtained by different selection methods for be-
havioral parameters using standard calibration (Pareto, radial
and quadrant rules) and those obtained by SuPer calibration
are illustrated in Fig. 8 for the entire validation period (2006–
2009) as well as for every individual year (2006, 2007, 2008,
and 2009). The Pareto front members (CPF1998−2005) per-
form differently and the 25/75th interquartile ranges of their
performance only have limited overlap for individual valida-
tion sub-periods (2006, ..., 2009). For parameter sets retained
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by quadrant or radial rules, similar to Pareto front mem-
bers (CPF1998−2005), the distance to Pareto fronts during the
validation period varies significantly for sub-periods. How-
ever, for every individual year as well as for the entire val-
idation periods, the 25/75th interquartile ranges of the pa-
rameter sets retained by SuPer calibration show significant
overlap. Overall, the parameter sets selected by SuPer cali-
bration tend to show more consistency over individual years
(CPF2006,..,CPF2009), as well as over the entire validation pe-
riod (CPF2006−2009) compared to parameter sets retained by
calibration over the entire period.

The distributions of two characteristic parameters for the
calibration (1998–2005) and validation (2006–2009) periods
(over the entire time series and every individual year) are
shown for different parameter identification approaches in
Fig. 9. The comparison between parameter distributions of
sub-period Pareto members for the slow reservoir coefficients
(RS) shows that SuPer calibration is less affected by an
anomaly of one sub-period (2001). As can be seen in Fig. 9a,
the parameter distribution of standard calibration retained by
the quadrant rule, emphasizes also on the values which are
not optimal in sub-periods (1998, ..., 2005). Comparing in
Fig. 9b, the distribution of the fast reservoir coefficient (RF)
obtained by standard calibration and retained by the quadrant
rule with SuPer calibration, indicates that SuPer calibration
selects parameter sets which overlap for every sub-period,
while standard calibration over the entire calibration period
(1998–2005) may cover values which do not have any over-
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Fig. 7. CPF1998−2005 is shown by the blue line. Black circles and
red dots illustrate the parameter set retained by radial and quadrant
rules (see Sect. 3.3, Fig. 3). The green crosses indicate the perfor-
mance of parameter sets identified by MDPF1998−2005over the pe-
riod of 1998–2005.

lap with sub-periods (1998, ..., 2005). Figure 9a, b, indicat-
ing Pareto optimal members identified by standard calibra-
tion over the entire calibration period (1998–2005), shows a
narrower range compared to parameter sets retained by Su-
Per calibration. However the Pareto optimal distribution does
not have any intersection with the parameter distribution of
Pareto members of sub-period 2003 for the slow reservoir co-
efficient (RS), meaning that they cannot perform optimally in
that specific sub-period, while the distribution of the param-
eter set selected by SuPer calibration covers the distribution
range of every sub-period. As was also illustrated in Fig. 8,
the performance of Pareto optimal members, although con-
fined to narrow ranges, may not perform optimally in every
sub-period.

5 Discussion

SuPer calibration focuses on different parts of sub-period cal-
ibration Pareto fronts (CPFs), and helps to identify parame-
ter sets with a time consistent behavior. These parameter sets
may therefore be regarded as more “realistic” (Figs. 6 and
9). We attribute this to the fact that the processes identified
by some objective functions (in the present case low flows)
may have a more time consistent behavior than the processes
represented by other objective functions (e.g. high flows).

SuPer calibration identifies parameter sets which per-
form optimally in sub-periods. The corresponding parameter
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ranges, although maybe not optimal over the entire time se-
ries, are the narrowest ranges considering optimal behavior in
every sub-period (Figs. 8 and 9); therefore making it possible
to obtain parameter distributions that are just dependent on
data quality, sub-period characteristics and the selected hy-
drological model. Moreover, unlike common selection meth-
ods of behavioral parameter sets, which as highlighted byEf-
stratiadis and Koutsoyiannis(2010) require the specification

of a subjective threshold for identifying behavioral parameter
sets, SuPer calibration does not require this. The difference
between parameter sets selected by calibration and SuPer cal-
ibration is illustrated graphically in Fig. 10. Our results have
indicated that parameter sets selected with this approach may
be grouped towards one or more objective function at the ex-
pense of others (Figs. 4 and 7).
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the objective space (After:Efstratiadis and Koutsoyiannis, 2010, with permission of the first author and the publisher).

One might argue that SuPer calibration can be achieved
by applying multi-objective calibration to different objective
functions of different sub-periods in a single step. As an ex-
ample, the first case study can be presented by introducing
the 2 objective functions (IRMSE and ILRMSE) for different
sub-periods (2002 and 2003), therefore parameter identifi-
cation will be formulated as a four-dimensional optimization
practice withIRMSE2002, IRMSE2003, ILRMSE2002 andILRMSE2003

as objective functions. This approach would determine the
trade-off of the model performance in different sub-periods.
However, parameter identification is still based on the se-
lection of Pareto front members and therefore the challenge
of selecting behavioral parameter sets, or in this case time
consistent parameter sets, from the Pareto front members re-
mains the same as mentioned byEfstratiadis and Koutsoyian-
nis (2010) (Fig. 10).

SuPer calibration can also be used as a tool to analyze pa-
rameter time consistency in different sub-periods. By identi-
fying non-time consistent parameters, SuPer calibration can
be used as a diagnostic tool for identifying model structural
deficiencies (seeClark et al., 2008). This approach can also
provide information about the behavior of each parameter
with respect to the hydrological condition of that period. As
an example, the fast reservoir coefficient (RF) shows higher
values for the sub-period 2003 than for 2002. The years 2002
and 2003 are hydrologically distinct years (Table 1). This

analysis, similar to the DYNIA (Wagener et al., 2003), can
help the modeler to identify a model deficiency and guide
towards model improvements.

Although in this work we used hydrological years as the
basis for sub-period analysis, periods can be selected in dif-
ferent ways. For example, they can be applied to storm events
with different magnitude and return period to retain their
characteristics during the calibration process. Sub-periods
can also be defined as different parts of the flow duration
curve (Westerberg et al., 2011) or can be used for calibration
based on unusual events (Singh and B́ardossy, 2012; Krauße
and Cullmann, 2012). Building on previous studies (e.g.Wa-
gener, 2003; Seiller et al., 2012), we support the conclusion
that looking individually at different periods is an approach
to extract more information from the data, rather than con-
sidering the data series as a whole.

Sampling strategies for the parameter space were not dis-
cussed and in principle different approaches can be used. As
the method requires the identification of Pareto fronts, meth-
ods that sample the vicinity of the optimal parameter sets
are preferable. The uncertainty in Pareto front identification
may introduce uncertainty in the final selected parameter set
selected by SuPer calibration. In this study MOSCEM-UA
(Vrugt et al., 2003) was used to generate Pareto fronts in both
steps of the procedure (creating CPFs and MDPFs).
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Limitations of the presented SuPer calibration approach
include, at least in its current implementation, that it cannot
be applied to represent meaningful uncertainty estimates; the
potential application of this approach in a Bayesian frame-
work remains to be investigated.

6 Conclusions

In this paper a calibration approach based on splitting the
available data sets into sub-periods has been proposed. The
sub-period calibration approach makes use of calibration in
individual sub-periods, and extracts parameter sets with a
time consistent performance. Although this comes at the cost
of potentially reduced performance during the calibration of
each individual period, model parameterizations obtained by
SuPer calibration perform consistently better in the valida-
tion period, which is what modelers actually should look for.
The design of SuPer calibration is such that acceptable pa-
rameterizations have to perform consistently well when pre-
dicting any of the defined sub-periods, which is implicitly
enforced in SuPer calibration, thus avoiding the need for ex-
plicit model validation. Furthermore, by the transformation
of the traditional objective-space into a minimum Euclidean
distance space, the need for subjective choices of parameter
acceptance thresholds is avoided.

It should be again emphasized here that SuPer calibration
is not a calibration algorithm, nor is it explicitly addressing
parameter uncertainty. It is rather a more advanced method
of model testing, building on traditional split sample tests
and making more efficient use of available data. SuPer cal-
ibration can in principle be done with any number and type
of objective functions (e.g.INSE or IRMSE) but also with any
number and type of calibration criteria (e.g. only using runoff
or using runoff and tracer dynamics). A Matlab function of
the SuPer calibration approach can be obtained by personal
communication with the lead author.
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