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Abstract. Conceptual hydrological models rely on calibra- a result they have to be determined by calibratidfhéater
tion for the identification of their parameters. As these mod-et al, 1993. Different approaches to infer parameter val-
els are typically designed to reflect real catchment pro-ues and their distributions have been developed, for exam-
cesses, a key objective of an appropriate calibration strategple single or multi-objective calibratiorsupta et al.1999,

is the determination of parameter sets that reflect a “realisgeneralized likelihood uncertainty estimation (GLUH&ven

tic” model behavior. Previous studies have shown that pa-and Binley 1992, dynamic identifiability analysis (DYNIA,
rameter estimates for different calibration periods can be sigWagener et al.2003 and Bayesian inferencéMood and
nificantly different. This questions model transposability in Rodfiguez-lturbe1975.

time, which is one of the key conditions for the set-up of a A key objective for hydrological modeling is the develop-
“realistic” model. This paper presents a new approach thament of “realistic’ models, that is, models which are able to
selects parameter sets that provide a consistent model perforeflect real catchment process@égagener2003. The set-up
mance in time. The approach consists of testing model pereof a realistic model requires the determination of a realistic
formance in different periods, and selecting parameter setsnodel structure and a suitable parameterization. While the
that are as close as possible to the optimum of each individdetermination of a suitable model structure is a theoretical
ual sub-period. While aiding model calibration, the approachdevelopment in its own right (e.gVagener et a]2002 Feni-

is also useful as a diagnostic tool, illustrating tradeoffs in cia et al, 2007, 2011, Clark et al, 2008 Savenije 2009, we

the identification of time-consistent parameter sets. The apfocus here on the determination of realistic parameter sets,
proach is applied to a case study in Luxembourg using theand in particular, on parameter sets that reflect a consistent
HyMod hydrological model as an example. model behavior in time.

Model transposability in time is in fact recognized as one
of the main requirements to a successful “validation” of
model performanceklemes, 1986. Hartmann and Brdossy
1 Introduction (2009 advocate that “if a model is to be used under non-

stationary conditions, its parameters and process descriptions
Conceptual hydrological models represent an abstraction oéhould be transferable”.
real world processes, and are typically constituted of a num- The calibration—validation approach (or the split-sample
ber of interconnected reservoirs which are supposed to repest proposed bylemes, 1986 has become standard in
resent the main catchment compartments and dominant prahydrological practice Andréassian et a1.2009. A model
cesses \Wagener et a].2003. Typically, several of these s calibrated for a period of time and the parameter sets

model parameters are not measurable, even if they are sugyhich are selected as behavioral in the calibration period
posed to represent physical catchment characteristics, and as
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150 S. Gharari et al.: Sub-period calibration

are subsequently evaluated for a different validation pe-approaches have been proposed to extract meaningful hy-
riod. Several combinations of calibration and validation drological information from the observed time seriBsyle
for multiple-response data were suggestedvtspczkowski et al. (2000 2001) used the multi-objective calibration ap-
et al.(1997. Calibration and validation is proposed as a cru- proach proposed b§upta et al(1998 to calibrate a model
cial step in the comprehensive model developing scheme prcofor different flow segments of the hydrograph. The multi-
posed byRefsgaard et a(2005. objective approach makes it possible to identify optimal pa-
Seibert(2003 pointed out that the success of identifying rameter sets for a set of objective functions. This approach
the best parameter set (or model structure) relies on the savas extensively used in several applications (for a review see
lection of time periods with similar characteristics. He ar- Efstratiadis and Koutsoyianni2010. Incorporating multi-
gued that the reason for the scarce literature on models whicple calibration-criteria, for instance tracer data or remotely
perform well in time periods with characteristics different sensed evaporation, into model calibration helps in identi-
from the calibration period is due to the fact that they mostfying a more realistic model structure and parameter sets
probably fail this test (i.e. the differential split sample test (e.g.Weiler et al, 2003 Freer et al.2004 Uhlenbrook and
proposed blemes, 1986. Kirchner (2006 criticized com-  Sieber 2005 Vache and McDonne)l2006 Son and Siva-
monly used model evaluation methods. He argued that “suclpalan 2007 Winsemius et a).2008 Dunn et al, 2008
models are often good mathematical marionettes; they oftefBirkel et al, 201Q Fenicia et al.201Q Hrachowitz et al.
can dance to the tune of the calibration data. However, thei2012).
predictive validity is often in doubt”. This shortcoming was  Both multi-objective and multi-criteria optimizations con-
repeatedly addressed in the literatudederson and Woess- strain the feasible parameter space and facilitate parameter
ner, 1992 Hassan2004 Gupta et al.2008 Refsgaard and selection on the basis of performance trade-offs, i.e. Pareto
Hansen2010. fronts. However, as argued lBeven(2006, the mere map-
The failure of validation tests has its counterpart in the pings of optimum parameter sets after calibration are: “too
fact that calibrated model parameters are inherently linkedsimplistic, since they arbitrarily exclude many models that
to the calibration time period, and may be inadequate toare very nearly as good as thaptimd. As argued by
represent other periodgvagener et al(2003 developed a  Andréassian et ak2012, mathematically optimum param-
method to screen across the time series of model predictioeter sets may be far different from hydrologically optimum
in order to investigate the identifiability of model parameters. parameter sets. These arguments simply imply that the pa-
They show that uncertainties associated to model parameterameter realization should include “sub-optimal” parameter
can vary substantially in different time period3oron etal.  sets as well.
(2012 used a similar concept to investigate the performance Hence the question of how to retain model parameters that
of the three models in contrasting climate conditions. Theyhave a consistent model behavior in time deserves further
questioned the validity of parameter transferability in time investigations. A related challenge is how to establish the
due to varying climate conditions. tradeoff between behavioral and non-behavioral parameters
PreviouslyFreer et al(2003 evaluated the dynamic TOP- in a meaningful way.
MODEL using GLUE with different objective functions With the attempt to address this question, we introduce a
based on the rising or falling limbs of the hydrograph. They new approach for parameter identification including optimal
showed that it may be difficult to propose a consistentlyand sub-optimal parameter sets which are more time con-
parameterized model structure due to the significant varisistent. The method is based on the calibration on different
ability of the observed responses. They concluded that thg@eriods, and determines the parameter sets which perform
model fails to meet even relaxed acceptability thresholdsbest for all these sub-periods. As the selected parameter sets
Hartmann and Brdossy2005 investigated parameter trans- are evaluated in different periods, only the time consistent
ferability in different climatic conditions (“warm”, “cold”, parameter sets are selected. The new method is applied to
“wet” and “dry”) and for different time scales (from days a case study in the Wark catchment in Luxembourg, using
to years). They designed a calibration method that allows ahe lumped conceptual model HyMod, and compared with
good performance on different time scales simultaneouslya calibration—validation approach with respect to parameter
Li et al. (2012 investigated the transferability of model pa- identifiability and performance.
rameters for dry and wet conditions. They showed that the
dry period contains more information for model calibration
than the wet periodBardossy and Singf2008, using the 2 Sub-period calibration
depth function Tukey, 1975, concluded “that equally per-
forming parameters are not necessarily equally transferabl@he aim of the sub-period calibration is to identify a time
or equally sensitive”. consistent parameterization for a certain model structure and
While the decrease of model performance in the valida-data set. The approach involves two steps. First, the avail-
tion period can have many causes, we focus here on howable input and output data sets are split into (ideally equal-
it is affected by the parameter selection approach. Varioudength) k sub-periods. These sub-periods and their lengths
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Fig. 1. Schematic illustration of the sub-period calibration approach (circles, stars and triangles represent the performance of different
parameter sets in the 2 period&) Calibration—validation of a two dimensional optimization problem; the lines represent the Pareto fronts

in 2 periods (CPIr and CPE for sub-period calibration, respectivelyp) Proposed method of calibration that aims at minimizing the
distance to the 2 Pareto fronts (GP&hd CPFR) of each sub-periodc) Minimum distance Pareto front (MDPF). Performance of parameter

sets in every sub-period is depicted by the same color as the calibration Pareto front (CPF) of that specific sub-period.

can be arbitrarily chosen. They can, for example, be monthsPareto front (MDPF). It contains the parameter sets that have
seasons, years, or wetness conditions (Eartmann and the most consistent performance in each sub-period.
Bardossy2005 Seiller et al, 2012. Additionally, a number The concept is illustrated in Fig. 1 with a schematic 2-
n of objective functions is defined. objective function, 2-sub-period example. The CPFs for the
Each sub-period is then calibrated individually by sam-two sub-periods are shown in Fig. 1a. The circle represents
pling the parameter space and identifying thdimensional  a parameter set that is a Pareto member of the first sub-
Pareto front for each sub-period. Therefére-dimensional  period (zero distance to the CBFhowever, it does not per-
calibration Pareto fronts (CPF) are obtained. form well compared to the optimum in the second sub-period
Subsequently, the parameter space is sampled to find pdlarge distance to the CB}: The parameter set represented
rameter sets which minimize the distance to th®areto by the triangle, although sub-optimal in the first sub-period,
fronts. Distance measures can, for example, be the Euclidis a Pareto member in the second sub-period. The parameter
ian distance to the Pareto front or any other measure whiclset represented by the star, on the other hand, although not
evaluates the performance of a parameter set relative to the Pareto member in both sub-periods, performs rather well
Pareto front. This leads, for each parameter sétdistances  overall (small distance to both the CP&nd CPE).
for each of thek sub-periods. Figure 1c plots the distance of each parameter set to the
The goal is to find parameter sets that minimize the dis-Pareto fronts. The circle has zero distance to {LBRd large
tances to all Pareto fronts. In order to achieve this, it a distance to CPf It does not belong to the MDPF. The tri-
dimensional space, we represent each parameter set by igsgle has zero distance to GR&nd small distance to CF
distance to each of thePareto fronts. The Pareto front of this indicating the edge of MDPF. The star has small distances to
cloud of points represents the parameter sets with minimunboth CPk and CPE, and it belongs to the MDPF at some
distance to all Pareto fronts. We call it the minimum distanceintermediate position.
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Table 1.Rainfall, runoff and potential evaporation for year 1998 to slow and fast responses together with a non-linear soil mois-

2009 for the Wark catchment. ture component.
_ HyMod is characterized by five reservoirs, including the
. Potential soil moisture reservoiru[L]), three linear reservoirs in se-
year Rainfall Runoff evaporation

ries Sk, [L], Sk,[L], Sks[L]) mimicking the fast runoff com-

1 1 1
(mmyr) (mmyr=)  (mmyr) ponent, and one slow reservolis{[L]). It has five parame-

1998 997 370 709 ters representing the maximum soil moisture storage capac-
1999 1065 381 738 ity (Sm.max(L)), the spatial variability of soil moistures(-]),
2000 1062 419 729 the partitioning between fast reservoirs and slow reservoir
2001 1198 397 725 («[-]), as well as the timescales of the fast and slow reser-
2002 1025 406 744 voirs (Re[T 1], Rs[T~1]). Model equations were solved us-
2003 788 225 797 ing the forward explicit Euler method using 12-h resolution
2004 865 247 713 . .

time series.
2005 738 154 741 _1 1 1 _1
2006 830 244 774 PILT™, Ed[LT™7, Ep[LT™7] and Om[LT ] repre-
2007 083 410 750 sent precipitation, actual evaporation, potential evaporation
2008 966 418 727 and modeled runoff, respectively. The simulated runoff by
2009 886 397 749 the model is the summation of slow and fast components

(Om=0s, + Or;). The water balance equations and con-
stitutive relations are listed in Table 2 and the HyMod

schematic illustration is depicted in Fig. 2.
3 Case study

3.3 Implementation of sub-period calibration
3.1 Study area and data

In the following, two case studies are presented where
The outlined methodology will, in the following, be illus- We compare performance and selected parameter sets by
trated with a case study using data from the Wark catchiwo approaches: (1) calibration over the entire length of a
ment in the Grand Duchy of Luxembourg. The catchment(sub-)period, which for sake of simplicity thereafter is re-
has an area of 82 kdnwith the catchment outlet located ferred to as standard calibration; and (2) calibration over de-
downstream of the town of Etteliack at the confluence with composed sub-periods which is referred to as SuPer (sub-
the Alzette River (49.85N, 6.10 E). With an average pre- period) calibration. The case studies are designed to show
cipitation of 850 mmyr! and an average potential evapo- the performance of SuPer calibration for parameter identifi-
ration of 650 mmyr?! the average runoff is approximately Cation extracting information from sub-periods. The first case
250mmyrl. The geology in the northern part is domi- Study intends to make the bestuse of limited available data by
nated by schist while the southern part of the catchment iglecomposing it into different sub-periods. The second case
mostly under|ain by Sandstone and Conglomerate' The dornstudy intends to inVeStigate how standard calibration m|ght
inant land uses are forest on hillslopes, agricultural land@verage out the characteristics of the sub-periods over the
on plateaus and pastures in the valley bottoms. The elevd©ng time series.
tion varies between 195 to 532 ma.s.l. with an average of )
380ma.s.l. The slope of the catchment varies between 03-3-1 Case study 1 - Short data series

0, 1 0, i
ﬁogrﬂi ’ V\i"thl 3nta\i/r<1ar?g de _O:;iﬂh/ﬁ? hara}[r;r:et al.ﬁotll)f.t;ht\a/v rkThe 3 consecutive years 2001-2003 are used for model eval-
ydrological data include. discharge at the outiet ot the Vva uation, with the year 2001 selected as the warm-up period.

catchment, potential evaporation estimated by the Hamon
equation flamon 1961) with data measured at Findel (Lux- 1 The model is calibrated using standard calibration on

embourg airportFenicia et al.2008, and precipitation by the year 2002 and Pareto front members (G5 are
three tipping bucket rain gauges. The data series has been 5jidated for the year 2003.

discretized at 12-h resolution. For model evaluation, the pe-

riod 1998-2009 was used. The meteorological conditions of 2. The model is calibrated using standard calibration on

each year are summarized in Table 1. the year 2003 and Pareto front members (&4 are
validated for the year 2002.

3.2 Hydrological model 3. The model is calibrated using standard calibration

on the years 2002-2003 and Pareto front members
(CPR002-2003) are validated for the individual years of
2002 and 2003.

The rainfall-runoff model applied to the Wark catchment is
the lumped conceptual HyMod mod&Véagener et a|2007).
HyMod was chosen for its low number of parameters while
still maintaining adequate process representation including

Hydrol. Earth Syst. Sci., 17, 149461, 2013 www.hydrol-earth-syst-sci.net/17/149/2013/
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Table 2. Equations used in HyMod.

Reservoir Water balance equations Constitutive relations

Soil moisture ) dSpm/dt =P — Pe—E3 Pe=FP F=1- (1—SM/SM,maX)/3
Ea=WEp W =[5

First fast reservoirgg, ) dSF,/dt = aPe— OF, OF, =Sk, RF

Second fast reservoif,) dSg,/dt = OF, — OF, OF, = Sk, RF

Third fast reservoir§r,) dSF,/dt = OF, — OF, OF; = Sk RF

Slow reservoir §s;) dSs,/dt = (l—a)Pe— Qs, Qs, =Ss,Rs

Fast reservoirs

aP, R.S; R:S;
a 1 S SFZ
F1 SF3
Pe

Slow reservoir

o
m

M, max

(1-a)P,

Soil moisture

. s,
reservoir 1

RSSS]_

Fig. 2. Schematic illustration of HyMod rainfall/runoff conceptual model.

4. The model is calibrated using SuPer -calibration

using the years 2002 and 2003 as sub-periods.
The performances of the obtained parameter sets

sub-period. This requires the determination of the 8 sub-
period calibration Pareto fronts CRjgs, ..., CPkoos
Therefore parameter set identification is based on an 8-

(MDPFR002-2003) are then validated in each sub-period
(2002 and 2003).

dimensional MDPIggs-200s

The two approaches are compared both with respect to per-
Note that the years 2002 and 2003 are hydrologically veryformance and parameter distributions. The performance of
different. Rainfall, runoff and potential evaporation are pre- the different parameter sets retained by each calibration ap-
sented in Table 1 for the two years. Year 2002 is wet com-proach is compared relative to the calibration Pareto front of
pared to 2003. each individual year (CPos, ..., CPRoog) and of the entire
validation period (CP¥v06-2009)-
The sensitivity of model parameters by standard calibra-

tion (1998-2005) is assessed with 3 different approaches
The available time series of the Wark catchment are dividedgraphically illustrated in Fig. 3):

into three parts. The years 1996—-1997 are used as warm up
period. The years 1998-2005 are used for parameter identi- 1.
fication. The years 2006—2009 are retained for validation to
compare the performance of parameter sets selected by the
different calibration approaches. Two parameter identifica-
tion approaches are compared:

3.3.2 Case study 2 — Long data series

Pareto optimal parameter sets (GBYs-2005)-

2. Parameter sets within a pre-defined distance to the ori-
gin. In this case study, the parameter sets with a distance
smaller than 1.05 times of the closest Pareto member to
the origin.

1. The model is calibrated using standard calibration for 3,
the eight-year period of 1998—-2005.

Parameter sets contained within the quadrant deter-
mined by the single objective optima.

2. The model is calibrated using SuPer calibration consid-The parameter distributions of both standard calibration and
ering each individual year of the period 1998—-2005 as aSuPer calibration (MDPF) are compared with the optimal

www.hydrol-earth-syst-sci.net/17/149/2013/ Hydrol. Earth Syst. Sci., 17, 14961, 2013
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Fig. 3. Different approaches for the selection of behavioral parameter sets for a two-dimensfgrfalmulti-objective problem; behavioral
parameter sets are selected@sPareto optimal parameter sefis) parameter sets which perform closer than 1.05 of minimum distance of
Pareto front to origin (radial), an@) parameter sets which perform simultaneously better than the lowest performance of any dimension of
Pareto front (quadrant).

parameter sets of each individual year of the entire calibra- The relative performance of a parameter set is presented
tion and validation periods (CPFs). by calculating the Euclidian distance to the calibration Pareto
In the two case studies presented, HyMod was evaluatedront (CPF) for every individual sub-period. We assume that
by two objective functions. These are the root mean squar¢he two objective functions in this case study are in the same
error of flows (rmsg) and the root mean square error of the order of magnitude and therefore do not need normalization.
logarithm of flows (| rmse), Wwhich emphasize high flow and Parameter search was performed using the MOSCEM-UA
low flow respectively: algorithm {/rugt et al, 2003 for both calibration Pareto
fronts (CPFs) and minimum distance Pareto front (MDPF).
1 SuPer calibration selects parameter sets with the best perfor-
IrMse= | — Z(Qm,i - Q0.)2, (1) mance relative to CPFs; therefore MOSCEM-UA was chosen
N = as it uses Zitzler strength Pareto ranki#it£ler and Thiele
1999, which allows robust estimation of CPF.

1 N
Iiruse= |+ > (10g(Qm.) — l0g(Qo.))?, (2) 4 Results
i=1

4.1 Case study 1 — Short data series
whereQm; andQ,; are the modeled and observed flow for
time stepi, and N is the number of time stepsruse was The calibration Pareto fronts, CRjg,, CPFRgo3z and
used instead of the Nash—Sutcliffe efficienéydg), asInse CPFRy02-2003are shown in Fig. 4. CRgzand CPEoo2-2003
depends on the average of the observations, which may bshow a large tradeoff betwedavsg and I rmse. In Fig. 4,
different in different sub-periodsSghaefli and Gupt2007). model performance in periods outside the calibration period
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Fig. 4. The calibration Pareto fronts based on 2002, 2003 and 2002-Fi9- 5. The two-dimensional minimum distance Pareto front (red

2003 (CPBgoz CPFagos CPFooz_2002 are illustrated by blue, — dots) based on year 2002-2003 (MDBh2-2003-

red and black respectively. The blue and red crosses show the

performance of CPigg2 members in 2003 and the performance

of CPRyog3 members in 2002 respectively. The blue and red as-

terisks illustrate performance of CRfp2_2003 in 2002 and 2003 ~ approaches. We can see that the parameter distributions as-

respectively. The blue and red dots illustrate the performance ofsociated to CPigo2 and CPEgo3 are very different from

MDPF,q02_2003in year 2002 and 2003 respectively. each other. However, the parameter distributions associated
to MDPRyoo2-2003 are close to the intersection of the distri-
butions in the two individual periods. The parameter distri-
butions identified by SuPer calibration indicate a narrower

is indicated by crosses of the same color as the sub-periofgange compared to calibration over the entire time series

CPF. Figure 4 shows the performance of Gggmembers  (CPF002-2003)-

in 2003 and the performance of Ciggszin 2002. Moreover

the performance of CREo2_2003in 2002 and 2003 are illus- 4.2 Case study 2 — Long data series

trated with stars of the same color as the sub-period CPF of

the same year. It can be observed that model performance ifihe comparison between standard calibration and SuPer cal-

periods outside the calibration period may differ significantly ibration using each year as an individual sub-period over the

from the optimal performance. Even the standard calibratiorperiod of 1998-2005 is illustrated in Fig. 7. The parameter

based on the entire time period (2002—-2003) deviates signifsets obtained by SuPer calibration are different from those

icantly from the optimal performance in each sub-period. identified by the different selection rules (Pareto optimal, ra-

The parameter sets as identified with the SuPer calibratiorial and quadrant see Sect. 3.3), but similarly to the previous

approach are shown by dots in Fig. 4 for the sub-periods 2002ase study, SuPer calibration tends to select parameter sets

and 2003 with the same color as the sub-period CPFs. Asowards thel| rmse oObjective function, indicating that low

shown in Fig. 4, SuPer calibration picks parameter sets withflow parameters are more consistent in time.

relatively good performance in both sub-periods, excluding The distance to Pareto front (relative performance) of pa-

parameter sets that work well in one period, but very poorlyrameter sets obtained by different selection methods for be-

in another. Moreover, Fig. 4 shows SuPer calibration emphahavioral parameters using standard calibration (Pareto, radial

sizes on the parameter sets with better performance regar@dnd quadrant rules) and those obtained by SuPer calibration

ing I rvse, indicating low flow can be modeled more con- are illustrated in Fig. 8 for the entire validation period (2006—

sistent over time. The relative performance of parameter set2009) as well as for every individual year (2006, 2007, 2008,

selected with SuPer calibration to CPFs of every sub-periocand 2009). The Pareto front members (G&E-2005) per-

(2002 and 2003) are illustrated in Fig. 5 (MDBb2-2003)- form differently and the 25/75th interquartile ranges of their

Figure 6 illustrates the distribution of the parameters of performance only have limited overlap for individual valida-
the fast and slow reservoir®f, Rs) selected by different tion sub-periods (2006, ..., 2009). For parameter sets retained

www.hydrol-earth-syst-sci.net/17/149/2013/ Hydrol. Earth Syst. Sci., 17, 14961, 2013
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2002-2003 (CPF2002, CPF2003, CPF2002-2003) and SuPer calfsig 7. CPRiogs s005is shown by the biue line. Black circles and
bration (MDPF2002-2003) fofa) slow reservoir coefficientKs)  red dots illustrate the parameter set retained by radial and quadrant
and (b) fast reservoir coefficientRg). Whiskers represent the 1.5 yjes (see Sect. 3.3, Fig. 3). The green crosses indicate the perfor-
tjmes the interquartile range (IQR) and the red crosses show outyance of parameter sets identified by MOB§g_20050ver the pe-
liers. riod of 1998-2005.

by quadrant or radial rules, similar to Pareto front mem-lap with sub-periods (1998, ..., 2005). Figure 9a, b, indicat-
bers (CPags-2005), the distance to Pareto fronts during the ing Pareto optimal members identified by standard calibra-
validation period varies significantly for sub-periods. How- tion over the entire calibration period (1998-2005), shows a
ever, for every individual year as well as for the entire val- narrower range compared to parameter sets retained by Su-
idation periods, the 25/75th interquartile ranges of the pa-Per calibration. However the Pareto optimal distribution does
rameter sets retained by SuPer calibration show significanbot have any intersection with the parameter distribution of
overlap. Overall, the parameter sets selected by SuPer calPareto members of sub-period 2003 for the slow reservoir co-
bration tend to show more consistency over individual yearsefficient (Rs), meaning that they cannot perform optimally in
(CPRoos...,CPRo09), as well as over the entire validation pe- that specific sub-period, while the distribution of the param-
riod (CPRooe-2009) compared to parameter sets retained byeter set selected by SuPer calibration covers the distribution
calibration over the entire period. range of every sub-period. As was also illustrated in Fig. 8,
The distributions of two characteristic parameters for thethe performance of Pareto optimal members, although con-
calibration (1998-2005) and validation (2006—2009) periodsfined to narrow ranges, may not perform optimally in every
(over the entire time series and every individual year) aresub-period.
shown for different parameter identification approaches in
Fig. 9. The comparison between parameter distributions of
sub-period Pareto members for the slow reservoir coefficients Discussion
(Rs) shows that SuPer calibration is less affected by an
anomaly of one sub-period (2001). As can be seen in Fig. 9aSuPer calibration focuses on different parts of sub-period cal-
the parameter distribution of standard calibration retained byibration Pareto fronts (CPFs), and helps to identify parame-
the quadrant rule, emphasizes also on the values which arer sets with a time consistent behavior. These parameter sets
not optimal in sub-periods (1998, ..., 2005). Comparing inmay therefore be regarded as more “realistic” (Figs. 6 and
Fig. 9b, the distribution of the fast reservoir coefficieRE) 9). We attribute this to the fact that the processes identified
obtained by standard calibration and retained by the quadrarity some objective functions (in the present case low flows)
rule with SuPer calibration, indicates that SuPer calibrationmay have a more time consistent behavior than the processes
selects parameter sets which overlap for every sub-periodiepresented by other objective functions (e.g. high flows).
while standard calibration over the entire calibration period SuPer calibration identifies parameter sets which per-
(1998-2005) may cover values which do not have any overform optimally in sub-periods. The corresponding parameter
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ranges, although maybe not optimal over the entire time seef a subjective threshold for identifying behavioral parameter
ries, are the narrowest ranges considering optimal behavior isets, SuPer calibration does not require this. The difference
every sub-period (Figs. 8 and 9); therefore making it possiblebetween parameter sets selected by calibration and SuPer cal-
to obtain parameter distributions that are just dependent otibration is illustrated graphically in Fig. 10. Our results have
data quality, sub-period characteristics and the selected hyindicated that parameter sets selected with this approach may
drological model. Moreover, unlike common selection meth- be grouped towards one or more objective function at the ex-
ods of behavioral parameter sets, which as highlighteleifoy  pense of others (Figs. 4 and 7).

stratiadis and Koutsoyiann{2010 require the specification

www.hydrol-earth-syst-sci.net/17/149/2013/ Hydrol. Earth Syst. Sci., 17, 14961, 2013



158 S. Gharari et al.: Sub-period calibration

Feasible objective

space /

>
o

‘ Non-acceptable
trade-offs

eZ TR . Sub-set of e2 T :.._..“,I,,I,m“_,t
_ #—————— behavioural f
solutions X
;1 > Sub-set of ;1 >
Pareto front (non- fy promising f,
dominated solutions) trade-offs

Sub-set of
behavioural
solutions

>
Pareto front fi

Fig. 10. Graphical examples illustrate Pareto optimal and behavioral solutions in the objective space for a two-dimerfsigsiainfulti-
objective problem, witle=[eq ¢5] indicating limits of acceptability, i.e. cut-off thresholds for distinguishing behavioral and non-behavioral
solutions for(a) smooth andb) steep trade-off Pareto front&) The position of parameter sets identified by SuPer calibration (MDPF) in
the objective space (AfterEfstratiadis and Koutsoyianni201Q with permission of the first author and the publisher).

One might argue that SuPer calibration can be achievednalysis, similar to the DYNIAWWagener et a].2003, can
by applying multi-objective calibration to different objective help the modeler to identify a model deficiency and guide
functions of different sub-periods in a single step. As an ex-towards model improvements.
ample, the first case study can be presented by introducing Although in this work we used hydrological years as the
the 2 objective functionslgmse and I rmsg) for different basis for sub-period analysis, periods can be selected in dif-
sub-periods (2002 and 2003), therefore parameter identififerent ways. For example, they can be applied to storm events
cation will be formulated as a four-dimensional optimization with different magnitude and return period to retain their
practice With/RMSE oo IRMSE>qp3r JLRMSE»og2 ANAILRMSExoga characteristics during the calibration process. Sub-periods
as objective functions. This approach would determine thecan also be defined as different parts of the flow duration
trade-off of the model performance in different sub-periods.curve {Vesterberg et 312011 or can be used for calibration
However, parameter identification is still based on the se-based on unusual evenSifigh and Brdossy2012 Kraul3e
lection of Pareto front members and therefore the challengend Cullmann2012. Building on previous studies (e.\a-
of selecting behavioral parameter sets, or in this case timgener 2003 Seiller et al, 2012, we support the conclusion
consistent parameter sets, from the Pareto front members reéhat looking individually at different periods is an approach
mains the same as mentionedifgtratiadis and Koutsoyian- to extract more information from the data, rather than con-
nis (2010 (Fig. 10). sidering the data series as a whole.

SuPer calibration can also be used as a tool to analyze pa- Sampling strategies for the parameter space were not dis-
rameter time consistency in different sub-periods. By identi-cussed and in principle different approaches can be used. As
fying non-time consistent parameters, SuPer calibration cathe method requires the identification of Pareto fronts, meth-
be used as a diagnostic tool for identifying model structuralods that sample the vicinity of the optimal parameter sets
deficiencies (se€lark et al, 2008. This approach can also are preferable. The uncertainty in Pareto front identification
provide information about the behavior of each parametemay introduce uncertainty in the final selected parameter set
with respect to the hydrological condition of that period. As selected by SuPer calibration. In this study MOSCEM-UA
an example, the fast reservoir coefficieRE] shows higher  (Vrugt et al, 2003 was used to generate Pareto fronts in both
values for the sub-period 2003 than for 2002. The years 2003teps of the procedure (creating CPFs and MDPFs).
and 2003 are hydrologically distinct years (Table 1). This
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