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Abstract. This study attempts to characterise the manner
with which inherent error in radar rainfall estimates input
influence the character of the stream flow simulation un-
certainty in validated hydrological modelling. An artificial
statistical error model described by Gaussian distribution
was developed to generate realisations of possible combi-
nations of normalised errors and normalised bias to reflect
the identified radar error and temporal dependence. These
realisations were embedded in the 5 km/15 min UK Nimrod
radar rainfall data and used to generate ensembles of stream
flow simulations using three different hydrological models
with varying degrees of complexity, which consists of a
fully distributed physically-based model MIKE SHE, a semi-
distributed, lumped model TOPMODEL and the unit hydro-
graph model PRTF. These models were built for this purpose
and applied to the Upper Medway Catchment (220 km2) in
South-East England. The results show that the normalised
bias of the radar rainfall estimates was enhanced in the sim-
ulated stream flow and also the dominate factor that had a
significant impact on stream flow simulations. This prelimi-
nary radar-error-generation model could be developed more
rigorously and comprehensively for the error characteristics
of weather radars for quantitative measurement of rainfall.

1 Introduction

Recently, the advances of radar rainfall estimates with
high spatial and temporal resolution have demonstrated the
prospect of improving the accuracy of rainfall inputs on
which the accuracy of stream flow simulation and real-
time flood forecasting through hydrological models depends.

There is a wide range of studies which have focused on
using weather radars for quantitative measurement of rain-
fall in various hydrological models in order to evaluate the
radar performance in different hydrological applications, es-
pecially in flood forecasting (Collier and Knowles, 1986;
Owens, 1986; Cluckie and Owens, 1987; Cluckie et al.,
1989; Bell and Moore, 1998a, b; Borga, 2001; Carpenter
et al., 2001; Tachikawa et al., 2002; Hossain et al., 2004;
Reichel et al., 2008; Zhu and Cluckie, 2011); in particular,
the value of radar-based data from the UK Nimrod system
has been highlighted repeatedly, for example, in two severe
flooding events during 1998 (at Easter over the Midlands and
in late October over Wales), estimates of surface rainfall de-
rived from radar data provided evidence of the extent and
severity of the rainfall events.

However, the advantage of the weather radar rainfall es-
timates has been limited by a variety of sources of uncer-
tainty in the radar reflectivity process, including random and
systematic errors such as the hardware calibration, which ac-
quires accurate measurements of transmitted power, band-
width, antenna gain, wavelength and pulse width (Probert-
Jones, 1962; Battan, 1973), the deflection of the radar beam
(anomalous propagation), non-meteorological echoes (clut-
ter), signal attenuation, orographic enhancement, radar beam
overshooting, variation of the vertical profile of reflectiv-
ity (VPR), extrapolation of the measurements to the ground,
drop size distribution, Z-R relationship, sampling effects and
bright band, all of which can be referred to in the numer-
ous discussions on radar rainfall estimation errors (Harrold
et al., 1974; Browning, 1978; Wilson and Brandes, 1979;
Duncan et al., 1993; Fabry et al., 1992, 1994; Kitchen, 1997;
Krajewski and Smith, 2002; Rico-Ramirez et al., 2007).
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1446 D. Zhu et al.: Statistical analysis of error propagation from radar rainfall to hydrological models

More importantly, all these radar-related errors cannot be
separated from the model errors when radar rainfall estimates
are inputted to the hydrological models, and therefore the
added benefit of radar rainfall data was devalued. Although
corresponding correction techniques can be applied to im-
prove the quality of the radar rainfall estimation (Collier
et al., 1983; Hardaker et al., 1995; Collier, 1996; Fulton et
al., 1998; Harrison et al., 2000), the radar rainfall estimates
are always at risk of being contaminated by the error from
different sources due to a great deal of uncertainty.

Therefore, some studies have been conducted to analyse
the impact of radar rainfall estimation errors on hydrologi-
cal applications. Collier and Knowles (1986) suggested that
the impact of the errors in the precipitation estimation on the
rainfall-runoff process varies, in specific circumstances, the
errors will be less in the flow simulation, but in other cir-
cumstances, the error will be magnified. In addition, Wyss
et al. (1990) argued that the errors in runoff predictions are
more significantly caused by the errors introduced in the
transformation of rainfall to runoff than the errors of radar-
estimated precipitation input. Winchell et al. (1998) con-
cluded that the errors in radar rainfall estimates can be sep-
arated into two categories: the errors come from the conver-
sion of reflectivity to rainfall and the errors due to the misrep-
resentation of rainfall field in spatial and temporal domain.
And he pointed out that infiltration-excess runoff generation
is much more sensitive than saturation-excess runoff gener-
ation to both types of precipitation uncertainty, and the de-
crease of spatial and temporal resolution will result in the sig-
nificant reduction of predicted flow in the infiltration-excess
runoff model. Pessoa et al. (1993), Vieux and Bedient (1998)
and Morin et al. (2005) analysed influence of various Z-R
relationships upon simulated hydrographs and indicated that
the differences can be significant. Borga (2002) selected dif-
ferent elevation scan angles to evaluate the impact of VPR
on the catchment stream flow through a lumped hydrologi-
cal model. Vivoni et al. (2007) presented the propagation of
radar rainfall nowcasting error to flood forecasts in the con-
text of distributed hydrological simulations over a range of
catchment size or scales.

The above mentioned studies have only focused on indi-
vidual sources of the radar error. However, in practical ap-
plications, separating and estimating the different sources of
radar errors is not possible. Therefore, several researchers
employed physically based simulators of radar observations
to study the radar-based rainfall error structure and focused
on the estimation of total radar uncertainties (Ciach et al.,
2007; Habib et al., 2008; Germann et al., 2009). Krajewski
et al. (1993) and Anagnostou and Krajewski (1997) proposed
and extended a physically based simulator of radar observa-
tions according to a two-dimensional time-space stochastic
modelling of radar errors, combined with a vertical struc-
ture of hydrometeors and a statistically generated drop-size
distribution. Sharif et al. (2002, 2004) coupled a physics-
based mesoscale atmospheric model, a three-dimensional

radar simulator, and a two-dimensional infiltration-excess
hydrological model to analyse the radar beam geometric
and sampling-related effects. It showed that radar-watershed-
storm orientation-related errors in Horton runoff predictions
increase significantly due to range effects, particularly be-
yond about 80 km. However, the main limitation on the im-
plementation of this approach is the requirement to have ac-
cess to a dense rain gauge network that can be used to ap-
proximate “true” surface rainfall (Habib et al., 2008).

The main limitations on the implementation of realistic
radar error model are not only the requirement to have access
to a dense rain gauge network that can be used to approx-
imate “true” surface rainfall, but also the uncertainties in-
duced to the spatial structure of radar rainfall field in the en-
semble members, which may lead to the difficulties in inter-
preting the error propagation through hydrological models.

In this study, a simplified statistical error model based on
empirical random error distribution was constructed to define
and quantify the errors in the radar rainfall estimates at time
domain, which will certainly preserve the spatial structure of
the radar rainfall field and thus is immune to the uncertain-
ties that could possibly be induced to rainfall distribution in
space. Additionally, in order to quantify the impact from the
radar errors on the stream flow, an ensemble trial was car-
ried out to measure the influence by iterating the error model
and propagating all perturbed rainfall through the hydrolog-
ical models, thus the characteristic of the radar error can be
quantified.

Because the aim of this work is to analyse the error propa-
gation of radar rainfall in the context of hydrological models,
the analysed error in this study was assumed to be derived
from the proposed error model only, excluding the errors
contained in the raw radar rainfall and hydrological models.
In order to achieve that, the original 5 km resolution radar
rainfall radar rainfall data extracted from UK Nimrod sys-
tem with the state-of-the-art processes by Met Office, can be
considered to be “true” rainfall to generate the rainfall pertur-
bation. Meanwhile, the hydrological models were assumed to
be perfect models as the surrogate of the study catchment, af-
ter the selected criteria for model calibration and validation
have been met.

The reason for those assumptions is to set up a condi-
tional environment to trace the error in the rainfall through
the hydrological models, without the interference of inter-
nal error from the raw radar rainfall data and hydrological
models. The propagation of radar rainfall estimation errors
was then assessed by different hydrological models with dif-
ferent rainfall-runoff mechanisms, ranging from fully dis-
tributed through semi-distributed to lumped models in the
Upper Medway Catchment in Kent, United Kingdom.

The importance of this study lies on the implication of hy-
drological model structures on radar errors propagation il-
lustrated by different integrative nature of the hydrological
simulations. Moreover, the error propagation from UK na-
tional radar-based rainfall data (Nimrod radar rainfall data)
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Fig. 1. Topographic and the river network map of the Upper Med-
way Catchment.

to various hydrological simulations with different hydrolog-
ical mechanisms has not been previously addressed in a
quantitative mode, which differs from prior studies on the
propagation of radar estimation errors.

2 Study area and experimental data

This hydrological experiment for radar rainfall estimation er-
ror propagation took place in the Upper Medway Catchment,
which is around 220 km2 and located south of London; 50 km
from the Thurnham Weather Radar site (see Fig. 1). The
average annual rainfall and potential evapotranspiration are
around 729 and 663 mm, respectively. The catchment ele-
vation varies between 30 and 220 m above mean sea level
and the majority of slope ranges from 2 to 8 degrees, which
makes up around 70 % of the whole catchment and it sug-
gests that the main scenery of the Upper Medway Catch-
ment is small hills surrounding the flat, little relief low-lying
area without much variation of elevation. The land use in
the catchment can be simplified and described as permanent
grass (over 95 %). The major soil types can be classified into
two main types: silt loam and clayey silt, according to the Na-
tional Soil Resources Institute (NSRI, 2006) data. The catch-
ment is characterised by a mixture of permeable (chalk) and
impermeable (clay) geologies and the dominant aquifers con-
sist of the Ashdown Formation and the Tunbridge Wells For-
mation. The saturation-excess mechanism is the major runoff
generation process in the catchment.

The radar rainfall estimates used in this study were ex-
tracted from the UK Nimrod composite data set, which was
provided and quality controlled by the UK Met Office using
the lowest available scan, and has been adjusted by available
rain gauge measurement and undergone extensive process-
ing to correct for various sources of radar error including
noise, clutter, anomalous propagation, attenuation, occulta-

tion, “bright band” and orographic enhancement, etc. There-
fore, the high-resolution radar composite rainfall estimates
incorporate the latest UK Met Office processing algorithms
to account for the different sources of errors in the estimation
of precipitation using weather radars (Harrison et al., 2000),
which implies that this data set is the best possible estimate
of rainfall on the ground in the UK and can be used as origi-
nal radar rainfall data for the perturbation process later in this
study.

The hydrological data was obtained from 9 real-time TBRs
(Tipping-bucket rain gauge) and resampled to 15min inter-
val. The Nimrod radar rainfall data was provided by the
British Atmospheric Data Centre (BADC) with 5 km/15 min
resolution. Figure 1 shows the locations of the rain gauges
(circles) and the discharge gauges (triangles), the rectangu-
lar grid represents the 5× 5 km2 Cartesian national grid of
the Nimrod radar data. Due to the data availability of radar
rainfall, the period from July 2006 to December 2007 (18
months in total) was selected for radar-based rainfall error
propagation analysis.

3 Methodology

3.1 Rainfall-runoff models

Three hydrological models with different mathematical
structures and hydrological mechanisms were selected and
constructed on the Upper Medway Catchment, including
the physically based, fully distributed model: MIKE SHE
(Abbott et al., 1986a, b; Refsgaard and Storm, 1995); the
semi-distributed, lumped model: TOPMODEL (Beven and
Kirkby, 1979; Beven and Freer, 2001) and the unit hydro-
graph model: PRTF model (Yang and Han, 2006). All the
models chosen have been widely used across the world and
are representative of a set of mathematical structures that
span from complex to simple and reflect a decreasing abil-
ity to specifically represent the distributed (spatial) nature of
the rainfall-runoff process.

The only objective of the Upper Medway models is in con-
structing a surrogate of the catchment that can be used to
study the error propagation from the radar rainfall estimation
to the stream flow simulation by different rainfall-runoff pro-
cedures, thus the model errors were not taken into account in
the comparisons. The purpose of this work is to gain further
insight into the interaction between radar-rainfall estimation
and corresponding hydrological simulations by considering
and evaluating the impact of radar rainfall estimation errors
on a set of different rainfall-runoff model structures, instead
of inter-comparing a set of hydrological models for a spe-
cific flood event or comparing the simulation results from
different radar-rainfall processing scenarios.

Consequently, all the model errors are assumed to be
free so that the uncertainty analysis can be constrained to
the quantitative comparison among various radar rainfall

www.hydrol-earth-syst-sci.net/17/1445/2013/ Hydrol. Earth Syst. Sci., 17, 1445–1453, 2013
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Table 1. Initial parameter values and expected ranges for MIKE SHE model.

Parameters for calibration Unit Initial Selected

Overland flow
Surface Manning’s numberM m1/3 s−1 6 5
Unsaturated zone
Infiltration rate (HOST 9) m s−1 3× 10−6 3.4× 10−6

Infiltration rate (HOST 18) m s−1 5× 10−6 5.2× 10−6

Infiltration rate (HOST 24) m s−1 4× 10−6 5.2× 10−6

Infiltration rate (HOST 25) m s−1 6× 10−8 6.9× 10−8

Saturated zone
Time constant of 1st interflow reservoir day 6 2
Time constant of 2nd interflow reservoir day 3 1
1st interflow reservoir time constant of percolation day 10 5
2nd interflow reservoir time constant of percolation day 15 5
Initial depth in base flow reservoir m 0.3 0.5
Manning’s numberm in river channel s m−1/3 0.05 0.03

Table 2.Main parameter values for TOPMODEL.

Parameters for calibration Unit Value

Maximum moisture deficitSZM m 9.01× 10−3

Lateral transmissivity when the soil is just saturatedT0 m2 h−1 3.44× 10−4

Time delay per unit of deficit in the unsaturated zoneTd h 2.93× 10−3

Maximum allowable storage deficit SRmax m 0.63

estimation error ensembles, the reliability of radar rainfall
detection and the model capability of simulation for radar-
based rainfall storms.

MIKE SHE is a further developed hydrological modelling
system based on the SHE concept, which was introduced in
1976 by three collaborating European organisations (Abbott
et al., 1986). MIKE SHE is a complex deterministic model,
which covers the entire hydrological system on a catchment
scale (Refsgaard and Storm, 1995). The overland flow mod-
ule in MIKE SHE employs a two-dimensional Saint-Venant
equation to describe the water movement on the surface, and
the finite difference method is used to solve this equation.
The water movement through the soil profile, along with the
evapotranspiration is modelled by a simplified Two-Layer
ET/UZ model, which is suited to be applied to the catch-
ment that has a shallow groundwater table and used in the
unsaturated zone to calculate the actual evapotranspiration
and the amount of water that recharges the saturated zone.
The ground water flow is calculated using the linear reser-
voir method and this method can be regarded as the bal-
ance of the data availability of the geology, the complex-
ity of the groundwater simulation and the benefit from the
model simplicity.

TOPMODEL (TOPographic Model) developed a topo-
graphic index to represent a dynamic saturated area of a basin
(Beven and Kirkby, 1979; Beven and Freer, 2001). Since the
early 1990s, TOPMODEL has been widely used because it

can provide spatially distributed hydrologic information with
available input requirements (e.g. DEM data). For a DEM
data grid cell,i, its topographic index, TIi , is calculated as
follows:

TIi = ln
ai

tanβi

, (1)

whereai and tanβi are the upstream contributing area per
unit contour length and the local slope at grid celli, respec-
tively. The model simulates the variable source areas of the
catchment, which assumes that overland flow is produced
only over a small fraction of the total catchment area. The
source areas that produce overland flow are those that be-
come saturated during precipitation events. The dynamics
of the saturated source areas is controlled by catchment to-
pographical and subsurface hydraulic characteristics and the
state of the catchment wetness.

By contrast to the MIKE and TOPMODEL model, the
PRTF model was a pure mathematical model of a dynamic
system, which was constructed from the observation data
and prior knowledge. PRTF model is an advanced form of
rainfall-runoff transfer function (TF) model and is uncon-
ditionally stable, which means the adjustment of any of the
model parameters cannot result in model instability or fluctu-
ations in model output (Yang and Han, 2006). PRTF model is
a unit hydrograph type, black-box model which empirically
relates rainfall and flow, which can be subject to conceptual

Hydrol. Earth Syst. Sci., 17, 1445–1453, 2013 www.hydrol-earth-syst-sci.net/17/1445/2013/
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Fig. 2. Model calibration performance among MIKE SHE, TOP-
MODEL and PRTF.

interpretation as forms of routing function. Mathematically
it represents the simplest structure chosen to transfer the pre-
cipitation information to stream flow by replicating the non-
linear and time variant nature of the rainfall-runoff process
and matching the model response as closely as possible to
the catchment response in terms of three real-time adjust-
ment factors (shape, volume and timing). The typical rainfall
runoff transfer function model TF can be described by the
following formula:

yt = a1yt−1 + a2yt−2 + ·· ·+ apyt−p + b0ut

+b1ut−1 + b2ut−2 + ·· ·+ bqut−q , (2)

whereai , bi are the model parameters,yt andut are river
flow and rainfall rate att time, respectively, and the percent-
age runoff of the process can be represented by Eq. (2).

3.2 Model parameterisation

Due to the lack of availability of radar rainfall data during
the model calibration period, the model calibration and val-
idation was carried out using 15 min rain gauge measure-
ments and compared with 15 min observations of discharge
at the catchment outlet at Chafford. The model parameterisa-
tion process were performed for a 6 months period (Septem-
ber 2003 to February 2004 for model calibration, Septem-
ber 2006 to February 2007 for model validation), using the
first 2 months as a warm-up period, and the remaining 4
months were used to evaluate model outputs.

MIKE SHE was set up using a grid size of 100 m× 100 m.
The trial-and-error minimization was employed to calibrate
the model. Firstly, the base flow was the main target, the rel-
ative base flow controlling parameter, was set in a range and
the parameters adjusted by validating the model iteratively.
Secondly, the peak flow was taken into account and several
sensitive parameters were selected in the calibration due to
the contribution of the variability of parameters in relation
to the peaks (Zhu and Cluckie, 2011). The final calibrated
model parameters can be found in Table 1.

Fig. 3. Model validation performance among MIKE SHE, TOP-
MODEL and PRTF.

Based on the DEM data, the topography index curve for
the basin was calculated. Using TOPMODEL and the to-
pography index curve to the Upper Medway Catchment,
the overland flow and base flow were simulated (Beven
and Kirkby, 1979; Beven and Freer, 2001; Peng and Xu,
2010), and the main parameters of TOPMODEL were
listed in Table 2.

The auto calibration function was employed and the iden-
tified PRTF model for the Upper Medway Catchment using
effective rainfall can be written in the formation of Eq. (3) as
below:

yt = 2.866626yt−1 − 2.739182yt−2 + 0.872468yt−3 (3)

+0.0083970ut

with time lag = 15 min and time to peak 10.799 h,

whereyt andut are recorded river flow and precipitation rate
at t time, respectively.

Figures 2 and 3 show the comparisons of model per-
formance among MIKE SHE, TOPMODEL and PRTF in
model calibration and validation period against the observa-
tion stream flow at the catchment outlet (Peng and Du, 2010;
Zhu and Cluckie, 2011); the corresponding statistics for all
the models are listed in Table 3.

3.3 Radar rainfall error-ensemble-generation model

As the noise in radar signals can result in normalised errors,
normalised bias or both in the estimated rainfall, a statistical
error model was constructed in order to analyse how these
errors in the radar based rainfall are transmitted to the stream
flow through the rainfall-runoff models. A synthetic statisti-
cal radar error model (see Eq. 4) was developed to generate
uncertainties based on the original 5 km radar rainfall:

Rp = σ × R(1+ η ∗ Eradn), (4)

whereRp is the perturbed radar rainfall data,R is the un-
perturbed original radar rainfall data. The radar error model

www.hydrol-earth-syst-sci.net/17/1445/2013/ Hydrol. Earth Syst. Sci., 17, 1445–1453, 2013
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Table 3.Model performances in calibration and validation for the Upper Medway Catchment.

Calibration Validation

SHE TOPMODEL PRTF SHE TOPMODEL PRTF

MAE 0.80 1.86 2.00 1.08 2.35 2.27
RMSE 1.42 2.98 3.49 1.60 2.59 3.08
Correlation 0.96 0.75 0.78 0.96 0.78 0.84
Nash–Sutcliffe 0.93 0.71 0.70 0.91 0.66 0.67

was set to generate 3 different synthetic biasesσ , which were
−0.3, 1(no bias) and 0.3 combined with various synthetic er-
rorsη ranging from 0 to 1.0 with a 0.2 increment.Eradn is the
random error obtained from Gaussian distribution (Lukacs
and King, 1954).

The normalised errors and normalised bias, shown in
Eqs. (5) and (6) (Bringi et al., 2001), were employed to quan-
titate the uncertainties in the perturbed radar rainfall data and
evaluate impact simulated stream flow in this study.

NE =

1
N

N∑
i=1

|Or − Op|

1
N

N∑
i=1

Or

(5)

NB =

1
N

N∑
i=1

(Or − Op)

1
N

N∑
i=1

Or

(6)

As to quantitate the uncertainties in radar rainfall data, the
ground truth data was considered to be the raw 5 km radar
rainfall data obtained from Nimrod, which was represented
by Or which is the same asR in Eq. (4), whereas the per-
turbed radar rainfall dataRp in Eq. (4) is denoted byOp.

Similarly, as to quantitate the uncertainties in stream flow
after error propagation through the hydrological models, the
simulated results produced by the original rainfall dataR

in Eq. (4) are denoted byOr and the corresponding sim-
ulation results triggered by the perturbation rainfallRp in
Eq. (4) are represented byOp. Therefore, the values of NE
and NB can be calculated for rainfall field and simulated
flow, respectively.

The synthetic error model in this study was set to run 10
times iteratively with each combined ensemble (one syn-
thetic biasσ and one synthetic errorη), which produced
157 perturbed radar rainfall ensemble members, thus artifi-
cial noise was added to original radar rainfall for all the radar
grids and varied randomly for each run during the simula-
tion. Consequently, each run produced a unique combination
of normalised error NE and normalised bias NB for the per-
turbed rainfall and the corresponding streamflow simulation
through three different hydrological models.

Fig. 4. Normalised errors distribution of perturbed rainfall and
stream flow (red solid line: rainfall, orange dot line: MIKE SHE,
green dot line: TOPMODEL, blue dot line: PRTF).

4 Results and discussion

The impact on rainfall and flow from model error and model
bias can be seen in the contour maps in Figs. 4 and 5, which
indicate how the statistical error model affects the normalised
errors in rainfall and stream flow and normalised bias in
rainfall and stream flow, respectively.

In Fig. 4, the ensemble normalised error in rainfall has a
different distribution with the normalised error in the stream
flows simulated in three models. It shows that the rainfall
normalised error can trigger a range of possible correspond-
ing normalised errors in stream flow. Although the maxi-
mum values of the range are quite close to the rainfall nor-
malised error, the minimum values of the range increase
along with the enhancement of the rainfall normalised er-
ror. Figure 4 also demonstrates the difference performance
of ensemble simulation in three hydrological models, even
though they share the similar error distribution. The prop-
agated normalised errors in the distributed model (MIKE
SHE) are slightly smaller than the errors produced in the
lumped model, TOPMODEL. However, the normalised er-
rors were constrained more in the unit hydrograph model
PRTF than the other two models.

In contrast to the normalised error distribution shown in
Fig. 4, the ensemble normalised bias in rainfall has a simi-
lar distribution with the normalised bias in the stream flows

Hydrol. Earth Syst. Sci., 17, 1445–1453, 2013 www.hydrol-earth-syst-sci.net/17/1445/2013/
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Fig. 5.Normalised bias distribution of perturbed rainfall and stream
flow (red solid line: rainfall, orange dot line: MIKE SHE, green dot
line: TOPMODEL, blue dot line: PRTF).

simulated in three models (see Fig. 5). It shows that if the
normalised bias of the rainfall rises, the normalised bias of
the stream flow would not only follow but also be enhanced,
especially when the rainfall normalised bias was above zero.
However, this enhancement was relatively smaller when the
rainfall normalised bias was below zero. And similar to
Fig. 4, the propagated bias varies among three hydrologi-
cal models, the bias enhancement in MIKE SHE distributed
model has less than the lumped model, TOPMODEL, but still
the unit hydrograph model PRTF has the best performance on
the bias control, the value of which is almost the same as the
bias in the rainfall.

Additionally, the normalised errors in the stream flow were
mainly influenced by the normalised bias in the rainfall as
well. Generally, it was less than the normalised errors in the
rainfall, when the normalised bias of the rainfall was not too
high, and its value would be very similar to the absolute value
of the normalised bias in the stream flow. However, when the
normalised bias of the rainfall decreases below zero, the nor-
malised errors in the stream flow would be narrowed, com-
pared to the rainfall normalised errors, but its value was big-
ger than the absolute value of the steam flow normalised bias.

Regarding the different error propagation through hydro-
logical models, the distributed model MIKE SHE slightly
outperformed the lumped model TOPMODEL in terms of
the value of normalised error and normalised bias in stream
flow. However, these two criterions are more considerably
constrained in the unit hydrograph model PRTF. This is ini-
tially seen as a controversial conclusion but after reflec-
tion it is completely justified by the analysis presented. This
study also proved that the hydrological models, especially
for the distributed and lumped hydrological models, which
where constructed based on physical rainfall-runoff mecha-
nism, act like a low-pass filter and smooth the noise of rain-
fall by averaging. Therefore, the ensemble perturbed rain-
fall data has similar error propagation through the MIKE

SHE and TOPMODEL. However, the unit hydrograph model
PRTF is based on transfer function, which was a pure math-
ematical model of a dynamic system. The connection be-
tween rainfall and runoff in this model is non-linear and
time variant. Hence, the PRTF model is only sensitive to the
three real-time adjustment factors (shape, volume and tim-
ing), which match the model response as closely as possible
to the catchment response. Therefore, the rainfall perturba-
tion has less effect in this process, compared to the other two
hydrological models.

5 Conclusions

A simplified statistical error model based on empirical ran-
dom error distribution was constructed to define and quan-
titate the errors in the radar rainfall estimates through hy-
drological models with different rainfall-runoff mechanisms.
The propagation of radar rainfall estimation errors was as-
sessed through different hydrological models, ranging from
fully distributed to semi-distributed to lumped models in the
Upper Medway Catchment in Kent, United Kingdom. The
implication of hydrological model structures on radar errors
propagation is illustrated through the different integrative na-
ture of the hydrological simulations. Overall, the conclusions
made in this study are summarised as follows:

1. The normalised bias of the radar rainfall was the dom-
inate factor that had a significant impact and would be
enhanced by the stream flow bias.

2. The distributed model MIKE SHE and the lumped
model TOPMODEL selected in this study have similar
performance on the rainfall error propagation.

3. The unit hydrograph model PRTF was good at con-
straining the rainfall error on the stream flow because
of the simplicity of transfer function mechanism.

The radar precipitation error ensemble analysis was a prelim-
inary experiment regarding the issue of how much impact on
simulated flow could be caused by a distributed hydrological
model if the error of radar rainfall data is identified.

Although the error model is relatively simple in this study,
benefits could still be expected from this paper, as the pro-
posed error model has preserved the spatial structure of the
radar rainfall field, but effectively reflect error distribution in
time domain, which provide a different insight to study error
propagation. The simulation results can be interpreted and
referred in further studies.

Moreover, this error model is easy to replicate and apply
to different catchments, without the requirement of a dense
rain gauge network. More importantly, the error propagation
from national radar based rainfall data (Nimrod radar rain-
fall data) to various hydrological simulations, ranging from
fully distributed through semi-distributed to lumped models,
has not been previously addressed in a quantitative mode,
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which differs from prior studies on the propagation of radar
estimation errors.

Nevertheless, more effort could be made to further re-
search this issue and one of the alternatives is to add the noise
to the radar signals in a “radar” way, which means not every
radar grid shares the same error, but depends on the source
of the noise during the forecasting. An example is clutter that
could be added into the radar image to see the distribution
of the error in the forecast rainfall or attenuation could be
used to examine the influence under different error magni-
tudes. The model could then tell how much influence the
error caused to the flow, which could give some indication
on how to deal with the radar rainfall data errors, especially
when some of these errors are inevitable.
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of a physically–based, distributed modeling system, J. Hydrol.,
87, 61–77, 1986b.

Anagnostou, E. N. and Krajewski, W. F.: Simulation of radar reflec-
tivity fields: algorithm formulation and evaluation, Water Resour.
Res., 33, 1419–1429, 1997.

Battan, L. J.: Radar observation of the atmosphere, The University
of Chicago Press, 1973.

Bell, V. A. and Moore, R. J.: A grid-based distributed flood fore-
casting model for use with weather radar data: Part 1. Formula-
tion, Hydrol. Earth Syst. Sci., 2, 265–281,doi:10.5194/hess-2-
265-1998, 1998a.

Bell, V. A. and Moore, R. J.: A grid-based distributed flood forecast-
ing model for use with weather radar data: Part 2. Case studies,
Hydrol. Earth Syst. Sci., 2, 283–298,doi:10.5194/hess-2-283-
1998, 1998b.

Beven, K. J. and Freer, J.: A dynamic TOPMODEL, Hydrol. Pro-
cess., 15, 1993–2011, 2001.

Beven, K. J. and Kirkby, M. J.: A physically based variable con-
tributing area model of basin hydrology, Hydrol. Sci. B., 24, 43–
69, 1979.

Borga, M.: Use of radar rainfall estimates in rainfall-runoff model-
ing: an assessment of predictive uncertainty. Fifth International
Symposium on Hydrological Applications of Weather Radar-
Radar Hydrology, Japan, 451–456, 2001.

Borga, M.: Accuracy of radar rainfall estimates for stream flow sim-
ulation, J. Hydrol., 267, 26–39, 2002.

Bringi, V. N., Huang, G. J., Chandrasekar, V., and Keenan, T. D.:
An areal rainfall estimator using differential propagation phase:
evaluation using a c-band radar and a dense gauge network in the
tropics, J. Atmos. Oceanic Technol., 18, 1810–1818, 2001.

Browning, K. A.: Meteorological applications of radar, Rep. Prog.
Phys., 41, 763–801, 1978.

Carpenter, T. M., Georgakakos, K. P., and Sperfslagea, J. A.: On the
parametric and nexrad-radar sensitivities of a distributed hydro-
logic model suitable for operational use, J. Hydrol., 253, 169–
193, 2001.

Ciach, G. J., Krajewski, W. F., and Villarini, G.: Product-error-
driven uncertainty model for probabilistic quantitative precipita-
tion estimation with NEXRAD data, J. Hydrometeorol., 8, 1325–
1347, 2007.

Cluckie, I. D. and Owens, M. D.: Real-time rainfall-runoff models
and use of weather radar information. Weather Radar and Flood
Forecasting, John Wiley & Sons, 1987.

Cluckie, I. D., Yu, P., and Tilford, K.: Real-time forecasting: model
structure and data resolution, Weather Radar Networking, Brus-
sels, Belgium, 1989.

Collier, C. G.: Applications of weather radar systems, Praxis Pub-
lishing Ltd, 1996.

Collier, C. G. and Knowles, J. M.: Accuracy of rainfall estimates
by radar, part iii: application for short-term flood forecasting, J.
Hydrol., 83, 237–249, 1986.

Collier, C. G., Larke, P. R., and May, B. R.: A weather radar correc-
tion procedure for real-time estimation of surface rainfall, Q. J.
Roy. Meteorol. Soc., 109, 589–608, 1983.

Duncan, M. R., Austin, B., Fabry, F., and Austin, G. L.: The effect of
gauge sampling density on the accuracy of streamflow prediction
for rural catchments, J. Hydrol., 142, 445–476, 1993.

Fabry, F., Austin, G. L., and Tees, D.: The accuracy of rainfall esti-
mates by radar as a function of range, Q. J. Roy. Meteorol. Soc.,
118, 435–453, 1992.

Fabry, F., Bellon, A., Duncan, M. R., and Austin, G. L.: High reso-
lution rainfall measurements by radar for very small basins: the
sampling problem re-examined, J. Hydrol., 161, 415–428, 1994.

Fulton, R. A., Breidenbach, J. P., Seo, D. J., Miller, D. A., and Ban-
non, T.: The wsr-88d rainfall algorithm, Weather Forecast., 13,
377–395, 1998.

Germann, U., Berenguer, M., Sempere-Torres, D., and Zappa, M.:
REAL – Ensemble radar precipitation estimation for hydrology
in a mountainous region, Q. J. Roy. Meteorol. Soc., 135, 445–
456, 2009.

Habib, E., Aduvala, A. V., and Meselhe, E. A.: Analysis of radar-
rainfall error characteristics and implications for streamflow sim-
ulation uncertainty, Hydrolog. Sci. J., 53, 568–587, 2008.

Hardaker, P. J., Holt, A. R., and Collier, C. G.: A melting-layer
model and its use in correcting for the bright band in single-
polarization radar echoes, Q. J. Roy. Meteorol. Soc., 121, 495–
525, 1995.

Harrison, D. L., Driscoll, S. J., and Kitchen, M.: Improving pre-
cipitation estimates from weather radar using quality control and

Hydrol. Earth Syst. Sci., 17, 1445–1453, 2013 www.hydrol-earth-syst-sci.net/17/1445/2013/

http://dx.doi.org/10.5194/hess-2-265-1998
http://dx.doi.org/10.5194/hess-2-265-1998
http://dx.doi.org/10.5194/hess-2-283-1998
http://dx.doi.org/10.5194/hess-2-283-1998


D. Zhu et al.: Statistical analysis of error propagation from radar rainfall to hydrological models 1453

correction techniques, Meteorol. Appl., 7, 135–144, 2000.
Harrold, T. W., English, E. J., and Nicholass, C. A.: The accuracy

of radar derived rainfall measurements in hilly terrain, Q. J. Roy.
Meteorol. Soc., 100, 331–350, 1974.

Hossain, F., Anagnostou, E. N., Dinku, T., and Borga, M.: Hydro-
logical model sensitivity to parameter and radar rainfall estima-
tion uncertainty, Hydrol. Process., 18, 3277–3291, 2004.

Kitchen, M.: Towards improved radar estimates of surface precipi-
tation rate at long range, Q. J. Roy. Meteorol. Soc., 123, 145–163,
1997.

Krajewski, W. F. and Smith, J. A.: Radar hydrology: rainfall esti-
mation, Adv. Water. Resour., 25, 1387–1394, 2002.

Krajewski, W. F., Raghavan, R., and Chandrasekar, V.: Physically
based simulation of radar rainfall data using a space-time rainfall
model, J. Appl. Meteor., 32, 268–283, 1993.

Lukacs, E. and King, E. P.: A property of normal distribution, The
Annals of Mathematical Statistics, 25, 389–394, 1954.

Morin, E., Maddox, R. A., Goodrich, D., and Sorooshian, S.:
Radar Z-R relationship for summer monsoon storms in Arizona,
Weather Forecast., 20, 672–679, 2005.

National Soil Resources Institute: NSRI soil data structures and re-
lationships, Cranfield University, 2006.

Owens, M. D.: Real-time flood forecasting using weather radar data,
Ph. D. Thesis, University of Salford, UK, 1986.

Peng, D. Z. and Du, Y.: Comparative analysis of several Lhasa River
basin flood forecast models in Yarlung Zangbo River, iCBBE
2010, Chengdu, China, 2010.

Peng, D. Z. and Xu, Z. X.: Simulating the impact of climate change
on stream flow in the Tarim River basin by using a modified semi-
distributed monthly water balance model, Hydrol. Process., 24,
209–216, 2010.

Pessoa, M. L., Bras, R. L., and Williams, E. R.: Use of weather
radar for flood forecasting in the Sieve River basin: a sensitivity
analysis, J. Appl. Meteor., 32, 462–475, 1993.

Probert-Jones, J. R.: The radar equation in meteorology, Q. J. Roy.
Meteorol. Soc., 88, 485–495, 1962.

Refsgaard, J. C. and Storm, B.: MIKE SHE, in: Computer Models of
Watershed Hydrology, edited by: Singh, V. P., Water Resources
Publications, Highlands Ranch, 809–846, 1995.

Reichel, F. V., Hans-Reinard, S. K., Cluckie, I. D., and Rico-
Ramirez, M. A.: Radar-based flood forecasting for the Upper
Medway Catchment in the UK, Proceedings of the Institution of
Civil Engineers-Water Management, 2008.

Rico-Ramirez, M. A., Cluckie, I. D., Shepherd, G., and Pallot, A.:
A high-resolution radar experiment on the island of Jersey, Me-
teorol. Appl., 14, 117–129, 2007.

Sharif, H. O., Ogden, F. L., Krajewski, W. F., and Xue, M.: Numeri-
cal simulations of radar rainfall error propagation, Water Resour.
Res., 38, 1140,doi:10.1029/2001WR000525, 2002.

Sharif, H. O., Ogden, F. L., Krajewski, W. F., and Xue, M.: Statis-
tical analysis of radar rainfall error propagation, J. Hydrometeo-
rol., 5, 199–212, 2004.

Tachikawa, Y., Vieux, B. E., Georgakakos, K. P., and Nakakita, E.:
Weather Radar Information and Distributed Hydrological Model,
IAHS Publication, 2002.

Vieux, B. E. and Bedient, P. B.: Estimation of rainfall for flood pre-
diction from WRS-88D reflectivity: a case study, 17–18 October
1994, Weather Forecast., 13, 407–415, 1998.

Vivoni, E. R., Entekhabi, D., and Hoffman, R. N.: Error propaga-
tion of radar rainfall nowcasting fields through a fully distributed
flood forecasting model, J. Appl. Meteor. Climatol., 46, 932–940,
2007.

Wilson, J. W. and Brandes, E. A.: Radar measurement of rainfall –
a summary, B. Am. Meteorol. Soc., 60, 1048–1058, 1979.

Winchell, M., Gupta, H. V., and Sorooshian, S.: On the simula-
tion of infiltration and saturation-excess runoff using radar-based
rainfall estimates: effects of algorithm uncertainty and pixel ag-
gregation, Water Resour. Res., 34, 2655–2670, 1998.

Wyss, J., Williams, E. R., and Bras, R. L.: Hydrologic modeling of
New England basins using radar rainfall data, J. Geophys. Res.,
95, 2143–2152, 1990.

Yang, Z. and Han, D.: Derivation of unit hydrograph using a
transfer function approach, Water Resour. Res., 42, W01501,
doi:10.1029/2005WR004227, 2006.

Zhu, D. and Cluckie, I. D.: A preliminary appraisal of Thurnham
Dual Polarisation Radar in the context of hydrological modelling
structure, Hydrol. Res., 43, 736–752, 2011.

www.hydrol-earth-syst-sci.net/17/1445/2013/ Hydrol. Earth Syst. Sci., 17, 1445–1453, 2013

http://dx.doi.org/10.1029/2001WR000525
http://dx.doi.org/10.1029/2005WR004227

