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This supplementary material consists of a list of symbols and variables used in the
paper and in the following 21 sections. Section S1 discusses data used or referred to in the
sections. Section S2 addresses the computation of some common meteorological variables
and Section S3 outlines the computation of net solar radiation. The application of the
evaporation models, Penman and Penman-Monteith, is discussed in Sections S4 and S5.
Computation of Class-A pan evaporation by the PenPan model is outlined in Section S6.
Actual evaporation estimates using Morton, and Advection-Aridity and like models are
discussed in Sections S7 and S8. Section S9 describes the computation of potential
evaporation by several other models. Two methods to estimate deep lake evaporation where
advected energy and heat storage should be accounted for are outlined in Section S10 and
Section S11 describes the application of four methods to estimate shallow lake evaporation.
The next four sections deal with evaporation from lakes covered by vegetation (Section S12),
estimating potential evaporation in rainfall-runoff modelling (Section S13), estimating
evaporation from intercepted rainfall (Section S14) and estimating bare soil evaporation
(Section S15). In Section S16 there is a discussion of Class-A pan evaporation equations and
pan coefficients. Section S17 includes a summary of published evaporation estimates.
Section S18 is a summary of a comparison of evaporation estimates by 14 models for six
sites across Australia. Detailed worked examples for most models are carried out in Section
S19. Section S20 is a Fortran 90 listing of Morton’s WREVAP program and Section S21 is a
worked example of Morton’s CRAE, CRWE and CRLE models within the WREVAP
framework.
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List of variables and symbols in the paper and supplementary sections

excluding Sections S20 and S21

Variable/symbol | Description Units*
Symbols

AA Advection-Aridity model symbol
AWBM Rainfall-runoff model symbol
AWS Automatic Weather Station symbol
BC Blaney-Criddle evapotranspiration model symbol
BS Brutsaert-Stricker evaporation model symbol
CR Complementary Relationship symbol
CRAE Complementary Relationship Areal Evapotranspiration symbol
CRLE Complementary Relationship Lake Evaporation symbol
CRWE Complementary Relationship Wet-surface Evaporation symbol
ET Evapotranspiration symbol
FAO56 RC FAO-56 Reference Crop model symbol
GG Granger-Gray evaporation model symbol
HS Hargreaves-Samani evapotranspiration model symbol
M Month symbol
Mo Morton evaporation model symbol
Ma Makkink evaporation equation symbol
modH Modified Hargreaves evaporation model symbol
PM Penman-Monteith evapotranspiration model symbol
PET Potential evapotranspiration symbol
PT Priestley-Taylor evaporation model symbol
P48 Penman equation with 1948 wind function symbol
P56 Penman equation with 1956 wind function symbol
SILO An enhanced Australian climate database symbol
SwW Shuttleworth-Wallace model symbol
SHE Systeme Hydrologique Européen rainfall-runoff model symbol
SIMHYD Rainfall-runoff model symbol
SWAT Soil and Water Assessment Tool symbol
Th Thornthwaite evapotranspiration model symbol
TIN Triangular irregular networks symbol




Tu Turc evaporation model symbol
WREVAP E:rF(e)Egm combining three Morton models CRAE, CRWE and symbol
Variables
A Evaporating area m?
A Lake area (in Kohler and Parmele (1967) procedure) km?, (m?)
Ay, Net water advected energy during At (net inflow from inflows mm day’

and outflows of water)
A, Available energy (sensible and latent heat) above canopy MJ m-2 day-1
Ay Gradient in Equation (S13.1) undefined
Ay Net water advected energy during At mm day™
A Surface area of the lake m?
Ags Available energy at sub-strate MJ m-2 day-1
Aiy1, 4 Area of adjacent layers m?
a Coefficient undefined
arp Exponent in Thornthwaite 1948 procedure undefined
a, Constant in PenPan equation dimensionless
as Constant for Angstrém —Prescott formula dimensionless
a, Constant dimensionless
B Bowen Ratio dimensionless
B, Intercept in Equation (S13.1) undefined
b Coefficient or slope of the regression between two variables undefined
by Constant , or constant in CRAE and CRWE models dimensionless
b Constant for Angstrém —Prescott formula dimensionless
byar Working variable undefined
by, b, Empirical coefficients for Morton’s procedure W m?
C Constant =13 m m
Cys Hargreaves-Samani working coefficient undefined
C Cloud cover oktas
Cr Fraction of cloud cover dimensionless
Cy Wind function coefficient undefined
Cp Number of tenths of the sky covered by cloud dimensionless

Atmospheric conductance

ms?




Cean Canopy conductance ms*
Cemp Empirical coefficient undefined
Cea » Cou Working variables undefined
Cret Amount of water retained on the canopy mm
c Parameter in linear Budyko-type relationship undefined
Ca Specific heat of air MJ kgteC™
Co Constant dimensionless
Cs Volumetric heat capacity of soil MJ m-3 °C-1
Cw Specific heat of water MJ kg1 eC-1
1 Constant = 0.61 dimensionless
C, Constant = 0.12 mm day™
D Day or dimensionless relative drying power dimensionless
DoY Day of Year dimensionless
D, Dimensionless relative drying power dimensionless
d Zero plane displacement height m
daymon Number of days in month day
d, Relative distance between the earth and the sun undefined
ds Effective soil depth m
d, Constant dimensionless
E Surface evaporation mm day™
Elev Elevation above sea level m
Eger Actual evaporation rate mm day™
Egq Equilibrium evaporation rate mm day™
Emak Makkink potential evaporation mm day™
Epenpan Modelled Class-A (unscreened) pan evaporation mm day™
E; Lake evaporation on day i mm day™
Epq Working variable undefined
EP2, EP3, EP5 | Various definitions of potential evaporation undefined
Eqy Shuttlgworth-WaIIace combined evaporation from vegetation mm day’

and soil
Epr(T,) ;/ll;t;—envwonment evaporation estimated by Priestley-Taylor mm day’™
Epen,j Penman estimate of evaporation for specific period mm/unit time
Epp Evaporation from a deep lake mm day™
E; Lake evaporation large enough to be unaffected by the upwind | mm day™




transition
Eyes Evaporation from a water body using McJannet et al (2008a) mm day™
Epr Priestley-Taylor potential evaporation mm day™
Epan,j Monthly (daily) Class-A pan data in month (day) j mm/unit time
Epgn Daily Class-A pan evaporation mm day™
Epen Penman potential evaporation mm day™
Epenow Penman open-surface water evaporation mm day™
Epot Potential evaporz_:ttion (in the land environment) or pan-size wet mm day’
surface evaporation
Es Shallow lake evaporation mm month™
E; Evaporation component due to net heating mm day™
E.on Transpiration from canopy mm day™
Esoul Soil evaporation mm day™
Eyater Evaporation from standing water mm day™
Errans Mean transpiration mm day™
Epnter Mean interception evaporation mm day™
Eyetiand Evapotranspiration from the wetland mm day™
Epot Mean annual catchment potential evapotranspiration mm year™
Esoil Mean soil evaporation mm day™
Epq Daily estimate of lake evaporation from Webb (1966) equation | cm day™
E'pan Daily Class-A pan evaporation from Webb (1966) equation cm day™
, Open-water evaporation based on modified Penman equation 1
Epenow ) . . . mm day
incorporating aerodynamic resistance
E-s. Eona Radiation and aerodynamic terms respectively in the PM mm day’
e model
= Thornthwaite (1948) estimate of mean monthly PET for month 1
Erp, i mm month
Eg . Average lake evaporation for a crosswind width of x m mm day™
I Average daily stage 1 evaporation which is assumed to be at or mm davt
penman near the rate of Penman evaporation y
Ejct Mean annual catchment evaporation mm year™
ETye Actual daily evaporation mm day™
ET. Wel_l-watered crop evapotranspiration in a semi-arid windy mm day’?
environment
ETES Actuql evapotranspiration estimated by Brutsaert-Stricker mm day’™
equation
ETSS Granger-Gray actual evapotranspiration mm day™




sJ Actual evapotranspiration based on the Szilagyi-Jozsa -1
ETpct equation mm day
ET Evaporation based on the Blaney-Criddle method without mm davt

BC height adjustment y

Evaporation based on the Blaney-Criddle method with height 1

H
ETgc adjustment mm day
ETMo Morton’s estimate of actual areal evapotranspiration mm day™
ETpe; Morton’s estimate of potential evapotranspiration mm day™
ETy% Morton’s estimate of wet-environmental areal mm day™

evapotranspiration
ETys Hargreaves-Samani reference crop evapotranspiration mm day™
ET _ Modlfle_d Hargreaves monthly potential evapotranspiration mm month2
Harg,j (month j)
ET, Potential evaporation of the land environment mm day™
ETpgr Daily potential evaporation mm day™
ETpy Penman-Monteith potential evapotranspiration mm day™
ETpot Potential evapotranspiration mm day™
ETgc Reference crop evapotranspiration mm day™
Reference crop evapotranspiration for short grass (0.12 m 1
ETgrcsh high) pevap P g ( mm day
ETrcta Reference crop evapotranspiration for tall grass (0.5 m high) mm day™
ETryre Turc’s reference crop evapotranspiration mm day™
ETyer Wet environment areal evapotranspiration mm day™
ET Daily equivalent Penman-Monteith potential mm dav

eqPM evapotranspiration y

ET,t Mean annual catchment evapotranspiration mm year™
Aerodynamic component of Penman’s equation; regional

E, drying power of atmosphere; evaporative component due to mm day™
wind

E Estimate of open-surface water evaporation as a function of mm davt

Larea lake area y

Efw j Monthly (daily) open water evaporation in month (day) j mm/unit time

Efy Daily open water evaporation mm day™

E;. Evaporation from an irrigation channel mm day™

Epsoir(t) Cumulative bare soil evaporation up to time t mm

Estage1 Cumulative stage 1 bare soil evaporation mm

e Turc-Pike parameter dimensionless

€0, €1, -, €5 Coefficients in Blaney-Criddle model undefined

F Upwind grass fetch m




FET Fetch or length of the identified surface m
Fio0 Working variable undefined
f Fu-Zhang parameter dimensionless
f(® Aridity function undefined
fw) Wind speed function units of u
f(uy) Wind speed function at u, units of u,
(W) 4g 1948 Penman wind function units of u
fw)se 1956 Penman wind function units of u
F)un Linacre Penman wind function units of u
fran(u) Wind function for Class-A pan units of u
fair Fraction of R, that is direct dimensionless
fo Vapour transfer coefficient in Morton’s procedure W m? mbar*
fy Constant in Morton’s procedure W m mbar™
G Soil heat flux MJ m™ day™
G, MOnthly solar and waterborne energy input into lake for W m?2
orton’s procedure
G, Daily change in heat storage of water body MJ m™ day™
G, () dH(t)/dt MJ m? day™
GLs Available solar and W:alterborne heat energy at the beginning of W m?2
the month for Morton’s procedure
Gor Available solar an1d waterborne heat energy at the end of the W m?2
month for Morton’s procedure
cltl it Value of G}, computed [t] and [t + 1] months previously for W m?2
wo W Morton’s procedure
GY Solar and waterborne heat input for Morton’s procedure W m?
GW;y, Groundwater inflows to lake mm day™
GWout Groundwater outflows from lake mm day™
G Delayed energy input into the lake for Morton’s procedure W m™?
Gy Dimensionless relative evaporation parameter dimensionless
G Mean heat conductance into the soil MJ m? day™
Gj Coefficient in Equation (S16.4) undefined
Gse Solar constant MJ m? min™
Gps Mean annual deep seepage mm year™
g Working variable undefined
H Sensible heat flux MJ m? day™
H Mean sensible heat flux MJ m™ day™
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Total heat energy content of the lake per unit area of the lake

H(t) surface at time ¢t MJ m'®

h Mean height of the roughness obstacles (including crop) m

h,, Water depth m

hi, hiy1 Depth of water in lake on day i and day i + 1 respectively m

h Mean lake depth m

hrday Mean monthly daylight hours in month hour

i Monthly heat index undefined

I, 1-1 Index for days undefined

I Annual heat index undefined

f Intercept in Equation (S16.4) undefined

Jy J-1 Index for months undefined

K, Crop coefficient dimensionless
K, t(;;)r?;f)ig:fr(l)tf tvr\mlgtt gf?/;esgg:s the efficiency of the vertical m day’ kg™
Ky Unsaturated hydraulic conductivity mm day™

K; Monthly (daily) Class-A pan coefficient dimensionless
Kratio Ratio of incoming solar radiation to clear sky radiation dimensionless
Kpan Class-A pan coefficient dimensionless
k von Karman’s constant dimensionless
lat Latitude radians

LAI Leaf area index m? m*

LAl ctive Active (sunlit) leaf area index m? m

M Month of the year dimensionless
m Number of horizontal layers dimensionless
N Total day length hour

n Duration of sunshine hours in a day hour

P, Daily precipitation mm day™
PM,,, PM,, SEJ/SS;ifarglon from respectively a closed canopy and bare mm day’?

P Mean rainfall or mean annual rainfall mm S:Z;i
Py Rainfall on day i + 1 mm day™

P; Monthly precipitation in month | mm month™
Prad Pan radiation factor dimensionless

Atmospheric pressure (for Morton’s procedure)

kPa (mbar)
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Ds Sea-level atmospheric pressure mbar
Percentage of actual daytime hours for the specific day 0

Py compared to the day-light hours for the entire year o

Q, Heat flux increase in stored energy MJ m? day™

Q, Heat flux advected into the water body MJ m? day™

Q Mean runoff or mean annual runoff mm S:Z;i

Q* Net radiation MJ m? day™

Qi Net radiation at wet-bulb temperature MJ m™ day™

RH Average monthly relative humidity %

R, Average monthly extraterrestrial solar radiation MJ m™ day™

R Mean net radiation received MJ m? day™

REW Readily evaporable water mm

Ry Incoming longwave radiation MJ m-2 day-1

R, Outgoing longwave radiation MJ m-2 day'l

RH 05 Maximum daily relative humidity %

RHpean Mean daily relative humidity %

RHin Minimum daily relative humidity %

R, Extraterrestrial radiation MJ m* day™

Rypan Net radiation at Class-A pan MJ m”?day™

Rspan Total shortwave irradiance of pan MJ m?day™

Ri Incoming longwave radiation MJ m”?day™

R, Net radi’ation at evaporating surface at air temperature (for MJ mz day™
Morton’s procedure) (Wm™)

R, Net radiation for the soil-plant surface at T, for Morton’s W m?2
procedure

R Net longwave radiation MJ m”?day™

Rys Net incoming shortwave radiation MJ m* day™

Row Net radiation at water surface MJ m* day™

R, Outgoing longwave radiation MJ m*day™

R, Measured or estimated incoming solar radiation MJ m? day™

Rso Clear sky radiation MJ m? day™

Rgan Net radiation to canopy MJ m™ day™

Rsol Net radiation to soil MJ m? day™

Ryater Net radiation to water based on surface water temperature MJ m? day™

RY Net daily radiation based on water temperature MJ m? day™
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wa Outgoing longwave radiation based on water temperature MJ m? day™
RYP Outgoing longwave radiation based on wet-bulb temperature | MJ m™ day™
Ryp Net radiation to water based on wet-bulb temperature MJ m? day™
R? Square of the correlation coefficient dimensionless
RMSE Root mean square error various
. Aerodynamic or atmospheric resistance to water vapour s mt
a transport
7. Bulk stomatal resistance sm?
7 Bulk stomatal resistance of a well-illuminated leaf sm*
Telim Climatological resistance sm*
>0 Aerodynamic resistance for crop height, h sm?
Ts Surface resistance sm*
Surface resistance of a well-watered crop equivalent to FAO 1
(e crop coefficient sm
Aerodynamic resistance between canopy source height and smt
Ta reference level
c Bulk boundary layer resistance of vegetation elements in 1
T, sm
a canopy
S Aerodynamic resistance between substrate and canopy source 1
T, : sm
a height
rs Bulk stomatal resistance of canopy sm*
re Surface resistance of substrate sm*
S Proportion of bare soil dimensionless
Scon Solar constant MJ m? day™
Mean water equivalent for extraterrestrial solar radiation in 1
So . mm month
month |
units of
SEE Standard error of estimate dependent
variable
SM Soil moisture level mm
SWi, Surface water inflows to lake mm day™
SWout Surface water outflows from lake mm day™
Se Storage constant month
Scan Storage capacity of the canopy mm
S Lake salinity for Morton’s procedure ppm
T Temperature, the generalised Turc-Pike coefficient °C, undefined
TEW Total evaporable water mm

Air temperature

°C
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T4 Dewpoint temperature °C
T, Equilibrium temperature (at evaporating surface) °C
T; Monthly mean daily air temperature in month j °C
Than Mean daily pan water temperature °C
T, Temperature of the surface or evaporated water °C
T, Temperature of the water °C
Twp Wet-bulb temperature °C
Two Temperature from previous time-step °C
T — Tojos Change.in surface water temperature from month j — 1 to oC
month j
Ti1, Ty Average lake temperature at the beginning and end of period °C
T, Working estimate of the equilibrium temperature °C
Tywin Temperature of the groundwater inflows to lake °C
Tywout Temperature of the groundwater outflows from lake °C
T; , Ti_4 Average air temperatures on day i and day i — 1 respectively | °C
TwiTwi-1 Surface water temperatures on day i and day i — 1 respectively | °C
Tax Maximum daily air temperature °C
Tinin Minimum daily air temperature °C
Trnean Mean daily temperature °C
T, Temperature of precipitation °C
Tswin Temperature of the surface water inflows to lake °C
Tswout Temperature of the surface water outflows from lake °C
T Mean monthly air temperature °C
_j Mean monthly air temperature in month j °C
L Mean monthly difference between mean daily maximum air
TD; temperature and mean daily minimum air temperature (month | °C
)
T (2, Water temperature at depths z; and z;, ; °C
Tw(Zi+1)
t Cumulative time of bare soil evaporation day
ty Lake lag time month
t1 Length o_f the stgge-l atmosphere-controlled bare soil day
evaporation period
taay Local time of day undefined
to Intermediate variable defined by Equation (S7.15) month
tm Number of days in the month day
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[tL] Integral component of lag time month

u Mean daily wind speed m day-1
Average daily wind speed at 2 m height (original Penman 1948 | ms™,

e and 1956 and Linacre wind function) (miles day™)

Uqo Average daily wind speed at 10 m height ms?

Upan Average daily wind speed over pan ms*

u, Average daily wind speed at height z ms?

u, Friction velocity ms*

T Mean wind speed ms?

VPD Vapour pressure deficit kPa

V; Volume of each layer m3

Vi, Vs, Lake volume at the beginning and end of period m3

VPD,, VPDs, Vapour pressure deficit at 2m and 50 m respectively kPa

w Proportion of open water dimensionless

w Plant available water coefficient in Zhang 2-parameter model | dimensionless

X Cross wind width of lake m

z Height of wind speed measurement m

Ze Depth of surface soil layer m

Zit1 — Zj Thickness of each layer m

z, Height above ground of the water vapour measurement m

2 Height above ground of the wind speed measurement m

Zy Height of the humidity measurements m

Z Zero-plane displacement m

Zm Height of the instrument above ground m

Z, Roughness length or roughness height m

Zon Roughness length governing transfer of heat and vapour m

Zom, Roughness length governing momentum transfer m

Zoy Roughness length governing water transfer m

a Albedo of the evaporating surface dimensionless

oy Albedo for Class-A pan dimensionless

tr Proportion of the net adc_lition of energy from advection and dimensionless
storage used in evaporation during At

Ass Albedo of ground surface surrounding evaporation pan dimensionless

®pan

Proportion of energy exchanged through sides of evaporation

dimensionless
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pan
Apr Priestley-Taylor coefficient dimensionless
y Psychrometric constant (for Morton’s procedure) kPa ® C_l_l
(mbar °C™)
A Slope of the saturation vapour pressure curve kPa °C™
A’ dvy/dT slope of the saturation vapour pressure curve at T kPa °C™*
Change in heat storage (net energy gained from heat storage in 2 o
AH the water body) MJ m-< day
AQ Change in stored energy during At mm day™
-1
AS Change in soil moisture storage or stored water mm day 1
mm year
AW Change in heat storage in water column during the current time MJ m2 day-L
step
At Time interval day
A Slope of the saturation vapour pressure curve at temperature mbar °C™1
€ T, for Morton’s procedure
A, Slope of the vapour pressure curve at water temperature kPa °C-1
Awb Slope of the vapour pressure curve at wet-bulb temperature kPa °C-1
A(T,) Slope of the vapour pressure curve at temperature T, kPa °C-1
AH. - Change in heat storage from month j — 1 to month j for W m-2
-1 Vardavas and Fountoulakis (1996) procedure
Change in lake surface water temperature month j — 1 to o
AT,, . C
month j
A Working estimate of the slope of the saturation vapour mbar °C.
e pressure curve at T, for Morton’s procedure
o Solar declination radian
Difference between heat content of inflows and outflows from 2
oh , W m
lake for Morton’s procedure
oT, A small change in the equilibrium temperature undefined
5V, = AT, undefined
&s Surface emissivity dimensionless
Ratio of the temperature variations in the latent heat and . .
€ ) . dimensionless
sensible heat contents of saturated air
Ew Emissivity of water dimensionless
Nar Ner NMs Working variables undefined
6 Sun’s altitude degrees
Orc Soil moisture content at field capacity %
Owp Soil moisture content at wilting point %
-1
A Latent heat of vaporisation (for Morton’s procedure) MJ kg

(W day kg™
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Ae Working variable undefined
& Dimensionless stability factor dimensionless
Pa Mean air density at constant pressure kgm?
Pw Density of water kgm
MJ K-4 m-2
o Stefan-Boltzmann constant (for Morton’s procedure) day-!
(Wm?K™%
T Time constant for the storage day
v Kinematic viscosity of air m?2 s-1
v Afternoon average vapour pressure 4 m above ground for mbar
4 Webb (1966) procedure
v, Mean daily actual vapour pressure at air temperature kPa
Vg Vapour pressure at the reference height kPa
o Daily saturation vapour pressure at air temperature (for kPa
a Morton’s procedure) (mbar)
Vg Saturation vapour pressure at T, (for Morton’s procedure) l((rz?)ar)
. Saturation vapour pressure at dew point temperature for
vy , mbar
Morton’s procedure
o Afternoon average lake saturation vapour pressure for Webb mbar
L (1966) procedure
. Afternoon maximum pan saturation vapour pressure for Webb mbar
Up (1966) procedure
(v —vy) Vapour pressure deficit at air temperature kPa
Vg Saturation vapour pressure at the water surface kPa
Uy Saturation vapour pressure at the evaporating surface kPa
Vapour pressure at a given height above the water surface
v, (T,) evaluated at the air temperature T, for Vardavas and mbar
Fountoulakis (1996) procedure
Saturated vapour pressure at the water surface evaluated at air
va(Ty) temperature T, for Vardavas and Fountoulakis (1996) mbar
procedure
Y Working estimate of the saturation vapour pressure at mbar
Ve equilibrium temperature (for Morton’s procedure)
vr Saturation vapour pressure at temperature, T mbar
vr, Saturation vapour pressure at air temperature, T, kPa
v, Saturation vapour pressure at surface temperature, T kPa
VI max Saturated vapour pressure at Tmax kPa
VImin Saturated vapour pressure at Tmin kPa
v, Mean daily actual vapour pressure kPa
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¢ Aridity index dimensionless
Q Decoupling coefficient dimensionless
W Sunset hour angle radian

*Where possible a consistent set of units is used throughout the paper and supplementary
sections except for Sections S20 and S21 which relate to Morton’s (1983a, b and 1986)
procedures. In this list of variables where the units are different from the common set, model
names or references are included in the description. Non-Sl units are either included in
parenthesis along with the model name or the relevant reference is included in parenthesis in
the description or, if listed separately, the model name or the relevant reference is also
included. For some intermediate and working variables and where the source reference has
not identified, the units are described as undefined.
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Supplementary Material

Section S1 Data

In this section, five issues are addressed — sources of climate data in Australia, climate
data used in the analyses reported in later sections, remotely sensed actual evapotranspiration,
daily and monthly data, and location of meteorological stations relative to the target
evaporating site.

Sources of climate data in Australia

1. In Australia at Automatic Weather Stations (AWSs) maintained by the Bureau of
Meteorology and other operators, the following data as a minimum are monitored at a short
time-step and are recorded as cumulative or average values over a longer interval: rainfall,
temperature, humidity, wind speed and direction, and atmospheric pressure. Information is
available at:

http://www.bom.gov.au/inside/services policy/pub ag/aws/aws.shtml

For Australian at-site daily wind data, it is recommended that, if available, 24-hour wind run
data (km day™) be used and converted to wind speed (m s™).

2. Class-A pan evaporation data are also measured on a daily basis and, at some
locations, the associated temperature and wind at or near the pan water surface are also
recorded. A high-quality monthly Class-A pan data set of 60 stations across Australia is listed
by Jovanovic et al. (2008). (Lavery et al. (1997) identified for Australia an extended high-
quality daily rainfall data set consisting of 379 gauges.)

3. In many parts of the world an alternative approach to using measured data directly is
to deploy outputs from spatial interpolation and spatial modelling. If seeking to estimate
evaporation at a point or localised area using data from a proximally located meteorological
station, at-site data are optimal; however, these do not always exist. Specific to Australia, if
seeking an estimate of evaporation for a larger area (e.g., a catchment or an administrative
region) then gridded output is available. Donohue et al. (2010a; 2010b) have made available
five potential evaporation formulations being: (i) Morton point; (ii) Morton areal; (iii)
Penman; (iv) Priestley-Taylor; and (v) Thornthwaite in:

http://www-data.iwis.csiro.au/ts/climate/evaporation/donohue/Donohue readme.txt.

It should be noted here that R. Donohue (pers. comm.) advised that “the reason Morton
point potential values were so high in Donohue et al (2010b) was because, in their modelling
of net radiation, they explicitly accounted for actual land-cover dynamics. Donohue et al
(2010b) modelled R, (incoming shortwave radiation) using the Bristow and Campbell (1984)
model calibrated to Australian conditions (McVicar and Jupp, 1999), and combined this with
remotely sensed estimates of albedo (Saunders, 1990) to model R,,; (net incoming shortwave
radiation). R,; (net longwave radiation) was modelled according to Allen et al (1998) with
soil and vegetation emissivity weighted by their per-pixel fractions determined from
remotely sensed data (Donohue et al., 2009). This procedure differs from Morton’s (1983a)
methodology, developed over 25 years ago, when remotely sensed data were not routinely
available, and thus Donohue et al. (2010b) is in contradiction to Morton’s (1983a)
methodology.”

The evaporation formulations in the above web-site are available at 0.05° resolution
from 1982 onwards at a daily (mm day™), a monthly (mm month™), an annual (mm year™), or
an annual average (mm year™) time-step. From the same web-site, at the same spatial and


http://www.bom.gov.au/inside/services_policy/pub_ag/aws/aws.shtml
http://www-data.iwis.csiro.au/ts/climate/evaporation/donohue/Donohue_readme.txt
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temporal resolutions as above, nine variables associated with the surface radiation balance are
provided. They are: surface albedo (unitless), fractional cover (unitless), incoming longwave
radiation (MJ m day™), incoming shortwave radiation (MJ m? day™), outgoing longwave
radiation (MJ m day™), outgoing shortwave radiation (MJ m™ day™), net radiation (MJ m™
day™), top-of-atmosphere radiation (MJ m™ day™), and diffuse radiation fraction (unitless).
Additionally, the following reference datasets are also available including: wind speed at 2m
(TIN-based (Triangular Irregular Networks), units are m s™), saturated vapour pressure (Pa),
vapour pressure deficit (Pa), slope of the saturated vapour pressure curve (Pa K™), diurnal air
temperature range (K), mean air temperature (K), Class-A pan evaporation modelled using
the PenPan formulation (mm period™), and FAO-56 Reference Crop evapotranspiration (mm
period™). It should be noted that Penman (1948) potential evaporation and PenPan
evaporation are calculated with both a TIN-based wind data and a spline-based wind data.
The latter for the period from 1 January 1975 can be accessed from (McVicar et al., 2008):

http://www-data.iwis.csiro.au/ts/climate/wind/mcvicar etal qrl2008/.

We prefer using the spline-based wind data for spatial modelling, and when assessing
trends the TIN-based model provided improved results (Donohue et al., 2010b). The FAO-56
Reference Crop (Allen et al., 1998) evapotranspiration only uses the spline-based wind speed
data. These data can be linked with basic daily meteorological data (Jones et al., 2009)
including: precipitation, maximum air temperature, minimum air temperature, and actual
vapour pressure (Pa) which are all available from:

http://www.bom.gov.au/climate/

The vegetation fractional cover data which are also available (Donohue et al., 2008)
have been split into its persistent and recurrent components (Donohue et al., 2009); both
available from:

http://datanet.csiro.au/dap/public/landingPage.zul?pid=csiro:AVHRR-derived-fPAR)

Thus, there is a now a very powerful resource of freely available data for regional
ecohydrological modelling across Australia. There is also available a commercially-based
SILO product of many of the key meteorological grids that are required to model evaporation
across Australia (Jeffrey et al., 2001).

Data used in later sections

The data used in the later sections cover the period from January 1979 to February 2010
and include daily data for Class-A pan evaporation, sunshine hours, maximum and minimum
temperature, maximum and minimum humidity and average wind speed. A minimum amount
of missing daily temperature (0.37%), relative humidity (0.16%), sunshine hours (0.43%) and
wind speed (0.35%) data was infilled for only days in which values were available on
adjacent days from which the average was used to infill. Only months with a complete record
of all variables were analysed. As a result the average length of station record with all
variables is 15.9 years. Some of the analyses in this paper are based on daily data for 68
stations located across Australia (Figure S1). Class-A evaporation pan and climate data were
obtained from the Climate Information Services, National Climate Centre, Bureau of
Meteorology. Of these stations, 39 are part of the high quality Class-A pan evaporation
network (Jovanovic et al., 2008, Table 1).

Remotely sensed actual evapotranspiration


http://www-data.iwis.csiro.au/ts/climate/wind/mcvicar_etal_grl2008/
http://www.bom.gov.au/climate/
http://datanet.csiro.au/dap/public/landingPage.zul?pid=csiro:AVHRR-derived-fPAR
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Remotely sensed estimates of actual evapotranspiration (usually combining remotely
sensed data with some climate data) are becoming more accurate and more accessible to
analysts who are not experts in this technology. There are three main approaches to estimate
actual evapotranspiration using remote sensing, namely: (i) thermal based methods based on
the land surface energy balance (e.g., Sobrino et al. (2005), Kalma et al. (2008), Jia et al.
(2009), Elhaddad et al. (2011), and Yang and Wang (2011)); (ii) methods that use the
vegetation (and shortwave infrared) indices (e.g., Glenn et al., 2007; 2010; Guerschman et al
(2009)); and (iii) hybrid methods that combine the surface temperature and vegetation index
(e.g., Carlson, 2007; Tang et al., 2010). Readers wishing to pursue such approaches are
referred to the growing volume of material that is accessible in the international literature.

Daily and monthly data

Analyses of most procedures are carried out for a daily and a monthly time-step. In the
daily analysis, daily values of maximum and minimum temperature, maximum and minimum
relative humidity, sunshine hours and daily wind run are required. For the analysis using a
monthly time-step, the average daily values for each month and for each variable are the basis
of computation.

Location of meteorological stations relative to the target evaporating site

In discussing evaporation procedures, most writers are silent on where to measure
meteorological data to achieve the most accurate estimate of evaporation. For estimating
evaporation from lakes using Morton’s CRWE or CRLE model, land-based meteorological
data can be used (Morton, 1983b, page 82). Furthermore, Morton (1986, page 378) notes that
data measured over water have only a “...relatively minor effect...” on the estimate of lake
evaporation. Morton (1986, page 378) says the CRAE, which estimate landscape evaporation
(see Section 2.5.2), is different because “...the latter requires accurate temperature and
humidity data from a representative [land-based] location”. (A discussion of Morton’s
evaporation models is presented in Section 2.5.2 and in Section S7.)

Based on a 45,790 ha lake in Holland, Keijman and Koopmans (1973) compared
Penman (1948) evaporation for seven periods over 32 days with a water balance estimate, an
energy budget estimate and observed pan evaporation data, where the meteorological
instruments were located on a floating raft. The authors observed that the Penman (1948) lake
evaporation estimates are highly correlated and show little bias with the water balance
estimates and the energy balance estimates. Based on further analysis, Keijman (1974)
concluded that for estimating energy balance at the centre of a lake land-based meteorological
measurements downwind from the lake are preferred over measurements upwind.

In a major study of evaporation from Lake Nasser using three floating AWS, Elsawwaf
et al. (2010) compared Penman (1956) evaporation with estimates from the Bowen Ratio
Energy Budget method. The Penman method exhibited negative bias (Elsawwaf et al., 2010)
which is consistent with the Penman (1948) results recorded in Holland. (In Section S4, the
differences expected between Penman (1948) and Penman (1956) are discussed).
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Supplementary Material

Section S2 Computation of some common variables

This section includes equations to estimate common variables used in the evaporation
equations. Values of specific constants are listed in Table S1.

Mean daily temperature
Mean daily temperature = M (Allen et al., 1998, Equation 9) (S2.1)

where T, and Ty, are the maximum and minimum air temperatures (°C), respectively,
recorded over a 24-hour period.

Wet-bulb temperature

0.00066x100T, +—228%a .

2ld
Twp = 000066A00+(T‘§§§§Z';) (McJannet et al., 2008b, Equation 25) (S2.2)

(Td+237.3)Z
where T,,;, is wet-bulb temperature (°C), T, is the dew point temperature (°C) and v, is actual
vapour pressure (kPa).

Dew point temperature

116.9+237.3In (vg)
Td =
16.78—1In (vy)

(McJannet et al., 2008b, Equation 26) (52.3)

Slope of the saturation vapour pressure curve

4098[0.6108exP(T17fz73,T7a3)]
— a .

A= (Allen et al., 1998, Equation 13) (S2.4)

(To+237.3)2

where A is the slope of the saturation vapour pressure curve (kPa °C-1) at the mean daily air
temperature, T, (°C).
Saturation vapour pressure at temperature, T(<C)

17.27T
T+237.3

vy = 0.61086xp[ ] (Allen et al., 1998, Equation 11) (S2.5)

where vy is the saturation vapour pressure (kPa) at temperature, T (°C).

Daily saturation vapour pressure

v: = va(Tm“x):"a(Tmi”) (Allen et al., 1998, Equation 12) (S2.6)

where v, is the daily (24-hour period) saturation vapour pressure (kPa) at air temperature, and
where the saturation vapour pressures are evaluated at temperatures (°C) Ty, and Typin-

Mean daily actual vapour pressure

U;.(Tmin)RHmax*‘vz*z(Tmax)RHﬂ .
Uy, = 100 > 100 (Allen et al., 1998, Equation 17) (S2.7)

where v, is the mean daily actual vapour pressure (kPa), RH,,,, IS the maximum relative
humidity (%) in a day, and RH,,;, is the minimum relative humidity (%) in a day.

Mean daily actual vapour pressure using dew point temperature

If daily dew point temperature is known, then daily actual vapour pressure can be
estimated thus:
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v, = 0.6108exp [ﬂ] (Allen et al., 1998, Equation 14) (52.8)

T4+237.3
where T, is the dew point temperature (°C).
Psychrometric constant

y = 0.00163§ (Allen et al., 1998, Equation 8) (S2.9)

where y is the psychrometric constant (kPa °C-1), 1 is the latent heat of vaporization = 2.45
MJ kg1 (at 20°C), and p is atmospheric pressure at elevation z m.

Atmospheric pressure

293-0.0065Elev

5.26
o, ) (Allen et al., 1998, Equation 7) (S2.10)

p =1013(

where p is the atmospheric pressure (kPa) at elevation Elev (m) above mean sea level.
Zero-plane displacement (displacement height)

Zero-plane displacement (z;) (m) can be explained as the height within obstacles, e.g.,
trees, in which wind speed is zero. Values are listed in Table S2. Allen et al. (1998, Box 4)
reported that for a natural crop-covered surface and Wieringa (1986, Table 1) noted for an
average obstacle height:

za=<h (S2.11)
where h is the mean height of the roughness obstacles (including vegetation) (m).

Roughness length (height)

Roughness length (z,) (m) is related to the roughness of the evaporating surface and is
the optimal parameter for defining terrain effects on wind (Wieringa, 1986, Table 1). Values
are listed in Table S2. If values are not available for a particular terrain or surface, the
following relationship can be used:

( tation height)
= vegeta lloon eig (82.12)

Units of evaporation

Evaporation rates are expressed as depth per unit time, e.g., mm day-1, or the rates can
also be expressed as energy flux and, noting that the latent heat of water is 2.45 MJ kg1, it
follows that 1 mm day-1 of evaporation is equivalent to 2.45 MJ m-2 day-L.
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Supplementary Material

Section S3 Estimating net solar radiation

This section outlines how net radiation is estimated with and without incoming solar
radiation data. The method is based on the procedure outlined in Allen et al. (1998, pages 41
to 53).

Ry, = Rps — Ry (S3.1)
where R,, is the net radiation (MJ m-2 day-1), R, is the net incoming shortwave radiation
(MJ m=2 day-1), and R,,; is the net outgoing longwave radiation (MJ m-2 day-1).

Net shortwave solar radiation is estimated from the measured incoming solar radiation
(R,) at an Automatic Weather Station and albedo for the evaporating surface as:

R,s = (1 — a)Rg (S3.2)
where R; is the measured or estimated incoming solar radiation (MJ m-2 day-1), and « is the
albedo of the evaporating surface. Several albedo values are listed in Table S3.

Except for eight sites in Australia (Roderick et al., 2009a, Section 2.3), measured values
of net longwave radiation are not available. Hence, net outgoing longwave radiation is
estimated by:

4 . 4
R, = (034 — 0.1450%) ((Tma“”""” *Timin*273:2) ) (1.35 R _ 0.35) (S3.3)

2 N

noting that :—5 <1, and where R,;; is the net outgoing longwave radiation (MJ m-2 day-1), R

SO

is the measured or estimated incoming solar radiation (MJ m-2 day-1), R, is the clear sky
radiation (MJ m-2 day1), 7, is the mean actual daily vapour pressure (kPa), Tyqy aNd Tomin
are respectively the maximum and the minimum daily air temperature (°C), and o is Stefan-
Boltzmann constant (MJ K-4 m-2 day-1).

R, = (0.75 + 2x107°Elev)R, (S3.4)

where Elev is the ground elevation (m) above mean sea level of the automatic weather station
(AWS), and R, is the extraterrestrial radiation (MJ m-2 day-1) which is the solar radiation on
a horizontal surface at the top of the earth’s atmosphere and is computed by:

R, = %Gscdf [wgsin(lat)sin(6) + cos(lat)cos(8)sin(ws)] (S3.5)
where G, is the solar constant = 0.0820 MJ m-2 min-1, d, is the inverse relative distance
Earth-Sun, wg is the sunset hour angle (rad), lat is latitude (rad) (negative for southern
hemisphere), and § is the solar declination (rad).

d? =1+ 0.033cos (% DoY) (S3.6)

This equation and Equation (S3.5) are modified from the errata provided with Allen et
al. (1998) for their Equation 23. The amended Equation (S3.6) is shown in McCullough and
Porter (1971, Equation 2) and amended Equation (S3.5) is shown in McCullough (1968,
Equation 3).

§ = 0.409sin (= DoY — 1.39) (S3.7)

where DoY is Day of Year (see below).
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The sunset hour angle wg is estimated from:
wg = arcos[— tan(lat) tan(8)] (S3.8)

If measured values of R are not available, R, can be calculated from the Angstr('jm-
Prescott equation (see Martinez-Lonano et al. (1984) and Ulgen and Hepbasli (2004) for
historical developments and review of the equation) as follows:

R, = (as + by %) R, (S3.9)

where n is the observed duration of sunshine hours, N is the maximum possible duration of
daylight hours, and a, and by are constants. a, represents the fraction of extraterrestrial
radiation reaching earth on sunless days (n = 0) and ag + b is the fraction of extraterrestrial
radiation reaching earth on full-sun days (n = N). Where calibrated values of a, and b, are
not available, values of a; = 0.25 and b, = 0.5 are preferred (Fleming et al, 1989, Equation 3;
Allen et al., 1998, page 50). A literature review of more than 50 models revealed that many
estimates of a; and b, based on a monthly time-step have been developed (Menges et al.,
2006, Yang et al, 2006, Roderick, 1999), although only five models are simple linear
relationships as in Equation (S3.9). For these five models (Bahel et al., 1986; Benson et al.,
1984; Louche et al., 1991; Page, 1961; Tiris et al., 1997 as reported in Menges et al., 2006),
the average values of ag and b, are, respectively, 0.20 and 0.55. Roderick (1999, page 181) in
estimating monthly average daily diffuse radiation for 25 sites in Australia and Antarctica
commented that his results were consistent with a;, = 0.23 and bg = 0.50 based on Linacre
(1968) and Stitger (1980). More recently, McVicar et al. (2007, page 202) considered the
study by Chen et al. (2004) and adopted ag = 0.195 and b, = 0.5125 for their analysis of the
middle and lower catchments of the Yellow River. It is recommended, however, that if local
calibrated values are available for the study area, these values should be used.

If the number of sunshine hours is unavailable, alternatively cloudiness (in terms of
oktas — the number of eights of the sky covered by cloud) may have been measured. Chiew
and McMahon (1991) developed the following empirical relationship relating oktas to
sunshine hours:

n=a,+b,Cy+c,Cs+d,C3 (S3.10)

where n is the estimated sunshine hours, C, is cloud cover in oktas, and a,, ..., d, are
empirical constants and have been estimated for 26 climate stations across Australia. Values
are provided in Chiew and McMahon (1991, Table Al). Errors in ground-based cloud cover
estimates are discussed by Hoyt (1977).

The maximum daylight hours, N, is given by:
N =—ws (S3.11)
where wy is the sunset hour angle (rad).

If sunshine hours or cloudiness are not available for Australia, following Linacre (1993,
Equation 20) cloudiness can be estimated from:

Cp = 1+ 0.5logP; + (logP;)*, P> 1 (S3.12)
Cp=1,P <1 (S3.13)

where P; is the monthly precipitation (mm).
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Thus, as an alternative to Equation (S3.9), R, can be computed from (Linacre (1993,
Equation 19):

R, = (0.85 — 0.047C,)R, (S3.14)

where Cj, is the number of tenths of the sky covered by cloud, R, is the extraterrestrial
radiation, and R; is the estimate of the incoming solar radiation.

Estimating separately incoming and outgoing longwave radiation

In some procedures to estimate evaporation e.g., McJannet et al. (2008b) discussed in
Section S5, outgoing longwave radiation needs to be computed separately from incoming
longwave radiation rather than being combined as in Equation S3.3. In McJannet et al.
(2008b) outgoing longwave radiation is estimated as a function of water surface temperature
and separately as a function of wet-bulb temperature.

In Equation (S3.1), R, is estimated from Equations (S3.2), (S3.5), and (S3.9), and

Ry = Ror — Ry (S3.15)
where R, is the outgoing longwave radiation (MJ m-2 day-1), and R;; is the incoming
longwave radiation (MJ m-2 day-1).

Following McJannet et al. (2008b, Equation 13) incoming longwave radiation may be
estimated as follows:

Ry = (cf +(1-¢) (1 - (0.261exp(~7.77 10-4T§)))) o (T, + 273.15)* (S3.16)

where R;; is the incoming longwave radiation (MJ m-2 day-1), T, is the mean daily air

temperature (°C), o is the Stefan-Boltzman constant (MJ K4 m-2 day-1), and C; is the
fraction of cloud cover estimated from (McJannet et al, 208b, Equations 14 and 15):

Cf = 1.1 - KTatiO' Kratio S 0.9 (8317)
Cr = 2(1 = Kratio)s Kratio > 0.9 (S3.18)
where K, 4ti0 = :—S, R, and R, are estimated from Equations (S3.4) and (S3.9).

Outgoing longwave radiation is estimated as a function of water temperature and/or

wet-bulb temperature as follows McJannet at al. (2010, Equations 22 and 29):

wa = 0.970(T, + 273.15)* (S3.19)
where RY* is the outgoing longwave radiation (MJ m-2 day-1) based on water temperature,
and T,, is the water temperature (°C),

R%P = (T, + 273.15)* + 40(T, + 273.15)3(Tyyp, — T,) (S3.20)
where R%P is the outgoing longwave radiation (MJ m-2 day-1) based on wet-bulb
temperature, and T,,,;, is the wet-bulb temperature (°C).

Estimating Day of Year (adapted from Allen et al., 1998, page 217)

The Day of Year (DoY) is computed for each day (D) of each month (M) as:

DoY=INTEGER(275*M/9 — 30 + D) — 2 (S3.21)

IF (M < 3) THEN DoY = DoY + 2 (S3.22)
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IF(leap year and (M > 2) THEN DoY = DoY +1 (S3.23)
Note that year 2000 is a leap year, whereas 1900 is not a leap year.
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Section S4

Penman model

The Penman or combination equation (Penman, 1948, Equation 16) for estimating
open-water evaporation is defined as:

Epenow = ﬁRnTW + ﬁEa (S4.1)
where Epqpow iS the daily open-water evaporation (mm day-1), R,,, is the net radiation at the
water surface (MJ m=2 day-1), E, (mm day1) is a function of wind speed, saturation vapour
pressure and average vapour pressure, A is the slope of the vapour pressure curve (kPa °C-1)
at air temperature, y is the psychrometric constant (kPa °C-1), and A is the latent heat of
vaporization (MJ kg1). See Dingman (1992, Section 7.3.5) for a detailed discussion of
Penman and evaporation issues in general.

In preparing this supplementary section, we were cognisant of de Bruin’s (1987)
comment. “The result of the [recent] developments ... is that Penman'’s formula experienced a
large number of changes in the last decades and that at this very moment tens of different
versions of the formula exist. This causes a tremendous confusion.” Thus, in the following
material we identified several keys features of the Penman equation for inclusion herein.

It is noted in Section 2.1.1 that Equation (S4.1) is based on simplifying assumptions to
account for the fact that the temperature of the evaporating surface is unknown. References
for readers wishing to follow up on this topic include Monteith (1965), Monteith (1981) and
Raupach (2001). Some commentary is provided at the end of this Section.

To estimate R,,,, details are given in Section S3. In estimating R,,, an appropriate
value of albedo («) should be used, which depends on the evaporating surface (Table S3); for
open-water « = 0.08. Although Penman (1948, pages 132 and 137) used 6-day and monthly
time-steps in his studies, several analysts have used a daily time-step.

To estimate E, (mm day-1) in Equation (S4.1), one should use:
Eq = f) (g — va) (54.2)

where f(u) is the wind function and (v; — v,) is the vapour pressure deficit (kPa). In this
paper, although there are several wind functions available (their application is discussed at the
end of this section), we have adopted Penman’s (1956) equation as standard:

f) = 1.313 + 1.381u, (S4.3)

where u, is the average daily wind speed (m s1) at 2 m, and vapour pressure is measured in
kPa. (In Australia, wind run is recorded at 9 am as the accumulated value over the previous
24 hours and, therefore, in Equation (S4.3) mean daily wind speed is based on the
accumulated 24-hour value.)

Equations for estimating v,, v, and A are set out in Section S2.

In the Penman equation, it is assumed there is no change in heat storage nor heat
exchange with the ground, and no advected energy and, hence, the actual evaporation does
not affect the overpassing air (Dingman, 1992, Section 7.3.5). Data required to apply the
equation includes solar radiation (or sunshine hours or cloudiness), wind speed, air
temperature and relative humidity, all averaged over the time-step adopted.

Adjustment for the height of the wind speed measurement in Penman equation
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If wind measurements are not available at 2 m the following equation may be used to
adjust u,. This is important as the wind speed coefficients in Penman have been calibrated for
wind speed at 2 m.

In ()

U, = U
27 )

(S4.4)

where u, and u, are respectively the wind speeds (m s™) at heights 2 m and z m, and Z is the
roughness height.

Form of wind function

Over the years Penman and other authors have suggested several forms for the wind
function. The form of the original Penman (1948) wind function (using wind speed u, in
miles day-1 and vapour pressure in mm of mercury) is:

fu)ag = 0.35(1 + 9.8x103u,) (54.5)

where f(u),g is the 1948 Penman wind function. Some authors (e.g., Szilagyi and Jozsa,
2008, page 173) have labelled this equation as the Rome wind function.

In 1956, Penman (1956) suggested that the original wind function should be reduced to
accommodate both the Lake Hefner evaporation results and the original Rothamsted tank
evaporation as follows:

where f(u)sg is the 1956 Penman wind function.

This equation in which u, is in miles per day and the saturation deficit is in units of mm
of mercury is equivalent to Equation (S4.3) in which the average daily wind speed u, isin m
s-1 and the vapour pressure deficit is in units of kPa. Based on a study of several reservoirs in
Australia and Botswana, Fleming et al. (1989, page 59) adopted this form of the wind
function. Shuttleworth (1992, Section 4.4.4) observed that the Penman equation with the
original wind function overestimated evaporation from large lakes by 10% to 15%. Linacre
(1993, page 243 and Appendix 1) observed from the median of 26 studies he identified and
his own analysis of the heat transfer coefficient of water, that the coefficient was in the range
2.3uto0 2.6u W m? K™ (and u in m s), which implies that

f(uw),,y is between 0.31(9.8x1073u,) and 0.35(9.8x1073u,) (S4.7)

where f(u),,y is the Linacre wind function, u, is in miles day-1 and vapour pressure in mm
of mercury for comparison with Equations S4.5 and S4.6.

Based on Brutsaert (1982), Valiantzas (2006, page 695) reported that the 1948 function
is used more frequently than the 1956 function in hydrologic applications. However, Cohen et
al. (2002, Section 4) reporting Stanhill (1963) noted the 1948 wind function to be
unrealistically high. Using the FAO CLIMWAT global data (~5000 stations world-wide),
Valiantzas (2006) compared the Ep,,, values for the three wind functions and found that the
following relationships held with an R2 = 0.991:

Epenow|f (Wag = 1.06Epenow|f (W)se = 1.12Epenow|f (W iy (S4.8)

This result approximates our analysis which is based on applying the three wind
functions to the 68 Australian stations (Table S4) as summarised below:

EPen0W|f(u)48 ~ 1'11EPen0W|f(u)56 ~ 1-19Epenow|f(u)uzv (54.9)
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Table S4 also shows a comparison with FAO-56 Reference Crop evapotranspiration and
Priestley-Taylor evaporation as well as 10" and 90" percentile values.

Valiantzas (2006, page 696) suggested the 1948 wind function be adopted as standard
in the Penman equation, however, noting the comments above by Shuttleworth (1992, Section
4.4.4), Linacre (1993) and Cohen et al (2002), we have adopted the Penman (1956) form of
the wind function in this paper. In terms of the units used (vapour pressure in kPa, and mean
daily wind speed in m s1), the Penman 1956 wind function is:

fW) = 1.313 + 1.381u, (S4.10)

For comparison, Penman’s 1948 wind function in the same units as Equation (S4.10)
(vapour pressure in kPa, and wind speed in m s-1) is:

f(w) = 2.626 + 1.381u, (S4.11)
Penman equation without wind data

Valiantzas (2006, Equation 33) proposed the following equation for situations where no
wind data are available:

Eponow ~ 0.047Rs(T, + 9.5)5 — 2.4 (1’:—)2 +0.09(T, +20) (1 — 22memn) (5412
where Ep.now IS Penman’s open-water evaporation (mm day™), R, is the measured or
estimated incoming solar radiation (MJ m-2 day-1), T, is the mean daily temperature (°C), R,
is the extraterrestrial solar radiation (MJ m-2 day-1) and RH,,.,, is the mean daily relative
humidity (%). This assumes the albedo for water is 0.08 and the “0.09” in Equation (S4.12)
applies to the Penman (1948) wind function. If one uses the Penman (1956) wind function,
“0.09” should be replaced by “0.06”. Based on six years of daily data from California,
Valiantzas (2006) compared Equation (S4.12) with Equation (S4.1) using monthly data and
found the modified equation performed satisfactorily (R2 = 0.983, the long term ratio of
“approximate” to “reference” evaporation was 0.995, and SEE = 0.25 mm day-1) compared
with the standard Penman equation.

Modifying Penman equation by including aerodynamic turbulence

According to Fennessey (2000), van Bavel (1966) modified the original Penman 1948
equation to take into account boundary layer resistance as follows:

A Rn=G | ¥ PgCa(Va—va) (S4.13)

E; = ——
PotOW ™ pty 2 Aty Arg

where Ep,.on IS the modified Penman open water evaporation (mm day™) incorporating
aerodynamic resistance, p, is the mean air density at constant pressure (kg m-3), ¢, is the
specific heat of the air (MJ kg1 °C-1), and r, is an “aerodynamic or atmospheric resistance”
to water vapour transport (s m-1). Equation (S4.13) for open water is equivalent to the
Penman-Monteith Equation (S5.1) with the surface resistance r; set to zero.

To estimate aerodynamic resistance, McJannet et al. (2008a) introduced a specific wind
function incorporating lake area into the Calder and Neal (1984) aerodynamic resistance
equation as follows:

86400 pyCq

r = (S4.14)

5~ 0.05
y(z) (3.80+1.5715)
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where , is the aerodynamic resistance over a lake (s m-1), 4 is the lake area (km?) p, is the
mean air density at constant pressure (1.2 kg m-3), c, is the specific heat of the air
(0.001013MJ kg™ °C™), y is the psychrometric constant (0.0668 kPa °C™ at mean sea-level
pressure 101.3 kPa), u,, is the wind speed (m s™) at 10 m height, yielding r,, for a lake at sea-
level as:

410

r = (S4.15)

(%)0'05(1+0.413u10)

It is noted here that 7, is a function of wind speed as well as lake area.

Chin (2011, Equation 12) offered an alternative equation to estimate r, for wind speeds
(u,) (m s™) measured at 2 m height and for no adjustment for lake area as follows:

.= 400
@ " (1+0.536uy)

(S4.16)

Price (1994) estimated r,, for Lake Ontario, Canada during a six-week summer period in
1991. Based on 2015 samples he determined a mean value of 7, = 201 + 122 s m™. The wide
range of observed values is a function of wind-speed.

Estimating A under extreme conditions

McArthur (1992, page 306) explains the assumptions behind A in the Penman equation
(Equation (S4.1)). Equation (S4.17) provides the physically correct estimate of A, which
requires knowledge of the evaporating surface temperature (T).

_ [vrg—vr,l
A= Tt (S4.17)
However, because T; is generally unknown, A is approximated as the slope of the saturated
vapour pressure curve at air temperature as follows:

*

A= % evaluated at air temperature (T,,) (S4.18)

In most practical situations A’ is an acceptable approximation to A when the surface
and air temperatures are close (McArthur (1992, page 306)). Under extreme conditions, high
aerodynamic resistance, high humidity and low temperature, the surface and air temperatures
diverge and this approximation breaks down (Paw U (1992, page 299)) and can lead to under-
estimating evaporation by about 10% (Slatyer and Mcllroy, 1961; Paw U and Gao, 1988).
Milly (1991), McArthur (1992) and Paw U (1992) provide a discussion of alternate
procedures to estimate evaporation under such conditions.
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Supplementary Material

Section S5 Penman-Monteith and FAO-56 Reference Crop models

The Penman-Monteith model defined below is usually adopted to estimate potential
evapotranspiration, Epy, (mm day-1). The equation is based on Allen et al. (1998, Equation 3):

1 A(Rn_G)‘FPaCaM

L ey

(S5.1)

where ETp,, is the Penman-Monteith potential evapotranspiration (mm day-1), R, is the net
radiation at the vegetated surface (MJ m-2 day-1) incorporating an albedo value appropriate
for the evaporating surface (Table S3), G is the soil heat flux (MJ m=2 day-1), p, is the mean
air density at constant pressure (kg m-3), ¢, is the specific heat of the air (MJ kg1 °C-1), r,, is
an “aerodynamic or atmospheric resistance” to water vapour transport, i.e., from the leaf
surface to the atmosphere (s m-1) (Dunin and Greenwood, 1986, page 48), 7, is a “surface
resistance” term, that is the resistances from within the plant to the bulk leaf surfaces (s m-1)
(Dunin and Greenwood, 1986, page 48), (v; — v,) is the vapour pressure deficit (kPa), A is
the latent heat of vaporization (MJ kg-1), A is the slope of the vapour pressure curve (kPa °C-
1) at air temperature, and y is the psychrometric constant ( kPa °C-1). G is defined as (Allen et
al., 1998, Equation 41):

G = cydy (F2) (S5.2)

where c, is the volumetric heat capacity of soil (MJ m-3 °C-1) (for an average soil moisture
¢, = 2.1, Grayson et al., 1996, page 33), d, is the effective soil depth (m), T; and T;_; are the
average air temperatures (°C) on day i and i-1 respectively, and At is time-step (day).

It is noted in Section 2.1.2 that Equation (S5.1) is based on simplifying assumptions to
account for the fact that the temperature of the evaporating surface is unknown. References
for readers wishing to follow up on this topic include Monteith (1965), Monteith (1981) and
Raupach (2001). An aspect of this issue is discussed in the previous section dealing with
Equation (S4.14).

Generally, for daily time-steps G can be assumed to be negligible (Allen et al., 1998,
page 68).
Values of aerodynamic resistance and surface (or canopy) resistance

1y, the aerodynamic resistance, controls the removal of water vapour from the plant

surface under neutral stability conditions and is defined for an evaporating surface by Allen et
al. (1998, Equation 4) as follows:

ln[—zm_d]ln[zh_d]
. = Zom Zoh
a— k2u,

(S5.3)

where z,, is the height of the wind instrument (m), z, is the height of the humidity
measurements (m), d is the zero plane displacement height (m), z,,, is the roughness length
governing momentum transfer (m), z,, is the roughness length governing transfer of heat and
vapour (m), k is von Karman’s constant (0.41), and u, is the wind speed at height z,,, (m s-1).

According to Allen et al. (1998, page 21), for a wide range of crops, d and z,,, can be
estimated from the crop height (h) as:
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d = 0.67h, and (S5.4)
Zom = 0.123h (S5.5)
and z,;, can be approximated from:

Zon = 0.1z,,, (S5.6)

Some typical values of 7, are listed in Table S2.

According to Chin (2011, Equation 12), Equation (S5.3) and the following Equation
(S5.7), which is for water, are conventional practice for the PM equation.

_ 4.72[ln(zz—’;‘)2]2

Ta 140.54u, (S5.7)
where z,, is the height of wind measurements and z, (roughness length) is:
_ (vegetation height) (85 8)

0 10
For water z, = 0.001 m (Table S2).

15, the surface resistance term, in vegetation represents bulk stomatal resistance or
canopy resistance, which is a property of the plant type and its water stress level. This term
controls the release of water to the plant or soil surface; some typical values of r; are listed in
Table S2. For water, r, = 0.

According to Allen et al. (1998) r, is a combination of several resistances in series
including soil, total leaf area (canopy) and stomatal resistances. This is a complex subject and
well beyond the scope of this paper. Readers are referred to Monteith (1965) and
Shuttleworth and Gurney (1990).

Again following Allen et al. (1998, Equation 5), an alternative definition of r; after
Szeicz et al. (1969, Equation 9) is:

r, = — (S5.9)

LAl gctive

where 7y is the bulk stomatal resistance of a well-illuminated leaf (s m-1), and LAl ;.. is the
active (sunlit) leaf area index (m? (of leaf area) m-2 (of soil surface)). It is further noted by
Allen et al. (1998) that r; is influenced by climate, water availability and vegetation type.
They provide a simple example for a grass reference crop as follows:

LAI,ctipe = 0.5LAI, and (S5.10)
and a general equation for LAI of grass is:
LAI = 24h (S5.11)

where h is the crop height (m).

Given the stomatal resistance of a single leaf of grass is ~100 s m-1 and the crop height
15 0.12 m (Allen et al., 1998, page 22), then r; for a grass reference surface is:
=70sml (S5.12)

100
“"W=—TT—"—""—
0.5x24x0.12

Dingman (1992, page 296, footnote 9) notes that atmospheric conductance, C,t,, IS the
inverse of aerodynamic resistance:

Cotm = — (S5.13)

Ta
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Also, it is implied from Dingman (1992, page 299) that canopy conductance, C.,, 1S
the inverse of surface resistance:

Cogn = — (S5.14)

Ts

Based on data collected in the Amazonian forest, Shuttleworth (1988) proposed that for
a dry canopy the surface resistance can be described by the following quadratic function of
time of day, with r; falling to a minimum late morning and rising to a very large value at dusk
as follows:

T, = 1009 (S5.15)

B 12.17—0.531(tday—12)—0.223(tday—12)2

where 7 is surface or canopy resistance (s m™) and taay 1S local time of day in hours.

Readers interested in this topic are referred to Sharma (1984), Kelliher et al (1995),
Magnani et al. (1998), Silberstein et al. (2003) and Amer and Hatfield (2004).

To understand the relative importance of radiation and atmospheric demand (through
the vapour pressure deficit) in the transpiration process, Jarvis and McNaughton (1986, A16)
introduced a decoupling coefficient, £, (Equation S5.16) which ranges between 0 and 1 and is
a measure of the decoupling between the conditions at the surface of a leaf and in the
surrounding air:

241

0 =5L (S5.16)

A
Sh14ls
Y Ta

Wallace and McJannet (2010, page 109) explain the significance of Q as follows. When Q is
small there is a strong coupling between the canopy and the atmosphere and, consequently,
canopy conductance, the vapour pressure deficit and wind speed strongly influence
transpiration, whereas as Q approached 1 (complete decoupling) radiation is the dominant
factor affecting transpiration. This relationship is explained mathematically by Kumagai et al
(2004, Equation 3) as follows:

ETPM = QEISt + (1 - Q)Ean (8517)

where E;.; Is the radiation (first) term in the PM model (Equation S5.1) and E,,4 IS
aerodynamic (second) term.

FAO-56 Reference Crop Evapotranspiration

If we substitute for 7, and r; in Equation (S5.1) using the relevant equations in Allen et
al. (1998, Equations (3) and (4)) and adopting the properties of the FAO-56 hypothetical crop
of assumed height of 0.12 m, a surface resistance of 70 s m-1 and an albedo of 0.23, the
substitutions yield the familiar FAO-56 Reference Crop evapotranspiration, ETg, equation
(Allen et al., 1998, Equation 6):

900 *
0.408A(Rn~G)+Y5— =2 (Va—va)

ETRC S S ETRCSh (8518)

A+vy(140.34u;)

where ETxcs, is the Reference Crop evapotranspiration for short grass (mm day™), u, is the

average daily wind speed (m s-1) at 2 m, and T, is the mean daily air temperature (°C). Meyer
(1999) discusses the application of the Penman-Monteith equation to inland south-eastern
Australia.

ASCE-EWRI Standardized Penman-Monteith Equation
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The ASCE-EWRI Standardized Penman-Monteith Equation (S5.19) (ASCE, 2005,
Equation 1, Table 1) was developed to estimate potential evapotranspiration from a tall crop
with the following characteristics: vegetation height 0.50 m, surface resistance 45 s m-1 and
albedo of 0.23. The equivalent equation to Equation (S5.18) for tall grass is:

1600

0.408A(Rn—G)+Yg———2ta (v —va)
ETrcta =

A+y(14+0.38uy) (85-19)

where ETgcq is the Reference Crop evapotranspiration for tall grass (mm day™).

Adjustment for height of wind speed measurement in Penman-Monteith and FAO-56
Reference Crop equations

The following equation is to adjust wind speed for instrument height associated with
short grassed surfaces (Allen et al., 1998, Equation (47)):

—u 4.87
T 2 In(67.82-5.42)

U (S5.20)

where u, and u, are respectively the wind speeds at heights 2 m and z m.
Reference Crop equation without wind data

Valiantzas (2006, Equation 39) proposed the following equation (which is similar to the
simplified Penman equation, see Equation (S4.12)), to estimate monthly Reference Crop
evapotranspiration for situations where no wind data are available:

ETpc ~ 0.038Rs(T + 9.5)°5 — 2.4 (;f—j)z +0.075(T +20) (1 - =) (S5.21)
where ETg. is the Reference Crop estimate of evapotranspiration for short grass (mm day™),
Rs is the measured or estimated average monthly incoming solar radiation (MJ m-2 day-1), T
is the mean monthly air temperature (°C), R, is the average monthly extraterrestrial solar
radiation (MJ m-2 day-1) and RH is the mean monthly relative humidity (%). This procedure
assumes the albedo = 0.25 (rather than the standard 0.23) for a crop. For 535 northern
hemisphere climate stations, monthly estimates of Er. based on Equation (S5.21) were
compared with the standard reference crop Equation (S5.18). The approximate model
performed very well on a sub-set of 4461 monthly estimates (R2 = 0.951), the long term ratio
of “approximate” to “reference” was 1.03, and SEE = 0.34 mm day-L.

Application of Penman-Monteith to water bodies based on equilibrium temperature

An interesting application of the Penman-Monteith equation (Equation (S5.1) to a range
of water bodies (irrigation channels, ponds, lakes, reservoirs streams and floodplains) was
carried out by McJannet et al. (2008b) who set r, = 0 for water bodies (Table S2). The
approach is outlined in Section S11.

Shuttleworth-Wallace

To deal with sparse vegetation Shuttleworth and Wallace (1985, Equations 11 to 18)
modified the PM model to separate evapotranspiration into soil evaporation and transpiration.
Wessel and Rouse (1994) further modified the Shuttleworth-Wallace (SW) model to
accommodate evaporation from water surfaces but recommended that this component be not
included in the SW approach. The Shuttleworth and Wallace (1985) equations are:

Esyw = %(CcaPMca + CsuPMsu) (85-22)
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pca(Vy—va)-Ar§Ass]

1 Aded : r+r§
PMcq =~ (S5.23)
A A+y[1+ﬁ]
AAg+ [Pca("a_"at)l—AZfz(Ae—Ass)]
PMg, = it (S5.24)
A A+Y[1+ra+srs]
1
Ceqa = . (S5.25)
ns(Mc+na)
1
Cou = [ | (S5.26)
NcMs+na)
Na=Q+y)1d (S5.27)
ns =@+ +yrd (S5.28)
Ne=QQ+yrg +yrs (S5.29)

where Eg,, is the Shuttleworth-Wallace combined evaporation (mm day?) from the
vegetation and the soil, PM., and PM,, are respectively the evaporation (mm day™) from a
closed canopy and from bare substrate, A, is the available energy (MJ m-2 day-1) defined as
the above-canopy fluxes of sensible heat and latent heat, and A, is the energy (MJ m-2 day-1)
available at the substrate, A is the latent heat of vaporization (MJ kg1), A is the slope of the
vapour pressure curve (kPa °C-1l), y is the psychrometric constant (kPa °C-l), ¢, is the
specific heat of the air (MJ kg1 °C-1) at air temperature, (v; — v,) is the vapour pressure
deficit (kPa), r¢ is the aerodynamic resistance between the canopy source height and the
reference level (s m™), ¢ is the bulk boundary layer resistance of the vegetative elements in
the canopy level (s m™), r5 is the aerodynamic resistance between the substrate and canopy
source height level (s m™), £ is the bulk stomatal resistance of the canopy level (s m™), and
r$ is the surface resistance of the substrate level (s m™). Wessel and Rouse (1994, Section
4.1) were unable to determine the soil surface resistance, r;, and adopted a value of 500 s m™
for their hourly analysis.

It appears that Shuttleworth and Wallace (1985) did not prescribe the appropriate time-
step that should be used in their model but Wessel and Rouse (1994) adopted both an hourly
and daily time-step in their simulations. Readers interested in applying the SW model should
refer to Stannard (1993) and Federer et al. (1996).

Weighted Penman-Monteith

In order to estimate the evaporation from a wetland, Wessel and Rouse (1994, Equation
14) proposed the following weighted Penman-Monteith approach:

Ewetland = LAl Ecan +S Esoil + W Ewater (85-30)

where E,erang 1S the evapotranspiration (mm day™) from the wetland, E.,, is the
transpiration (mm day™) from the canopy, E,;; is the soil evaporation (mm day™), E,qter IS
the evaporation (mm day™) from the standing water, LAI is the leaf area index, and S and W
are respectively the proportion of total area of bare soil and open water. E .., Egoi; and
E, qter are the Penman-Monteith estimates of ET for the canopy, soil and water as specified
by Drexler et al. (2004, Equations 17 to 19):
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soil 1 A+y(1+:—2) ( )
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Evater = 1 Aty 4 (S5.33)

where E.qn, Esoirs and E,yqrer are respectively the evaporation (mm day™) from the canopy,
soils and water, RS2, RS°%, and R}4te™ are respectively the net solar radiation (MJ m-2 day-
1) to the canopy, soil and water, G is the heat flux transfer (MJ m-2 day-1) to and from the soil
and water, and other variables are defined above.

Matt-Shuttleworth

Shuttleworth and Wallace (2009, page 1904) recommend that the FAO-56 Reference
Crop method (Allen et al., 1998) should not be applied to irrigation areas like those in
Australia that are semi-arid and windy. They recommend that the Matt-Shuttleworth (M-S)
model be adopted in place of the FAO-56 Reference Crop method. The M-S model consists
of five steps (details are given in Shuttleworth and Wallace (2009, as Equations 5, 8, 9, and
10):

1. Select the surface resistance for the target crop (from Shuttleworth and Wallace (2009,
Table 3). For example, for rye grass the surface resistance is 66 s m™.

2. Calculate

Teim = 86400 229772 (35.34)

where 7.;,,, is termed the climatological resistance (s m™), p,, is the mean air density (kg m™)
at constant pressure, c, is the specific heat of the air (MJ kg™ °C™), (VPD) is the vapour
pressure deficit (kPa), A is the slope of the vapour pressure curve (kPa °C™) at air
temperature, and R,, is the net radiation (MJ m™ day™) at the vegetated surface. The 86,400
constant converts the radiation energy from MJ m? day™ to MJ m*sec™.

3. Calculate
VPDsg _ (302(A+y)+70yu2) n 1 [(302(A+y)+70yu2) (@) _ (ﬁ)] (55.35)
VPD, 208(A+y)+70yu, Tctim L\208(A+y)+70yu, Uy Uy

where VPDg, and VPD, are the vapour pressure deficits (kPa) at 50 m and 2 m height, and u,
is the mean daily wind speed (m s™) at 2 m height.

4. Calculate
1 (50—0.67h) (50-0.67h)] In (220.08)
50 _ Y Y 0.0148
Te” = 042 ln[ (0.123h) [ (0.0123h) ] ln[% (S5.36)

where .59 is the aerodynamic coefficient (s m-1) for crop height (k)
5. Calculate

AR .Pacauz(VPDz)(VPDSO)
O S A LI 7,
c (rs)cuz

A A+y(1+—-:gc0 )

(S5.37)
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where ET, is the well-watered crop evapotranspiration in a semi-arid and windy location, 4 is
the latent heat of vaporization (MJ kg-1), (r,). is the surface resistance (s m™) of a well-
watered crop equivalent to the FAO crop coefficient (Shuttleworth and Wallace, 2009, Table
3), and other variables are defined previously.

At five locations in Australia, Shuttleworth and Wallace (2009) compared water
requirements estimated by the Matt-Shuttleworth method with the requirements estimated by
FAO-56 Reference Crop method (Allen et al., 1998, Chapter 4) for irrigated sugar cane,
cotton and short pasture. The analysis showed that within a growing season the differences
between the two procedures varied considerably. However, over an entire season the M-S
evapotranspiration estimate was 3% to 15% higher for sugar cane, 6% higher for cotton and
between 0.5% and 2.5% for pasture compared to the FAO-56 method (Shuttleworth and
Wallace, 2009, Table 4 and page 1905).
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Section S6 PenPan model

There have been several variations of the Penman equation to model the evaporation
from a Class-A evaporation pan. Linacre (1994) developed a physical model which he called
the Penpan formula or equation. Rotstayn et al. (2006) coupled the radiative component of
Linacre (1994) and the aerodynamic component of Thom et al. (1981) to develop the PenPan
model which is defined, using the symbols of Johnson and Sharma (2010), as follows:

A R apY *
EPenPan = A+apy Nian + A+Zpy fPan(u) (va - va) (861)

where Epg,pqn is the modelled Class-A (unscreened) pan evaporation (mm day-1), Rypan iS
the net radiation (MJ m-2 day-1) at the pan, A is the slope of the vapour pressure curve (kPa
°C-1) at air temperature, y is the psychrometric constant (kPa °C-1), and 4 is the latent heat of
vaporization (MJ kg'1), a,, is a constant adopted as 2.4, v; — v, is the vapour pressure deficit
(kPa), and fp4, (u) is defined as (Thom et al., 1981, Equation 34):

fran(W) = 1.201 4 1.621 u, (S6.2)
where u, is the average daily wind speed at 2 m height (m s-1).

To estimate Rypqn, We refer to Rotstayn et al. (2006, Equations 4 and 5)):

Rypan = (1 — a@g)Rspan — R (S6.3)

Rspan = [fairPraa + 142(1 — fair) + 0.42a]Rs (S6.4)

where Rgpgy, is the total shortwave radiation (MJ m-2 day-1) received by the pan, R,,; is the
net outgoing longwave radiation (MJ m-2 day-l) from the pan, R is the incoming solar
radiation (shortwave) (MJ m-2 day-1) at the surface, fy;, is the fraction of Ry that is direct,
P,,q 1S @ pan radiation factor, a, is the albedo for a Class-A pan given as 0.14 (Linacre,
1992) as reported by Rotstayn et al. (2006, page 2), and ag is the albedo of the ground
surface surrounding the evaporation pan (Table S3). To be consistent with Equation (S3.1)
we have assumed the net outgoing longwave radiation R,,; as positive. As noted by Roderick
et al. (2007, page 1), Rspan > Rs because of the interception of energy by the pan walls.

fair and P,.,4 are defined as:

fair = —0.11 + 1.31% (S6.5)

a

Praa = 1.32 + 4 x 10~*lat + 8 X 10 5lat? (S6.6)

where R, is the extraterrestrial radiation (MJ m=2 day-1), and lat is the absolute value of
latitude in degrees.

The equations to estimate R,,; are set out in Section S3. The above analysis is carried
out on a monthly time-step.

Application to Australian data

Using the PenPan model (with a, = 0.23 and by = 0.50 as noted in Section S3), the
mean monthly ratio of the PenPan evaporation, adjusted for the bird-screen, to the Class-A
pan evaporation over the 68 stations (consisting of approximately 11840 ratios over all
months) is 1.078. The monthly evaporation estimates are plotted in Figure S3. The
performance of the PenPan model in estimating Class-A pan evaporation is satisfactory
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although the PenPan values are biased towards slightly higher values at lower evaporations.
These results compare favourably with PenPan versus Class-A pan evaporation results of
Rotstayn et al. (2006, Figure 4), Roderick et al. (2007, Figure 1) and Johnson and Sharma
(2010, Figure 1) especially as we use the standard climate data available through the Bureau
of Meteorology National Climate Centre and sunshine hours as the basis of estimating solar
radiation.

An objective of this supplementary material was to develop for Australia mean monthly
evaporation pan coefficients (relating open surface-water based on Penman to Class-A pan
evaporation). Confidence in the monthly Penman estimates is based on the fact that the
PenPan estimates, which utilise the same climatic data and a similar model structure as for the
Penman model, were found to estimate the monthly pan evaporation very satisfactorily. In
order to estimate Penman evaporation suitable for computing pan coefficients, we varied ag
and b, values so that the overall monthly PenPan/Class-A pan ratio for the 68 stations was
unity. We argue that the optimised values of a, = 0.05 and bs = 0.65 obtained in this way
provided realistic monthly Penman values and, therefore, realistic pan coefficients. The mean
monthly pan coefficients for the 68 Australian stations are listed in Table S6.
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Section S7 Morton models

In 1985, Morton et al. (1985) published the program WREVAP which sets out
operational aspects for computing estimates of areal evapotranspiration and lake evaporation.
WREVAP contains three models CRAE (Complementary Relationship  Areal
Evapotranspiration) (Morton, 1983a), CRWE (Complementary Relationship Wet-Surface
Evaporation) (Morton, 1983b) and CRLE (Complementary Relationship Lake Evaporation)
(Morton, 1986). CRAE computes evapotranspiration for the land-based environment whereas
CRWE deals with shallow lakes and CRLE considers deep lakes where water-borne heat
input and energy storage are key issues. The three models are shown comparatively in Table
2 and are described in detail below.

In Morton’s procedure, measurements of solar radiation are not required but are
estimated through sunshine duration. However, if solar radiation data are available they may
be used. The climate variables necessary to compute Morton’s monthly evaporation are mean
monthly maximum and minimum air temperature, dew point temperature (or monthly relative
humidity), monthly sunshine duration and mean annual rainfall. For periods shorter than one
month, Morton (1983a, page 28) imposed a limit on the shortest time-step for analysis and
advocated a minimum of five days. However, for hydrological applications, Morton (1986,
page 379) permits daily time-step analysis so long as the daily values are accumulated to a
week or longer. But, it is important for lake analysis, described in CRLE below, that the time-
step of analysis be one month (Morton (1986, page 379).

Morton (1986, page 378) notes that the CRLE model estimates are sensitive to radiation
inputs (or sunshine hours) but insensitive to errors in air temperature and relative humidity
inputs, whereas the CRAE model requires accurate air temperature and relative humidity
from a representative location. For lakes, land-based meteorological data can be used
(Morton, 1983b, page 82). Furthermore, Morton (1986, page 378) notes that data measured
over water have only a “...relatively minor effect...” on the estimate of lake evaporation.

CRAE

The CRAE model consists of three components: potential evapotranspiration, wet-
environment areal evapotranspiration and actual areal evapotranspiration. A discussion of
each component follows.

Estimating potential evapotranspiration (ETp,; in Figure 1)

Morton’s approach to estimating potential evapotranspiration for a catchment or a large
vegetated surface is to solve the energy-balance and the vapour transfer equations
respectively for potential evapotranspiration and the equilibrium temperature:

ETHS == (Ry — [ypf, + 4€,0(T, + 273)*)(T, — To)) (7.1)

ETHS == (f,(v; = vp)) (57.2)

where ET29 is Morton’s estimate of point potential evapotranspiration (mm day™), R,, is the
net radiation (W m™) for soil-plant surfaces at air temperature, y is the psychrometric
constant (mbar °C-1), p is the atmospheric pressure (mbar), f,, is a vapour transfer coefficient
(W m? mbar™), e is the surface emissivity, o is the Stefan-Boltzmann constant (W m? K™),
T, and T, are the equilibrium and air temperatures (°C), v, is the saturation vapour pressure
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(mbar) at T,, v, is the saturation vapour pressure (mbar) at dew point temperature, and A is
the latent heat of vaporisation (W day kg™). (Note, the units used in Morton’s procedures
have been adopted here to ensure that the correct values of the empirical constants are
included.)

f» 1s given by:
__ (Dbs 0.5 fz
fo=(2) L& (57.3)

where p, and p are the sea-level atmospheric pressure (mbar) and at-site atmospheric pressure
(mbar) respectively, f is a constant (W m™ mbar™), and ¢ is a dimensionless stability factor
estimated from:

1 .
= - noting that § > 1 S7.4
f 0.28(1+z_9) : [ - RpA g f ( )

0.5
vo(5) bofz(va-vp)

where v, is the saturation vapour pressure (mbar) at dew point temperature, v, is the
saturation vapour pressure (mbar) at air temperature, A is the slope of the saturation vapour
pressure curve (mbar °C™) at air temperature, and b, = 1.0 for the CRAE model (Table 2).

We note here that f, is independent of wind speed. Many procedures (Penman, FAO-56
Reference Crop, PenPan, Advection-Aridity) used for estimating evaporation require wind as
an input variable. However, Morton (1983b, page 95) argued that using routinely observed
wind speeds in estimating lake evaporation do not significantly reduce the error in
evaporation estimates. Based on three arguments ((1) the vapour transfer coefficient increases
with increases in both surface roughness and wind speed yet wind speed tends to be lower in
rough areas than in smooth areas, (2) f,, increases with atmospheric instability and is more
pronounced at low wind speeds than at high wind speeds, and (3) errors in wind
measurements), he assumed that the vapour transfer coefficient is independent of wind speed
(Morton 1983a, page 25).

Morton (1983a, Section 5.1) sets out the following procedure to find T, by iteration, and
then EXO can be estimated from Equation (S7.1). Assume a trial value of T, which yields AL
and 6T, = T, — T,, hence §v, = A,ST, and v;' = v} + dv,. Equating Equations (S7.1) and
(S7.2) and substituting gives:

5T — %+v3—v;'+le(T—Té)
¢ (Ae+2e)

(S7.5)

4€0(Tp+273)3
fo

and variables are defined previously.

where A, =yp + (S7.6)

Initially, T, is set equal to the air temperature and the iterative procedure continues until
6T, becomes <0.01°C. Further details of the procedure are not included here but a worked
example is provided in Section S21.

Estimating wet-environment areal evapotranspiration (ETy,.; in Figure 1)

To estimate the wet-environment areal evapotranspiration, which is equivalent to the
conventional definition of potential evapotranspiration, Morton added an empirically derived
advection constant (b, ) to the Priestley-Taylor equation (Equation (6) with G = 0) as follows:
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ETM9 = %(bl +b, &%) (S7.7)
where ET,/J1% is the wet-environment areal evapotranspiration (mm day™), R, is the net
radiation (W m) for the soil-plant surface at T, (°C), A, is the slope of the saturation vapour
pressure curve (mbar °C-1) at T, (°C), b; and b, are empirical coefficients, and the other
variables are as defined previously. Values of b, and b,, which were derived by Morton
(19834, page 25) for representative regions, are set out in Table 2. R,,. is estimated as follows
(Morton, 1983a, Equation C37):

Rpe = ET%@ + ypfv(Te - Ta) (S7.8)
In their analysis of Australian data, Wang et al. (2001) adopted after calibration f, =

29.2 Wm-2 mbar-1 (Equation (57.3)) and b, and b,(Equation S7.7) equal to 13.4 Wm-2 and

1.13 Wm-2 instead of 28 Wm-2 mbar-1, 14 Wm-2, and 1.2 Wm-2 respectively (Table 2) to
give an overall value of the Priestley-Taylor coefficient, apr, equal to 1.26 rather than
Morton’s 1.32 value. Chiew and Leahy (2003, Section 2.3) argue that the recalibrated values
better represent Australian data. Our analysis for Australia stations (to be reported in later
document) confirms that the Wang et al. (2001) calibrated parameters yield more realistic
results than those of Morton.

Estimating actual areal evapotranspiration (ET,.; in Figure 1)

To estimate Morton’s actual areal evapotranspiration (ETM9) (mm day™), one uses the
results from Equations (S7.1) and (S7.7) in the Complementary Relationship as follows:

ETM? = 2ET )10 — ETH? (S7.9)

Morton (1983a, page 29) argues that as the models are completely calibrated they are
accurate world-wide.

Limitations of CRAE model
Morton (1983a, page 28) points out five limitations of the CRAE model:

1. The model requires accurate measurements of humidity data.

2. The model should not be used for intervals of three days or less, however, as Morton
(1983a) notes, so long as the accumulated values for a week or longer are accurate then a
daily time-step is acceptable. (For lake evaporation, a monthly time-step should be used
(Morton et al., 1985)).

3. The CRAE model should not be used near sharp discontinuities, e.g., near the edge
of an oasis.

4. The climatological station should be representative of the area of interest.

5. Because the CRAE model does not use knowledge about the soil-vegetation system,
it should not be used to examine the impact of natural or man-made change in the system.

Documentation of CRAE model

Documentation of the detailed steps to apply the CRAE model is given in Morton
(1983a), Appendix C, and will not be repeated here. Our Section S21 provides a worked
example.

CRWE

In CRWE, the only difference to CRAE is that the radiation absorption and the vapour
transfer characteristics reflect the water surface rather than a vegetated surface (Morton,
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1983b) (Table 2). The CRWE model provides estimates of lake-size wet surface evaporation
from routine climate data observed in the land environment. Furthermore, according to
Morton (1986, page 371) monthly evaporation can be accumulated to provide reliable
estimates of lake evaporation at the annual time-step for lakes up to approximately 30 m
deep. To estimate the evaporation from a shallow lake, Equation (S7.7) is applied with
coefficients b, and b, taking values given in Table 2.

CRLE

In the CRLE model, the computational procedure to estimate lake evaporation is the
same as that used in CRWE except that the energy term is net energy available, which
depends on solar and water inputs for the current and previous months. In estimating deep
lake evaporation on a monthly time-step, where changes in sub-surface heat storage may be
important, Morton (1986, page 376) adopts a classical lag and route procedure where the
routing is a linear storage function. The 1986 method, which we adopt herein, is different to
Morton’s (1983b, Section 3) method. In the 1983 method, storage routing is applied to
estimates of the shallow lake evaporation, whereas in Morton’s (1986) procedure, the solar
and water borne inputs are routed and then lake evaporation is estimated. Using Morton’s
symbols we summarise the four-step procedure of Morton (1986) as follows. Firstly,
estimates of the solar and water borne heat input are computed:

GS = (1—a)R;— Ry + Sh (S7.10)

where G, is the solar and waterborne heat input (W m™), R, is the incident global radiation
(W m?), R,; is the net outgoing longwave radiation (W m?), « is albedo for water, (1 —
aRs is the net incoming shortwave radiation (W m), and &% which is usually small, is the
difference between heat content of inflows and outflows from the lake (W m™). However, &h
may be important for small lakes that receive cooling water with elevated temperatures, e.g.,
from a thermal power station or for a small deep lake with seasonal heat input from a large
river (Morton, 1986, page 376). Note that Equation (S7.10) is different to Morton (1986,
Equation 2) in that he appears not to have included net longwave radiation at this point in the
analysis.

Secondly, the delayed energy input is computed from:
Gty = G + (1, — [6]) (Gl - 6iyH) (S7.11)

where [t;] and (t;, — [t.]) are the integral and fractional components of the lake lag or delay
time, t;, (months), G\ and GI“*" are respectively the value (W m?) of G3 computed for

[t,] and for [t; + 1] months previously.

The third step uses a linear routing procedure to route on a monthly time-step the
available input energy, G,, through the storage as follows:

Gy = G,p + W18 (57.12)
LE = HLB T o545, '
GL = OS(GLE + GLB) (8713)

where G, is the monthly lake energy input (W m), G, and G, are the available solar and
waterborne heat energy (W m™) at the beginning and end of the month respectively, and S_ is
the storage coefficient or routing constant (months).

To compute S, and t;, the average lake depth and the lake salinity are taken into
account as follows:
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S, =—2° _ (S7.14)
1+(2) |

to = 0.96 + 0.013h with 0.039h < t, < 0.13h (S7.15)

t, = —2— with t <6.0 (S7.16)
(1+27000)

where t, is the soft water delay time (months), h is the average depth of the lake (m), and s is
the lake salinity (ppm) (1 ppm ~ 1.56 microS cm™ or EC units).

The final step is to input monthly values of G, as R, into Equation S7.1 to estimate
deep lake monthly evaporation.

Typically, reservoir evaporation exceeds the evapotranspiration that would have
occurred from the inundated area in the natural state. This net evaporation can be estimated as
the difference between lake evaporation and actual areal evapotranspiration (Morton, 1986,
item 4, page 386).

In Morton’s procedure, solar radiation measurements are not required as these are
estimated from the other observed climate variables in the model. Chiew and Jayasuriya
(1990) and Szilagyi (2001, page 198) indicate that estimates of daily global and net radiation
by the Morton (1983a, Appendix C.1.2) procedure are accurate. Some researchers, e.g., Wang
et al. (2001) and Szilagyi and Jozsa (2008) have used observed solar radiation data instead of
Morton’s empirical estimate of R, which is equivalent to R in this paper.

A listing of a Fortran 90 version of Program WREVAP, which follows closely Morton
(1983a, Appendix C) and the routing scheme described in Morton (1986), is provided in
Section S20.

Australian application of the complementary relationship

Wang et al. (2001) used Morton’s (1983a) model to produce a series of maps for
Australia showing mean monthly areal potential evapotranspiration, point potential
evapotranspiration and areal actual evapotranspiration; these terms were adopted by Wang et
al (2001). The maps, which are at 0.1°(~10 km) grid resolution, are available at
http://www.bom.gov.au/climate/averages and as a hard-copy in Wang et al. (2001). The
detailed methodology is described in Chiew et al. (2002). Wang et al. (2001) provides the
following guidelines for the application of the maps noting that they should not be used in
estimating open water evaporation:

e Areal potential evapotranspiration (equivalent to Morton’s wet environment areal
evapotranspiration ET, %%
o0 Large area with unlimited water supply
o “Areal” >1 km?
o0 Upper limit to actual evapotranspiration in rainfall-runoff modelling studies
o Evapotranspiration from a large irrigation area with no shortage of water
e Point potential evapotranspiration (equivalent to Morton’s potential evapotranspiration
ETHS
o ET from a point with unlimited water supply
o A small irrigation area surrounded by unirrigated area
o0 Approximate preliminary estimate of evaporation from farm dams and shallow water
storages


http://www.bom.gov.au/climate/averages
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Based on 55 locations across Australia Chiew and Leahy (2003) found that ETp, could
be used as a substitute for Class-A pan evaporation.

Following an extensive analysis of potential evaporation formulations across Australia,
Donohue et al. (2010b, page 192) have provided two of the Morton evaporation estimates
namely areal potential evapotranspiration and point potential evapotranspiration as daily
time-step grids. However, they concluded that the Morton point potential method is unable to
reproduce evaporation dynamics observed across Australia and is unsuitable for general use.
However, R. Donohue (pers. comm.) advised that “the reason Morton point potential values
were so high in Donohue et al. (2010b) was because, in their modelling of net radiation, they
explicitly accounted for actual land-cover dynamics. This procedure differs from Morton’s
(1983) methodology, developed over 25 years ago, when remotely sensed data were not
routinely available, and thus Donohue et al. (2010b) is in contradiction to Morton’s (1983)
methodology.”
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Supplementary Material
Section S8 Advection-Aridity and like models

Advection-aridity model

Based on the Complementary Relationship, Brutsaert and Stricker (1979, page 445)
proposed the Advection-Aridity (AA) model to estimate actual evapotranspiration (ET,.) in
which they adopted the Penman equation for potential evapotranspiration (ETp,;) and the
Priestley-Taylor equation for the wet-environment (ETy.;). The Complementary
Relationship is:

ETpct = 2ETwer — ETpot (S8.1)

and substituting for the Penman (Equation (4)) and Priestley-Taylor (Equation (6)) and
rearranging yields:

ETfS = Qapr — D)1= — 2 f ) (v — va) (s8.2)
where ET2S is the actual areal evapotranspiration (mm day-1) based on Brutsaert and Stricker
(1979), R,, is the net radiation (MJ m-2 day-1) at the evaporating vegetative surface, apr is the
Priestley-Taylor parameter, u, is the average daily wind speed in m s*, v and v, are
respectively the saturation vapour pressure and the vapour pressure of the overpassing air
(kPa) at aie temperature, A is the slope of the saturation vapour pressure curve at air
temperature (kPa °C-1), y is the psychrometric constant (kPa °C-1) and A is the latent heat of
vaporization (MJ kg-1).

Based on an energy budget for a rural catchment in Holland, Brutsaert and Stricker
(1979, page 445) adopted a Priestley and Taylor (1972) constant apr of 1.28 rather than 1.26
(see Section 2.1.3) and Penman’s (1948) wind function f (u,) as:

fu,) = 2.626 + 1.381u, (S8.3)

which, according to Brutsaert and Stricker (1979, page 445), is equivalent to a surface of
moderate roughness. In the comparison, R,, was measured by a net radiometer and surface
albedo did not need to be assessed. If measured values of R,, are not available the adopted
value of albedo should be appropriate for the surface conditions (see Table S3).

Brutsaert and Stricker (1979, Figures 1 to 4) tested their model at a daily time-step and
observed that integrating the daily ET estimates over three days achieved better agreement
with energy budget estimates than single day estimates. Equation (S8.2) sometimes generates
negative ET values at the daily time-step.

Hobbins et al. (2001a) applied the AA model of Brutsaert and Stricker (1979) and the
CRAE model of Morton (1983a) to 120 minimally impacted U.S. catchments and found the
AA model underestimated annual actual evapotranspiration by 10.6% of mean annual
precipitation; the CRAE model overestimated annual evapotranspiration by only 2.5% of
precipitation (Hobbins et al., 2001a, Abstract). Hobbins et al. (2001b) recalibrated the AA
model for a larger data set (139 minimally impacted basins) and adopted monthly regional
wind functions, f(u,). Using apy = 1.3177 they achieved a more satisfactory result than the
original AA model. Another application of the AA model and the Zhang et al. (2001) model
is by Brown et al. (2008, Table 1) who examined the spatial distribution of water supply in
the United States. Across the U.S., the AA model overestimated the US Geological Survey
gauged data by 4% and the Zhang model underestimated the gauged data by 5%.
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Monteith (1981, page 24) offers the following comment regarding the Brutsaert and
Stricker equation. “The scheme ... has the merit of elegance and simplicity but its
foundations need strengthening. Apart from the uncertainty which surrounds the value of o
and it physical significance, Bouchet’s hypothesis of complementarity between actual and
potential rates of evaporation needs to be substantiated by an appropriate model of the
planetary boundary layer.”

Granger-Gray model

To estimate actual evapotranspiration from non-saturated lands, Granger and Gray
(1989) developed a modified form of the Penman (1948) equation as follows:

AGy; R,-G YG
—— E S8.4
AGg+y A AGg+y a ( )

ET/{;C(% =

where ETSS is the actual evapotranspiration (mm day™) based on Granger and Gray (1989),
R,, is the net radiation (MJ m-2 day-1) near the evaporating surface (hence the albedo adopted
is for the evaporating surface), G is the heat flux into the soil (MJ m-2 day-1), A is the latent
heat of vaporization (MJ kg-1), A is the slope of the saturation vapour pressure curve at air
temperature (kPa °C-1), and y is the psychrometric constant (kPa °C-1), E, is the drying
power of the air (Equation S4.2), and G, is a dimensionless evaporation parameter, which is
based on several surface types, and is defined as (Granger, 1998, Equations 6 and 7):

L +0.006D, (S8.5)

G, =
9 " 0.793+0.20e*°%%Pp

where D,,, a dimensionless relative drying power, is defined as:

— (S8.6)

where G is set to zero.

Adopting a daily time-step, Xu and Chen (2005, page 3725) compared, inter alia,
Granger-Gray (GG) model with 12 years of daily lysimeter observations located at
Monchengladbach-Rheindahlen meteorological station in Germany and found the GG model
performed better than the Brutsaert and Stricker Advection-Aridity model and the Morton
CRAE model (Xu and Chen (2005, Abstract).

Szilagyi-Jozsa model

Based on theoretical considerations, Szilagyi (2007) offered an alternative modification
of the AA model which was further amended by Szilagyi and Jozsa (2008, Equation (9)) to
the following:

ET,lr = 2Epr(T,) — Epen (S8.7)

where ETASC]t is actual evapotranspiration (mm day?), ETpr(T,) is wet-environment

evaporation (mm day™') estimated by Priestley-Taylor at T, (°C), Epe, is potential
evapotranspiration (mm day™) estimated by Penman using the 1948 wind function.

To evaluate T,, Szilagyi and Jozsa (2008) considered the Bowen Ratio (Bowen, 1926)
for a small lake or sunken pan and found the equilibrium surface temperature, T,, could be
estimated iteratively on a daily basis from (Szilagyi and Jozsa, 2008, Equation (8)):

Rn — 1 + V(Te_Ta) (88.8)

AEpen Ve—Vq
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where R,, is the available energy (MJ m-2 day-1), Ep,,, is the Penman evaporation (mm day™)
based on T,, and T, and T, are respectively the equilibrium and air temperatures (°C), v, is
the saturation vapour pressure (kPa) at T,, v, is the actual vapour pressure (kPa) at T,, A is
the latent heat of vaporization (MJ kg-1), and y is the psychrometric constant (kPa °C-1).

Based on daily data and adopting apr = 1.31 but applying the Complementary

Relationship to obtain monthly ETASC]t values, Szilagyi and Jozsa (2008) tested Equation (S8.7)
against actual evaporation estimated by Morton’s WREVAP model for 210 SAMSON (Solar
and Meteorological Surface Observation Network) stations in the United States and found
excellent agreement (R2 = 0.95) (Szilagyi and Jozsa, 2008, Figure 6). Szilagyi et al (2009,
page 574) applied their modified AA model to 25 watersheds, 194 SAMSON sites and 53
semi-arid SAMSON sites and concluded that their modified AA model performed better than
the Brutsaert and Stricker (1979) traditional AA model.

In applying Equation (S8.7), a daily time-step is used and an albedo value for the
vegetative surface is adopted. We note that when we applied Equation (S8.7) to days of very
low net radiation, negative values of evaporation were occasionally estimated, a feature also
observed in the Brutsaert and Stricker (1979, page 448) Aridity-Advection model (see
Section S18).
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Supplementary Material

Section S9 Additional evaporation equations

Although the following empirical equations (except the energy based procedure
described at the end of this section) have been extensively referenced or widely used in past
practice and therefore are included in this paper, we are of the view that the more physically-
based equations described earlier are generally more appropriate for estimating evaporation or
evapotranspiration. This is particularly so in regions where empirical coefficients have not
been derived.

Dalton-type equations

Mass-transfer equations of the following form were first described by John Dalton in
1802 and are known as Dalton-type equations (Dingman, 1992, Section 7.3.2):

E= Cempf(u)(vs* — V) (S9.1)

where E is the actual surface evaporation (mm day-1), f(u) is an appropriate wind function,
v, is the saturation vapour pressure (kPa) at the evaporating surface, v, is the atmospheric
vapour pressure (kPa), and C,,,, is an empirical constant. McJannet et al. (2012) reviewed 19
studies for estimating open water evaporation and proposed a wind function (Equation 14)
that depends on the area of the evaporating surface (see Section 2.4.2).

Thornthwaite (1948)

In the Thornthwaite evaporation method, the only meteorological data required to
compute mean monthly potential evapotranspiration is mean monthly air temperature, The
original steps in Thornthwaite’s (1948) procedure involved a nomogram and tables, which
can be represented by the follow equations (Xu and Singh, 2001, Equations 4a and 4b):

ETh,j — 16 (W) (daymon) (10’1_"])aTh (59.2)

12 30 1

where Epp, ; is the Thornthwaite 1948 estimate of mean monthly potential evapotranspiration
(mm month™) for month j, (j = 1 to 12), hrday is the mean daily daylight hours in month j,
daymon is the number of days in month j, T; is the mean monthly air temperature (°C) in

month j, and [ is the annual heat index. The annual heat index is estimated as the sum of the
monthly indices:

I = ]1-21 i (S9.3)

= \ 1.514
where i = (%) (S9.4)
and ar, = 6.75 X 107713 — 7.71 x 107°12 + 0.017921 + 0.49239 (S9.5)

It is noted that strict application of Thornthwaite (1948) yields only 12 values of
potential evapotranspiration, a mean value for each calendar month. However, in several
studies, Thornthwaite’s procedure has been modified to allow a time series of daily (Federer
et al., 1996; Donohue et al., 2010b) or monthly (Xu and Singh, 2001; Lu et al., 2005; Amatya
et al., 1995; Xu and Chen, 2005; Trajkovic and Kolakovic, 2009) potential evaporation values
to be computed.

Building on Thornthwaite’s (1948) water balance procedure used in his climate
classification analysis, Thornthwaite and Mather (1957) developed a procedure for computing
a water balance. We suggest readers planning to use the Thornthwaite-Mather method pay
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attention to Black’s (2007) paper in which he notes that there are significant differences
between a 1955 version of the methodology and the 1957 version which, according to Black
(2007), is the correct procedure. The Thornthwaite and Mather (1957) methodology consists
of applying the 1948 procedure in a water balance context. Scozzafava and Tallini (2001)
provide an example.

Makkink model
G.F. Makkink, as reported by de Bruin (1981), simplified the Penman (1948) equation
by disregarding the aerodynamic term but compensated the evaporation estimate by
introducing two empirical coefficients as follows (Jacobs and de Bruin, 1998, Equation 2):
A R
Evar = &1 (57 ) - 2 (S9.6)

A+y 2.45

where Ejq is the Makkink potential evaporation (mm day™), R, is the solar radiation
(incoming shortwave) (MJ m™ day™) at the water surface, A is the slope of the vapour

pressure curve (kPa °C™) at air temperature, and y is the psychrometric constant (kPa °C-1).
Adopted values of ¢; and ¢, are 0.61 and 0.12 (mm day™) (Winter et al., 1995; Xu and Singh,
2002; Rosenberry et al., 2007; Alexandris et al., 2008). According to Rosenberry et al. (2004,
Table 1), a monthly time-step is used in the Makkink computations.

FAO-24 Blaney and Criddle (Allen and Pruitt, 1986)

There have been a number of modifications made to the original Blaney (1959)
equation for estimating the consumptive use or reference crop evapotranspiration. We outline
here the Reference Crop FAO-24 (Allen and Pruitt, 1986; Jensen et al, 1990) version of
Blaney and Criddle which is for a grass-related crop evapotranspiration. The method is based
on several empirical coefficients which were developed from data measured at adequately
watered, agricultural lysimeter sites (Allen and Pruitt, 1986), located in the dry western
United States where advection effects were strong (Yin and Brook, 1992).

The FAO-24 Reference Crop version of Blaney-Criddle is defined as (Allen and Pruitt,
1986, Equations 1, 2 and 3; Shuttleworth, 1992, Equation 4.2.45):

ETgc = (0.0043RHyin — & — 141) + bygrpy (0.46T, + 8.13) (S9.7)
bvar == 60 + elRHmin + 62 % + €3u2 + 64RHmm% + esRHminuZ (898)

where ETg is the Blaney-Criddle Reference Crop evapotranspiration (mm day™), RH;,, is
the minimum relative daily humidity (%), n/N is the measured sunshine hours divided by the
possible daily sunshine hours, p, is the percentage of actual daytime hours for the day
compared to the day-light hours for the entire year, T, is the average daily air temperature
(°C), and u, is average daily wind speed (m s1) at 2 m. The recommended values of the
coefficients are from Frevert et al. (1983, Table 1) as follows: e, = 0.81917, e; =-0.0040922,
e, = 1.0705, e; = 0.065649, e,= -0.0059684, es = -0.0005967. Due to lower minimum daily
temperatures at higher elevation (McVicar et al., 2007 Figure 3), Allen and Pruitt (1986)
incorporate an adjustment for elevation to the FAO-24 Blaney-Criddle equation for arid and
semi-arid regions following Allen and Brockway (1983) as follows:

ETH = ETpc [1+0.152]

1000 (89'9)
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where ET/. is the Blaney-Criddle Reference Crop evapotranspiration adjusted for site
elevation and Elev is the elevation of the site above mean sea level (m).

Doorenbos and Pruitt (1992, page 4) note that the BC procedure should be used “with
scepticism” in equatorial regions (where air temperatures are “relatively constant”), for small
islands and coastal areas (where air temperature is affected by sea temperature), for high
elevations (due to environmental lapse rate induced low mean daily air temperature) and in
monsoonal and mid-latitude regions (with a wide variety of sunshine hours).

It is noted that the original Blaney-Criddle procedure incorporates only monthly
temperature data. Consequently, the coefficients ey, ..., es and the climate variables RH,,;,, ,
T,, u, in Equations (S9.7) and (S9.8), which were based on the crop consumptive use in
western United States using the original BC model, will not represent potential evaporation in
regions with climates differing from those in western United States. This may explain the
Doorenbos and Pruitt (1992) comment in the previous paragraph.

Although the BC method has been used at both a daily and a monthly time-step (Allen
and Pruitt, 1986), a monthly period is recommended (Doorenbos and Pruitt, 1992, page 4;
Nandagiri and Kovoor, 2006, page 240).

Turc (1961)

The Turc method (Turc 1961) is one of the simplest empirical equations used to
estimate reference crop evapotranspiration under humid conditions. (Note that the Turc
(1961) equations are very different to those proposed in Turc (1954, 1955).) The Turc 1961
equation, based on daily data, is quoted by Trajkovi¢ and Stojni¢ (2007, Equation 1) as:

ETpure = 0.013(23.88R; + 50) (—-) (S9.10)

T,+15

where ETp,.. is the reference crop evapotranspiration (mm day™), T, is the average air
temperature (°C), and R, is the incoming solar radiation (MJ m™ day™).

For non-humid conditions (RH < 50%), the adjustment provided by Alexandris et al.
(2008, Equation 5b) may be used.

ETpyre = 0.013(23.88R, + 50) (T—) (1 +

50—RH)
T,+15

70

(S9.11)

where RH is the relative humidity (%).

Because Jensen et al. (1990) identified that the Turc (1961) method performs
satisfactorily in humid regions (see Table 5), Trajkovi¢ and Kolakovi¢ (2009) developed an
empirical factor to adjust ET;,.. for wind speed. Details are given in Trajkovi¢ and
Kolakovi¢ (2009).

Hargreaves-Samani (Hargreaves and Samani, 1985)

The Hargreaves-Samani equation (Hargreaves and Samani, 1985, Equations 1 and 2),
which estimates reference crop evapotranspiration, is as follows:

ETys = 0.0135@,5% (Tonax — Trmin)*5 (T, + 17.8) (S9.12)

where ETyg is the reference crop evapotranspiration (mm day™), Cys is an empirical
coefficient, R, is the extraterrestrial radiation (MJ m™ day™), Trnax, Tmins T, are respectively
the maximum, minimum and average daily air temperature (°C). Samani (2000, Equation 3)
proposed a modification to the empirical coefficient to reduce the error associated with the
estimation of solar radiation as follows:
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Chs = 0.00185(Tygx — Tonin)? — 0.0433(Tynax — Tonin) + 0.4023 (S9.13)

According to Amatya et al. (1995, Table 4), weekly or monthly data should be used in
the Hargreaves-Samani model in the computation of reference crop evapotranspiration rates.

Modified Hargreaves

The modified Hargreaves procedure (Droogers and Allen, 2002), as adapted by Adam
et al (2006, Equation 6), allows one to estimate the reference crop evapotranspiration without
wind data using monthly values of rainfall, air temperature, daily air temperature range, and
extra-terrestrial solar radiation as follows:

0.76

ETyarg,; = 0.0013S,(T; + 17.0)(TD; — 0.0123P;) (S9.14)

where, for a given month j, ETyg,4; is the modified Hargreaves monthly reference crop
evapotranspiration (mm day™), T; is the monthly mean daily air temperature (°C), T—D] is the
mean monthly difference between mean daily maximum air temperature and mean daily
minimum air temperature (°C) for month j, P; is the monthly precipitation (mm month™), and
Sp is the mean monthly water equivalent for extraterrestrial solar radiation (mm day™). If T—D]
data are unavailable, New et al. (2002) have provided 10’ latitude/longitude gridded mean
monthly diurnal air temperature range. Again, following the approach of Adam et al. (2006,
Equations 7, 8, 9 and 10), Sy is estimated by:

Sy = 15.392d? (wssin(lat)sin(6) + cos(lat)cos(&)sin(ws)) (S9.15)

where lat is the latitude of the location in radians (negative for southern hemisphere), d, is
the relative distance between the earth and the sun, given by:

2 _ 2r

d? =1+ 0.033cos (== DoY) (59.16)
where DoY is the Day of Year (see Section S3), ws is the sunset hour angle in radians (see
Adam et al., 2006, page 22 for boundary conditions) and is given by:

wg = arcos(—tan(lat)tan (§)) (S9.17)
and o is the solar declination in radians given by:

5= 0.4093sin (2—” DoY — 1.405) (S9.18)

365
Evapotranspiration estimates are based on a monthly time-step.

Application based on energy balance

A very different approach to the application of energy balance is by McLeod and
Webster (1996, Equations 8 and 9) who used data from an instrumented irrigation channel to
estimate channel evaporation from:

(Rn+Qy—Q¢) At

Ei. = (1+5+T) 7 (S9.19)
where E;, is the evaporation from the irrigation channel (mm day™), R,, is the net radiation on
the water surface (MJ m? day™), Q,, is the heat flux advected into the water body (MJ m™
day™), Q, is the heat flux increase in stored energy (MJ m™ day™), B is the Bowen Ratio, c,,
is specific heat of water (MJ kg1 °C-1), T; is the temperature of the evaporated water (°C), At
is time interval over which the fluxes are estimated (day), and A is the latent heat of
vaporisation (MJ kg1).
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Supplementary Material

Section S10 Estimating deep lake evaporation

Based on a review of the literature, Table S5 provides guidelines to define deep and
shallow lakes for the purpose of estimating lake evaporation. (The background to Table S5 is
discussed in the Section S11.)

Kohler and Parmele (1967)

The Penman estimate of open-water evaporation, Ep.,on, (Equation (12)) is a starting
point to estimate evaporation from a deep lake using the Kohler and Parmele (1967)
procedure. To account for water advected energy and heat storage, Kohler and Parmele
(1967, Equation 12) recommended the following relationship:

AQ
Epy = Epenow + axp(Aw — 5 (S10.1)
where Ep,; is the evaporation from the deep lake (mm day1), Ep.ow is the Penman open-
water evaporation (mm day-1), ayp is the proportion of the net addition of energy from
advection and storage used in evaporation during At, A,, is the net water advected energy

during At (mm day-1), and AA—(; is the change in stored energy (mm day-1). Kohler and Parmele

(1967, page 1002) illustrated their method adopting At = 1 day. The three other terms are
complex and following Dingman (1992, Equations 7.38, 7.31 and 7.32 respectively) can be
computed from:

A

agp 45y, 0(Ty+273.2)3
A4y+
PwAKEU

(S10.2)

Aw = CW;W (PdTp + SWinTswin - SWouthwout + GWinTgwin - GWoutTgwout) (8103)

AQ = =2 (VTyz = Vi) (510.4)
where A is the slope of the vapour pressure curve (kPa °C-1) at air temperature, ¢, is the
effective emissivity of the water (dimensionless), o is the Stefan-Boltzman constant (MJ m-2
day-l K-4), T, is the temperature of the water (°C), T, is the temperature of precipitation
(°C), c,, is the specific heat of water (MJ kg™ °C™), P, is the precipitation rate (mm day™1), 1
is the latent heat of vaporization (MJ kg™1), K is a coefficient that represents the efficiency of
the vertical transport of water vapour (kPa-1), u is mean daily wind speed (m day-1), SW and

GW represent surface and ground water inflows and outflows as per subscript (mm day-1)
and V’s and T’s represent respective average lake volumes (m3) and temperatures (°C), 4, is
lake area (m2), and 1 and 2 identify values at the beginning and end of At. Generally, for
surface lakes GW will be small with respect to SW and can be ignored, but for a deep void
following surface mining, groundwater may need to be assessed. Estimation of Kz (m day’
kg™) is based on Equation (S10.5), but may need to be adjusted for atmospheric stability (see
Dingman, 1992, Equation 7.2):

Kz = 0.622 2~ 1

PPw 6.25[in(2224)|

(S10.5)

where p, is the density of air (kg m3), p,, is the density of water (kg m=3), p is the
atmospheric pressure (kPa), z,, is the height above ground level (m) at which the wind speed
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and vapour pressure are measured (m), z, is the zero-plane displacement (m), and z, is the
roughness height of the surface (m).

Harbeck (1962) found that lake area accounted for much of the variability in K5 and, as
an alternative to Equation (S10.5), K5 can be estimated by (Dingman, 1992, Equation 7-19):

Kz = 1.69x10754; 005 (S10.6)
where A4, is the lake area (km?2).

Because changes in daily energy cannot be estimated with sufficient accuracy relative
to the other fluxes, Kohler and Parmele (1967, page 1002) based their comparisons on periods
of a week to a month, not daily.

Vardavas and Fountoulakis (1996)

The Vardavas and Fountoulakis (1996) method for estimating monthly evaporation
from a deep lake, in which seasonal heat storage effects are significant, is based on the
Penman equation (Penman, 1948):

A

Ep, = (E) E, + (ﬁ) E, (S10.7)

where Ep; is the evaporation (mm day1) for a deep lake, E; is the evaporation component
(mm day-1) due to net heating, E, is the evaporation component (mm day-1) due to wind, A is
the slope of the vapour pressure curve (kPa °C-l) at air temperature, and y is the
psychrometric constant (kPa °C-1).

E, = %(Rn + AH) (S10.8)

where R, is the net radiation (MJ m-2 day-1) at the water surface, A is the latent heat of
vaporization (MJ kg-1), and AH is the net energy gained from heat storage in the water body

(MJ m-2 day-1).
Following Vardavas and Fountoulakis (1996, Equation 28), AH is determined on a
monthly basis using:

7 ATy

tm
where AH; ;_, is the change in heat storage (W m-2) from month j-1 to month j, h is the mean
lake depth (m), AT,,, = T,, ; — Ty, j-1. I.€., the change in surface water temperature (°C) from
month j-1 to month j, and ¢,,, is the number of days in the month.

E, is the wind component defined by Penman (1948) as:
Eq, = f@)[vg(Ta) — va(To)] (S10.10)

where # is average daily wind speed (m s1), v (T,) is the saturation vapour pressure (mbar)
at the water surface evaluated at air temperature T, (°C), and v,(T,) is the vapour pressure
(mbar) at a given height above the water surface evaluated at the air temperature (°C), and

f@@) =Cu (S10.11)

where C, can be evaluated as set out below. Estimated values of C, by Vardavas and
Fountoulakis (1996, page 144) for four Australian reservoirs (Manton, Cataract, Mundaring

and Eucumbene) range from 0.11 to 0.13 mm day-1/(m s-1 mbar).
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Following Vardavas (1987, Equation 23) C,, can be evaluated from:
3966

S @) (510.12)
where T, is the air temperature (K), z, is the height above ground of the wind speed

measurement (m), z, is the height above ground of the water vapour measurement (m). z,,,,
the momentum roughness (m), and z,,,, the roughness length for water vapour (m), are given

by:
Zym = o.135u—‘i (S10.13)

Zyy = 0.624u—“* (S10.14)

where v is the kinematic viscosity of air (m2 s-1) and is estimated by:

3/2

L= 2.964x1o-7TaT (510.15)

where T, is the air temperature (K), and p is the atmospheric pressure (kPa).

The friction velocity, u,, is computed from:

i= % (i) (S10.16)

0.135v,

where k is von Karman’s constant, % is the mean wind speed (m s-1), z, is the height above
ground of water vapour measurement (m), and v is the kinematic viscosity of air (m2 s-1). u,
can be estimated by a numerical iteration technique, e.g., Newton-Raphson.

Other approaches that may be appropriate

Several approaches that have been included under Section S11 Estimating shallow lake
evaporation may be appropriate for deep lakes. In particular, McJannet et al. (2008b)
procedure has been tested for two deep lakes.
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Section S11 Estimating shallow lake evaporation

Based on a review of the literature, Table S5 provides guidelines to define deep and
shallow lakes for the purpose of estimating lake evaporation. According to Monteith (1981,
page 9), it is inappropriate to apply the Penman equation to estimating evaporation from open
water bodies that exceed “... a metre or so in depth...” because of the damping due to heat
stored in the water. Morton’s (1986) analysis indicates “... the CRLE model has little
advantage over the CRWE at depths less than 1.5 m”. For shallow lakes of 3 m mean depth,
de Bruin (1978) and Sacks et al (1994) consider it unnecessary to take account of seasonal
heat storage in estimating lake evaporation, whereas Fennessey (2000), in his study of a
shallow lake of 2 m mean depth, incorporated monthly heat storage. For a shallow lake
(average depth of 0.6 m and characterised by a bottom crust of a thick frozen mud layer) in
Hudson Bay, Canada, Stewart and Rouse (1976) incorporated heat flux through the bottom of
the lake and the heat capacity of the water.

Based on the above evidence we suggest as a general guide that seasonal heat storage
be taken into account for shallow lakes with an average water depth of 2 m or more. For
shallow lakes with water depth less than 2 m, we prefer the Penman equation (Equation (12))
with the 1956 wind function..

Shallow lake evaporation by Penman equation based on the equilibrium temperature
(Finch, 2001)

To take heat storage into account, Finch (2001) used the concept of equilibrium
temperature and tested the accuracy of the method by estimating evaporation from a shallow
lake. A description of the model is presented by Keijman (1974) and de Bruin (1982). As
noted in Section (2.1.4), the equilibrium temperature is the temperature of the surface water
when the net rate of heat exchange at the water surface is zero (Edinger et al., 1968, page
1139). In this context, Sweers (1976, page 377) assumes that, although on clear calm days a
water body will exhibit strong temperature gradients near the water surface, the top 0.5 m —
1.0 m or so is well mixed and its mean temperature specifies the surface temperature.

To estimate shallow lake evaporation, Finch (2001) adopted Penman (1948) but
incorporated the Sweers (1976, Equation 18) wind function (Equation (S11.2)) and the
equilibrium temperature. In the method it is assumed the water column is well mixed and the
heat flux at the bed of the water body can be neglected (Finch, 2001, pages 2772). For each
daily time-step, the following nine equations are computed:

_ ARY=GW)+YAf (W) (W3 —va)
1E = nid (S11.1)
Af(w) = 0.864(4.4 + 1.82u) (S11.2)

where E is daily lake evaporation (mm day™), RY is the net daily radiation (MJ m? day™)
based on the surface water temperature, G,, is the daily change in heat storage (MJ m™ day’
1, A is the latent heat of vaporisation (MJ kg™), (v — v,) is the vapour pressure deficit (kPa)
at air temperature, y is psychrometric constant (kPa K™), A is the slope of the saturation
vapour curve (kPa K™) at air temperature, and u is the mean daily wind speed (m s™) at 10 m.
(Note that many wind measuring instruments are at a height of 2 m rather than 10 m and for
those situations the wind speed needs to be adjusted by Equation (S4.4).)

However, before R)y and G,, can be estimated the daily surface water temperature of
the lake needs to be estimated as follows:
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1
Tyi=Te+ (Twi_1 — Teo)ex (S11.3)

where T, ;, T,;—, are the surface water temperatures (°C) on day i and dayi—1
respectively, and T, is the equilibrium temperature (°C) and t is equilibrium temperature
time constant (days). T, and t are estimated as follows:

_ Rywb :
T, =Typ + T T 12730 A ) Bty (Finch, 2001, page 2773) (S11.4)

where R}, is the net radiation (MJ m-2 day-1) based on wet-bulb temperature (T,,;) (°C) and
is estimated by:

Riy = (1 — @)Rs + Ry — C;[a(T, + 273.1)* + 40 (T, + 273.1)3(T,,p — To)] (S11.5)

_ PwCwhw .
U = oot 27304 2F () arn t7) (Finch, 2001, page 2772) (S11.6)

where t is the equilibrium temperature time constant (days), T, is the mean daily wet-bulb

temperature (°C), R, is the shortwave solar radiation (MJ m-2 day-1), « is the albedo for a
water surface (Finch (2001) estimated using Payne (1972)), R; is incoming longwave

radiation (MJ m-2 day-1), Cr is a cloudiness factor, o is the Stefan-Boltzman constant (MJ m’

2 K* day™), T, is mean daily air temperature (°C) at screen height, A, is the slope of the
saturation vapour curve (kPa K™) at wet-bulb temperature, y is the psychrometric constant
(kPa K™, p,, is the density of water (kg m™), c,, is the specific heat of water (MJ m? K* day’
1, and h,, is the depth of the lake (m).

Thus, having an estimate of the surface water temperatures from Equation (S11.3), Ry
and G,, are estimated from:

RY = (1 — a)Rs + Ry — C¢[o(T, + 273.1)* + 40(T, + 273.1)3(T,i-1 — To)] (S11.7)

Gy = pwcwhw(Tw,i - Tw,i—l) (8118)

where Ry} is the net radiation given the surface water temperature, T, ;, T\, ;1 are the surface
water temperature on day i and day i — 1 respectively.

Next, AE can be estimated using Equation S11.1 and the depth of water h,, on day
i + 1 is estimated as:

hit1 = hi + Py — E; (S11.9)
where P, 4 is the rainfall measured on day i + 1 and E; is the lake evaporation on day i.

According to deBruin (1982, page 270) because water bodies up to 10 m deep are
generally well mixed by wind, the model is of practical significance. The meteorological data
are assumed to be land-based (Finch, 2001, page 2771) and the model uses a daily time-step.

The model was applied by Finch (2001) to a small reservoir at Kempton Park, UK
resulting in the annual evaporation being 6% lower than the measured value.

Shallow lake evaporation by finite difference model (Finch and Gash, 2002)

Finch and Gash (2002) proposed a finite difference approach as an alternative to
estimating shallow lake evaporation. The steps are set out as follows (Finch and Gash, 2002,
Figure 1):

1. Estimate « (shortwave albedo for the water surface).
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N

Set the first estimate of T,, (average water temperature) at the beginning of the
current time-step to the value at the end of the previous time-step.

Calculate the average T,,.

Calculate R,, (net radiation).

Calculate f(u) (u is wind speed at a height of 10 m).

Calculate AE (latent heat flux) and H (sensible heat flux).

Calculate W (change in heat storage in water column during the current time-step).
Calculate a new estimate of T,, at the end of the time-step.

Is the difference between the last estimate of T,, and the present one < 0.01?

10 If no, return to step 3, otherwise proceed to the next time-step.

©ooN kW

The equations to estimate the above variables are as follows (Finch and Gash, 2002):

x=f(g,6) (S11.10)
9= (S11.11)
T
Ty = Tyi-1 + (%) (S11.12)
Ruw = Ry(1 — @) + Ry — Cpo (T, + 273.1)* (S11.13)
flw) =222 for T, < T, (S11.14)
0.216u[1+10w o
flw) = u forT,, > T, (S11.15)
A+y
AE = f(w)(vy, —v4) (S11.16)
H=yf)(T, —T.) (S11.17)
AW =R, — AE —H (S11.18)
AW
Tw,i = TW,i—l + o Corltn (81119)

where « is shortwave albedo for the water surface, R, is the incoming shortwave radiation
(MI m?d?), S.,, is the solar constant = 0.0820 MJ m™ day™, 6 is the Sun’s altitude (°), d, is
the ratio of the actual to mean Earth-Sun separation or the inverse relative distance Earth-Sun,
T,, is average water temperature (°C), T,,; and T,,;_; are, respectively, the estimated water
temperature (°C) at the end of the current and previous periods, T, is the air temperature (°C)
at the reference height, R,,, is the net radiation (MJ m? d*), R;, is incoming longwave
radiation (MJ m” day™) , C; is a cloudiness factor, o is the Stefan-Boltzman constant (MJ m*
K™ day™), A is the slope of the saturation vapour pressure curve at air temperature (kPa K™),
y is the psychrometric constant (kPa K™), u is wind speed (m s) at a height of 10 m, v;; is
the saturation vapour pressure at the water temperature (kPa), v, is the vapour pressure at the
reference height (kPa), AE is the latent heat flux (MJ m™? d™), H is the sensible heat flux (MJ
m2d™Y), AW is change in heat storage in water column during the current time-step (MJ m d
Y, p. is the density of water (kg m™), c,, is the specific heat of water, and h,, is the depth of
water (m).

! In Equation (S11.11), we have adopted Payne’s equation (Payne, 1972, Equation 3; see also Berger et al, 1993,
Equation 2) and Simpson and Paulson (1979, Equation 2) in which d? is used rather than d,. as published in the
Finch and Gash (2002) paper.
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R, is either measured solar radiation or estimated from Equation S3.9 and R;; may be
estimated from Equation (S3.16). Finch and Gash (2002) used Payne (1972, Table 1) to
estimate « knowing g and 6. g requires d to be estimated which is computed from:

d? =1+ 0.033cos (== DoY) (S11.20)

where DoY is day of year (DoY =1, 2, ..., 365).
0 is estimated as follows (Al-Rawi, 1991, Equation 1):
sin@ = cos (lat) cos (§) cos (ws) + sin (lat) sin () (S11.21)

where lat is latitude in radians, ¢ is the solar declination angle in radians, and wy is the sunset
hour angle in radians. § and wg can be estimated from Equations (S9.18) and (S9.17)
respectively.

Lake evaporation by Penman-Monteith equation based on the equilibrium
temperature (McJannet et al., 2008b)

McJannet et al. (2008b) adopted the Penman-Monteith as the basis of applying the
equilibrium temperature to estimate lake evaporation for a range of water bodies — shallow
and deep lakes and an irrigation canal. Their approach is similar to that used by Finch (2001).
We reproduce below the method proposed and tested by McJannet et al. (2008b). Evaporation
is estimated as follows:

1(A Q*-G )|86400paca(v"j\,—va))
w w)

Eye; =3 Ay Lo (S11.22)
where E),, is the evaporation from the water body (mm day™), 0* is the net radiation (MJ m’
2 day™), G,, is the change in heat storage in the water body (MJ m™ day™), p, is the density of
air (kg m™), ¢, is the specific heat of air (MJ kg™ K™), v;; is the saturation vapour pressure at
water temperature (kPa), v, is the daily vapour pressure (kPa) taken at 9:00 am, A is the latent
heat of vaporisation (MJ kg), 4,, is the slope of the saturation water vapour curve at water
temperature (kPa °C™), y is the psychrometric constant (kPa °C™), and r,, is the aerodynamic
resistance (s m™) and is defined by Calder and Neal (1984, page 93) and McJannet et al.
(2008b, Appendix B, Equation 10) as:

1, =—ea (S11.23)

y(864-00)

where from Sweers (1976, page 398) and modified by McJannet et al. (2008b, Appendix B,
Equation 11) and converting units from W m™ mbar™ to MJ m* kPa-1 day yields:

5 0.05
flu) = (;) (3.80 + 1.57u,,) (S11.24)

where u;, is the wind speed (m s™) at 10 m and A (km?) is the area of the water body, and
other variables are defined previously. (For elongated water bodies, the square of the width
was adopted as the area (Sweers, 1976, page 398).)

Q* in Equation (S11.22) is defined as:
Q* = Rs(l - a) + (Ril - Rol) (81125)

where R, is the total daily incoming shortwave radiation (MJ m? day™), « is albedo for water
(= 0.08), R;; is the incoming longwave radiation (MJ m™ day™), and R, is the outgoing
longwave radiation (MJ m™ day™).
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Ry = (cf +(1-¢) (1 — (0.261 exp(~7.77 x 10‘4T6§)))> o (T, + 273.15)* (S11.26)

where Cy is the fraction of cloud cover, T, is the mean daily air temperature (°C), and o is the
Stefan-Boltzmann constant (MJ m? K™ day™).

R, = 0.97 (T, + 273.15)* (S11.27)

where T, is the water temperature (°C) which will vary for each time-step and must be
estimated before Equation (S11.22) can be applied.

Because the heat storage in a water body affects surface water temperatures and,
therefore, evaporation, it is necessary to predict heat storage changes over time which depend
on the equilibrium temperature (T,), the time constant for the storage (t), as well as the water
temperature (T,,). Equilibrium temperature is the surface temperature at which the net rate of
heat exchange is zero (see Section 2.1.4). Again, following McJannet et al. (2008b, Equation
23), we estimate water temperature, based on de Bruin (1982, Equation 10), from the
following equation:

Ty =Te + (Tyo — T)exp (—3) (S11.28)

where T,,, is the water temperature (°C) in the previous time-step, T, is the equilibrium
temperature (°C), and  is the time constant (day).

Following McJannet et al. (2008b, Equation 5), the time constant (z) in days is given by
(de Bruin, 1982, Equation 4):

Pu Py (S11.29)

T= 40(Typ+273.15)3+ fF (W) (Awp+Y)

where p,, is the density of water (kg m™), c,, is the specific heat of water (MJ kg™* K™, h,, is
the water depth (m), 4,,, is the slope of the saturation water vapour curve (kPa °C™)
estimated at wet-bulb temperature (T;,) (°C). The water depth h,, could be a time-series if
required (see Equation (S11.9).

The equilibrium temperature is estimated from (de Bruin, 1982, Equation 3):

_ Qwb
Te =Twp + 40 (Typ+273.15)3+F (W) (Awp +Y) (S11.30)

where @, is the net radiation at wet-bulb temperature and is estimated by:
Qup = Rs(1 — ) + (R; — RYP (S11.31)

and where R? is the outgoing longwave radiation (MJ m? day™) at wet-bulb temperature
and is estimated as follows:

R¥D = 6(T, + 273.15)* + 40(T, + 273.15)3(T,p — T) (S11.32)

The change in heat storage, G,,, is calculated from (McJannet et al. (2008b, Equation
31):

Gw = pWCWh'W(TW - TwO) (81133)

Thus, for the time-step in question, T,, and G,, are now known and E,.; in Equation
(S11.22) can be computed.

The McJannet et al. (2008b) model operates at a daily time-step.
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Based on the above approach, McJannet et al. (2008b) applied gridded climate data to
estimate average daily (and monthly) evaporation for a range of water bodies from an
irrigation canal to five large lakes. Overall, the modelled estimates are within 10% of the
independent evaporation estimates (McJannet et al., 2008b, Section 5.7), however, the
correlation coefficient between monthly modelled and observed evaporation values is very
low for two of the lake studies.

A worked example is provided in Section S19.

The differences between Finch (2001) and McJannet et al. (2008b) procedures to
estimate lake evaporation are:

Finch (2001) McJannet et al. (2008b)
Adopted Penman (1948) equation Adopted Penman-Monteith equation
Wind function depends on wind speed Wind function depends on wind speed and lake
area
Adjusted water level for daily rainfall and | No adjustment of water level for rainfall or
daily evaporation loss evaporation
Tested on one 10 m lake in UK Tested on three shallows lakes, a weir, an

irrigation channel and two deep reservoirs

Lake evaporation by lake-specific vertical temperature profiles

Sometimes for a lake, monthly or seasonal vertical water temperature profiles are
available that can be used to estimate the vertical water body heat flux (G, in Equations
(S11.1) and (11.22)). Fennessey (2000) provides an example for a shallow lake in
Massachusetts, U.S as follows:

G,, is defined more precisely as a function of time
dH(t)
Gw(t) =

dt
where H(t) is the total heat energy content of the lake per unit area of the lake surface at time
t (MJ m™) and is computed by:

H(t) _ Pwlw om [Tw(zi+1)+Tw(zi)] Vi (81135)

Toa “i=t 2

(S11.34)

where the lake is segregated into m horizontal layers, each layer being (z;;1 — z;) thick (m) ,
p. is the density of water (kg m™), c,, is the specific heat of water (MJ kg™ K™), 4; is the
surface area of the lake (m?), T,, (z;) and T,, (z;.) are respectively the water temperature at z;
and z;,,, and V; is the volume (m®) of each layer defined by:

v, = (Ai+1+Ail(Zi+1_Zi) (S11.36)

Thus, G, (t) can be incorporated in the Penman based equation of Finch (2001)
(Equation S11.1) or in the Penman-Monteith based equation of McJannet et al. (2008b)
(Equation S11.22).
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Section S12 Estimating evaporation from lakes covered by vegetation

Brezny et al. (1973, Table 1) measured the evaporation rate of cattail, Typha augustfolia
L., in 0.36 m? tanks in Rajashan, India. Over approximately 75 days, they found that the
evaporation from tanks with plants was 52% more than the evaporation from tanks without
plants. In contrast, based on a comparison of measured evaporation from Barren Box Swamp
(a lake covered with cattail, Typha orientalis PRESL., in NSW, Australia) compared with a
lake devoid of vegetation, Linacre et al. (1970, Table 1V) observed over three days 34% less
evaporation from the swamp compared to a nearby lake without vegetation. Linacre et al.
(1970, page 385) attributed the lower observed evaporation from swamp compared with the
lake evaporation to lower albedo of the clear water in the lake, to the shelter provided by the
reeds in the swamp, and to the internal resistance to water movement of the reeds. These
contrasting results illustrate the difficulty in assessing the impact of vegetation on evaporation
from lakes.

There is an extensive body of literature addressing the question of evaporation from
lakes covered by vegetation. Abtew and Obeysekera (1995) summarise the results of 19
experiments which, overall, show that the transpiration of macrophytes is greater than open
surface water. However, most experiments were not carried out in situ. On the other hand,
Mohamed et al. (2008) lists the results of 11 in situ studies (estimating evaporation by eddy
correlation or Bowen Ratio procedures) in which wetland evaporation is overall less than
open surface water.

Based on theoretical considerations and a literature survey, ldso (1981) offered the
following observations. Firstly, reliable experiments assessing the relative rates of
evaporation from vegetated water bodies and open surface water must be conducted in situ
(Idso (1981, page 46). Secondly, for extensive water bodies covered by vegetation,
evaporation will most likely be lower than the open surface water estimate (Idso (1981, page
47). It is noted that Anderson and ldso (1987, page 1041) concluded that canopy surface
geometry is important in the evaporative process and, therefore, for small or narrow canopies
(e.g., macrophytes along stream reaches where advective energy is significant), evaporative
water losses greater than open water can occur.

Drexler et al. (2004, page 2072) in a review of models and methods to estimate wetland
evapotranspiration offered the following comments.

1. For many wetland types, the physical processes are poorly characterised.

2. Generalisation is difficult because of variable nature of the results, even within
well-studied vegetation types.

3. The wetland environment is very varied, making it particularly difficult to measure
ET.

4. Seasonal variation of ET is also an important consideration.

A number of models — Penman (Section S4), Penman-Monteith (Section S5), the
Shuttleworth-Wallace variation of Penman-Monteith (Section S5), and Priestley-Taylor
(Section 2.1.3) — have been used in several studies (Wessel and Rouse, 1994; Abtew and
Obeysekera, 1995; Souch et al. 1998; Bidlake, 2000; Lott and Hunt, 2001; Jacobs et al., 2002;
Drexler et al., 2004) to estimate the rate of evaporation from a lake covered by vegetation.
Table S7 summarises seven comparisons and suggests that the weighted Penman-Monteith
method which is able to account for variations of r, and r; for different vegetation surface
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performs satisfactorily. For this model, and based on one experiment, the mean model
estimate of lake evaporation compared to a mean measured value was 1.10.

Readers are referred to a very recent review by Clulow et al (2012) in which they
discuss, inter alia, under what conditions Penman, Priestley-Taylor and Penman-Monteith
models can be used to estimate actual evaporation from a lake covered by vegetation.
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Section S13 Estimating potential evaporation in rainfall-runoff
modelling

Several procedures including Penman-Monteith, Priestley-Taylor and Morton have
been used in daily and monthly rainfall-runoff modelling at a daily or monthly time-step to
estimate potential evaporation/evapotranspiration. In the Penman-Monteith model the
aerodynamic and surface roughness coefficients (r, and r, respectively) need to be specified
in Equation (5). Some typical values of r, and r; are listed in Table S2. In a sensitivity
analysis in which the Penman-Monteith equation was incorporated into the SHE model
(Abbott et al., 19864, b), Beven (1979, page 176 and Figure 5) adopted constant values of 7,
=46 s m'1 for grass and 4 s m-1 for pine forest. However, values varied from mid-day (r, =
50 s m-1 for grass and 100 s m-1 for pine forest) to mid-night ( r, = 200 s m-1 for grass and
400 s m-L for pine forest). Beven concluded that the evapotranspiration estimates were very
dependent on the values of the aerodynamic and canopy resistance parameters.

In using the Priestley-Taylor algorithm (Equation (6)) for estimating catchment
potential evapotranspiration, the parameter apr needs to be specified. Zhang et al (2001,
Equation 4) adopted 1.28 and Raupach et al. (2001, page 1152) recommended 1.26. It should
be noted that the ap; ‘constant’ is commonly set to 1.26 although optimised values vary
greatly depending on the moisture and advective conditions in which the measurements are
made (see Table S8). This is not surprising as the Priestley-Taylor algorithm was developed
assuming non-advective conditions and without recourse to measurement of the aerodynamic
component.

One of the advantages of Morton’s (1983a) CRAE method to estimate potential
evapotranspiration is that it does not require wind data as input and, therefore, has been used
extensively in Australia to estimate historical monthly potential evapotranspiration in rainfall-
runoff modelling (Chiew and Jayasuria, 1990; Chiew and McMahon, 1993; Chiew et al.,
1993; Jones et al., 1993; Siriwardena et al., 2006). In many water engineering applications,
analysis depends on measured or estimated monthly runoff and potential evaporation over an
extended period, often more than 100 years.

There are at least two options available to analysts to estimate Morton’s ETy ., in
Australia. One approach is to use the mean monthly areal potential values (equivalent to wet
environment areal evapotranspiration using Morton’s nomenclature) produced jointly by the
CRC for Catchment Hydrology and the Bureau of Meteorology in 2001 (see
http://www.bom.gov.au/climate/averages and Wang et al. (2001) with detailed methodology
described in Chiew et al. (2002)). For daily modelling, the mean monthly values can be
disaggregated into equal daily values. A major disadvantage with this approach is that there is
no variation in potential evapotranspiration from year to year. However, Chapman (2003,
Section 5) applied four rainfall-runoff models to 15 catchments in Australia and concluded
that, in terms of modelling daily streamflow, equally good results could be obtained by using
average monthly potential evapotranspiration data in the place of daily potential
evapotranspiration values. Rather than adopting average monthly values, Oudin et al. (2005)
used average daily values in an application of four rainfall-runoff models to 308 catchments
in Australia, France and the United States. They concluded that the average daily potential
evaporation values resulted in modelled runoffs that were little different to those produced
using daily varying potential evaporation (Oudin et al., 2005, Tables 3 and 4).
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The second option is to estimate Morton’s wet environmental evapotranspiration from
climate data using Equation (18). Chiew and Jayasuria (1990) reviewed Morton’s wet
environmental evapotranspiration and compared, for three locations in south-eastern
Australia, daily estimates of Morton’s wet environmental evapotranspiration with Penman’s
free-water evaporation. They concluded that (i) Morton’s model can estimate successfully
daily global and net radiation (Chiew and Jayasuria, 1990, page 293); (ii) Morton’s wet
environment evaporation can be used to represent potential evapotranspiration in rainfall-
runoff modelling (Chiew and Jayasuria, 1990, page 293); (It should be noted that this
assessment was based on Penman rather than the more appropriate Penman-Monteith model.)
(iii) Morton’s ETy,.; cannot estimate low potential evapotranspiration values accurately and
underestimates high values (Chiew and Jayasuria, 1990, page 291).

Based on data for 19 climate stations in Australia from 1970 to 1989, Chapman (2001)
demonstrated that overall pan evaporation data are a better estimate of potential
evapotranspiration than maximum air temperature. Furthermore, he developed the following
simple relationship (applicable only to Australia) that could be used if no other data were
available to estimate potential evaporation for catchment modelling purposes:

ETeqPM = ApEPan + Bp (8131)

where ET,qpy is the daily equivalent Penman-Monteith potential evaporation (mm day™),
Epgy is the daily Class-A pan evaporation (mm day™), and A, and B, are given by:

A, =0.17 + 0.011Lat (513.2)
Bp — 10(0.66—0.211 Lat) (8133)

where Lat is the latitude of the catchment in degrees South.
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Section S14 Estimating evaporation of intercepted rainfall

It is recognised that interception is variable in space and in time. According to Klaassen
et al. (1998) the interception storage of water in dense forests is an important process and
varies seasonally (Gerrits et al., 2010) and across vegetation types. Crockford and Richardson
(2000) note that because interception is dependent on rainfall and other meteorological
variables it is difficult to make conclusions about interception losses for specific vegetation

types.

Because potential evaporation rates are higher in the hotter months of a year and lower
during colder months, interception is seasonal. Other factors such as rainfall intensity, wind,
and snow also impact interception storage and, hence, interception evaporation (Gerrits et al.,
2010). Gerrits et al. (2010) note that although interception storage can be very variable; for
the beech forest they studied in Luxembourg, its size played a minor role in evaporation.
Stewart (1977) has shown that the evaporation of transpired water is very different to the
evaporation of intercepted water and, hence, it is important that these two components are
considered separately.

Although Herbst et al. (2008) state that the Gash model (Gash, 1979) is the most widely
and successfully used interception model, Gerrits et al. (2010) adopted the Rutter model
(Rutter et al., 1971, 1975) in their analysis. In his model, Gash (1979) incorporated the
Penman-Monteith equation which was found by Herbst et al. (2008) to give estimates of wet
canopy evaporation equivalent to those estimates from the eddy covariance energy balance
approach. In the 1971 Rutter model the authors (Rutter et al., 1971) incorporated the Penman
(1956) equation to estimate potential evaporation.

Teklehaimanot and Jarvis (1991) concluded from their experiments that evaporation
rates from a wet canopy could be satisfactorily modelled by the Penman (1948) equation.
Moreover, they further showed that the actual evaporation from a partially wet canopy could
be modelled by multiplying the Penman evaporation by C,.t/Scan » Where C,.; 1S the amount
of water retained on the canopy (mm) and S, is the storage capacity of the canopy (mm).

An issue of double counting can arise when evaporation of rainfall interception from
the canopy is estimated independently from transpiration. The impact of double counting
according to Gash and Stewart (1975) can be an over-estimation of interception evaporation
by about 7% (see also Miralles et al., 2011).

Readers are referred to a recent and comprehensive review by Muzylo et al. (2009),
who addressed the theoretical basis of 15 interception models including their evaporation
components, who identified inadequacies and research questions, and who noted there were
few comparative studies and little information about uncertainty in measured and modelled
parameters.

Modelling evapotranspiration-interception in an urban area

Grimmond and Oke (1991) developed a hydrologic model of an urban area at an hourly
time-step to estimate evaporation over a range of meteorological conditions. The model
includes the Penman (1948) equation modified by Monteith (1965) for vegetation surface and
the Rutter et al. (1971) interception model modified by Shuttleworth (1978) to provide a
smooth transition between wet and dry vegetation canopies. In addition, anthropogenic heat
flux and stored heat flux were also modelled. The model was tested for a small urban area in
Vancouver, Canada and according to the authors the model showed promise.



67



68

Supplementary Material

Section S15 Estimating bare soil evaporation

Following Philip (1957), Ritchie (1972, page 1205) proposed a two-stage model to
estimate bare soil evaporation. Salvucci (1997) developed further the Ritchie approach
defining the evaporation loss for stage-1 by:

Estage1 = EPenmanth (S15.1)

where Egq4¢1 is the cumulative stage-1 bare soil evaporation (mm) which, according to
Allen et al. (1998, page 145), should not exceed the readily evaporable water (REW) which
they define as the maximum depth of water that can be evaporated from the top-soil without
restriction. Typical REW values are: sand 2 — 7 mm, loam 8 — 10 mm and clay 8 — 12 mm. t;
is the length of the stage-1 atmosphere-controlled evaporation period (day) which is defined
as:

t, = X (S15.2)
Epenman

Epenman is the daily average stage-1 actual evaporation (mm day™) and is assumed to be at or

near the rate of Penman evaporation. McVicar et al. (2012, page 183) prefers to use the term

energy-limited rather than stage-1. Alternatively, a more rigorous procedure to estimate t, is

recommended by Dingman (1992, page 293) who suggests the end of stage-1 is readily

observed from ground or satellite observations of albedo.

Discussing evaporation from bare soil, Monteith (1981, pages 10 and 11) observes that
“When bare soil is thoroughly wetted, the soil surface behaves like water in so far as the
relative humidity of the air in contact with the surface is 100%”. Monteith (1981, page 11)
further adds that as a matter of observation the rate of evaporation “...is usually very close to
the rate for adjacent short vegetation, despite differences in radiative and aerodynamic
properties”.

Stage-2 evaporation (the water-limited stage, McVicar et al. (2012, page 183)), is
dependent on stage-1 and two limiting cases need to be considered.

1. Where the unsaturated hydraulic conductivity (mm day™), Ky << Epenman. This would
occur with relatively low permeability soils.

2. Where K, >> Ep.nman and, therefore, the cumulative drainage is much greater than the
cumulative actual evaporation.

Salvucci (1997, Equations 18 and 19 respectively) developed the following empirical
equations for the two cases:

For Kus << EPenman

£170-5
Epsont(t) = Estage 1 |—0.621 + 1.621 (£)| £ 2t (515.3)

1

For Kus >> EPenman
Epsour(8) = Estage 1 |1 +0.811n ()], t 26, (515.4)

where Ej,;; (t) is the cumulative bare soil evaporation up to time t.

As a check on the total evaporable water (TEW), typical values for a range of soils are
provided by Allen et al. (1998, Table 19). For example, sand = 6 — 12 mm, loam = 16 — 22
mm and clay = 22 — 29 mm. TEW is defined by Allen et al. (1998, Equation 73) as:
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where 6 is the soil moisture content (%) at field capacity, 6,,p is the soil moisture content
(%) at wilting point, z, is the depth of the surface soil layer that is subject to drying from
evaporation. If this is unknown, Allen et al. (1998, page 144) recommend z, = 0.10 — 0.15 m.

It is interesting to note that Penman (1948, page 137) observed from his experiments
that freshly wetted bare soil evaporated at about 90% of the rate observed for open surface
water for the same weather conditions.

Based on FAO56 methodology (Allen et al., 1998), Allen et al. (2005) developed a two-
stage strategy (energy limited and water limited stages) to estimate bare soil evaporation.
Mutziger et al (2005) applied the methodology to seven data sets and concluded that model
accuracy was about +15%.
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Section S16 Class-A pan evaporation equations and pan coefficients

Although some researchers, e.g., Watts and Hancock (1984, page 295), are critical of an
evaporative pan as a reliable climatic instrument (they list 10 potential problems), it should be
noted that Roderick et al. (2009b, Section 4) comment “...that the pan evaporation record
provides the only direct measurement of changing evaporative demand...” which is crucial in
climate change studies. In Australia, 60 stations have been identified as high quality Class-A
pan evaporation stations (Jovanovic et al., 2008).

Equations: Kohler et al. (1955)

Kohler et al. (1955) (see Dingman (1992, Equation 7.41)) developed the following
empirical equations to estimate daily open-water evaporation, E¢,, (mm day-1) from Class-A
pan evaporation data:

Epyy = 0.7[Epan + 0.064papan (0.37 + 0.00255upgn) | Tpan — Tal“88] for Tpay > T,
(S16.1)

Efy = 0.7[Epgn — 0.064p@pan (0.37 + 0.00255Upap) | Tpan — Tal“88] for Tpgp < T,
(516.2)

where Ep,,, is the daily evaporation measured by an unguarded Class-A pan (mm day-1), p is
the atmospheric pressure (kPa), ap,, 1S the proportion of energy exchanged through the sides
of the pan and is specified in Equation (S16.3), up,, is the average daily wind speed at a
height of 150 mm above the pan (km day™), and Tyan and T, are respectively the mean daily

pan water and air temperature (°C).
Apgn = 0.34 + 0.0117Tpgy, — 3.5x1077 (Tpgy + 17.8)3 + 0.00135u33° (516.3)

Wind run for anemometers not at 150 mm above the pan should be adjusted using Equation
(S4.4). Based on an intercontinental comparison, Burman (1976) concluded that the Kohler et
al. (1955) equations were superior to empirical methods proposed by Christiansen (1968) and
Oliver (1961) which are not included here.

Equations: Chiew & McMahon (1992)

Chiew and McMahon (1992, Appendix) developed daily, 3-day, weekly and monthly
pan coefficients as simple linear regressions of the form:

EPen,j = I] + GjEPan,j (8164)

where for month j, Ep.,; is the Penman (1948) estimate of evaporation for a land
environment rather than open water, Epg,, ; is the evaporation from a Class-A pan, and I; and
G; are respectively the intercepts and the gradients of daily, 3-day, weekly and monthly totals.
Values of I; and G; for 26 climate stations in Australia are given in Chiew and McMahon
(1992).

Equations: Allen et al (1998)

Equations for estimating Reference Crop evapotranspiration, Eg-, are presented by
Allen et al. (1998, page 55, Table 7) taking into account the site of the pan in terms of the
upwind fetch as follows:

ETgrc = KpanEpan (816-5)
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where Kp,, 1S the pan coefficient given by:
for a green vegetated fetch (1 to 2000 m) within a dry area at least 50 m wide

Kpgn = 0.108 — 0.0286u, + 0.0422in(FET) + 0.1434In(RHpmeqn)
— 0.000631[In(FET)>In(RH ppqn)

(S16.6)
for a dry fetch (1 to 1000 m) within a green vegetated area at least 50 m wide

Kpgn = 0.61 + 0.00341RH, 50y — 0.0001621yRH,pqn — 0.00000050w, FET
+ 0.00327u,In(FET) — 0.00289u,n(86.4u,)
— 0.0106{n(86.4u,)In(FET) + 0'00063[In(FET)]?In(86.4u,)

(S16.7)

where FET is the fetch or length of the identified surface (m), u, is the daily wind speed at 2
m height, and RH,,.4, IS the mean daily relative humidity (%). According to Allen et al.
(1998, Table 7), Equations (S16.6) and (S16.7) should not be used outside the following

ranges 1 m < FET <1000 m, 30% < RH,oqn < 84%, and 1 ms-1 <u, <8 ms,

A range of pan coefficients based on Equations (S16.6) and (S16.7) are displayed in
Table S9 which illustrates the importance of appropriately specifying the microclimate

around a pan in order to have a representative estimate of Reference Crop evapotranspiration.

Because Ep,y, = ? we are able to use the table to explore how the evaporating power (in
P

this case being represented by pan evaporation Ep,,) is affected quantitatively by the
characteristics of a site. For example, the pan evaporation under a light wind, low humidity
and a green vegetated fetch will be reduced by ~14% for a 10 m fetch compared with a 1000
m one; for a dry fetch under the same conditions, the pan evaporation will increase by ~20%.

Equations: Snyder et al. (2005)

Based on pan data in California, Snyder et al. (2005, Equations 6, 8 and 9) proposed the
following set of empirical equations to estimate reference crop evaporation.

ETgc = 10sin | (-22)7] (516.8)
Epa = EpanFioo (516.9)
Fi00 = —0.0035[In(F)]? + 0.0622[In(F)] + 0.79 (S16.10)

where ETy. is the reference crop evapotranspiration (mm day™), Epan is the Class-A pan
evaporation (unscreened) (mm day™) and F is the upwind grass fetch (m). The method is
suitable for semi-arid conditions but would require calibration for humid or windier climates
(Snyder et al., 2005, page 252).

Ghare et al. (2006) introduced modifications to the Snyder equations but field testing in
Italy and Serbia by Trajkovic and Kolakovic (2010) showed that the original Snyder model
performed better.

Computed monthly and annual Class-A pan coefficients

Although it is not possible to check independently that pan coefficients are correct, one
can compare computed values with those found in the literature. Published results of
estimating the pan coefficients for the two Penman wind functions (Equations S4.5 and S4.6)
are presented in Table S10 along with pan coefficients for Reference Crop evapotranspiration
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and the Priestley-Taylor potential evaporation. The exceptionally low pan coefficients for
Priestley-Taylor are based on 16 climate stations in Jordon. The coefficients are plotted
against mean annual unscreened Class-A pan evaporation in Figure S2 which illustrates, at
least for this arid environment, that adopting a spatially constant pan coefficient may be
unwise. This observation is consistent with McVicar et al. (2007, Figure 10) who observed
for the Coarse Sandy Hill catchments in north-central China both spatial and seasonal
variations in pan coefficients.

Published monthly and annual open-water pan coefficients are often extrapolated to
other locations. Care needs to be taken as several local factors will impact pan coefficients
including relative humidity (Alvarez et al., 2007; Hoy and Stephens, 1979; Kohler et al.,
1955), reservoir dimensions (Alvarez et al., 2007), degree of stratification (Hoy and Stephens,
1979), presence of aquatic plants (Winter, 1981), and lake turbidity and salinity (Grayson et
al., 1996). Locally calibrated coefficients are preferred.

Australian pan coefficients

In Australia, in order to prevent the consumption of water by birds and animals, bird
guards (wire screens) were installed progressively on the Class-A evaporation pans during the
late 1960s and early 1970s, and by 1975 most pans were operating with screens which reduce
the evaporation. van Dijk (1985) compared the evaporation recorded from evaporation pans
with and without bird guards at four Australian locations between 1967 to 1971. The average
monthly effect at the four locations ranged from 4.1% to 8.2% reduction in measured
evaporation, with an average of 6.6%. These reductions are less than the values of 13% for
humid areas and 10% for semi-arid regions noted in a review by Lincare (1994). Based on
the findings of van Dijk (1985), the Australian Bureau of Meteorology (2007) recommends
an annual conversion factor of +7%. Jovanovic et al. (2008) have developed a high-quality
monthly pan evaporation data set that includes 60 locations across Australia covering the
period from about 1970 to present for monitoring evaporation trends.

In Australia, the associated climate data required to estimate open-water evaporation
(Efw) (mm/unit time) using Equation (S16.1) or (S16.2) are not available at many pan
evaporation sites and, as a consequence, monthly (or annual) pan coefficients are developed
using:

EfW,j = I<jEPan,j (81611)

where j is the specific month and K; is the average monthly pan coefficient. Traditionally, K;
is assumed constant, although Linacre (1994, Figure 1) using Stanhill’s (1976) data for 12
sites world-wide found that for very high evaporation rates K; decreased from the nominal 0.7
value.

Hoy and Stephens (1977; 1979) calculated the monthly pan coefficients of seven
Australian reservoirs by comparing the evaporation of a Class-A pan with the heat budget
method over several years. The average monthly pan estimates are listed in Table S11.
Annual pan coefficients were estimated for a greater number of Australian reservoirs by Hoy
and Stephens (1977; 1979) and these results are listed in Table S12.

We have computed monthly pan coefficients for 68 sites across Australia by correlating
monthly evaporation values from Class-A evaporation pans with corresponding Penman
evaporation estimates using his 1956 wind function, based on measured daily climate data at
the same or a nearby location, thus yielding open-water evaporation. Thirty-nine of the 68
sites are part of the high quality evaporation pan network (Jovanovic et al., 2008, Table 1);
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another 29 stations with monthly pan coefficients have been included in the analysis for
spatial completeness. Pan coefficients are presented in Table S6. At least 10 monthly values
are used in calculating 79.4% of the computed monthly pan coefficients. The analysis of the
results in the table shows that mean monthly pan coefficients (weighted for length of record)
across the 68 Australian stations is 0.80. This average value compares with 0.76 (based on
published data in Table S10 for Penman (1956) and Penman (1948) the latter adjusted by
Equation (S4.8) to be equivalent to Penman (1956)). It should be noted that in computing the
monthly solar radiation term in the Penman model, the coefficients a; and by in Equation
(S3.9) were optimised to 0.05 and 0.65 respectively (Section S6).

For many practical problems, annual evaporation estimates need to be disaggregated
into monthly values or monthly evaporation values into daily values. This process is not
straightforward, when there is no concurrent at-site climate data which could be used to
provide guidance as to how the annual or monthly values should be partitioned.

For annual evaporation, a standard approach is to use monthly pan coefficients if
available. Another approach, that is available to Australian analysts, is to apply the average
monthly values of point potential evapotranspiration for the given location and pro rata the
values to sum to the annual evaporation. Maps for each calendar month are available in Wang
et al. (2001). This approach is based on the recent analysis by Kirono et al. (2009, Figure 3)
who found that, for 28 locations around Australia, Morton’s potential evapotranspiration
ETp,: correlated satisfactorily (R2 = 0.81) with monthly Class-A pan evaporation although
over-estimating pan evaporation by 8%.

For monthly disaggregation to daily data in Australia one could utilize the analysis of
Rayner (2005) who reports on synthetic gridded daily Class-A pan evaporation data based on
solar radiation and vapour pressure deficit (Jeffrey et al., 2001). The grids are at a spatial
resolution of 0.05°(~5 km) and cover the period 1919 to present. McVicar et al. (2007, page
211) note, however, that if pan coefficients are spatially averaged across a range of climates
the averaged value will tend to be damped.

Modifying pan data for estimating evaporation from a deep lake

To estimate deep lake evaporation from pan data, Webb (1966, Equation 3) proposed an
alternative approach based on vapour pressure to estimate monthly lake evaporation by
summing daily values as follows:

E q= 1.50%57'1,% (S16.12)
where E; 4 is the daily estimate of lake evaporation (mm day™), E'pan is the daily pan
evaporation (mm day™), v; is the afternoon average lake saturation vapour pressure (mbar),
vp is the afternoon maximum pan saturation vapour pressure (mbar), and v, is the afternoon
average vapour pressure 4 m above the ground surface (mbar). The monthly evaporation
value is the sum of the daily values. The empirical coefficient of 1.50 was established from
Lake Hefner data.
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Section S17 Comparing published evaporation estimates

A detailed review of the literature identified 27 papers in which comparisons were
made between model estimates of potential or actual evaporation or evapotranspiration and
field measurements (water balance studies, Bowen Ratio or eddy correlation), lysimeter
observation or comparisons between evaporation equations. Detailed discussion of field
measurements of evaporation are outside the scope of this paper. We refer readers to Harbeck
(1958), Grant (1975), Myrup et al. (1979), Brutsaert (1982), Dingman (1992, Sections 7.8.2
and 7.8.3), Lenters et al. (2005), and Ali et al. (2008) for applications of the techniques.
Details for each of the 27 studies are listed Table 5. For each study two items of information
are generally provided in the table — the ratio of the average model values (daily, monthly or
annual) to a base value, and a measure of error generally as a root mean square error or
standard error of estimate. For four studies, multiple sets of results are available.

The bias results (ratios in Table 5) are consolidated in Table 6 under six headings.
Under the first two headings each model result is compared with measured observations. For
the six lake studies a water balance, eddy correlation or Bowen Ratio estimate were the basis
of the comparison. For the seven non-lake studies, the base estimates were from eddy
correlation or Bowen Ratio experiments. The third comparison of four studies is based on
lysimeter observations. The remaining three sets of comparisons are between various models
and Penman-Monteith, Priestley-Taylor or Hargreaves-Samani estimates. The results are
summarised in Figure 3 where each model ratio value includes at least two studies.

In interpreting these results, readers should note the comment of Winter and Rosenberry
(1995, page 983) who stated that “Regardless of their intended use, it is hot uncommon for
equations developed for determination of potential evapotranspiration from vegetation to be
used for determination of evaporation from open water”.

The information in Figure 3 requires some interpretation. Firstly, the ratios in column
(1) “Lakes”, column (2) “Lysimeter” and column (3) “Land” may be regarded as absolute
estimates in the sense that the modelled estimates are compared against measured
evaporation. Secondly, ratios in columns (4) “Relative to PM” and (5) “Relative to PT” are
relative to Penman-Monteith and Priestley-Taylor set to a ratio value of 1.00. Thirdly, the
values in columns (1) and (2) are for open-water (“Lakes”) or “Lysimeter” measurements, in
which water is not limiting in either comparison. On the other hand, values in column (3) will
have been influenced by the availability of soil moisture to the plants and by the vegetation
type and, therefore, will not be evaporating or transpiring at a potential rate. This would
explain why Turc (Tu) and the Priestley-Taylor (PT) values differ markedly between columns
(2) and (3).

Table 5 also contains error information mainly as a root mean square error (RMSE) or
as a standard error of estimate (SEE). We have summarised the relevant results in Table 7
which lists the root mean square error (mm day™) or the standard error of estimate (mm day’
). Because the values of RMSE or SEE were available for Priestley-Taylor in all
comparisons, relative errors (as the ratio of RMSE or SEE for the particular model to that for
PT) have been computed. These results are summarised as the median for each method. As a
guide, the median RMSE for the six Priestley-Taylor analyses is 0.97 mm day™ and 0.66 mm
day™ for the eight SEE values.
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Section S18 Comparing evaporation estimates based on measured
climate data for six Australian automatic weather stations

Table S13 shows the results of estimating annual evaporation for 14 daily and monthly
evaporation/evapotranspiration models based separately on daily and monthly climate data
recorded at six widely distributed Australian automatic weather stations over the period
January 1979 to March 2010. The latitude and longitude of each station are listed in the table
along with the mean annual rainfall estimated for the concurrent period used in the
computation of evaporation estimates. Annual values are the sum of 12 monthly means. The
number of days and complete months of data available at each station is as follows: Perth
Airport (6238 days, 192 months), Darwin Airport (11307 days, 334 months), Alice Springs
Airport (11288 days, 320 months), Brisbane Airport (3674 days, 111 months), Melbourne
Airport (3842 days, 116 months), and Grove (Companion) (9622 days, 241 months). The
authors advise that care needs to be exercised in extending more widely any conclusions
arising from this analysis of only six stations.

The results in the table are listed under four main groups: those that estimate actual
open-water evaporation (i) Penman 1956 (P56), Priestley-Taylor (PT), Makkink (Ma); (ii)
those that estimate reference crop evaporation — FAO-56 Reference Crop (FAO-56 RC),
Blaney-Criddle (BC), Hargreaves-Samani (HS), modified Hargreaves (mod H), Turc (Tu);
(iii) models that estimate actual evapotranspiration — Morton (Mo), Brutsaert-Stricker (BS),
Granger-Gray (GG), Szilagyi-Jozsa SJ); and (iv) three additional methods that include
Thornthwaite’s monthly potential estimates (Th), PenPan modelled estimates of actual Class-
A pan evaporation (PP), and actual evaporation measured by a Class-A evaporation pan. In
interpreting these results readers should note that we have applied each method as set out in
the relevant reference except we adopted a time-step of both one day and one month. For
some models the recommended time-step for analysis is longer than one day. This
information is provided where the model is discussed in the paper.

For the daily data in each group, the ratio of the annual evaporation to the value for a
key method is calculated and listed as the “Daily ratio”. Also for each station, the ratio of
annual estimates based on monthly and daily data (M to D ratio) are compared. Several
observations follow:

1.  Relative to the key procedure in each group, the evaporation estimates in Table S13 are
reasonably consistent, excepted for Blaney-Criddle, across the six sites which have very
different climates. As noted in Section S9 the Blaney-Criddle procedure was developed
for application in the dry western United States and, therefore, may not perform
successfully in regions subject to a different climate (like Melbourne or Grove) where
the procedure appears to perform inadequately. See also item 9 below.

2. On averaging the daily ratios for the open water group, the actual evaporation estimates
for Priestley-Taylor and Makkink are 0.88x and 0.59x the Penman 1956 estimate. This
is consistent with our summary of published data presented in Table 6 and Figure 3.

3. For the reference crop group, Hargreaves-Samani and Turc are 1.10x and 0.90x the
FAO-56 Reference Crop average, again consistent with the lysimeter data listed in
Table 6 and Figure 3.

4.  The PenPan estimates for the six stations are consistent with the values plotted in
Figure S3 which are based on 68 Australian stations.

5. The results in Table S13 show that for Penman 1956, Priestley-Taylor, Makkink, FAO-
56 Reference Crop, Turc, Granger-Gray and PenPan there is less than ~2% difference in
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annual evaporation estimates using a daily or a monthly time-step. However, for
Szilagyi-Jozsa and Brutsaert-Stricker, the monthly values are respectively 7% and 10%
higher than the daily values whereas for Hargreaves-Samani and Blaney-Criddle the
monthly values are 14% and 22% lower than the daily estimates.

In the analysis we observed that Brusaert-Stricker and Szilagyi-Jozsa generated
negative daily evapotranspiration (12.7% and 15.9% of days respectively). This
inadequacy was noted by Brutsaert and Stricker (1979, page 448) in the analysis of their
model results. In our analysis the negative evaporations occurred mainly in winter (May
through to August).

It was also observed that for Grove using Szilagyi-Jozsa model, unrealistically high
equilibrium temperatures (say > 100°C) were computed for 2.8% of days. These
unrealistic temperatures appeared to occur mainly on days when the difference between
maximum and minimum humidity is around zero.

On average, mean annual actual evaporation estimates at a site should be less than mean
annual rainfall at the site. Brusaert-Stricker, Granger-Gray and Szilagyi-Jozsa meet this
criterion for three, two and two of the six sites respectively. On the other hand, except
Brisbane Morton’s estimates were less than the mean annual rainfalls.

Blaney and Criddle also generated many negative daily evapotranspiration estimates,
even for Alice Springs which climate-wise is semi-arid and not too dissimilar to the dry
western United States.
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Supplementary Material

Section S19 Worked examples

This set of worked examples is based on data from the Automatic Weather Station
015590 Alice Springs Airport (Australia). The daily data and other relevant information for
the worked examples are for the 20 July 1980 as follows:

Station: Alice Springs Airport

Station reference number: 015590

Latitude: 23.7951 °S

Elevation: 546 m

Maximum daily air temperature: 21.0 °C

Minimum daily air temperature: 2.0 °C

Maximum relative humidity: 71%

Minimum relative humidity: 25%

Daily sunshine hours: 10.7 hours

Wind run at 2 m height: 51 km day™ (=51x1000/(24x60x60) = 0.5903 m s%)

General constants used in worked examples:

Solar constant (Gs.) = 0.0820 MJ m-2 min™
Stefan-Boltzmann (o) = 4.903x10™° MJ m-2 day-1 °K-4
von Karman constant (k) = 0.41

Latent heat of vaporization (1) = 2.45 MJ kg™

Mean density of air (p,) = 1.20 kg m-3 at 20°C
Specific heat of air (c,) = 0.001013 MJ kg™* K*

Mean density of water (p,,) = 997.9 kg m-3 at 20°C
Specific heat of water (c,,) =0.00419 MJ kg™* K*

Specific constants used in worked examples:

Albedo for water = 0.08 (adopted from Table S3)

Albedo for reference crop « = 0.23 (adopted from Table S3)
Priestley-Taylor apr = 1.26 for PT equation
Priestley-Taylor ap; = 1.28 for BS equation

Worked example 1: Intermediate calculations for daily analysis
Estimate the values of the intermediate variables associated with computing daily
evaporation.

Mean daily temperature ( Tppean)

Trnean = W (see Equation (S2.1)) (S19.1)

21.0+2.0
Tnean =

= 11.5°C (S19.2)

Saturation vapour pressure at Tonax (Vrmax)

Vimax = 0.6108exp |22 (see Equation (52.5)) (519.3)
Vimax = 0.6108exp |2t 2| = 2.4870 kPa (519.4)
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Saturation vapour pressure at T,nin (Vrmin)

Vimin = 0.6108exp [%] (see Equation (S2.5)) (S19.5)
Vjmin = 0.6108exp |52 = 07056 kPa (S19.6)

Daily saturation vapour pressure (v)

vy = M (see Equation (S2.6)) (519.7)
17; — 2.4870 ;—0.7056 = 15963 kPa

Mean daily actual vapour pressure (v,)

RHmax RHpmin

b, = ZTmin 100 - Vmax 500" (see Equation (S2.7)) (519.8)

0. 7056—+2 4-870—

Vg = ———190= 05614 kPa (S19.9)

Slope of saturation vapour pressure at T,,eqn ()

17.27Tmean
Trnean+237.3

A = 4098 <0.6108Exp ( ))/(Tmean + 237.3)? (see Equation (52.4))(S19.10)

17.27X11.5
11.5+237.3

A = 4098 (0.6108Exp ( ))/(11.5 +237.3)2=0.0898 kPa°Ct  (S19.11)

Atmospheric pressure

_ 5.26
p=1013 (W) (see Equation (S2.10)) (S19.12)
_ 5.26
p=1013 (w) = 95.01027 kPa (S19.13)
293
Psychrometric constant
y = 0.001632 > (see Equation (S2.9)) (S19.14)
y = 0.00163 2227 = 0.0632 kPa °C! (S19.15)
Day of Year

1980 is a leap year, therefore
DoY =31+ 28+ 31 +30 + 31 +30 + 20 +1 = 202 (see Equations (53.21 to S3.23)) (S19.16)
Inverse relative distance Earth to Sun (d,.)

d? = 1+ 0.033cos (2= DoY ) (see Equation (S3.6)) (519.17)

d? =1+ 0.033cos (ﬁzoz) = 0.9688 (S19.18)
Solar declination (&)

6 =0. 4095Ln( DoY — 1. 39) (see Equation (S3.7)) (S19.19)

§ = 0.409sin (=202 — 1.39) = 0.3557 (519.20)
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Sunset hour angle (w)

ws = arcos[— tan(lat) tan(8)] (see Equation (S3.8)) (519.21)

Latitude (lat) is in radians, hence lat = n_zi;?m =-0.4153 radians (S19.22)
noting the negative value as Alice Springs is in the southern hemisphere.

w; = arcos[—tan(—0.4153) tan(0.3557)] =1.4063 (519.23)

Maximum daylight hours (N)

N = %ws (see Equation (S3.11)) (S19.24)

N =21.4063 =10.7431 hours (S19.24)

Worked example 2: Estimate R,, for daily analysis

Extraterrestrial radiation (R,)
1440

R, = TGscdf [wgsin(lat)sin(6) + cos(lat)cos(6)sin(ws)] (see Equation (S3.5))(S19.26)

where G, is the solar constant
1.4063sin(—0.4153)sin(0.3557)

Rq = =70.082x0.9688 +c0s(—0.4153)cos(0.3557)sin(1.4063) (519.27)

=23.6182 MJ m2 day-1

Clear sky radiation (Ry,)

R, = (0.75 + 2x107°Elev)R, (see Equation (S3.4)) (519.28)

Rsp = (0.75 + 2x1075x546)23.6182 = 17.9716 MJ m-2 day-1 (S19.29)
Incoming solar radiation (Ry)

R, = (as + b, %) R, (see Equation (S3.9)) (S19.30)

Adopting a, = 0.23 and b, = 0.50 (see Section S3) and noting there were 10.7 hours of
sunshine for the day being analysed

10.7
10.7431

Ry =(023+0.5 )23.6182 = 17.1940 MJ m-2 day"L (519.31)

Note: If measured values of solar radiation (R,) were available, the daily analysis would
begin here.

Net longwave radiation (R,,;)

(Trmax+273.2)*+(Tpin+273.2)*

Ry = 0(0.34 — 0.147%5) ( - ) (1.35:—5 - 0.35) (see
Equation (S3.3)) (519.32)

where ¢ is the Stefan-Boltzmann constant

4 4
R, = 4.903x107°(0.34 — 0.14x0.5614%5) ((2“273'2) 22T ) (1 T

0.35 (S19.33)
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R, = 7.1784 MJ m=2 day-1
Net incoming shortwave radiation (R,,;)
R,s = (1 — )R, (see Equation (S3.2)) (519.34)

where « is the albedo for the evaporating surface, which will depend on the evaporating
surface. In the worked examples that follow, water and reference crop surfaces are
considered:

water « = 0.08

Rns = (1 — )Ry = (1 — 0.08)17.1940 = 15.8184 MJ m-2 day-1 (S19.35)
reference crop o =0.23

Rps = (1 — @)Rs = (1 — 0.23)17.1940 = 13.2393 MJ m-2 day-1 (S19.36)
Net radiation (R,,)

R, = R,s — R,; (see Equation (S3.1)) (519.37)

Thus for water R,, = R, — R,,;;= 15.8184 - 7.1784 = 8.6401 MJ m-2 day-! (519.38)
For reference crop R,, = R,,s — R,;= 13.2393 - 7.1784 = 6.0610 MJ m-2 day-1
(S19.39)

Worked example 3: Estimate daily open-water evaporation using Penman
equation

A Ry .
Epenow = 7,534+ ﬁEa (see Equation (S4.1)) (S19.40)
L 0088 (5870 (S19.41)
Ay 0.0898 + 0.0632
Yoo 9008  _ (4130 (S19.42)

A+y ~ 0.0898 + 0.06325

Adopting the Penman 1956 wind function gives:

E, = f(w)(v; — v,) (see Equations (S4.2) and (S4.3)) (519.43)
E, = (1.313 + 1.381x0.5903 )(1.5963 — 0.5614) = 2.2025 mm day (S19.44)
Epenow = 0.5870222%L 4 0.4130x2.2025 = 2.9797 mm day™ (519.45)

2.45

Worked example 4: Estimate daily reference crop evapotranspiration for short
grass using the FAO-56 Reference Crop procedure

900 *
0.408A(Rn—G)+Y 5542 (Va—va)
A+y(1+0.34u5)

ETgcsn = (see Equation (S5.18)) (S19.46)

In this example we assume the soil flux, G, is zero which according to Allen et al.,
(1998, page 54; Shuttleworth, 1992, page 4.10) is a reasonable assumption for daily analysis.

0.408x0.0898 (6.0610—0)+0.0632%0.5903(1.5963 —-0.5614)

0.0898+0.0632(1+0.34x0.5903)

=2.0775 mm day* (S19.48)

ETgesn =

(S19.47)

0.22206+0.10538

ET, =
RCsh 0.16578
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Worked example 5: Estimate daily reference crop evapotranspiration for rye grass
at Alice Springs using the Matt-Shuttleworth model

There are five steps in the procedure which includes Equations (S5.34) — (S5.37). The
first step is to estimate the average height and surface resistance ((r;).) for rye grass, which
from Shuttleworth and Wallace (2009) Table 3, is 0.30 m and 66 s m™ respectively. Next, the
climatological resistance is computed.

Tetim = 86400 229722 (see Equation (S5.34)) (519.49)

1.20x0.001013(1.5963—-0.5614)

T = 86400
clim 0.0898x6.0610

=199.9sm™ (S19.50)

The third step is to estlmate Pso from Equation (S5.35)

VPDsy _ (302(A+y)+70yu, 1 302(A+y)+70yu, 208) (302
VPD, - (208(A+y)+70yu2) + Tclim [(208(A+y)+70yu2) (uz ) (uz )] (819'51)
302(A+y)+70yuz\ _ (302(0.0898+0.0632)+70x0.0632x0.5903 _
where (208(A+y)+70yu2) B (208(0.0898+0.0632)+70x0.0632x0.5903) =1.4177 (519.52)
YPDso — 14177 + —— [1.4177( 208 ) - ( 302 )] =1.3574 (S19.53)
VPD, 199.9 0.5903 0.5903

Next, .20 is estimated from Equation (S5.36)

(2-0.08)

50 _ 1 (50-0.67h,) (50—0.67hc) N~ ois
Tem = (0.41)2l [ (0.123h¢) ] (0.0123hc) w (81954)
0.0148
forh,=0.3m
750 — 1 [(50—0.67X0.3) [(50—0.67X0.3) In %‘0‘123)] — 24425 ml (519.55)
€ 7 (0.41)2 (0.123x0.3) (0.0123x0.3) [(50 0.08) - :

The final step is to calculate ET, from Equation (S5.37)

ARy +

pacpuz(VPD3) s VPDSO)

_ 1 r30 \ VPD,
ETC — 7 A+y(1+(rs)_cuz) (81956)
C
! 0.0898x6.60614 1.20x0. 001013x02549;)§(1 5963—0. 5614), 1.3574) 1
ET. = 66x0.5903 = 1.4847 mm day™ (519.57)

2.45 0.0898+0.0632(1+ L )

Worked example 6: Estimate daily actual evapotranspiration using the Advection-
Aridity (Bruitsaert-Stricker) model

2 Bn_ Y f£(u,)(v; — v,) (see Equation (S8.2)) (519.58)

ETAct (ZaPT 1)A+yl Aty

Note for BS equation, apr = 1.28 for rural catchments, and for this example R,, is based
on an albedo value of 0.23 (Equation (S19.36)). The 1948 Penman wind function is adopted
(Equation S4.11).
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ETAct -
0.0898 6.0610 0.0632
(2x1.28 = 1) o 2o — (2,626 + 1.38140.5903)(1.5963 —
0.5614 (S19.59)
ETES = 2.2651 — 1.4711 = 0.7940 mm day™ (S19.60)

Worked example 7: Estimate daily actual evapotranspiration using the Granger-
Gray model

20g Rn=G, ¥l E, (see Equation (S8.4)) (519.61)

ETSS =
ACt T AGgty 2 AGg+y

For this worked example we set G = 0, and note that Granger and Gray (1989, page 26)
adopted the Penman (1948) wind function. Granger-Gray procedure estimates
evapotranspiration rates for non-saturated lands. To illustrate the procedure, R,, is based on an
albedo value of 0.23 (Equation S19.36)).

E, is estimated from:

E, = f(w)(v; — v,) (see Equation (54.2)) (519.62)

E, = (2.626 + 1.381x0.5903)(1.5963 — 0.5614) = 3.5614 mm day™ (S19.63)

D, = #M (see Equation (S8.6)) (S19.64)
3.5614

D, = —— > =0.5901 (S19.65)

P 356144520
1 .

Gy = 937020059020 T 0.006D,, (see Equation (S8.5)) (519.66)
1

Gy = ——————ssrrzsar + 0.006x0.5901 = 0.2307 (S19.67)

ETACt _ 0.0898x0.2307 6.0610 -0 0.0632x0.2307 35614‘ (81968)

0.0898x0.2307+0.0632 2.45 0.0898x0.2307+0.0632
ETSG = 0.6107 + 0.6188 = 1.2295 mm day* (S19.69)

Worked example 8: Estimate daily actual evapotranspiration using the Szilagyi-
Jozsa model

ETy, = 2EPT(T ) — Epen (see Equation (S8.7)) (519.70)
Mi 1+ y e (see Equation (S8.8)) (519.71)
Pen

For this example procedure R,, is based on an albedo value of 0.23 (Equation S19.34))
and, therefore, Ep,,, Needs to be recomputed incorporating R,, = 6.0610 MJ m-2 day-1 and
Penman’s 1948 wind function resulting in Ep,, = 2.9221 mm day™.

To estimate T, (the equilibrium temperature) from Equation (S19.69), a numerical
solution is required as v, is a function of T,. Equation (S19.69) is rearranged as follows:

A;:n] e — vy (519.72)

1
T, =T, — ” [1 —
noting from Equation (S2.5) that v, = 0.6108exp [ 17-27Te]

To+237.3

(S19.73)
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Using Microsoft Excel Goal Seek, T, = 9.900 °C (for T, = 11.5 °C, R,, = 6.0610 MJ m-2
day-1: Ep,, = 2.923 mm day™, and v} = 1.2197 kPa). Check that T, < T,. If T, > T, set T, =
T,. To compute Ejgt, we need Epr(T,). From Equation (6) and setting G = 0, and A for T, =

9.900 °C is equal to 0.0818, and apr = 1.31 (see penultimate paragraph in Section S8 under
heading Szilagyi-Jozsa model), we obtain;

A Ry
EPT(T(:‘) - apT I:ET] (81974)
o _ 0.0818 6.0610
Epr(9.900°C) = 1.31 [ 28— (S0 = 1 8285 mm day! (519.75)

ES) = 2x1.8285 — 2.923 = 0.7340 mm day™ (519.76)

Worked example 9: Estimate daily Class-A pan evaporation using the PenPan
model

A RNnPan H
Epenpan = Ty Hean Aj’jy Fran (W) (W — v,) (see Equation (S6.1)) (519.77)

where a,, is an empirical constant = 2.4

Prgqa = 1.32 4+ 4 x 10™*lat + 8 x 10~ >lat? (see Equation (S6.6)) (519.78)
Noting ¢ is in absolute value of latitude in degrees
Prog = 1.32 4+ 4 X 107*x23.7951 + 8 x 10~°x(23.7951)2 = 1.3748 (519.79)
fair = —0.11 + 1.31ﬁ (see Equation (S6.5)) (519.80)
fair = =011+ 1.31 222 = 0.8437 (519.81)
Rspan = [fairPraa + 1.42(1 — f4;) + 0.42a4]Rs (see Equation (S6.4)) (519.82)
where ags = 0.26 (assuming short grass Table S3)
Rgpan = [0.8437x1.3748 + 1.42(1 — 0.8437) + 0.42x0.26]17.1940 (518.83)
Rgpan = 25.6375 MJ m2 day-1 (S19.84)
Rypan = (1 — a4)Rspan — Ry (€€ Equation (S6.3)) (519.85)
where a, = 0.14 (Section S6)
Rypan = (1 — 0.14)25.6375 — 7.1784 = 14.8699 MJ m-2 day-1 (S19.86)
fran(w) = 1.201 + 1.621 u, (see Equation (S6.2)) (519.87)
fran(W) = 1.201 + 1.621x0.5903 = 2.1578 (S19.88)
Epenpan = 0.0898(:-(:.3;?0.0632 12?46599 + 0.08‘23::2:2?(2.20632 2.1578(1.5963 —0.5614) (S19.89)
Epenpan = 2.2570 + 1.4027 = 3.6587 mm day™ (S19.90)

For a screened Class-A pan, Epeppgn = 0.93* 3.6597 = 3.4035 mm day ™.
A discussion regarding the screen factor of 0.93 can be found in Section S16.
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Worked example 10: Estimate daily potential evaporation using the Makkink
model

A Rg .
Epax = 0.61 (m 245) — 0.12 (see Equation (S9.6)) (519.91)
_ 0.0898 17.1940 . _ -1
Epyge = 0.61 (00%8%0632 - ) 0.12 = 2.3928 mm day (S19.92)

Worked example 11: Estimate daily reference crop evapotranspiration using the
Blaney-Criddle model

ETgc = (0.0043RHyin — 1 = 141) + byypy (0.46T, + 8.13) (S19.93)
(s